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Plant growth and response to environmental cues are largely governed by phytohormones.
The plant hormones ethylene, jasmonic acid, and salicylic acid (SA) play a central role in
the regulation of plant immune responses. In addition, other plant hormones, such as
auxins, abscisic acid (ABA), cytokinins, gibberellins, and brassinosteroids, that have been
thoroughly described to regulate plant development and growth, have recently emerged
as key regulators of plant immunity. Plant hormones interact in complex networks to
balance the response to developmental and environmental cues and thus limiting defense-
associated fitness costs.The molecular mechanisms that govern these hormonal networks
are largely unknown. Moreover, hormone signaling pathways are targeted by pathogens
to disturb and evade plant defense responses. In this review, we address novel insights
on the regulatory roles of the ABA, SA, and auxin in plant resistance to pathogens and
we describe the complex interactions among their signal transduction pathways. The
strategies developed by pathogens to evade hormone-mediated defensive responses
are also described. Based on these data we discuss how hormone signaling could be
manipulated to improve the resistance of crops to pathogens.
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INTRODUCTION
In their natural environments, plants are under continuous biotic
stress caused by different attackers (e.g., bacteria, fungi, viruses,
oomycetes, and insects) that compromise plant survival and
offspring. Given that green plants are the ultimate source of
energy for most organisms, it is not surprising that plants have
evolved a variety of resistance mechanisms that can be con-
stitutively expressed or induced after pathogen or pest attack
(Glazebrook, 2005; Panstruga et al., 2009). Plants have developed
molecular mechanisms to detect pathogens and pests and to acti-
vate defense responses. The plant innate immune system relies
in the specific detection by plant protein recognition receptors
(PRRs) of relatively conserved molecules of the pathogen called
pathogen-associated molecular patterns (PAMPs). This resistance
response is known as PAMP-triggered immunity (PTI). Successful
pathogens secrete effector proteins that deregulate PTI. To coun-
teract this, plant resistance (R) proteins recognize effectors and
activate effector-triggered immunity (ETI; reviewed in Dodds and
Rathjen, 2010).

A fine-tune regulation of these immune responses is necessary
because the use of metabolites in plant resistance may be detrimen-
tal to other physiological processes impacting negatively in other
plant traits, such as biomass and seed production (Walters and
Heil, 2007; Kempel et al., 2011). These physiological constrains,
together with other factors such as the co-existence of plants
with natural attackers, have contributed to drive the evolution

of a dynamic and complex network system. Defense layers from
separate cellular components and from diverse physiological pro-
cesses are interconnected to reduce the inherent fitness cost of
being well-defended (Chisholm et al., 2006; Panstruga et al., 2009;
Schulze-Lefert and Panstruga, 2011). The resistance response is
regulated by phytohormones, that are small molecules which syn-
ergistically and/or antagonistically work in a complex network to
regulate many aspects of plant growth, development, reproduc-
tion, and response to environmental cues (Pieterse et al., 2009;
Santner et al., 2009; Jaillais and Chory, 2010). Recent progresses
have been made in understanding the complex hormone network
that governs plant immunity, giving rise to a database containing
information of the hormone-regulated genes (e.g., in Arabidop-
sis thaliana) and the phenotypic description of hormone-related
mutants (Peng et al., 2009). In parallel, it has been found that
pathogens have developed sophisticated molecular mechanisms
to deregulate the biosynthesis of hormones and/or to interfere
with hormonal signaling pathways, thus, facilitating the over-
coming of plant defense mechanisms (Jones and Dangl, 2006;
Dodds and Rathjen, 2010). The essential roles of salicylic acid
(SA) and ethylene (ET)/jasmonic acid (JA)-mediated signaling
pathways in resistance to pathogens are well described (Robert-
Seilaniantz et al., 2011a). SA signaling positively regulates plant
defense against biotrophic pathogens, that need alive tissue to
complete their life cycle, whereas ET/JA pathways are commonly
required for resistance to necrotrophic pathogens, that degrade
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plant tissue during infection, and to herbivorous pests (Glaze-
brook, 2005; Bari and Jones, 2009). Several exceptions for this
general rule have been described, and thus SA pathway is also
required for plant resistance to particular necrotrophic pathogens,
whereas ET/JA pathways were found to be essential for resis-
tance to some biotrophic pathogens (Berrocal-Lobo et al., 2002;
Robert-Seilaniantz et al., 2011a). Additionally, other hormones
such as auxins and abscisic acid (ABA), originally described for
their function in the regulation of plant growth processes and
the response to abiotic stresses, have recently emerged as crucial
players in plant–pathogen interactions (Mauch-Mani and Mauch,
2005; Kazan and Manners, 2009; Ton et al., 2009; Fu and Wang,
2011). All the phytohormone pathways are linked to each other
in a huge, complex and still obscure network. For example, ET,
ABA, auxin, gibberellins, and cytokinins pathways are considered
as hormone modulators of the SA–JA signaling backbone (Pieterse
et al., 2012).

To develop hormone-based breeding strategies aiming to
improve crop resistance to pathogens, we need to understand
the intricate regulation of hormone homeostasis during plant–
pathogen interactions, and how pathogens interfere with this
hormone regulation. Indeed, manipulation of a plant hormone
pathway can result in enhanced resistance to a particular pathogen,
but it could also have a strong negative effect on plant growth and
resistance to a distinct type of pathogen with a different life style
(Holeski et al., 2012). In this review, we will discuss novel insights
on the complex role of phytohormones in balancing plant innate
immunity and development, with a special focus on the regula-
tory crosstalk of auxins, SA, and ABA. We will also learn about
decoy strategies employed by the attackers to disturb hormone-
mediated defense responses in plants, and we will describe how
misregulation of these hormone pathways leads to strong effects
on developmental features and on disease resistance to pathogens.
Finally, we will discuss the potential of manipulating hormone
homeostasis/signaling to improve crop resistance to pathogen.

