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Disease risk scores for skin cancers
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We trained and validated risk prediction models for the three major types of skin cancer—

basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma—on a cross-

sectional and longitudinal dataset of 210,000 consented research participants who respon-

ded to an online survey covering personal and family history of skin cancer, skin suscept-

ibility, and UV exposure. We developed a primary disease risk score (DRS) that combined all

32 identified genetic and non-genetic risk factors. Top percentile DRS was associated with an

up to 13-fold increase (odds ratio per standard deviation increase >2.5) in the risk of

developing skin cancer relative to the middle DRS percentile. To derive lifetime risk trajec-

tories for the three skin cancers, we developed a second and age independent disease score,

called DRSA. Using incident cases, we demonstrated that DRSA could be used in early

detection programs for identifying high risk asymptotic individuals, and predicting when they

are likely to develop skin cancer. High DRSA scores were not only associated with earlier

disease diagnosis (by up to 14 years), but also with more severe and recurrent forms of skin

cancer.
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C
ancer screening and early diagnosis are recognized as key
public health strategies for reducing cancer burden. Each
year, more than 14 million people worldwide are diag-

nosed with cancer, and 8.8 million will die from cancer, repre-
senting one in six deaths globally1. It has been estimated that
50–60% of cancers could be prevented or successfully treated by
efficient cancer prevention and early detection programs2,3. Skin
cancer is the most commonly diagnosed cancer, and it is also
among the more preventable forms of cancer. In the United
States, one in five Americans are likely to develop skin cancer
during their lifetime4. Even melanoma, the more aggressive form
among the three main skin cancers, which include basal cell
carcinoma (BCC) and squamous cell carcinoma (SCC), has a 5-
year survival rate of 98%, if diagnosed at an early stage5. Despite
being preventable, more than 15,000 Americans die every year
from skin cancer5,6.

Public health efforts for prevention have focused on education
regarding the danger of sun exposure and increasing adoption of
sun-protective habits7. For early skin cancer detection, medical
organizations have recommended full body skin examination, a
quick, inexpensive, and noninvasive method. Unfortunately, there
is no convincing evidence that visual skin examination is an
effective method to detect skin cancer in the general population8.
Furthermore, epidemiological studies have identified many
additional risk factors, including skin pigmentation, skin sus-
ceptibility to sun exposure, family history of skin cancer, and
genetics9. There is thus a considerable interest in the development
of new cost-effective screening programs that integrate all risk
factors, environmental and genetics, and accurately identify
asymptomatic individuals with high risk of developing skin
cancer10. The ultimate goals of screening would be to identify
individuals at high risk, construct personalized skin cancer
monitoring plans for these individuals, detail how early and fre-
quently skin cancer detection programs should be implemented,
and to anticipate the type and intensity of potential treatments.

Many skin cancer predictive models have been proposed over
the years9,11. Unfortunately, they have generally suffered from
insufficient validation, an incomplete catalog of known risk fac-
tors, including genetics, and relied heavily on the current age of
individuals, which limits their application for early detection.
Building medically relevant individual risk scores is challenging,
but the recent emergence of polygenic risk scores (PRS) has
provided a potential blueprint for success12,13. The growth of
interest in PRS has been fueled by several major innovations: the
development of prediction models in large training datasets, the
recognition that while risk scores can be weak predictors overall,
their long tails permit the identification of individuals with high
disease risk, and finally the ability to validate and characterize risk
score distributions in large, independent, and preferably long-
itudinal cohorts. The open questions are whether non-genetic risk
scores would also exhibit long tail behavior, and if they can be
combined to improve individual risk predictions and their clinical
utility14.

In this study, we deployed an online cancer survey, which
contained questions about personal and family histories of the
three main skin cancers (BCC, SCC, and melanoma), as well as
risk factors identified after reviewing the recent skin cancer
literature9,11. Over the course of approximately thirteen months
from May 2016 to June 2017, more than 210,000 research par-
ticipants responded to questions from an in-house designed
cancer survey. (Fig. 1a, and Supplementary Tables 1, 2). The
baseline survey contained 34 questions regarding personal history
of skin cancer (including skin cancer type, age at diagnosis, body
location, prescribed treatments, and information regarding cancer
recurrence), 12 questions regarding the family history of skin
cancer (skin cancer type for close relatives, including parents,

siblings, and children), and 23 questions regarding risk factors
and exposures (including skin, hair, and eye pigmentation,
freckles, moles, skin sensitivity to sun, tanning, sunburns, and
sun/UV exposure). Using data from 103,008 participants col-
lected during the first four months after survey deployment, we
selected and trained predictive models for each of the three skin
cancers independently. The resulting models contained a total of
32 risk factors, including 20 factors from the cancer survey, 11
factors identified from the wider 23andMe database, and a PRS.
For interpretability, we grouped the 31 non-genetic risk para-
meters into six separate risk scores. Finally, we defined two global
disease risk scores, which we refer to as DRS and DRSA,
respectively. The DRS included all 32 risk factors, while the DRSA
excluded age effects. The DRS provided a global risk score of
developing skin cancer. The DRSA, which we demonstrated to be
largely age independent, permitted to study disease trajectories,
and to predict incidence rates and age at onset. The performance
of all risk scores was assessed in a validation set consisting of
88,924 participants. In addition of the baseline survey, we also
asked all participants in the validation set to complete a follow-up
survey in both 2018 and 2019 and provide updated information
regarding their skin cancer disease status and treatments during
the preceding 12 months. We used the responses from 49,501
participants to quantify incident cases and cancer free partici-
pants, in groups of individuals with different predicted risks of
skin cancer.

Results
Identifying skin cancer risk factors. The demographic char-
acteristics of the training and validation sets are described in
Supplementary Table 1, and the participants’ geographical pro-
venance is shown in Supplementary Fig. 1. We restricted analyses
to participants with current age (at the time of the baseline sur-
vey) between 30 and 90 years. The sex ratio of participants was
biased toward females (~1.5x females), and close to 50% of par-
ticipants reported a current age between 50 and 70 years. The age
distribution and sex ratio were in line with the general char-
acteristics of the 23andMe research cohort. The training set used
to select factors (including the variants for PRS) and to train the
predictive models contained 14,898 BCC, 7479 SCC, and 3998
melanoma cases (Fig. 1b).

We identified 32 risk factors that contributed to at least one
type of skin cancer, following the procedure described in Fig. 1c
(see “Methods” for a detailed description). As the three skin
cancers share common risk factors, and in order to enable
comparisons, we included all 32 identified factors in each skin
cancer final model. The 32-factor models explained 21.6%, 20.0%,
and 19.8% of phenotypic variance of BCC, SCC, and melanoma,
respectively (Fig. 2 and Supplementary Table 9). The following
section describes the main risk factors included in these models,
and their contribution to each skin cancer risk. We separated
factors commonly used in skin cancer prediction models9,15 from
factors that are generally not included (although not necessarily
novel).

