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ABSTRACT

Motivation: Genomic high-throughput technology generates mas-

sive data, providing opportunities to understand countless facets of

the functioning genome. It also raises profound issues in identifying

data relevant to the biology being studied.

Results: We introduce a method for the analysis of pathologic

biology that unravels the disease characteristics of high dimensional

data. The method, disease-specific genomic analysis (DSGA),

is intended to precede standard techniques like clustering or

class prediction, and enhance their performance and ability to

detect disease. DSGA measures the extent to which the disease

deviates from a continuous range of normal phenotypes,

and isolates the aberrant component of data. In several microarray

cancer datasets, we show that DSGA outperforms

standard methods. We then use DSGA to highlight a novel

subdivision of an important class of genes in breast cancer, the

estrogen receptor (ER) cluster. We also identify new markers

distinguishing ductal and lobular breast cancers. Although our

examples focus on microarrays, DSGA generalizes to any high

dimensional genomic/proteomic data.

Contact: ssj@standford.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

The genomic era has brought about profound changes in the

study of genetic mechanisms with the infusion of mathematical

tools to aid both traditional and novel biological techniques.

High dimensional data like microarray expression, SNP,

array CGH and proteomic data have been used to study a

wide range of problems aimed at achieving a deeper and more

global understanding of diseases. Identification of expression

relevant to the biological problem being studied can however

be a difficult task. Tests for statistical significance must

always make tacit assumptions about the underlying

biology, and different tests will highlight distinct aspects of

this biology. In studies of diseases, statistical analysis is often

employed to identify the most important variables (genes).

This most commonly includes genes that vary a lot among

distinct tumors (Alon et al., 1999; Dudoit Fridlyand et al.,

2002; Eisen et al., 1998; Golub et al., 1999; Hastie et al., 2000;

Weinstein et al., 1997), genes whose expression is stable

among different samples from the same patient (Sørlie et al.,

2003; Weigelt et al., 2005), genes whose expression levels

show a strong association with various clinico-pathologic

characteristics (Bair et al., 2006; Dudoit Yang et al., 2002;

Tusher et al., 2001; Vijver et al., 2002; Weigelt et al., 2005),

and various methods that identify genes whose expression

most significantly distinguish diseased and normal

tissues: (Alon et al., 1999; Boer et al., 2001; Chen et al., 2002;

Ghosh et al., 2004; Munagala et al., 2004; Stephanopoulos

et al., 2002).
In this article we introduce a novel method of data analysis:

disease-specific genomic analysis (DSGA) that employs com-

parison to normal expression to extract data most closely

associated with the disease. Specifically, DSGA defines a

supervised step that mathematically transforms and simplifies

expression data to highlight the pathologic component of

expression. While retaining expression information about

every gene, DSGA isolates and separates a disease-like and a

normal-like portion of this expression. Other, standard analytic

methods—clustering, class prediction, feature selections—are

meant to be applied after the data has been transformed by

DSGA. This method defines the mathematical model for normal

expression to be a linear subspace derived from normal tissue

expression data; it defines disease-specific expression to be the

deviation of expression in diseased tissue from this subspace,

where deviation indicates residual from a linear model.

Specifically, we define a subspace N that approximates

normal tissue data (Section 2.2), and then decompose the

original expression data T from each individual diseased tissue

into two components: the normal component Nc:T is the least

squares fit of T to a linear model in N , and the disease

component Dc:T is the vector of residuals from the fit*To whom correspondence should be addressed.
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to this linear model. The two vectors Nc:T and Dc:T are

perpendicular, and satisfy:

T ¼ Nc:TþDc:T ð1Þ

This construction allows each diseased tissue expression vector

to find its own unique normal component (fit to a linear model)

to the normal state. Figure 1 shows a geometric representation
of the different components. Standard data analysis methods

are subsequently applied to the disease components Dc:T of

the data.
The method, detailed in Section 2.2, involves essentially

computing the residual deviation of diseased tissue data from
a linear model in the normal tissue data. A modification

of principal component analysis is used to obtain a good
approximation of the model for normal expression. This

method is tested in Section 2.3 using data simulations.
In Section 3, we apply DSGA to real microarray expression

data to investigate the benefits it provides. Specifically, we show:

(1) DSGA outperforms standard analysis methods by

accurately recognizing clinical, a priori established

biology with improved error rates.

(2) DSGA tends to highlight aspects of biology that are
distinct from those identified by traditional methods.

Hence the DSGA decomposition has the potential to

identify novel biology, rather than uncover, albeit
with improved accuracy, essentially known biological

identities.