HORMONE REGULATORY NETWORKS IN DISEASE
RESISTANCE
AUXINS
Auxins are a group of molecules including IAA (indole-3-acetic
acid) that regulate many aspects of plant development, such
as apical dominance, root gravitropism, root hair, lateral root,
leaf, and flower formation, and plant vasculature development
(Kieffer et al., 2010; Swarup and Péret, 2012). Both direct and
indirect effects of auxins on the regulation of pathogen resistance
responses in plants have been described (Kazan and Manners,
2009). Indirect effects may be caused by auxins regulation of
development-associated processes, such as cell wall architecture,
root morphology, and stomata pattern. For example, treatment
of rice with IAA impaired the resistance to Xanthomonas oryzae
pv. oryzae probably as a consequence of the activation of the
biosynthesis of cell wall-associated expansins that lead to cell wall
loosening, which facilitates pathogen growth (Ding et al., 2008).

Auxins can negatively impact plant defense by interfering
with other hormone signaling pathways or with PTI (Robert-
Seilaniantz et al., 2011a). The bacterial PAMP flg22, a peptide from
flagellin protein (Boller and Felix, 2009; Pel and Pieterse, 2012),

induces an Arabidopsis microRNA (miR393), which negatively
regulates the mRNA levels of auxins receptors TIR1 (transport
inhibitor response 1), AFB2 (auxin signaling F-box 2), and AFB3.
Thus, the flg22-triggered suppression of auxin signaling leads to
increased resistance to the bacterium Pseudomonas syringae pv.
tomato DC3000 (PstDC3000) and also to the oomycete Hyaloper-
onospora arabidopsidis (Navarro et al., 2006; Robert-Seilaniantz
et al., 2011b). The flg22-induced resistance to these biotrophic
pathogens was explained by the observed induction of the SA
signaling pathway. Supporting this hypothesis, it was found inde-
pendently that treatment of Arabidopsis leaves with flg22 induces
SA accumulation (Tsuda et al., 2008).

In Arabidopsis, SA treatment stabilizes the Aux/IAA proteins,
leading to down-regulation of the expression of auxin-related
genes. Moreover, the enhanced susceptibility to P. syringae pv.
maculicola 4326 (Psm4326) of plants expressing the NahG gene
(encoding a bacterial salicylate hydroxylase that degrades SA) is
partially reverted by the axr2-1 mutation, that disrupts auxin
signaling, further indicating that auxin signaling is part of the
SA-induced resistance signaling pathway (Wang et al., 2007).
Interaction between SA and auxins was further clarified by the
characterization of the regulatory pattern of GH3.5 gene, which
is involved in auxin homeostasis in Arabidopsis plants. Lines
overexpressing GH3.5 have lower levels of Aux/IAA proteins, over-
expression of SA signaling pathway and enhanced resistance to P.
syringae (Park et al., 2007). Moreover, these transgenic lines also
displayed enhanced resistance to abiotic stress and induction of
the ABA regulatory pathway (Park et al., 2007).

The conjugated auxin–aspartic acid (IAA–Asp) has been
recently reported to play a key role in regulating resistance to
the necrotrophic fungus Botrytis cinerea and PstDC3000. In Ara-
bidopsis, tomato, and Nicotiana benthamiana infected with these
pathogens there is an enhanced expression of GH3.2 and GH3.4
genes, which encode two enzymes required for conjugation of
auxins with Asp. Thus, upon pathogen infection, accumula-
tion of IAA–Asp takes place, promoting the development of
disease symptoms in infected plants (Gonzalez-Lamothe et al.,
2012). The negative effects of auxins on the activation of plant
resistance is further supported by the observed enhanced suscep-
tibility of auxin-treated rice to X. oryzae (Ding et al., 2008) and of
auxin-treated Arabidopsis to PstDC3000 (Navarro et al., 2006) and
Fusarium culmorum (Petti et al., 2012). Disruption of auxin sig-
naling in Arabidopsis mutants, such as axr1, axr2, and axr3, leads to
enhanced resistance to F. oxysporum (Kidd et al., 2011). Neverthe-
less, auxins have also been shown to positively regulate Arabidopsis
immunity as axr2-1 and axr1-1 mutants were more susceptible
than wild-type plants to the necrotrophic fungi B. cinerea and
Plectosphaerella cucumerina (Llorente et al., 2008).

One of the biosynthetic pathways of auxins is partially shared
with those required for the biosynthesis of tryptophan-derived
antimicrobials, such as indole glucosinolates and camalexin. This
might lead to competition for the biosynthetic precursor of
auxin and antimicrobials (Barlier et al., 2000; Grubb and Abel,
2006). The recently characterized Arabidopsis wat1 (walls are
thin1) mutant exhibits specific enhanced resistance to vascular
pathogens such as Ralstonia solanacearum. This response was
associated to a misregulation of tryptophan derivatives (i.e., lower
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levels of auxin and indole glucosinolates) specifically in roots,
resulting in enhanced levels of SA which is, like tryptophan, a
chorismate-derivative (Denancé et al., 2013). Collectively, these
data demonstrate that auxins play a central role in balancing plant
resistance responses.