Commonly used risk factors. Genetic variants included in PRS
were directly selected in the training set using a simple clumping
and thresholding method (Supplementary Table 10 and Supple-
mentary Fig. 5). The BCC, SCC, and melanoma PRS included 47,
14, and 18 variants, respectively, and explained between 1.5% and
3% of the variance in skin cancer risk. While many GWAS on
skin cancers have been published recently, we chose to restrict the
PRS to only contain variants discovered within the training set.
The majority of recently published skin cancer GWAS include
23andMe data in their analyses, and are, therefore, not
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Fig. 1 Data collection for the training and validation sets, description of the cancer survey, overview of the predictive model construction, and disease

risk scores. a Cumulative data collection from May 2016 to September 2016. Participants recruited between May and September 2016 were included in

the training set. The gray line is the total number of participants from European ancestry. BCC, SCC, and melanoma prediction models were trained on

participants 30–90 years old (black line). b Number of skin cancer cases in the training set. c Overview of prediction model construction in the training set.

d Disease risk scores and predictive performances evaluated in the validation set.
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independent of the PRS from this study16,17. As such, including
associations from other publications could bias the assessment of
our risk models in the validation set. An exception to this issue is
provided by a recent large-scale PRS study of melanoma, which
we were able to use to compare to our melanoma PRS18. The
results are summarized in Supplementary Fig. 14, and showed
that the external melanoma PRS, which combined 204 variants,
achieved a slightly better area under the curve (AUC) than the
melanoma PRS from the present study (0.594 vs 0.579). The
studies also showed an excellent correlation between effect esti-
mates, in particular for 12 variants with a reasonable association
confidence (P-value < 1.0e−3) in the training set (correlation r=
0.92; for the remaining 192 variants, r= 0.59).

Only two risk factors—current age and the presence of
dysplastic moles—surpassed the explanatory performance of the
PRS. Age was strongly predictive of BCC and SCC (r2= 10%) but
less so of melanoma (r2= 3.3%). The presence of dysplastic moles
increased the relative risk of melanoma by 6.7×, and explained
11.5% of the melanoma variance, but was less predictive for BCC
and SCC, explaining 2.9% and 2.1% of the variance, respectively.
In addition to dysplastic moles, the number and size of moles
were generally more predictive of melanoma than BCC and SCC.
On the other hand, a diagnosis with actinic keratosis before age
40 increased BCC and SCC risks by >3×. A family history risk
score, computed as a simple sum of binary indicators of reported
skin cancer in father, mother, siblings, and children, explained
about 1% of the BCC and SCC variance, but only 0.3% of the
melanoma variance. Pigmentation factors individually explained
less than 1% of skin cancer variance, with consistent estimates
between the three skin cancers. Among the exposure risk factors,
sunbathing frequency before age 30 explained between 0.3% and
1% of the skin cancer variance. The typical sun exposure per
week, which was measured by the current reported number of
minutes per week spent in the sun, also increased the risk of skin
cancer, and explained about 0.1% of variance. Tanning bed
lifetime usage, which was reported by 41.6% of the participants,
was associated with a moderate increase of skin cancer risk
(maximum 1.3× in SCC for participants that reported using
tanning beds more than 30 times). Finally, sex showed a moderate
and consistent effect across the three skin cancers, with men
having ~1.6x higher risk of developing skin cancer than women.

Additional risk factors. Living at low latitudes and high elevation
during both childhood and adult life moderately increased the
risk of skin cancer, in particular for BCC and SCC (1.3×), and
explained up to 0.3% of the variance19,20. More surprisingly, both
BMI and weight were retained in the final set of risk factors of
each skin cancer, and showed opposite effects: larger weight
increased the risk of skin cancer whereas a larger BMI decreased
it (see “Methods” for collinearity analysis). The decreased risk
with high BMI was large, with a 4× less risk of BCC cancer for
participants with a BMI > 35, but it was only half of this effect in
melanoma. It has been suggested that a direct protective link
between obesity and skin cancer is unlikely, and may instead
reflect other life-style factors21,22. Although the weight effects
were more modest, with a 2.2 to 3.1× increase for participants
reporting a current weight >300 lb relative to participants with a
weight ranging between 100 and 200 lb, they could indicate direct
effects of physiological and physical (increase of skin surface)
changes in overweight participants23. A few other risk factors
included in the final 32-factor models could also be surrogates of
sun exposure behavior. For example, participants self-reporting a
morning person chronotype showed a small increase of skin
cancer risk (1.05 to 1.1×) relative to night person chronotype.
Participants reporting as having engaged in intense physical
activities also showed a slight (1.1×) increase of skin cancer risk.

Curiously, a so-called ‘clean desk’ factor (referring to a partici-
pant’s self-reported preference for keeping their desk clean) was
selected as the best representative variable from a cluster of
correlated personality traits (see “Methods” and Supplementary
Fig. 4), and showed a small inverse correlation with skin cancer
risk. Finally, participants that reported as having ever smoked
showed a slight reduction (1.06×) of BCC risk. While there have
been sporadic reports of smoking being protective for skin
cancer24,25, it appears more likely that smoking status could be
acting as a proxy for behaviors associated with smoking and not
directly reflect smoking effects.

Grouping risk factors into risk scores. For descriptive con-
venience, we grouped the non-genetic risk factors into six risk
scores on the basis of physiological or behavioral similarity
(Fig. 1d and “Methods”). The ‘Demographic risk score’ includes
three factors; age, sex, and genetic ancestry. The ‘Family history
risk score’ contains only the family history risk factor. The ‘Mole
risk score’ combines four risk factors related to the presence or
frequency of moles (dysplastic moles, presence of large moles,
number of moles on the right arm), or skin condition (diagnosis
with actinic keratosis before the age of 40). The ‘Susceptibility risk
score’ combines 8 factors related to pigmentation and skin
reaction to sun exposure (skin, eye, and hair colors, number of
freckles on face and body, number of blisters caused by sunburns,
and sun hair lightening). The ‘Exposure risk score’ combines 8
factors estimating the lifetime or current sun exposure
(sunbathing frequency before age 30, tanning bed usage, child-
hood and adulthood latitude and elevation, typical sun exposure
per week, outdoor job, and physical activity). We combined the 7
remaining factors into a ‘Miscellaneous risk score’ (BMI, weight,
smoking, alcohol consumption, seasonal allergies, morning, and
desk clean person). Finally, we constructed two main disease risk
scores, called DRS and DRSA. DRS includes all 32 risk factors
identified in the factor selection process, whereas DRSA excludes
age effects. Risk scores were calculated for each participant as the
sum of the factor responses weighted by the effect size obtained
by the 32-parameter model in the training set (Supplementary
Tables 10, 14).

