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REPORT

Disease signatures are robust across tissues
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Meta-analyses combining gene expression microarray experiments offer new insights into the

molecular pathophysiology of disease not evident from individual experiments. Although the

established technical reproducibility of microarrays serves as a basis for meta-analysis,

pathophysiological reproducibility across experiments is not well established. In this study, we

carried out a large-scale analysis of disease-associated experiments obtained from NCBI GEO, and

evaluated their concordance across a broad range of diseases and tissue types. On evaluating 429

experiments, representing 238 diseases and 122 tissues from 8435microarrays, we find evidence for

a general, pathophysiological concordance between experiments measuring the same disease

condition. Furthermore, we find that the molecular signature of disease across tissues is overall

more prominent than the signature of tissue expression across diseases. The results offer new

insight into the quality of publicmicroarray data using pathophysiologicalmetrics, and support new

directions in meta-analysis that include characterization of the commonalities of disease

irrespective of tissue, as well as the creation of multi-tissue systems models of disease pathology

using public data.
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Introduction

Aggregate analysis of gene expression microarrays (Lipshutz

et al, 1995; Schena et al, 1995) across multiple studies is

lending an unprecedented molecular view of the broad

spectrum of human disease (Alizadeh et al, 2000; Golub

et al, 1999). Ramaswamy et al (2003) were among the first to

show how a taxonomy of cancers could be created after

building a reference collection of gene expression profiles for

multiple types of cancers. This approach was extended to find

common changes in gene expression across publicly available

cancermicroarray experiments (Rhodes et al, 2004). Segal et al

(2004) integrated 1975 microarrays, representing 22 tumor

types, to uncover a ‘module map’ of gene modules with

conditional expression patterns across tumor types. Despite

these successes, the considerable variation inherent to

microarray data greatly confounds efforts to integrate data

across multiple experiments.

There have been a number of efforts to characterize and

mitigate potentially confounding, non-biological sources of

variance in microarray data. In 2006, the Microarray Quality

Control Consortium (MAQC) showed that measurements are

technically reproducible across test sites and manufacturer

(Shi et al, 2006). It was shown that lab-to-lab variation imparts

a significant effect onmicroarray measurements (Irizarry et al,

2005), however, a number of robust methods to handle such

variation have been developed (Breitling et al, 2004; Choi et al,

2007; Huttenhower et al, 2006; Pihur et al, 2008; Zilliox and

Irizarry, 2007). Although these efforts lend credence to the

technical equivalence of microarray data across experiments,

the biological equivalence of microarray data across experi-

ments is not well characterized.

A recent study suggests that gene expression measurements

can be combined to gain new biological insights that are

relevant beyond their original experimental context. Bild et al

(2006) built a collection of genome-wide changes in breast
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cancer cell lines in response to the overexpression of several

oncogenes, then used these to probe public microarray

measurements of other types of cancers. Similarly, Lamb

et al (2006) built a larger collection of responses in human

breast cancer cell lines toward 164 different small molecules,

then used these to probe previously unexplainable gene

expression changes in completely different tissues and

diseases, finding agonists with responses equivalent to a

diet-induced obesity model in rat fat cells. These studies

suggest that the signature of a disease is robust irrespective of

the tissue in which it was studied, however, the generalization

of this phenomenon across all of human disease has not been

established. To fully evaluate such a hypothesis requires a

sufficiently large and diverse collection of microarray data for

human diseases.

Public microarray data repositories have emerged as

enabling resources for the integrative genomic study of human

disease (Rhodes and Chinnaiyan, 2005). Coincident with their

successful use, and because many journals require the public

availability of such data (Anonymous, 2002), the amount of

microarray data in international repositories is now growing

exponentially (Parkinson et al, 2009). The largest among these

is the National Center for Biotechnology Information (NCBI)

Gene Expression Omnibus (GEO) (Wheeler et al, 2006). As of

this writing, GEO holds information on4300 000 samples (i.e.

microarrays) from 412000 experiments, and doubles in size

each year. Enabled by the vast repertoire of GEO experiments

studying numerous human diseases (e.g. diabetes) across a

broad diversity of tissues types (e.g. muscle and fat), we can

pose an important question in integrative biology: is there a

general disease concordance across public microarray experi-

ments irrespective of platform and tissue? In this study, we

carried out a systematic evaluation of disease-associated

experiments in GEO to evaluate the robustness of the disease

signal across tissues and experiments.