ABSCISIC ACID
Abscisic acid is an isoprenoid compound that regulates develop-
mental processes, such as seed development, desiccation, and
dormancy (Wasilewska et al., 2008). In addition, the function
of ABA as a regulator of abiotic stress has been thoroughly
described (Shinozaki and Yamaguchi-Shinozaki, 2007). ABA has
also emerged as a complex modulator of plant defense responses
(Asselbergh et al., 2008; Feng et al., 2012; Sánchez-Vallet et al.,
2012). ABA can function as a positive or a negative regulator of
plant defense depending on the plant–pathogen interaction ana-
lyzed (Mauch-Mani and Mauch, 2005; Asselbergh et al., 2008; Ton
et al., 2009). ABA-impaired (biosynthesis or signaling) mutants in
tomato (sitiens) and Arabidopsis (abi1-1, abi2-1, aba1-6, aba2-
12, aao3-2, and pyr1pyl1pyl2pyl4) were shown to overexpress
defensive-signaling pathways, leading to enhanced resistance to
different pathogens such as B. cinerea, P. syringae, F. oxyspo-
rum, Plectosphaerella cucumerina, and Hyaloperonospora parasitica
(Audenaert et al., 2002; Mohr and Cahill, 2003; de Torres-Zabala
et al., 2007; de Torres Zabala et al., 2009; Garcia-Andrade et al.,
2011; Sánchez-Vallet et al., 2012). Negative interactions of ABA
with the major hormones involved in plant defense response (SA,
JA, and ET) have been described by means of exogenous hor-
mone treatments (Yasuda et al., 2008; de Torres Zabala et al., 2009;
Sánchez-Vallet et al., 2012). For instance, almost 65% of the up-
regulated genes and 30% of the down-regulated genes in aba1-6
mutant were found to be up- or down-regulated by either ET, JA, or
SA treatment (Sánchez-Vallet et al., 2012). Remarkably, these genes
constitutively up-/down-regulated in aba1-6 mutant were differ-
entially expressed in Arabidopsis wild-type plants inoculated with
Plectosphaerella cucumerina, indicating that they form part of the
defensive responses activated upon pathogen infection (Sánchez-
Vallet et al., 2012). In addition, ABA plays a direct role in regulating
R (resistance) protein activity. ABA and exposition of plants to
high temperature both reduce the nuclear accumulation of SNC1
(suppressor of npr1-1, constitutive1) and RPS4 (resistant to Pseu-
domonas syringae 4) compromising disease resistance to P. syringae
(Mang et al., 2012).

Abscisic acid can also positively regulate the resistance to
some pathogens, such as Alternaria brassicicola, R. solanacearum,
and Pythium irregulare, as ABA-deficient and-insensitive mutants
(abi1-1, abi2-1, abi4-1, aba1-6, aba2-12, aao3-2, and npq2-1)
were found to be more susceptible than wild-type plants to these
pathogens (Adie et al., 2007; Hernandez-Blanco et al., 2007; Flors
et al., 2008; Garcia-Andrade et al., 2011). In Arabidopsis, ABA
has been shown to be required for JA biosynthesis that is essen-
tial for resistance to Pythium irregulare (Adie et al., 2007). This
contrasts with the negative interaction of ABA- and JA-signaling
in the modulation of Arabidopsis resistance to the necrotrophic
fungus Plectosphaerella cucumerina (Sánchez-Vallet et al., 2012).
Similarly, although ABA and SA have been shown to function
antagonistically in the control of the resistance to some pathogens,

they trigger stomata closure to avoid penetration of the bacteria
P. syringae in Arabidopsis (Melotto et al., 2006). Plant treatment
with flg22 is known to interfere with ABA signaling to induce
stomata closure. The ABA- or flg22-induced stomata closure are
impaired in lines overexpressing HSC70-1 (heat shock cognate70-
1) and mutants in HSP90 (heat shock protein90; Clément et al.,
2011), resulting in an increased susceptibility to both virulent
and avirulent strains of P. syringae (Hubert et al., 2003; Taka-
hashi et al., 2003; Noël et al., 2007). ABA is a key hormone in
Arabidopsis response to R. solanacearum infection, as 40% of the
genes up-regulated during the development of wilting symptoms
were related to ABA, including those encoding proteins for ABA
biosynthesis [i.e., 9-cis-epoxycarotenoid dioxygenase3 (NCED3)]
or signaling [i.e., ABA-insensitive1 (ABI1) and ABI5; Hu et al.,
2008]. More recently, it has been shown that pre-inoculation
of Arabidopsis with an avirulent strain of R. solanacearum acti-
vates plant resistance to virulent isolates of this bacterium, and
this resistance was correlated with the enhanced expression of
ABA-related genes that resulted in a hostile environment for the
infection development. These results suggest that ABA may be used
in biological control of bacterial wilt caused by R. solanacearum
(Feng et al., 2012).

SALICYLIC ACID
The function of SA in activating resistance against pathogens
has been thoroughly described. In Arabidopsis, SA is synthesized
from chorismate (a precursor of tryptophan and, consequently,
of auxins) via two pathways, either through phenylalanine or
through isochorismate (reviewed in Vlot et al., 2009). This second
pathway, in which SID2/ICS1 (salicylic acid induction deficient
2/isochorismate synthase 1) is involved, is activated upon pathogen
infection, such as Erysiphe or P. syringae, and after plant recogni-
tion of pathogen effectors or PAMPs (Tsuda et al., 2008; Vlot et al.,
2009). Deficiency of SA biosynthesis in sid2-1 mutant leads to
reduced resistance response in Arabidopsis plants (Nawrath and
Métraux, 1999). SA is a regulator of plant resistance to biotrophic
and hemibiotrophic pathogens, such as Hyaloperonospora ara-
bidopsidis and P. syringae, and it also regulates systemic acquired
resistance (SAR), a well-studied type of induced resistance (Glaze-
brook, 2005). In addition, SA is a central regulator of immunity. It
interacts with other signaling pathways (e.g., ET and JA path-
ways), as a strategy to induce the proper resistance responses
and to reduce the associated fitness costs (Vlot et al., 2009;
Thaler et al., 2012).