Risk score prediction performance and correlations. We eval-
uated the predictive performances of each risk score in the vali-
dation set. We computed the receiver operating characteristic
(ROC) and the precision-recall (PR) curves, and estimated the
AUC (Supplementary Fig. 6). We also plotted the prevalence of
the three skin cancers across risk score distributions binned into
percentiles, and estimated the change in prevalence between the
top percentile bin and the middle of risk score distribution. With
almost 89,000 participants in the validation set, the prevalence in
each bin was computed on the basis of 890 participants (Fig. 3
and Supplementary Fig. 7). In the following section, we focus on
the performance of DRS, DRSA, and the PRS alone.

DRS. This score combined all 32 risk factors, and obtained good
predictive performance across all three skin cancers, with an
AUC= 0.79, 0.80, and 0.78 for BCC, SCC, and melanoma,
respectively. This corresponds to an odds ratio per standard
deviation increase of 3.60 (95% CI: 3.51–3.69), 3.52 (3.42–3.63),
and 2.58 (2.52–2.66), respectively. The upper tail of the DRS
distribution showed substantial increase risk of developing skin
cancer: the prevalence of skin cancer for participants in the top
DRS percentile was 69.8%, 46,7%, and 31.8% for BCC, SCC, and
melanoma, respectively. These correspond to a 5.2×, 8.1×, and
12.9× risk increase relative to participants with middle DRS
percentile (Fig. 3). Although DRS showed excellent ability to
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identify high risk individuals for the three skin cancers, they are
heavily driven by current age (Supplementary Fig. 8), and hence it
limits their application in early detection programs.

DRSA. In contrast to the DRS, the DRSA are not including the
age effects. They however use the same weights for the remaining
31 factors than the ones used for the DRS calculations. These
weights were, by definition, adjusted for age by the linear mod-
eling (Supplementary Table 9). Since many risk factors showed
age dependency (Supplementary Fig. 16), and because the linear
modeling could have produced incomplete age adjustment, we
deployed a set of analyses and demonstrated that the DRSA were
largely independent of age in the three skin cancers (Supple-
mentary Figs. 8, 17, 19). As a consequence, within skin cancer,
DRS and DRSA were only moderately correlated with each other,

with r= 0.64, 0.56, and 0.74 in BCC, SCC, and melanoma,
respectively (Supplementary Table 11). DRSA achieved lower
overall prediction performances than DRS (AUC= 0.69, 0.68,
and 0.73, for BCC, SCC, and melanoma, respectively), which was
expected given the age contribution, but nonetheless retained
strong risk enrichment in upper tails, with 3.7x, 5.3x, and 9.8x
increase risk for participants in the top percentile for BCC, SCC,
and melanoma respectively, and which corresponded to diagnosis
rates of 60.1%, 38.6%, and 28,7% (Fig. 3). Across the full DRSA
distributions, the odds ratios per standard deviation of DRSA
increase were 1.98 (1.95–2.02), 1.83 (1.79–1.87), and 2.08
(2.03–2.13), respectively. We also explored the DRSA correlation
between skin cancers. Although the non-melanoma DRSA were
highly correlated with each other (r= 0.91), a principal compo-
nent analysis showed different contributions of the Susceptibility
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Fig. 3 Prevalence of skin cancer cases across the binned DRS, DRSA, and PRS distributions in the validation set. Risk score distributions are binned into

percentiles. Each bin contains 890 participants. The prevalence is the percentage of participants reporting skin cancer in each bin.
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and Exposure risk scores that enable the identification of different
high risk participants for BCC and SCC (Supplementary Fig. 9).
Despite sharing of the included risk factors, the melanoma DRSA
showed only a moderate correlation with non-melanoma DRSA
(r= 0.74 for both BCC and SCC comparisons).

PRS. As expected, PRS were independent of current participant
age (Supplementary Fig. 8), and showed modest predictive per-
formances with AUC= 0.62, 0.60, and 0.58 for BCC, SCC, and
melanoma, respectively. This corresponds to a odds ratio per
standard deviation increase for PRS of 1.57 (1.55–1.60), 1.44
(1.41–1.48), and 1.33 (1.29–1.37), respectively. For participants in
the top PRS percentile, about 41.1%, 20.0%, and 9.9% reported
BCC, SCC, and melanoma, respectively, corresponding to a 2.1 to
2.4 fold increased risk compared to participants with an average
PRS (Fig. 3).

All risk scores generally showed long tail behaviors (Supple-
mentary Fig. 7). Beside the Demographic risk scores, which
exhibited a 2.6 to 4 fold enrichment in the tails, the Mole risk
score achieved good predictive performances for melanoma, with
an AUC= 0.67 and a top percentile with a 6.9 fold increase risk
of developing melanoma. Interestingly, the tail of the distribution
with elevated risk was unusually large: the top 15% of participants
with a high Mole risk score had >3 fold risk of developing
melanoma. Similarly, despite AUC < 0.59, the BCC and SCC
Mole risk scores showed large risk increases for the top percentile
(2.4 and 3.9 folds, respectively). Conversely, Exposure risk scores
generally showed poor predictive performance with AUC ~0.55, a
top percentile increased risk of <1.5 fold, and no clear evidence
that the upper tail had strong disease enrichment. Interestingly,
these individual risk scores were also independent of age, and had
a constant contribution to DRSA scores across age (Supplemen-
tary Fig. 19).

Medical utility of DRS, DRSA, and PRS. We evaluated the
putative medical utility of the skin cancer risk scores by first
characterizing disease features for participants reporting skin
cancer within the validation set, at baseline. We first looked at the
age of diagnosis of skin cancer, which was not used during the
development of the predictive models. The age independent
DRSA were remarkably powerful at predicting early age of
diagnosis in all three skin cancers: participants in the top per-
centile were diagnosed on average 10–14 years earlier than the
participants with average scores (Fig. 4). High PRS, Mole, Sus-
ceptibility, and Exposure risk scores all predicted early ages of
diagnosis as well (Supplementary Fig. 10). Conversely, because of
their strong age dependencies, DRS were poor predictors of age of
diagnosis. We then analyzed other characteristics of skin cancers
at baseline and we also observed that high DRS, DRSA, and PRS
all predicted a higher past recurrence rate of skin cancer, and a
higher probability of developing multiple types of skin cancer
(Table 1).