To ensure our findings were robust and unbiased towards

any specific choice of analytic methodology, we designed a

computational ‘pipeline’ using 84 combinations of normal-

ization, probe-level integration, and significance testing

methods (Box 1). We find that there is a general concordance

between disease states across tissues, irrespective of other

confounding sources of biological or technical variation

inherent in the data. Furthermore, we find that this disease

concordance is more prominent than other potentially

concordant biological factors, such as tissue type. Our results

raise several important implications for the downstream

translational research value of public microarray data in

building systematic models of disease pathogenesis, prog-

nosis, and treatment.

Results and discussion

Discovery and annotation of disease-associated

microarray experiments

To evaluate the hypothesis of disease concordance across

microarray experiments, we first assembled a large data set of

disease-associated microarray experiments from NCBI GEO

Box 1 The full complement of 429 disease-associated microarray experiments was repeatedly evaluated by the pipeline under all 84 possible combinations of
pipeline parameters to comprehensively evaluate the robustness of disease signatures.

Box 1 Schematic diagram for the pipeline used to evaluate disease concordance across public microarray experiments
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and systematically annotated each experiment to codify the

disease and tissue conditions that were measured. This

process identified 429 disease-associated experiments that

measured both a disease and normal control state, represent-

ing 238 unique diseases measured in 122 distinct tissues. In

total, these experiments yielded 429 diseases versus control

comparisons that were associated with 8435 microarray

samples comprised of more than 161 distinct microarray

platforms. Interestingly, 95 diseases were found to have two or

more representative experiments in public data, even given

our constraint that each experiment was required to have

samples for both the disease and normal control conditions.

Although diseases important to public health, such as type 2

diabetes, are among the diseases with the most experiments, it

was possible to find replicate experiments for rare disorders,

such as essential thrombocythemia, in public data.

Quantifying and comparing disease conditions

For each of the 429 disease-associated experiments, we

computed a disease state vector, which represented the change

in expression in the disease condition relative to the normal

control condition for all measured genes. To evaluate the

effects of various data normalization and disease state

quantification methods, we created parallel sets of disease

state vectors using many different combinations of commonly

used normalization and quantification methods (see Materials

and methods for details), which we will refer to as pipeline

routings. For each of the 84 possible pipeline routings, we

computed all possible within-species, pair-wise correlations

between disease state vectors, which resulted in 36 417 distinct

correlation measures per pipeline routing (3 059 028 total

correlations). As a control, we also calculated these pair-wise

correlations after randomly shuffling tissue and disease

annotation labels.

We find the ability to establish a statistical concordance

between microarray experiments depends on the normal-

ization and disease state quantification methods chosen. In

our analysis, the subtractive approach to disease state

quantification, in which the gene expression values from the

normal state are simply subtracted from those in the respective

disease state, outperforms fold-change and t-test methods in

capturing disease concordance within and across tissues

(Supplementary Table S1). It is surprising that t-test methods

performed poorly in capturing disease concordance, as t-test-

based methods are among the most commonly used in

microarray data analysis. However, t-test based methods are

strongly influenced by estimates of gene-specific variance

(Breitling et al, 2004), therefore, it is likely that the t-test

approach suffered from the small sample sizes, characteristic

of a number of disease experiments in the public data. The

prominence of the subtractive methods may be explained by

the use of correlation as our concordance measure, and the

possibility that the magnitudes of critical differential gene

expression changes in the disease state are somehow

dampened by fold-change and t-test-based approaches. As an

alternative measure of disease signature robustness, we

computed ROC AUC distributions for each disease/tissue

category using the best performing method under correlation,

and we found that concordant experiments are also signifi-

cantly predictive of each other (Supplementary Figure S1).