NPR1 (non-expressor of PR genes 1), a well-known central
player in SA signaling (Cao et al., 1997), and NPR3 and NPR4 pro-
teins have been recently described as SA receptors (Fu et al., 2012;
Wu et al., 2012). NPR1 localizes at the cytosol as an oligomer,
and in the presence of SA, redox changes occurs in NPR1 that
lead to the dissociation of NPR1 complex and to the transloca-
tion of the corresponding monomers to the nucleus. There, NPR1
protein activates the transcription of defensive genes, such as PR
(pathogenesis-related protein), by interacting with TGA (TGACG
sequence-specific binding protein) transcription factors (Dong,
2004; Tada et al., 2008; Robert-Seilaniantz et al., 2011a). In Ara-
bidopsis, EDS1 (enhanced disease susceptibility 1) is a major
node required both for SA-dependent basal resistance against
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virulent pathogens and for the activation of the ETI mediated by
the TIR–NB–LRR (Toll-interleukin receptor domain–nucleotide
binding domain–leucine rich repeat) resistance proteins (Parker
et al., 1996; Falk et al., 1999). EDS1 protein is present in distinct
pools at nuclei and cytoplasm, and these two EDS1 locations
are required for a complete immune response (Garcia et al.,
2010). Several EDS1 interactors have been identified, including
PAD4 (phytoalexin deficient4), RPS4, RPS6, SAG101 (senescence-
associated gene101), SRFR1 (suppressor of RPS4-RLD1), and
SNC1 (Feys et al., 2001, 2005; Bhattacharjee et al., 2011; Heidrich
et al., 2011; Rietz et al., 2011). The EDS1–PAD4 complex is nec-
essary for basal resistance and activation of SA-defense response
(Rietz et al., 2011). Indeed mutations in EDS1 and PAD4 lead to
reduce resistance to pathogens such as Hyaloperonospora parasit-
ica and deficiency of the SA signaling pathway (Parker et al., 1996;
Falk et al., 1999; Jirage et al., 1999). Transcriptional regulation of
SA-defensive genes is also mediated by HDA19 (histone deacety-
lase19) that repressed SA-mediated basal defense to PstDC3000
(Choi et al., 2012). Up-regulation of SA marker genes (PR1, PR2,
ICS1, EDS1, PAD4) and over-accumulation of SA take place in
hda19 mutant, which correlates with its enhanced resistance phe-
notype to PstDC3000 pathogenic bacteria. Indeed, HDA19 targets
PR1 and PR2 promoters to regulate gene expression. The muta-
tion hda19 causes hyper-acetylation of histones in the promoters
of PR genes and priming of SA-associated plant defense (Choi
et al., 2012).

Negative crosstalk between SA and JA signaling pathways
has been thoroughly described (Gimenez-Ibanez and Solano,
2013). For example, WRKY33, a positive regulator of JA-related
genes, is a repressor of the SA pathway. In the wrky33 mutant
there is an enhanced expression of several SA-regulated genes
(SID2/ICS1, EDS5/SID1, PAD4, EDS1, NIMIN1, PR1, PR2,
PR3) and increased accumulation of SA levels. In turn, SA
induction contributes to down-regulate JA-signaling, and to
increase the susceptibility of wrky33 plants to necrotrophic fungi
(Birkenbihl et al., 2012; Sánchez-Vallet et al., 2012). NPR1 is
a regulator of SA-mediated suppression of the JA/ET signal-
ing pathway, as revealed using npr1 mutant (Spoel et al., 2003).
The Arabidopsis mediator subunit 16 (MED16) was recently
described to be a positive regulator of SA-induced defense
response and a negative regulator of JA/ET signaling pathway
(Zhang et al., 2012). The negative crosstalk between SA and
JA is exploited by P. syringae strains producing the phytotoxin
coronatine (COR), an structural mimic of the active JA-Ile,
to suppress SA signaling (Uppalapati et al., 2005; Zheng et al.,
2012). P. syringae strains impaired in production of COR have
reduced virulence on Arabidopsis wild-type plants but not on
SA-deficient lines (e.g., sid2 and NahG; Brooks et al., 2005).
In a search for Arabidopsis mutants in which the virulence of
COR-deficient PstDC3000 mutant was recovered, several scord
(susceptible to coronatine-deficient PstDC3000) mutants were
found to be defective in SA signaling (Zeng et al., 2011). For
instance, scord3 mutant plants are impaired in EDS5/SID1, a
key protein required for SA biosynthesis, and consequently it
has reduced SA levels compared with wild-type plants (Zeng
et al., 2011), further corroborating the role of SA in resistance
to pathogens.