Using the prospective data collection (with data collected on an
annual basis for two years after the baseline survey), we
investigated the ability of the DRS, DRSA, and PRS to predict
incident cases of skin cancer, and their age of diagnosis. We
defined incident cases as participants who did not report to have
been diagnosed with skin cancer in the original baseline survey,
but subsequently reported a diagnosed for skin cancer during the
previous year in the follow up survey. We further defined cancer
free participants as participants who reported to have been
diagnosed with skin cancer in the original baseline survey, but
who also reported not been treated for skin cancer during the
previous year in the follow-up survey. Using these metrics, we
showed that high baseline DRS, DRSA, and PRS were all

associated with a higher rate of incident cases in the prospective
data, and fewer cancer free participants overall. Consistent with
the results from the baseline survey, we also showed that non-
cancer participants with high baseline DRS, DRSA, and PRS
developed new skin cancer earlier than participants with lower
risk scores (Table 1, and Supplementary Figs. 11, 12). Finally,
building on the age-independence property of the DRSA and
combining with the skin cancer prevalences observed in the
validation set, we plotted the lifetime risk trajectories for the three
skin cancers (Fig. 5). From these trajectories, we derived the
expected incidence rates and ages of diagnosis (see Methods), and
compared them to the observed values in the validation and
longitudinal dataset. We observed an excellent concordance
between the expected and observed 2-years incidence rates
(Supplementary Fig. 18) and the ages of diagnosis, in particular
for individuals with high risk of developing skin cancer (Fig. 5).

Discussion
In this study, we have shown that individual risk scores can
predict relevant medical outcomes for skin cancer and offer the
potential for early detection applications. These scores utilize the
long tail behavior of the genetic and non-genetic factors, and
potentially enable the identification of asymptomatic individuals
with elevated skin cancer risk. We also showed that these pow-
erful risk scores can be simply constructed by combining risk
factors in an additive fashion. While we explored more complex
models, including potential interaction between risk factors26, we
did not find them to significantly improve the prediction per-
formance (Supplementary Tables 12, 13, and Supplementary
Fig. 13).

Our risk models were built using self-reported skin cancer
diagnoses, and multiple studies have documented variable rates of
self-reporting accuracy in skin cancers27,28. Misclassification
arising from self-reported information could lead to the devel-
opment of suboptimal prediction models29. While we do not have
the necessary clinical data to directly estimate a misclassification
rate for the three skin cancers, we were able to indirectly estimate
the rate misclassification for melanoma by focusing on the genetic
variant effect estimates obtained in our study, and comparing to
those obtained by a study based on participants diagnosed with
pathology or histopathology-confirmed invasive cutaneous mel-
anoma18. This analysis, summarized in Supplementary Fig. 14,
showed a high correlation between the effect size estimates (r=
0.92 [0.76–0.97]) and no evidence of dilution between variant
effect estimates from the training set and the independent mel-
anoma GWAS, suggesting a comparable level of misclassification
in the 23andMe cohort and the independent melanoma cohort.
Similar analyses for BCC and SCC are complicated for the fact
that most recent large GWAS publications of these diseases have
included 23andMe data, and the variant effect estimates are
therefore not independent. However, for BCC, a study17 directly
estimated self-reported misclassification in 23andMe cohort, with
adjudicated medical records, and revealed a sensitivity and spe-
cificity of 93% and 99%, respectively.

Age remains a key component of the skin cancer predictive
models. It not only captures the detrimental effects of senescence
processes, but it is also correlated with many of the non-genetic
risk factors. Nevertheless, we demonstrated that DRSA, which
combined all identified risk factors, except age, was an age
independent predictor of skin cancer for 30 years or older indi-
viduals. This age independence allowed to tread the DRSA and
age as two independent variables, and it permitted to draw the
lifetime risk trajectories, stratified by DRSA scores, for the three
skin cancers (Fig. 5). In return, the trajectories permitted to derive
the expected incidence rate and age of diagnosis of skin cancers

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20246-5 ARTICLE

NATURE COMMUNICATIONS |          (2021) 12:160 | https://doi.org/10.1038/s41467-020-20246-5 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


across the DRSA distributions. By comparing these expected
values to the 2-years incidence rates and ages of diagnosis
observed in the follow-up cohort, we concluded that the lifetime
risks, which were obtained from the prevalences in the validation
set, were well-calibrated for individuals with high risk of devel-
oping skin cancer (i.e. with a DRSA score in the top decile).
Altogether, it indicates that the DRSA and the lifetime risk tra-
jectories can be used in early detection programs to identify
asymptotic individuals with high risk of developing skin cancer,
and to predict when they are likely to develop the disease.

There remains considerable scope for further improvement.
The current risk scores could be refined by a better character-
ization of the genetics and of the individual risk behaviors

associated to sun exposure. In order to enable a valid test of our
models, we directly selected PRS variants in the training set,
which had a limited statistical power for detecting associations.
Larger skin cancer GWAS would expand the set of associated
variants for each skin cancer, and potentially improve the pre-
diction performance of the PRS, as would the inclusion of
known pathogenic variants for skin cancers not identified by
GWAS30–32. Additional work is also needed to understand the
prediction performance in the different European sub-popula-
tions, and the portability to non-European ancestries. The current
BCC and SCC models seem to perform equally well for indivi-
duals of Northern, Southern, or Eastern European ancestry, but
the melanoma model shows signs of performance degradation

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●●
●

●

●

●
●

●
●

●

●

●

●

●●
●

●

●

●●
●●

●

●
●

●
●

●

●

●

●●
●

●

●

●●
●

●
●
●●
●
●
●
●

●●
●

●●
●
●
●
●

●
●●

●

●
●
●●●●●●

●

0 20 40 60 80 100

30

35

40

45

50

55

60

65
A

g
e

 o
f 
d

ia
g

n
o

s
is

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●
●●
●
●

●
●

●

●
●●

●

●

●●●
●

●

●

●
●

●
●

●

●
●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●●
●
●●

●

●
●

●
●
●●●

●

●

●

●

0 20 40 60 80 100

30

35

40

45

50

55

60

65

A
g

e
 o

f 
d

ia
g

n
o

s
is

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●●
●
●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●
●●
●●