Disease concordance versus tissue concordance

To gain a comprehensive picture of disease concordance across

microarray experiments, we evaluated whether correlations

between disease-associated experiments were driven by

tissue-specific gene expression. For each pipeline routing, the

resulting 36 417 pair-wise correlation coefficients were as-

signed to one of the four categories according to their disease

and tissue annotations. Under this scheme, we could evaluate

the distributions of correlations between experiments inwhich

both vectors measured the same disease from the same tissue

(Dþ/Tþ ), the same disease from different tissues (Dþ/T�),

different diseases from the same tissue (D�/Tþ ), or different

diseases from different tissues (D�/T�). Analysis of the

Fisher’s z transformed correlation coefficient distributions

between these categories revealed a significant degree of

variance among pipeline routings with regards to the strength

of the disease signal over the tissue signal. Figure 1 contrasts

the results between two pipeline routings. Figure 1a shows a

pipeline routing in which correlation coefficients between

disease state vectors measuring the same disease from the

same tissue (Dþ/Tþ ) were significantly greater than correla-

tions between different diseases in the same tissue (D�/Tþ )

(Tukey’s HSD P-value¼1.15�10�14). In contrast, the pipeline

routing in Figure 1b shows correlation coefficients with no

differences between Dþ/Tþ and D�/Tþ .

Formany pipeline routings, we found that the distribution of

correlations between disease state vectors, measuring the

same disease in a different tissue (Dþ/T�), was often higher

than the distributions of correlations between disease

state vectors measuring a different disease in the same tissue

(D�/Tþ ). Such a case is illustrated by the pipeline routing in

Figure 1a. These cases seem to imply that the signal of disease

concordance across microarray experiments is stronger than

the signal of tissue concordance.

To determine whether this observation could be generalized

across all pipeline routings, we plotted the median disease/

tissue category correlation coefficients for each of the 84

pipeline routings, along with the medians computed by

randomly shuffling annotation labels for each pipeline routing

(Figure 2). We find support for a general trend indicating that

the disease concordance signal was generally distinguished

above the level of the tissue concordance signal irrespective of

the data processing techniques applied.

The relative strength of the disease concordance signal over

the tissue concordance signal is a compelling finding with

substantial implications for the general practice of microarray

meta-analysis. One might have expected a relatively strong

degree of concordance between diseases experiments sampled

from the same tissue, given the number of genes likely to be

involved in tissue-specific biology (Kilpinen et al, 2008;

Shyamsundar et al, 2005). However, we have shown here that

disease conditions seem to have synchronized gene expression

changes across different tissues. Figure 3 illustrates the

symmetry in gene expression that can be observed for the

same disease across tissues. In Figure 3, we observe a

significant concordance between two experiments measuring

Disease signatures
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Huntington’s disease from different tissues, whereas there is

relatively minimal concordance observed between two experi-

ments measuring distinct diseases from the same tissue. This

could occur as the result of the systemic nature of the disease

pathogenesis. For example, a localized gene expression

signature involving INF-g, TNF-a, IL-2, IL-12, and IL-18 genes

might signify the formation of noncaseating granulomatous

lesions across multiple tissue types in systemic sarcoidosis

(Kettritz et al, 2006; Nunes et al, 2007). It is also possible that

there are limited channels through which disparate tissues
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communicate, and perhaps disease conditions essentially

maximize the amplitude of communication in one type of

channel to the effect of synchronizing the genes mediating the

communication. For example, hyperglycemia in diabetes

might maximize the amplitude of signaling and pathways

involved in the regulation of insulin, glucagon, and other

hormones across muscle, hepatic, and pancreatic tissues

(Bansal and Wang, 2008; Yano et al, 2008). Recently, Dobrin

et al (2009) discovered that tissue-to-tissue co-expression sub-

networks in mouse models for obesity were more highly

connected than within-tissue networks, lending credence to

this assertion. Perhaps another explanation for the observed

lack of tissue concordance is greater variation in tissue-specific

gene expression than previously acknowledged between and

among populations represented in public data (Whitehead and

Crawford, 2005).