DECOY STRATEGIES OF PATHOGENS: MANIPULATION OF
THE HOST HORMONE MACHINERY
PATHOGENS PRODUCE AND DEGRADE HORMONES
Auxins
Many pathogenic microbes and plant growth promoting rhi-
zobacteria have evolved complete pathways for auxin biosynthesis
with tryptophan as the main precursor (Spaepen et al., 2007).
Auxin-producing phytopathogenic bacteria are mostly, but not
exclusively, gall-inducing microbes. They include, for instance,
Agrobacterium tumefaciens (Liu and Nester, 2006), Agrobacterium
rhizogenes (Gaudin and Jouanin, 1995), Erwinia chrysanthemi
(Yang et al., 2007), Erwinia herbicola (Brandl and Lindow, 1998),
Pseudomonas fluorescens (Suzuki et al., 2003), P. putida (Leveau
and Lindow, 2005), Pseudomonas savastanoi (Glickmann et al.,
1998), P. syringae (Glickmann et al., 1998), R. solanacearum
(Sequeira and Williams, 1964; Valls et al., 2006), and Rhodococ-
cus fascians (Vandeputte et al., 2005). In R. solanacearum, auxin
biosynthesis is governed by HrpG, a major regulator of bacterial
virulence and response to metabolic signals (Valls et al., 2006). In
Agrobacterium tumefaciens, two genes required for conversion of
tryptophan to auxin are localized on the T-DNA region of the Ti
plasmid injected into plant cells. Auxin biosynthesis is necessary
for tumor gall formation and for pathogenicity of Agrobacterium
(Lee et al., 2009): auxins negatively regulate the expression of genes
necessary for the transfer of Agrobacterium T-DNA in plants and
also inhibit the growth of several bacterial species in vitro (Liu and
Nester, 2006).

Auxin biosynthesis in fungal pathogens seems to be limited
to a few species. In Ustilago maydis, U. esculenta, and U. scita-
minea auxin is produced (Chung and Tzeng, 2004; Reineke et al.,
2008). In this case, auxin does not seem to be required for U. may-
dis-induced tumor formation or for pathogenicity, as a mutant
defective in four genes encoding key auxin biosynthetic enzymes
was compromised in auxin levels but not in tumor formation
(Reineke et al., 2008). Additionally, other fungi have enzymatic
tools to produce auxins, such as Colletotrichum gloeosporioides
f. sp. aeschynomene, Colletotrichum acutatum, and F. prolifera-
tum (Robinson et al., 1998; Chung et al., 2003; Maor et al., 2004;
Tsavkelova et al., 2012). Nevertheless, the production of auxins
by fungal pathogens has not been clearly demonstrated to be a
virulent factor that favors plant colonization.

Abscisic acid
Several fungal species produce ABA, including B. cinerea, Rhizocto-
nia solani, Ceratocystis fimbriata, and Rhizopus nigricans (Dörffling
et al., 1984; Inomata et al., 2004a). ABA biosynthesis by B. cinerea
requires a cluster of four genes, BcABA1 to BcABA4 (Hirai et al.,
2000; Inomata et al., 2004b; Siewers et al., 2004, 2006). Unlike
plants, fungi, such as B. cinerea and Cercospora sp., use the meval-
onate pathway to produce ABA (Hirai et al., 2000; Inomata et al.,
2004a). The role of ABA as a B. cinerea virulence factor has
not been fully demonstrated, but several published data support
this hypothesis: (i) ABA biosynthesis in the fungus is stimulated
by the host plant (Kettner and Därffling, 1995); (ii) exogenous
treatment with ABA increased disease symptoms caused by the
fungus on roses (Shaul et al., 1996); and (iii) ABA contributes to
susceptibility to B. cinerea and other pathogens by suppressing
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defense responses in plants (Audenaert et al., 2002; Sánchez-Vallet
et al., 2012).

Salicylic acid
Although SA biosynthesis has not been described in plant
pathogens, it is known that some plant-associated bacteria can
degrade salicylate. Indeed, the enzyme salicylate hydroxylase
(NahG), that catalyzes the formation of catechol from salicylate,
has been identified in various bacteria, such as P. putida and P.
fluorescens (You et al., 1991; Chung et al., 2001).

PATHOGEN EFFECTORS INTERFERE WITH HORMONE SIGNALING IN
PLANTS
Effectors are proteins secreted by pathogens during infection to
deregulate host immune responses. One common strategy imple-
mented by effectors is the manipulation of the homeostasis of
plant phytohormones, resulting in deactivation of the appropriate
defense response (Robert-Seilaniantz et al., 2007; Bari and Jones,
2009; Figures 1 and 2).

Bacteria and phytoplasma
In addition to the common example of the phytotoxin COR pro-
duced by P. syringae strains to manipulate the plant hormonal
balance (Zheng et al., 2012), many phytopathogenic bacteria have
developed large repertoires of type III effectors (T3E) which are
necessarily injected through the syringe-like type III secretion sys-
tem inside plant cells to deregulate plant immunity (Figure 1;
Jones and Dangl, 2006; Boller and He, 2009; Büttner and He,
2009). The roles of bacterial effectors in plant immunity have
been extensively reviewed elsewhere (Cui et al., 2009; Rivas and
Genin, 2011; Deslandes and Rivas, 2012; Dou and Zhou, 2012;
Howden and Huitema, 2012). Xanthomonas sp. bacteria synthe-
sized TAL (transcription activator-like) effectors, such as AvrBs3
from X. axonopodis pv. vesicatoria (formerly X. campestris pv. vesi-
catoria), that are imported to the plant nuclei where they activate
the expression of host target genes (Boch et al., 2009; Moscou and
Bogdanove, 2009; Bogdanove et al., 2011). Five targets, designed
as up-regulated by AvrBs3 1 to 5 (UPA1–5), are auxin-induced
genes members of the SAUR (small auxin up RNA) family (Marois

FIGURE 1 | Decoy strategies elaborated by pathogens and pests to

interfere with plant hormone biosynthesis/signaling pathways.

Phytopathogenic bacteria, phytoplasmas, fungi, and oomycetes secrete
various effectors inside plant cells during infectious process. Once in the

host cells, some effectors specifically bind to (underlined), induce and/or
decrease (arrows/crossed lines) target gene expression or protein activity.
Consequently, ABA-, SA-, or Auxin-mediated defense mechanisms are
activated/repressed.
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FIGURE 2 | Balancing plant immune responses and fitness costs.