●

●

●

0 20 40 60 80 100

30

35

40

45

50

55

60

65

DRS percentile

A
g

e
 o

f 
d

ia
g

n
o

s
is

●

●

●

●

●

●

●
●

●

●●

●

●

●
●●●

●●

●
●●

●

●

●
●

●

●
●
●●

●

●
●

●

●●

●●
●●
●

●

●
●

●

●

●

●●

●●
●
●
●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●●●

●

●

●

●
●
●
●
●

●

●
●

●
●
●
●
●●●●

●●
●

●●

●

14.3 years

0 20 40 60 80 100

30

35

40

45

50

55

60

65

BCC

●

●

●

●

●
●

●

●

●

●

●
●
●●●

●
●

●

●

●

●

●●

●

●

●
●
●

●

●
●
●
●
●
●
●
●●

●

●

●

●●
●

●●

●

●

●●
●

●

●
●

●

●

●
●

●

●

●

●
●
●●

●

●●
●●

●

●

●●

●

●

●
●
●
●
●

●
●
●●

●

●
●

●
●

●

●●
●
●●

●●

●

●

12.0 years

0 20 40 60 80 100

30

35

40

45

50

55

60

65

SCC

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●
●
●
●
●

●

●

●

●●

●
●
●

●●●●

●

●●
●

●

●●

10.0 years

0 20 40 60 80 100

30

35

40

45

50

55

60

65

DRSA percentile

Melanoma

●●

●
●

●

●

●

●

●

●
●●●

●

●
●

●
●
●
●
●●●●●

●●

●

●●
●●
●

●

●

●

●

●●
●

●●
●●
●

●
●

●●●●
●

●
●●

●●
●
●
●
●

●●●●

●

●

●

●●●
●

●

●
●

●

●

●
●●●

●

●●●
●●●●

●
●

●

●●

●
●
●●●

●

4.2 years

0 20 40 60 80 100

30

35

40

45

50

55

60

65

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●
●

●

●

●●●
●

●
●
●

●

●

●●
●
●

●
●

●●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●●

●
●
●●

●

●
●

●

●

●

●

●
●
●

●

●●●

●
●●
●●

3.0 years

0 20 40 60 80 100

30

35

40

45

50

55

60

65

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●
●

●
●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●●

●●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

0 20 40 60 80 100

30

35

40

45

50

55

60

65

PRS percentile

Fig. 4 Mean age of skin cancer diagnosis across the DRS, DRSA, and PRS distributions in the validation set. Risk score distributions are binned into

percentiles. Each bin contains 890 participants. The dots are the mean age of diagnosis in each bin, and the area represents the 95% confidence interval of

the mean age of diagnosis.
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(Supplementary Fig. 15). For the portability to non-European
ancestries, it has been regularly reported that PRS developed in
European cohorts underperform in non-European cohorts33, and
such issues are likely to be even more challenging for the non-
genetic risk factors, because trans-ethnic data collection are
generally very heterogeneous34.

Methods
23andMe cohort and data collection. All participants were drawn from the
customer base of 23andMe, Inc., a consumer genetics company. Participants
provided informed consent and participated in the research online, under a pro-
tocol approved by the external AAHRPP-accredited IRB, Ethical & Independent
Review Services (www.eandireview.com). Over the course of approximately thir-
teen months from May 2016 to June 2017, more than 210,000 research participants

Table 1 Disease characteristics of the bottom, middle (47.5 to 52.5 percentiles), and top 5% of the DRS, DRSA, and PRS

distributions in the validation set for each three skin cancer.

BCC SCC Melanoma

Bottom Middle Top Bottom Middle Top Bottom Middle Top

DRS
At baseline:
No. of cases 14 604 2593 19 275 1608 14 116 916
Sex (% of females) 85.7 66.2 48.5 78.9 65.1 45.1 78.6 66.4 46.1
Age 40.4 (7.2) 60.7 (9.8) 72.0 (8.8) 36.1 (6.4) 60.0 (8.3) 73.3 (8.5) 40.4 (8.3) 62.2 (10.8) 66.2 (10.3)
Age of diagnosis 33.7 (8.8) 49.0 (12.1) 51.4 (14.5) 26.7 (6.6) 51.1 (11.5) 56.8 (13.7) 26.9 (9.2) 51.5 (14.1) 51.9 (13.9)
Cancer stage at diagnosis 0.00 (0.00) 1.06 (0.24) 1.24 (0.51) 0.00 (0.00) 1.08 (0.28) 1.27 (0.53) 0.00 (0.00) 1.33 (0.58) 1.33 (0.53)
No. cancer diagnosed in
the last two years

1.36 (0.50) 1.57 (0.66) 1.97 (0.89) 1.26 (0.56) 1.56 (0.60) 1.83 (0.81) 1.21 (0.43) 1.41 (0.64) 1.36 (0.60)

No. of different type of
skin cancer

1.07 (0.27) 1.22 (0.45) 1.69 (0.67) 1.05 (0.23) 1.47 (0.56) 2.00 (0.62) 1.07 (0.27) 1.41 (0.68) 1.84 (0.83)

Incident cases:
No. of incident cases <5 57 123 <5 34 113 <5 18 36
Sex (% of females) na 66.7 44.7 na 64.7 35.4 na 72.2 44.4
Age na 61.6 (9.1) 71.8 (8.7) na 59.0 (7.2) 73.6 (7.8) na 59.1 (10.2) 67.5 (10.8)
% of incident cases na 2.62 11.98 na 1.46 7.13 na 0.73 1.72

Cancer free:
No. of cancer free 5 277 928 6 139 614 8 54 463
Sex (% of females) 50 66.7 44.7 100 64.7 35.4 100 72.2 44.4
Age 44.5 (19.1) 61.6 (9.1) 71.8 (8.7) 41.0 (0.0) 59.0 (7.2) 73.6 (7.8) 36.0 (0.0) 59.1 (10.2) 67.5 (10.8)
% of cancer free 100 84.7 59.6 100 86.9 64.5 100 91.5 90.1
DRSA

At baseline:
No. of cases 208 715 2125 100 299 1160 63 148 906
Sex (% of females) 69.2 59.3 58 71 53.5 53.3 77.8 45.3 51.5
Age 71.4 (8.9) 66.9 (10.2) 61.6 (10.9) 68.2 (11.2) 69.4 (9.7) 63.9 (10.0) 69.0 (9.0) 66.7 (10.9) 58.5 (13.2)
Age of diagnosis 59.0 (13.4) 53.6 (13.0) 44.5 (12.7) 58.9 (13.5) 57.7 (12.1) 49.2 (12.4) 54.3 (13.7) 52.0 (14.6) 45.3 (14.8)
Cancer stage at diagnosis 1.20 (0.42) 1.20 (0.48) 1.23 (0.51) 1.00 (0.00) 1.29 (0.61) 1.26 (0.57) 1.50 (0.71) 1.14 (0.38) 1.32 (0.54)
No. cancer diagnosed in
the last two years

1.41 (0.55) 1.66 (0.72) 1.91 (0.84) 1.43 (0.63) 1.68 (0.71) 1.79 (0.77) 1.20 (0.45) 1.34 (0.62) 1.36 (0.58)

No. of different type of
skin cancer

1.14 (0.35) 1.30 (0.51) 1.63 (0.66) 1.35 (0.52) 1.62 (0.58) 1.98 (0.62) 1.35 (0.60) 1.54 (0.72) 1.70 (0.80)

Incident cases:
No. of incident cases 21 47 97 8 26 91 <5 11 28
Sex (% of females) 71.4 55.3 53.6 62.5 61.5 46.2 na 45.5 57.1
Age 71.2 (10.6) 65.5 (9.0) 60.2 (10.6) 68.0 (10.8) 68.8 (10.5) 63.3 (10.1) na 62.3 (14.5) 59.6 (12.0)
% of incident cases 0.91 2.35 7.78 0.34 1.16 5.03 na 0.48 1.4

Cancer free:
No. of cancer free 102 285 811 50 124 466 32 85 439
Sex (% of females) 71.4 55.3 53.6 62.5 61.5 46.2 100 45.5 57.1
Age 71.2 (10.6) 65.5 (9.0) 60.2 (10.6) 68.0 (10.8) 68.8 (10.5) 63.3 (10.1) 72.0 (0.0) 62.3 (14.5) 59.6 (12.0)
% of cancer free 82.3 75.2 64.2 92.6 75.2 66.3 100 95.5 90.7
PRS