We acknowledge several limitations to the approach taken

by this study. Foremost, we acknowledge that experimental

investigators will generally draw samples from tissues that are

relevant to the disease condition under study. Therefore, we

cannot assert that disease concordance would be maintained

in samples drawn from tissues that would not commonly be

chosen in the study of a disease. Nonetheless, the primary

purpose of this investigation was to make observations from

the data currently available in public repositories. We also

recognize that the results are dependent on the quality and

accuracy of the vocabulary annotations attributed to the

experiments, though here, we manually validated our annota-

tions. We also acknowledge that these vocabularies are

dynamic, in which a term describing a single tissue might be

split into two different concepts in the future, and that the

vocabulary structure may have a bearing on the interpretation

of the results. However, we determined that there was no

significant relationship between vocabulary structure and

observed correlation values (Supplementary Figure S2).

The findings of this study raise several important implica-

tions for the study of human disease and the role of public data

in translational research. With the understanding of a general,

trans-tissue disease concordance across the public microarray

data, it is now reasonable to undertake efforts to incorporate

these data in new systems models for disease pathology across

multiple tissues and organ systems. One possible utility would

be in biomarker discovery, in which the traditional practice

begins with a disease condition of interest and applies

molecular quantification techniques to discover putative

molecular markers that signify some aspect of the molecular

pathology. Instead, a broader systems view of disease derived

from public data would serve as a filter to restrict costly efforts

in biomarker discovery and validation of the space of

molecular components and phenomena that are unique to

the disease condition under study (Dudley and Butte, 2009).

Furthermore, the trans-tissue nature of disease concordance

suggests that it is reasonable to leverage public data to

search for biomarkers in more peripheral cells and fluids, such

as those found in blood and urine. This potential is illustrated

in Supplementary Figure S3, in which a microarray

experiment measuring type 2 diabetes (T2D) in the blood is

clustered with a core set of experiments measuring various

diseases from skeletal muscle. Not only do the diseases

cluster consistently within tissue, but also the experiment

measuring T2D in peripheral blood is clearly matched with

the experiment measuring T2D in muscle. Future study

should seek to model relationships between primary affected

tissues and peripheral fluids within the public data to

determine whether the potential demonstrated in Supplemen-

tary Figure S3 can be generalized across a broad range of

human diseases.

These findings also suggest support for experimental

designs that are inclusive of both newly generated data and

relevant data available from public data repositories. We

previously showed that the integration of 49 obesity-related,

genome-wide experiments significantly improved the predic-

tive capability for discovering obesity-associated genes (Eng-

lish and Butte, 2007), and the results from the study detailed

here validates a similar inclusive approach for every disease

represented in public data. Furthermore, major research is

presently underway by others to characterize sub-types of

clinically heterogeneous diseases such as breast cancers,

which are observed to show a great deal of variance with

regards to response to therapeutics and patient outcomes

(Weigelt et al, 2008; Wirapati et al, 2008). We argue that when

investigating the drivers of molecular concordance between

diseases, public experiments should be seen as opportunities

to allow for new directions in research into the shared

molecular pathophysiology of disease, which might offer a

more concise molecular characterization of the heterogeneity

observed within diseases or disease categories.
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Figure 3 Symmetry of disease-state gene expression for the same disease in
different tissues (Dþ /T�) versus different diseases in the same tissue (D�/Tþ ).
The colors indicate the direction of change in the expression of a gene in the
disease state relative to the normal control state, in which green indicates
upregulation of disease, and red indicates downregulation of disease. Here we
observe that the differential expression concordance between Huntington’s
disease in the brain (GDS2169) and blood (GDS1331) is much more extensive
than that observed between type 2 diabetes (GDS162) and Duchenne’s
muscular dystrophy (GDS214) in skeletal muscle.
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With the growing set of publicly available molecular

measurement data, biological and clinical investigators are

now enabled to ask new questions about the global properties

of human disease, and to buildmulti-tissue systemsmodels for

disease pathophysiology. Future studies in this area are likely

to impact our fundamental understanding of the molecular

bases of human disease, the repurposing of therapeutics across

disease conditions, or even lead to a completely new system of

human disease classification founded on molecular character-

istics, rather than symptoms and anatomy.