Plant disease resistance responses are induced upon recognition of
PAMPs/effectors from pathogens and pests by plant PRR proteins. This
recognition modulates plant hormonal homeostasis and transcriptional
reprograming of defensive genes. The activation of these inducible
resistance responses (PTI and/or ETI) negatively regulates the expression
of developmental-associated genes impacting on plant fitness costs.

Effectors from pathogens interfere with hormonal balance and the
activation of PTI and ETI. Pathogens can also negatively impact
plant growth and developmental-associated processes (transcriptional
expression of genes, negative regulation of signaling pathways, etc.;
see text for details). Positive and negative interactions are indicated
by arrows and squares, respectively. GA, gibberellic acid; BR,
brassinosteroids.

et al., 2002). Additionally, induction of the TAL target UPA20
provokes cell hypertrophy, a feature which is characteristic of
auxin accumulation (Kay et al., 2007). Auxin is a susceptibility
factor in Arabidopsis plants infected with PstDC3000, and con-
sequently, auxin was hypothesized to be a potential target for
bacterial effectors. Thus, the cysteine protease bacterial effector
AvrRpt2 triggers auxin signaling pathway to enhance bacterial
virulence in Arabidopsis lines lacking the resistance gene that nor-
mally recognizes this T3E. Transgenic plants expressing AvrRpt2
accumulated higher auxin levels and showed a constitutive activa-
tion of the auxin signaling pathway. Additionally, auxin levels in
Arabidopsis leaves inoculated with PstDC3000avrRpt2 were higher
than those in plants infected with PstDC3000 (Chen et al., 2007),
indicating that AvrRpt2 modulates auxin pathway to enhance bac-
terial virulence, but this effect was found to be independent of SA
(Chen et al., 2004). Auxin signaling seems to be a preferential tar-
get of phytoplasmas, some bacteria-like, obligate plant pathogens
belonging to the class of Mollicutes that require sap-feeding insect
herbivores as vectors for transmission to plants (Sugio et al., 2011).

Indeed, TENGU (tengu-su inducer) is an effector of Candidatus
phytoplasma asteris that, when expressed in Arabidopsis transgenic
lines, causes dwarfism and abnormal reproductive organogenesis
and flower sterility. These phenotypes, which are similar to the
disease symptoms provoked by the phytoplasma, have been asso-
ciated to alterations in hormone balance. Microarray analysis of
transgenic Arabidopsis plants expressing TENGU demonstrated
that many auxin-related genes were down-regulated, including
genes of the Aux/IAA, SAUR, GH3, and PIN families (Hoshi et al.,
2009). Thus, TENGU effector could interfere with auxin signaling
in plants.

Several P. syringae effectors target SA. HopPtoM and AvrE are
repressors of SA-dependent callose deposition but do not affect
SA-responsive genes in Arabidopsis infected leaves (DebRoy et al.,
2004). The effector HopI1 (previously named HopPmaI), that is
essential for the virulence of P. syringae pv. maculicola (Pma) in
Arabidopsis, N. benthamiana, and N. tabacum, has been found
to be a modulator of SA-mediated defense responses. Indeed,
the expression of HopI1 in Arabidopsis acd6-1 (accelerated cell
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death6-1) mutant reduces the enhanced SA levels and the con-
stitutive induction of defense responses characteristic of this
mutant (Jelenska et al., 2007). Another effector, HopZ1a, a cys-
teine protease from P. syringae that interferes with SA signaling,
is able to suppress PstDC3000-induced expression of PR1 and
PR5 and the SAR induced either by PstDC3000 (virulent) or
PstDC3000avrRpt2 (avirulent) pathogens (Macho et al., 2010).
Thus, HopZ1a contributes to Pst virulence by suppressing SA-
mediated defenses that takes place during ETI induced by other
effectors such as AvrRpt2. EDS1, a key regulatory node of basal
and induced resistance, is also targeted by bacterial pathogen effec-
tors. AvrRps4 and HopA1, two PstDC3000 effectors, bind to EDS1
interfering with the interaction between EDS1 and TIR–NB–LRR
resistance proteins, and consequently preventing the activation of
the immune response (Bhattacharjee et al., 2011; Heidrich et al.,
2011). In contrast to other effectors, HopW1-1, that forms part
of the T3E repertoire of Pma, but not of that of PstDC3000
(Guttman et al., 2002), induces resistance in the Ws accession of
Arabidopsis to Pma (Lee et al., 2008). This effect of HopW1-1 on
Ws was corroborated by the fact that PstDC3000 strain expressing
HopW1-1 has reduced growth and caused weak disease symptoms
in the Ws plants. In a yeast two-hybrid screen, three Arabidopsis
HopW1-1-interacting proteins (WIN2, WIN3) were found to bind
to the effector (Lee et al., 2008). The enhanced resistance triggered
by HopW1-1 was not caused by activation of a hypersensitive
response, but it was dependent on an enhanced accumulation of
SA. Indeed, pad4 mutants were almost completely compromised
in their resistance response to HopW1-1.

HopAM1 contributes to P. syringae virulence by manipulating
ABA-mediated responses in plants: it enhances stomata closure,
suppresses infection-triggered callose deposition, and inhibits
seed germination. Remarkably, HopAM1 increased P. syringae
virulence on Arabidopsis plants grown under water-stressed con-
ditions (Goel et al., 2008). Arabidopsis lines expressing HopAM1
showed enhanced colonization by the avirulent PstDC3000 hrcC−
mutant, impaired in T3SS, and did not develop callose-rich
papillae that are normally induced by hrcC− strain in wild-type
plants (Goel et al., 2008). An effector of P. syringae pv. phase-
olicola, HopAB2, promotes virulence on Arabidopsis and bean
plants, and suppresses basal resistance to PstDC3000 hrpA−, a
mutant compromised in T3SS (de Torres et al., 2006). Expres-
sion of HopAB2 in Arabidopsis plants induces the expression
of NCED3, resulting in enhanced biosynthesis of ABA, which
interferes with the accumulation of SA levels and the activation
of SA-mediated resistance (de Torres-Zabala et al., 2007). Thus,
HopAM1 and HopAB2 are suppressors of defense mechanisms by
enhancing ABA responses and promoting disease susceptibility in
plants.