At baseline:
No. of cases 336 747 1559 182 398 776 123 215 392
Sex (% of females) 60.1 56.5 57.4 59.9 58.8 55.8 54.5 53 55.4
Age 67.6 (10.6) 66.4 (10.2) 64.4 (10.8) 66.4 (10.1) 67.9 (10.7) 66.1 (9.3) 63.1 (11.0) 63.2 (12.1) 62.5 (13.2)
Age of diagnosis 54.0 (14.2) 53.0 (12.9) 48.2 (13.2) 55.7 (13.2) 56.3 (12.8) 53.2 (12.4) 51.6 (15.4) 49.7 (14.8) 49.1 (15.7)
Cancer stage at diagnosis 1.11 (0.32) 1.22 (0.42) 1.24 (0.52) 1.00 (0.00) 1.17 (0.38) 1.27 (0.62) 1.33 (0.52) 1.25 (0.45) 1.23 (0.43)
No. cancer diagnosed in
the last two years

1.58 (0.70) 1.66 (0.71) 1.88 (0.84) 1.44 (0.62) 1.66 (0.74) 1.78 (0.81) 1.44 (0.68) 1.39 (0.57) 1.35 (0.61)

No. of different type of
skin cancer

1.30 (0.54) 1.35 (0.55) 1.50 (0.61) 1.48 (0.63) 1.74 (0.63) 1.83 (0.62) 1.41 (0.68) 1.65 (0.78) 1.76 (0.80)

Incident cases:
No. of incident cases 31 60 78 25 45 73 6 8 32
Sex (% of females) 51.6 50 56.4 56 46.7 54.8 66.7 37.5 46.9
Age 66.4 (12.5) 65.2 (10.9) 62.0 (11.2) 66.4 (10.3) 67.0 (10.2) 66.1 (9.9) 63.7 (12.8) 65.4 (12.2) 64.6 (13.2)
% of incident cases 1.4 2.9 5 1.1 2 3.6 0.3 0.3 1.4

Cancer free:
No. of cancer free 149 324 571 77 180 314 57 105 185
Sex (% of females) 51.6 50 56.4 56 46.7 54.8 66.7 37.5 46.9
Age 66.4 (12.5) 65.2 (10.9) 62.0 (11.2) 66.4 (10.3) 67.0 (10.2) 66.1 (9.9) 63.7 (12.8) 65.4 (12.2) 64.6 (13.2)
% of cancer free 78.8 75.3 62.9 88.5 73.8 68.4 89.1 89 86.4

Mean and SD (within parenthesis) are shown for the disease characteristics. Statistics for categories with counts <5 are masked (na) to avoid risk of participant re-identification.

No. number.
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(Supplementary Table 1) responded to questions from an in-house designed cancer
survey (Supplementary Table 2). The baseline survey contains 34 questions
regarding personal history of skin cancer (including skin cancer type, age at
diagnosis, body location, prescribed treatments, and information regarding cancer
recurrence), 12 questions regarding the family history of skin cancer (skin cancer
type for close relatives, including parents, siblings, and children), and 23 questions
regarding risk factors and exposures (including skin, hair, and eye pigmentation,
freckles, moles, skin sensitivity to sun, tanning, sunburns, and sun/UV exposure).
The list of candidate risk factors and exposures has been compiled from two recent
systematic reviews of thousands of epidemiological studies that have evaluated risks
associated with a wide range of environmental and phenotypic factors9,11. Only
participants who completed the full survey were included in the analysis. The
geographical distribution of collected skin cancer across USA territory is shown in
Supplementary Fig. 1.

Each participant received a yearly health follow-up survey in 2018 and 2019.
The survey asked if the participants received treatments or were diagnosed for the
three skin cancers during the last twelve months.

Genetic data and selection of unrelated participants with European ancestry.
Samples were genotyped on one of four genotyping platforms. The V1 and V2
platforms were variants of the Illumina HumanHap550+ BeadChip, including
about 25,000 custom SNPs selected by 23andMe, with a total of about 560,000
SNPs. The V3 platform was based on the Illumina OmniExpress+ BeadChip, with
custom content to improve the overlap with our V2 array, with a total of ~950,000
SNPs. The V4 platform is a fully custom array, including a lower redundancy
subset of V2 and V3 SNPs with additional coverage of lower-frequency coding
variation, and ~570,000 SNPs. Samples that failed to reach 98.5% call rate were
excluded from the study35.

Individuals were only included if they had >97% European ancestry, as
determined through an analysis of local ancestry36. Briefly, this analysis first
partitions phased genomic data into short windows of ~100 SNPs. Within each
window, a support vector machine is used to classify individual haplotypes into one
of 31 reference populations. The support vector machine classifications are then fed
into a hidden Markov model (HMM) that accounts for switch errors and incorrect
assignments, and gives probabilities for each reference population in each window.
Finally, simulated admixed individuals are used to recalibrate the HMM
probabilities so that the reported assignments are consistent with the simulated
admixture proportions. The reference population data are derived from public
datasets (the Human Genome Diversity Project, HapMap and 1000 Genomes) and
from 23andMe research participants who have reported having four grandparents
from the same country.

A maximal set of unrelated individuals was chosen for each analysis using a
segmental identity-by-descent (IBD) estimation algorithm37. Individuals were
defined as related if they shared more than 700 cM IBD, including regions where
the two individuals share either one or both genomic segments identical-by-
descent. This level of relatedness (roughly 20% of the genome) corresponds
approximately to the minimal expected sharing between first cousins in an outbred
population. For the purposes of GWAS, if a skin cancer case was found to be
related to a skin cancer control, the case was preferentially kept in the sample.

Participant genotype data were imputed against the March 2012 release of 1000
Genomes project reference haplotypes38. Data for each genotyping platform were
phased and imputed separately. Variants that were only genotyped on the “V1”
platform were flagged due to small sample size, and variants on chrM or chrY,
because many of these are not currently called reliably. Using trio data, variants
that failed a test for parent–offspring transmission were also flagged; specifically,
the child’s allele count was regressed against the mean parental allele count and
variants with fitted β < 0.6 and P < 10−20 for a test of β < 1 were flagged. Variants
with a Hardy–Weinberg P < 10−20 in Europeans, or a call rate of <90%, were also
flagged. Genotyped variants were also tested for batch effects and variants with P <
10−50 by analysis of variance of genotypes against a factor dividing genotyping date
into 20 roughly equal-sized buckets were flagged. For imputed GWAS results,
variants with average r2 < 0.5 or minimum r2 < 0.3 in any imputation batch were
flagged, as well as SNPs that had strong evidence of an imputation batch effect,
using an analysis of variance of the imputed dosages against a factor representing
imputation batch; results with P < 10−50 were flagged. Each variant flagged by QC
on genotyped or imputation data were excluded from the GWAS analysis.