Materials and methods

Discovery and annotation of disease experiments

Gene expression microarray experiments in the NCBI GEO character-
izing human disease conditions were automatically identified using a
previously published method (Butte and Chen, 2006). Briefly, Medical
Subject Heading (MeSH) terms attributed to publications associated
with GEO experiments (accessed 26 November 2007) were evaluated
for disease concepts using the Unified Medical Language System
(UMLS) (release 2007AC) (Bodenreider, 2004). Each of these experi-
mental data sets determined to be relevant to a human disease, based
on associated MeSH disease concepts, was subject to an automated
annotation of the disease condition, the tissue or biological substance
from which the samples were derived, and whether or not the
experiment measured a normal control state complimentary to the
annotated disease state. The automated annotation step was carried
out using a previously published method that analyzes particular
annotations in a GEO DataSet (GDS), which is a higher-order
representation of an experiment (GSE) in GEO that groups experi-
mental samples into logical subsets (e.g. ‘control’ and ‘treatment’)
using a free-text vocabulary (Dudley and Butte, 2008). Disease and
tissue annotations were manually reviewed in a post-processing step
to ensure accuracy.

Our resulting data set incorporated 238 diseases studied across 385
GEO DataSets comprising 8435 individual microarrays, studied in
122 tissues.

To evaluate the hypothesis of a general disease concordance
independent of tissue type, we constructed an extensive computational
analytic pipeline (Box 1). The analytic pipeline comprised several
processing step, with a final step that calculates statistics from the
aggregate microarray experiments after they have been processed be
previous steps in the pipeline. For each run of the pipeline, called a
pipeline routing, our entire annotated set of 8435 microarrays is
offered as input data, and a number of available option parameters is
fixed before execution.

Pipeline step 1: normalize values

For each microarray platform represented in the set of disease-
associated experiments, we updated the mappings between platform-
specific probe identifiers and Entrez Gene identifiers in an automated
manner using the AILUN system (Chen et al, 2007). Then, for each
experiment, we derived two new sets (i.e. disease and control) of
normalized microarrays using three normalization methods. In the
first method, we rank-normalized the probes per array by assigning a
rank value to each probe on the basis of the rank of the measured
intensity relative to all other probes on the array (RankNorm). To
account for the fact that the number of probes differs among array
platforms, we divided the rank values by the total number of probes to
scale them between zero and one. In the second normalization
method, we median centered the arrays by shifting the probe intensity
values in each array such that the median value across all probes was
set to zero if the data were in log scale, or set to one if the data were
untransformed (CenterNorm). This normalization approach makes
the assumption that the expression levels of themajority of genes is not
expected to change significantly between conditions. A third option
was to simply use the unprocessed expression values obtained directly

from GEO (NoNorm). It is important to note that in many cases, the
raw expression values obtained from GEO may already be normalized
using one of many possible methods. Therefore, in the context of this
study, the concept of normalization is more representative of
experiment-wise normalization rather than normalization of truly
raw microarray data usually found in CEL data files.

Pipeline step 2: collapse probes

In many cases, a microarray platform was found to have multiple
probes reporting for a single Entrez GeneID (e.g. probes 216066_at and
215869_at on the Affymetrix Hu133v2.0 both map to Entrez GeneID
19). We designed the pipeline to offer two different options for
handling such cases. The first option was to simply retain the multiple
mappings (NoCollapse), which impacts downstream pipeline step 3
(Aggregate Arrays) and step 4 (Disease State Quantification) by
increasing the number of expression values per gene when calculating
summary statistics across samples, or between disease and normal
conditions. The second option was to calculate the mean expression
value for all probes associated with a GeneID on a per chip basis, such
that each GeneID with multiple probes was assigned the mean
expression value of its associated probes (MeanCollapse).