Filamentous pathogens: oomycetes and fungi
Oomycete genomes contain a class of cytoplasmic proteins known
as RXLRs that contain a conserved RXLR amino acid motif
(arginine, any amino acid, leucine, arginine; Rehmany et al.,
2005; Morgan and Kamoun, 2007). Two effectors from this class,
HaRxL96 from Hyaloperonospora arabidopsidis, the causal agent
of downy mildew on Arabidopsis, and its ortholog PsAvh163
from Phytophthora sojae, which causes soybean rot disease,

interfere with plant immunity (Anderson et al.,2012). Remarkably,
Arabidopsis plants expressing HaRxL96 or PsAvh163 became more
susceptible to virulent and avirulent pathogens, indicating that
these effectors repress basal resistance and ETI. In fact, the induc-
tion of SA-defensive genes, but not SA biosynthesis, that take
places upon infection with avirulent strains of Hyaloperonospora
arabidopsidis, was suppressed in the transgenic lines expressing
HaRxL96 or PsAvh163, indicating that these effectors interfere
with SA signaling to trigger plant susceptibility to oomycetes
(Anderson et al., 2012).

Filamentous extracellular or obligate fungal pathogens secrete
effectors via hyphae or haustoria (Stergiopoulos and de Wit,
2009; de Jonge et al., 2011). U. maydis is a basidiomycete fun-
gus that causes smut disease on maize and its relative teosinte
(Brefort et al., 2009; Djamei and Kahmann, 2012). Maize infec-
tion by U. maydis results in the repression of SA-associated PR1
defense gene expression during the early biotrophic phase of
the interaction, while auxin production in the host is induced
later during tumor formation (Doehlemann et al., 2008). One
of the most highly expressed genes of U. maydis during plant
colonization is the Cmu1 effector, a chorismate mutase protein
(Skibbe et al., 2010). Cmu1 is required for full virulence since
the induction of tumors is significantly reduced in a U. may-
dis cmu1 mutant (Djamei et al., 2011). Once inside plant cells,
Cmu1 is localized in the cytoplasm, the nucleus and guard cells
and it is spread to neighbor cells through plasmodesmata. A yeast
two-hybrid analysis showed that Cmu1 interacts with two maize
chorismate mutases, ZmCm1 and ZmCm2, which are found in
plastids and cytoplasm in plants, respectively. Interestingly, SA
levels were higher in maize inoculated with a cmu1 mutant than
with a wild-type strain, resulting in an increased resistance of
the mutant to U. maydis. It was hypothesized that Cmu1 could
act together with ZmCm2 in the plant cytoplasm to enhance the
flow of the SA-precursor chorismate from the plastid (where SA
biosynthesis takes place) to the cytosol. Consequently, in plastids,
less chorismate would be available for SA biosynthesis (Djamei
et al., 2011). These results indicate that SA biosynthesis pathway of
maize is hijacked by U. maydis as a mechanism of virulence. Inter-
estingly, such a mechanism was also described for the soybean
cyst nematode Heterodera glycines and the root-knot nematode
Meloidogyne javanica (Bekal et al., 2003; Doyle and Lambert,
2003). The virulence factor of Cladosporium fulvum Avr2 targets
the tomato papain-like cysteine protease (PLCP) RCR3 and Phy-
tophthora-inhibited protease 1 (PIP1) in order to deregulate basal
immunity. RCR3 and PIP1 are specifically induced by treatment of
tomato plants with the SA analog benzothiadiazole (BTH). There-
fore, Avr2 seems to interfere with tomato SA signaling pathway
(Shabab et al., 2008).

FITNESS COSTS OF DEFENSE RESPONSES REGULATED BY
PHYTOHORMONES
The involvement of many plant growth regulatory phytohormones
in the control of plant resistance responses to both biotic and
abiotic stresses indicates the existence of a tight interconnection
between two physiological processes: development and adaptation
to environmental cues. The regulatory potential of the hor-
mone network allows plants to quickly respond to environmental
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changes and, thus, to use the limited nutrient resources in a cost-
efficient manner. This hypothesis is based on the idea that being
well-defended (i.e., having strong, pre-existing defensive mecha-
nisms) may not always be the best defensive strategy, most likely
because allocation of metabolites and proteins to resistance may
constrain other plant physiological processes (Walters and Heil,
2007; Manzaneda et al., 2010; Kempel et al., 2011). In line with this
hypothesis, it is generally believed that hormone-induced resis-
tance evolved to save energy under enemy-free conditions, as they
will only incur energy costs when these defensive mechanisms are
activated upon pathogen infection or insect attack (Walters and
Heil, 2007). However, pathogens and pests evolve to get adapted
to the continuous exposure to defensive genetic traits (i.e., antibi-
otic or antideterrent proteins and/or metabolites). Therefore, it
is also possible that hormone-induced resistance evolved to slow
down the potential adaptation of putative attackers to these bio-
chemical barriers (Walters and Heil, 2007). All these physiological
constrains, together with the co-existence of plants with natural
attackers, have evolutionary driven the selection of plant innate
immune system.