Training and validation sets. We split the full dataset in two parts: the first
103,008 participants collected between May and September 2016 were used as a
training set; The 88,924 participants collected between October 2016 and June 2017
were used as a validation set (Supplementary Table 1). We selected samples to be
between 30 and 90 years old and of European ancestry, and excluded <200 par-
ticipants who reported outlier or inconsistent responses. The proportion of missing
responses varied across questions from 2 to 15%. To obtain a complete dataset, we
imputed missing phenotype data using Hmisc library in R (mean imputation using
additive regression, bootstrapping, and predictive mean matching). To ensure
robustness of inference, we duplicated our analyses using the non-imputed dataset,
and compared the models. Without phenotype imputation, the number of parti-
cipants dropped from 103,008 to 74,703 in the training set (Supplementary
Table 5). In order to evaluate potential non-linear effect of age and complex
relationship with the other risk factors, we also built and analyzed an age-matched
dataset. We used semi-parametric and non-parametric matching methods imple-
mented in MatchIt library in R, with a ratio of one case for two controls (or three
controls for melanoma). The match dataset for the training set contained 14,672/
29,288, 7307/14,513, and 3933/11,739 cases and controls for BCC, SCC, and
melanoma, respectively (Supplementary Table 6).

Prospective cohort and follow-up data. Although every participant in the study
received a follow-up survey every year after their initial completion, we only
included participants from the validation set in the prospective cohort. Among the
88,924 participants from the validation set, 49,501 participants completed to at
least one of the yearly follow-up surveys. For these participants, we computed the
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Fig. 5 Lifetime skin cancer risk stratified by DRSA percentiles. The

expected ages of diagnosis (mean and SD) were computed using yearly

incidence rates derived from the lifetime risk curves, and assuming CDC

survival estimated rates, in White American, for the year 2017 (see

“Methods” for details). The observed ages of diagnosis (mean and SD)

were calculated in the validation set (88,924 participants, see

Supplementary Table 1).
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number of incident cancers (controls at baseline and reporting to have been
diagnosed in follow-up survey), and the number of skin cancer free participants
(cases at baseline and not reporting skin cancer treatment in the follow-up survey).

GWAS and polygenic risk score (PRS). A genome-wide association study
(GWAS) was conducted independently for BCC, SCC, and melanoma using data
from the training set. Association with the phenotype was performed using logistic
regression, including age, sex, the first five principal components, and variables
representing the genotyping platform as covariates. Principal components were
calculated using ~65,000 high quality genotyped and trans-ethnic variants that are
present on all four genotyping platforms. GWAS analyses were run independently
for the genotyped and imputed dosages. About 13M variants passed the pre- and
post- GWAS QCs. The genomic control inflation factor was estimated as 1.06, 1.02,
and 1.01 for BCC, SCC, and melanoma GWAS, respectively. PRS for each skin
cancer was computed for all study participants (training and validating sets) using
RiskPipe (v0.9; 23andMe Inc.)39. This pipeline uses a clumping and thresholding
method to select variants (P-value threshold cut-off <1.0e−6). The BCC, SCC, and
melanoma PRS included 47, 14, and 18 variants, respectively (Supplementary
Fig. 5). The statistical power to detect an additive association at a significance level
of 1.0e−6 for a variant with a MAF= 0.1 and an OR= 1.2 was 0.95, 0.86, and 0.56
for BCC, SCC, and melanoma, respectively. PRS were calculated as the sum of the
variant dosages weighted by their effect sizes, estimated in GWAS (Supplementary
Table 10).

Risk model development and selection. Our construction of risk models for skin
cancer consisted of three stages.

First, for each of the three skin cancers, independently, we first trained a
predictive model including demographic factors (sex, age, and the same five
principal components used in GWAS analysis), and published risk factors, present
in the cancer survey (Supplementary Table 2). All predictive models presented in
this study used a general linear model (GLM) with binomial distribution and logit
link. All the analyses were performed in R (v3.2.5). After P-value selection (<0.05),
the best models contained a total of 20 factors, the three demographic factors (after
combining the 5 PCs into a unique ancestry risk factor) and 17 risk factors
(Supplementary Table 4 and Supplementary Fig. 2a). Continuous variables, such as
age were modeled with polynomial functions (2–4 degrees). For simplicity, and
because the three skin cancers shared the majority of the risk factors, we decided to
include the same set of risk factors for all three skin cancers: a factor was included if
it passed the P-value selection in at least one of the three cancers. We also analyzed
this 20-factor model in the non-imputed (Supplementary Table 5 and
Supplementary Fig. 3a) and age-matched (Supplementary Table 6 and
Supplementary Fig. 3b) datasets, to verify that the risk factor selection and effects
were not biased by the phenotype imputation or some non-trivial effects of age.

Second, we explored the 23andMe phenotype database for unidentified risk
factors. We curated 608 additional phenotypes with a missing rate not larger than
50% in the training set (Supplementary Table 3). We then fitted 608 GLMs,
combining the 20-factor best model and each additional phenotype individually.
We selected new risk factors with a conservative P-value < 1e−8 criteria, and
clustered them using ClustOfVar library in R, to identify correlated risk factors.
The aggregation criterion is the decrease in homogeneity for the cluster being
merged. The homogeneity of a cluster is the sum of the correlation ratio (for
qualitative variables) and the squared correlation (for quantitative variables)
between the variables and the center of the cluster which is the first principal
component of PCAmix. PCAmix is defined for a mixture of qualitative and
quantitative variables and includes ordinary principal component analysis (PCA)
and multiple correspondence analysis (MCA) as special cases. A total of 67
phenotypes passed the P-value threshold in at least one of the three skin cancers,
and were organized into 16 clusters (Supplementary Fig. 4). After discarding
clusters related to general health or cancer treatments, we selected each 14 clusters
the best factor, based on low P-value and low missing proportion. We then
imputed the missing phenotypes (as previously described), fitted a unique GLM for
each skin cancer, including the 20-factor model and the 14 newly discovered risk
factors, and identified the best model with a P-value selection. The new models
contained 31 risk factors (Supplementary Table 8 and Supplementary Fig. 2b). We
computed the correlation matrix between these 31 risk factors (Supplementary
Fig. 16).

Third, we added PRS to obtain the final full predictive models, including 32 risk
factors (Supplementary Table 9 and Fig. 2).

As multicollinearity can be an issue for GLM analysis, we explored the potential
for issues using mctest library in R. The Farrar-Glauber test detected significant
multicollinearity in the three final 32-factor models, involving almost all factors
included in the models. However, their variance inflation factors (VIF) were <2.2,
at the exception of BMI and weight (6.9 < VIF < 8.1). We, therefore, decided to
keep all the 32 factors in the final models because VIF > 10 is often used as a
criteria40 for excluding predictors, and we observed a good stability of the
coefficient estimates in the different models built in the training and validation sets.