Pipeline step 3: aggregate arrays

This analysis only incorporated GEO experiments that offered replicate
samples (i.e. n41) for both control and disease conditions. Therefore,
we designed the pipeline to offer several different options for handling
sample replicates. In all cases options are applied within a condition
only (i.e. normal control samples could only be merged with other
normal control samples), and the merging refers to the merging of
expression values across samples on a per-gene basis. The first option
is to take the mean value for a gene across samples (MeanAggregate).
The second option is to take the median value for a gene across
samples (MedianAggregate). The third option is to take the maximum
expression value for a gene across samples (MaxAggregate). The
fourth option is to take the minimum expression value for a gene
across samples (MinAggregate). Finally, there is the option to leave the
replicate samples unmerged (NoAggregate). The sample merging step
is not available when the t-test option is used in pipeline step 4
(Disease State Quantification) because the t-test requires n41 samples
in each condition.

Pipeline step 4: disease state quantification

We define a disease state vector as a quantification of the change in
expression in the disease condition relative to the control condition, for
all genes measured on the microarray platform. In this way, a disease
state vector represents a quantity of change from control to disease for
all measured genes. The pipeline was designed to offer three different
options for quantifying the disease state represented in an experiment.
The first option is to compute the subtractive difference in expression
between the disease and control condition by simply subtracting the
expression values for the control from the respective disease values
(SubtractiveDiff). The second option is to compute the fold change in
expression between the disease and control condition by computing
the log of the ratio of the disease expression value over the control
expression value (FoldDiff). The third option computes a t-test statistic
between the expression values in the control condition and the
expression values in the disease condition (TtestDiff). The P-value of
the t-tests were retained as the quantification of the change in
expression between control and disease if the expression values for a
particular microarray platform were log-transformed, the subtractive
differencewas calculated as a ratio, and the fold changewas calculated
using the simple difference. If the experiment arrives at this step
without the samples merged, and if either the subtractive or fold
change option is selected, the pipeline computes all pair-wise
differences between samples for all measured genes using the chosen
method to build a distribution of quantified differences. The pipeline
then offers the option to take either the mean or the median value for
this distribution as the quantified difference in expression. If the
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experiment arrives at this stepwith the samplesmerged, then the t-test
quantification option is disabled.

Pipeline step 5: computing disease concordance

This step proceeds once all the experiments have passed through
pipeline steps 1–4; at that point the resulting disease state vectors are
aggregated for disease concordance analysis. In this step, all possible
pair-wise correlations between the 429 disease state vectors are
computed. These 36 417 pair-wise correlations are then grouped into
four categories defined by the disease condition and by the source
biological tissue:

Within-disease/within-tissue (Dþ /Tþ )
Pair-wise correlations were assigned to this category if both disease
state vectors were annotated as measuring the same disease from the
same source tissue (n¼233).

Within-disease/between-tissue (Dþ /T�)
Pair-wise correlations were assigned to this category if both disease
state vectors were annotated as measuring the same disease, but the
samples were acquired from different source tissues (n¼172).

Between-disease/within-tissue (D�/Tþ )
Pair-wise correlations were assigned to this category if both disease-
state vectors were annotated as being acquired from the same source
tissue, but measured different diseases (n¼882).

Between-disease/between-tissue (D�/T�)
Pair-wise correlations were assigned to this category if both disease-
state vectors were annotated as measuring different diseases, and the
samples were acquired from different tissues (n¼35130).

All correlations were computed using Spearman’s rank-based
correlation to mitigate potentially confounding effects of between-
platform and between-lab measurement variation, and also due to the
fact that the normality of expression changes in disease state vectors
could not be assumed across all platforms and conditions.

The pipeline then tests for a significant difference in the distribution
of correlations between comparison categories by converting the
correlation values in each category to Fisher’s z-scores and carrying
out a one-way ANOVA. Given that a significant rejection of the null
hypothesis in a one-way ANOVA will support the alternative
hypothesis that, at least, one mean is different, a pair-wise evaluation
of differences in distributions was also carried out by applying Tukey’s
Honest Significant Difference (HSD) test to the Fisher’s z-score
distributions in each category.

As an additional control, the pipeline derives a random distribution
of correlations for each disease/tissue category by carrying out ten
rounds of randomization, in which the disease and tissue labels for all
experiments were shuffled before computing correlations and statis-
tical tests.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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