In different plant species there have been characterized mutants
or transgenic lines showing constitutive activation of defensive
mechanisms and enhanced resistance to particular pathogens.
These resistance phenotypes are generally associated with the
misregulation of particular hormone signaling pathways (Robert-
Seilaniantz et al., 2011a). The characterization of these mutants
and transgenic plants has contributed to the identification of the
molecular components involved in hormone biosynthesis and sig-
naling pathways, and to the discovery of cross-regulatory nodes
among these signaling pathways. Thus, Arabidopsis mutants con-
stitutively overexpressing a specific hormone-dependent pathway
(SA, ET, JA, ET + JA, etc.) show enhanced resistance to par-
ticular type of pathogens (reviewed by Robert-Seilaniantz et al.,
2011a; Holeski et al., 2012). However, this enhanced, constitu-
tive resistance negatively impact plant fitness as these mutants
have phenotypic alterations such as dwarfism, spontaneous lesions
in different organs, accelerated senescence, delayed flowering,
sterility, or reduced seed production (for a review, see Robert-
Seilaniantz et al., 2011a; Holeski et al., 2012; Thaler et al., 2012).
These data indicate that plants have genetic determinants to
fine-tune fitness/resistance balance. An example of this fine-tune
regulation is represented by the SA receptor NPR3, that is a
negative regulator of defensive response during Arabidopsis early
flower development through its interaction with NPR1 and TGA2.
Remarkably, the nrp3 plants exhibit increased resistance to P.
syringae infection of immature flowers, but showed reduced fitness
in comparison to that of wild-type plants (Shi et al., 2012).

Alteration of a particular hormone signaling pathway gener-
ally results in the miss-regulation of other signaling pathways due
to the described complex regulatory network that exist among
hormones. Thus, the negative cross-regulations among hormone
pathways, such as auxin, ABA, and SA described in this review,
lead to alterations in the pattern of resistance to natural attack-
ers. That is, enhanced resistance to a particular pathogen (i.e.,
necrotroph) can be achieved in some of these mutants, but they
generally undergo increased susceptibility to a different one (i.e.,
biotroph; Spoel et al., 2007; Robert-Seilaniantz et al., 2011a). In

some particular cases, such as in the ABA-deficient mutant aba1,
broad spectrum resistance to both necrotrophic and biotrophic
pathogen is observed, but this phenotype is also linked to a reduced
adaptation of the mutant to abiotic stresses such as drought
(Audenaert et al., 2002; de Torres-Zabala et al., 2007; de Torres
Zabala et al., 2009; Garcia-Andrade et al., 2011; Sánchez-Vallet
et al., 2012). As in nature, plants are exposed to many different
biotic agents, but also to abiotic stress, hormone homeostasis is
critical in the establishment of appropriate and effective defensive
responses of plant against natural attackers and/or abiotic stresses
in an ecological context (Figure 2). In line with the hypothesis of
the critical role of hormones in balancing growth and response
to environmental cues, it has been recently demonstrated that
brassinosteroids, that control several developmental-associated
processes, also modulate the efficiency of PTI in Arabidopsis
(Belkhadir et al., 2012). The interaction between these two types
of environmental stresses (biotic and abiotic) requires a complex
adaptive molecular response involving many factors that we are
just starting to understand (reviewed in Atkinson and Urwin,
2012).

Expressing constitutive resistance by the modification of hor-
mone homeostasis/signaling encounters the risk of allocating
resources to defense in the absence of natural pathogens and of
impairing defensive mechanisms against particular natural attack-
ers. One alternative to the constitutive, long-lasting activation
of induced resistance is to fine-tune plant resistance mecha-
nism by modulating the “immunological memory” of plants, as
it has been described in animals (Conrath, 2011). An interest-
ing phenomenon in this context is the so-called “priming” that
is a condition whereby plants that have been subjected to prior
attack will respond more quickly or more strongly to a subsequent
attack. Given that resources are not committed until the threat
returns, priming is thought to be a relatively low-cost mechanism
of advancing plant defense (Conrath, 2011). Remarkably, the resis-
tance response in primed plants treated with a low, non-effective
concentration of a defensive hormone is also faster and stronger
than that in non-primed plants (Conrath, 2011). It has been
recently demonstrated the existence of an epigenetic regulation
of priming, which explain the lack of significant transcriptional
changes in primed plants unless they are exposed to the prim-
ing agent/hormone (Luna et al., 2012; Slaughter et al., 2012). The
genetic control of priming shows similarities to the genetic mecha-
nisms that regulate transgenerational defense induction in plants,
such as the SA-dependent SAR and the inherited JA-dependent
defense (Holeski et al., 2012; Thaler et al., 2012; Zheng et al., 2012).
Similarly, transgenerational priming has been also described (Luna
et al., 2012; Slaughter et al., 2012). All these epigenetically inherited
changes in defense can strongly alter plant responses to jasmonate
and salicylate in offspring and therefore might negatively impact
plant resistance to particular type of pathogens (Latzel et al., 2012;
Luna et al., 2012).

Though all the published data clearly indicate a fitness cost
associated to the constitutive activation of hormone-mediated
resistance mechanisms, it must be considered that these exper-
iments were generally performed under laboratory conditions,
without nutrient limitations and ecological constraints (i.e., plants
were infected with just one pathogen). Long-term experiments
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with model and crop plants under field conditions should be done
to determine the potential use of hormone-mediated resistance
in crop protection, as these experiments will provide informa-
tion on the hormone-mediated effectiveness of disease control,
but also on plant trade-offs and changes in the population
structure of pathogens and pests. Also, a better understanding
of the molecular and genetic mechanisms regulating hormone-
mediated resistance would be required to successfully manipulate
hormone homeostasis/signaling and improve crop resistance to
pathogens.
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