Grouping risk predictors into risk scores. We defined six risk scores by grouping
risk factors included within the final 32-factor models (Figs. 1, 2). The

‘Demographic risk score’ includes three factors (age, sex, and ancestry, which is by
itself a combination of the first five principal components). The ‘Family history risk
score’ contains only one factor: it is defined as a simple score ranging from 0 to 4,
where a value of 4 indicates that the participant reported that his/her father (+1),
mother (+1), at least one sibling (+1), and at least one children (+1), developed
skin cancer (BCC, SCC, or melanoma). We explored alternative and more complex
definitions, including scores weighted by number of siblings, number of children,
or skin cancer-specific family history. However, the simple score out performed
these more complex scores at explaining phenotypic variance in the training set. As
very few participants reported a score of 4, we combined the scores 3 and 4. The
‘Mole risk score’ combines four risk factors related to the presence or frequency of
moles (dysplastic moles, presence of large moles, number of moles on the right
arm), and skin conditions (diagnosed with actinic keratosis before the age of 40).
The ‘Susceptibility risk score’ combines 8 factors related to pigmentation but also
skin reaction to sun exposure (skin, eye, and hair colors, number of freckles on face
and body, number of blisters caused by sunburns, and sun hair lightening). The
‘Exposure risk score’ combines 8 factors that estimate lifetime or current weekly
sun exposure (sunbathing frequency before age 30, tanning bed usage, childhood
and adulthood latitude and elevation, typical sun exposure per week, outdoor job,
and physical activity). The ‘Miscellaneous risk score’ combines 7 factors that are
not a natural fit in the 5 other risk scores. These risk factors are mainly related to
metabolism and personality/behavior (BMI, weight, smoking, alcohol consump-
tion, seasonal allergies, being a ‘morning person’, and preference for keeping a
‘clean desk’).

We finally constructed two main disease risk scores, called DRS and DRSA.
DRS includes all the factors from 32-factor model. DRSA excludes the effects of
age. Similar to the PRS computation, the risk scores are calculated as the sum of the
factor responses weighted by their effect sizes, estimated by the 32-factor model in
the training set (Supplementary Table 14). Risk scores were computed for each
participant included in the training and validation sets.

Risk scores correlation and age dependency. We explored the relationship of the
risk scores in the validation set. We first calculated pairwise Spearman correlation
coefficients of the different risk scores within and between skin cancer types in the
validation set (Supplementary Table 11). As expected, PRS were independent of the
participant age at baseline. We also showed that the DRSA were also mostly
uncorrelated with the participant age at baseline: while the DRSA averages showed
a slight increase around age 50 for the three skin cancers, the variances around
these estimates are very large, and the age dependence of DRSA is minimal
(Supplementary Fig. 8). We finally explored the relationship between the PRS,
Exposure, Susceptibility, Mole, Family, and Miscellaneous risk scores included in
the DRSA by running principal component analyses (prcomp library in R, without
scaling). The three skin cancers showed different risk score signatures, in particular
for the contribution of Exposure, Susceptibility, and Family risk scores. The PRS
and Mole risk scores have the largest and generally orthogonal effects on the first
two PCs (Supplementary Fig. 9).

We also explored the potential age dependency of DRSA (Supplementary
Fig. 16) but also of individual risk scores (Supplementary Fig. 19), for participants
with low, middle, and high risk of developing skin cancer: all the risk scores showed
minimal age dependency within the different risk groups.

Risk score prediction validation. For all the risk scores, we computed the receiver
operating characteristic (ROC) curve in both the training and validating sets, using
ROCR library in R, and we extracted the area under the curve (AUC) values. We
also computed the precision-recall (PR) curves (Supplementary Fig. 6).

Risk score distribution tails and clinical features of skin cancer cases. In the
validation set, we binned the risk score distributions by percentiles (~890 partici-
pants per percentile), and evaluated different attributes of the three skin cancers,
using the baseline survey data. We first calculated the prevalence per bin of par-
ticipants who reported skin cancer. All risk scores showed an increase of skin
cancer with higher risk score values. They also showed long tails, as observed in
PRS studies (Fig. 3 and Supplementary Fig. 7), with strong enrichment of parti-
cipants reporting skin cancer in percentiles >95%. For the participants reporting
skin cancer at baseline, we computed the mean age at diagnosis (Fig. 4 and Sup-
plementary Fig. 10), the mean cancer stage (I–IV) at diagnosis, the mean number
of diagnosis/treatments for a specific skin cancer during the previous 2 years, and
mean number of total skin cancer diagnosis (from 1 for only one of the three skin
cancer to 3, if diagnosed for BCC, SCC, and melanoma) per percentiles (Table 1).

Using the prospective data, we computed the number and proportion of
incident cases (the proportion of participants who did not report, at baseline, to
have been diagnosed with skin cancer, and in the follow-up surveys, reported to be
diagnosed for skin cancer during the previous year). The number and proportion
of cancer free participants (the proportion of participants who reported, at baseline,
to have been diagnosed with skin cancer, and in the follow-up survey, not been
treated for skin cancer during the previous year) in each percentile bin (Table 1,
Supplementary Figs. 11, 12).
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Interaction analysis. We explored more complex prediction skin cancer models by
including and testing pairwise interaction. We first tested for all pairwise interaction
between the 7 risk factors using GLMs (Supplementary Table 12 and Supplementary
Fig. 13). Because the large effect of age, we tested independently the interaction
terms with age, sex, and ancestry from the Demographic risk score. We also tested
pairwise interactions between the top factors of each risk score (Supplementary
Table 13). Although we identified several significant pairwise interaction, they were
explaining only a small amount of the total variance (Supplementary Fig. 13), and
only improved marginally skin cancer prediction (results not shown).

Incidence rates. We computed the incidence rates (I) from the prevalence (P) in
the validation set. For m-year incidence rate at age a:

Ia ¼
Pa � Pa�m

1� Pa�m

Observed and expected age of diagnosis. We compared the observed and
expected ages of diagnosis in the validation set. The expected ages of diagnosis in
Fig. 5 were computed for each DRS-DL curve, by deriving the yearly incidence
rates (I) from the lifetime risks associated to each curve. To model the age dis-
tribution in the US population, we extracted the estimated yearly survival rates (S)
produced by the CDC for white Americans (sex combined)41. The expected mean
and SD of age of diagnosis (m) was obtained with:

m ¼
1

P90
a¼30 SaIa

X

90

a¼30

SaIaa and SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P90
a¼30 SaIaða�mÞ2
P90

a¼30 SaIa

s

:

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
Full summary statistics for the three skin cancer GWAS will be made available to

qualified researchers under an agreement that protects participant privacy. Researchers

should visit https://research.23andme.com/dataset-access/ for more details and

instructions for applying for access to the data. The remaining data are available within

the Article, Supplementary Information or available from the authors upon request.
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