We note that the second statement does not make the claim

that the biology identified using DSGA is more accurate, or
more revealing than the biology highlighted by traditional

methods. It merely states that this biology is different. The first

statement however, claims that DSGA decomposed data is
better at correctly identifying a priori known biology than

traditional data.
In Section 3.1, we show that DSGA decomposition

of diseased tissue data performs better than the original

(log ratio) data for class prediction by prediction analysis
for microarrays (PAM) (Tibshirani et al., 2002) by

testing on several cancer datasets. Specifically, performing

DSGA transformation on log ratio data places tumors in classes

defined by clinico-pathological parameters with better error

rates. Indeed, this suggests that this transformation highlights

the characteristics of data that are relevant to the biology of

disease, and that other traditional analysis methods should

be applied to DSGA-transformed data rather than to the

original data.
In Section 3.2, we investigate the second question: to what

extent is DSGA likely to uncover new aspects of biology. We

focus on breast cancer, where we highlight two separate

instances where differences between DSGA and other methods

are clearly discernable. The first difference concerns the

predictor genes identified in the PAM analysis to distinguish

ductal and classical lobular breast cancer tumors. Thus while in

Section 3.1 we show that error rates for PAM are improved

when using DSGA-decomposed data, in Section 3.2 we show

that this same PAM analysis has identified a different collection

of predictor variables (genes) in constructing the tumor class

shrunken centroids. Thus not only is the error rate improved,

but the predictor genes are different, thereby potentially

uncovering novel biology. Second, we use the disease compo-

nents of DSGA-transformed data to highlight novel gene

associations for breast cancer; specifically we discover

a decomposition of the estrogen receptor (ER) cluster into

three subclusters of biologically coherent gene groups that

are associated with distinct tumor types. Given the long

recognized biological importance of ER status in the develop-

ment and progression of breast cancer (Creighton et al., 2006;

Foekens et al., 2006; Gruvberger et al., 2001; Innes et al., 2006;

Laganiere et al., 2005; Oh et al., 2006; Paik et al., 2004; Perou

et al., 2000; Sørlie et al., 2001; Sørlie et al., 2003; Usary et al.,

2004; Wang et al., 2005; Yang et al., 2006) this finding

highlights the potential value of DSGA in further unraveling

the underlying biology in disease. In Section 4, we discuss some

characteristics of data decomposition by DSGA.

2 DISEASE-SPECIFIC GENOMIC ANALYSIS

Our method is based on decomposing expression in diseased

tissue as the sum of a part that best mimics normal tissue

expression, and an error or deviation from normal expression.

This decomposition is defined essentially by computing a linear

model of diseased tissue expression data onto normal expres-

sion data. Equation (1) in Section 1 gives this decomposition,

with the normal component Nc:T being the least squares fit to

normal tissue data, and the disease component Dc:T the vector

of residuals. However, in order to obtain a good approximation

for normal expression data, we first reduce its dimension, using

a modification of principal component analysis. Thus the

DSGA decomposition in Equation (1) is based on a linear

model to a reduced dimension approximation N of the normal

expression data. Section 2.1 sketches the general setup for the

method, Section 2.2 provides the details of dimension reduction

and model fitting for the normal data and Section 2.3 uses data

simulations to test the method of dimension reduction for the

normal tissue data. Precise mathematical details found online:

Computational Details Supplement Sections 1 and 2.

Linear space generated
from normal tissue gene
expression arrays.
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Fig. 1. Geometric representation of the decomposition of tumor data

vector into normal component and disease component vectors. The linear

space N is obtained from the normal tissue data using the method

defined in Section 2.
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2.1 Data decomposition: the normal component

and the disease component

We assume that microarray expression data has been collected

for diseased tissue samples and for normal tissue samples. Each
tissue sample data is a high dimensional vector in array space
whose coordinates are genes:

� Diseased tissue microarray data: T1,T2, . . . ,TS

� Normal tissue microarray data: N1,N2, . . . ,NR

Note that we do not require that the number of normal
tissue samples R be the same as the number of diseased

samples S. In fact, ideally we would have for normal tissue
microarray data a very large database (very large R)

against which each diseased tissue data vector Ti would be
decomposed. If the disease affects a specific organ, then all
the normal tissue data should be collected from that

particular organ.
Essentially, we first fit each data vector Ti from a diseased

tissue sample to a linear model in the normal data

N1,N2, . . . ,NR defining its decomposition Ti ¼ Nc:Ti þDc:Ti

with:

� Nc:Ti fit to the linear model: Normal Component

� Dc:Ti vector of residuals to linear model: Disease
Component

It is a tacit assumption that normal tissue data will generally

have intrinsic mathematical characteristics distinct from those
of diseased tissue data. However, because of noise in the data,
and because all tissue samples, including normal tissue, exhibit

biological diversity, as the number of normal samples increases,
so will the dimension of the normal data. Eventually, when the

number of normal samples is larger than the number of genes, it
is possible that the subspace generated by normal data will
constitute the entire space, thereby making the residual vectors

(disease component) for diseased tissue data into the 0-vector.
Thus, instead of using all the normal expression data, we first

reduce the dimension of normal data as explained in Section 2.2
to obtain a better approximation N of a model for the normal
expression space.

2.2 Estimation of the normal expression space N
We use a modification of principal component analysis (PCA)
to reduce the dimension of normal expression data:

N1,N2, . . . ,NR. Although PCA is a natural method for
reducing the dimension of this data, we have found that a

modification of PCA works much better. The flat construction
defined in Section 2.2.1 uses a series of linear model projections
to give a cleaner estimate of the normal expression space N . We

then use PCA on data transformed with the Flat construction,
rather than on the original normal tissue data. Data simula-

tions in Section 2.3 show the utility of this construction in
estimating N .
We assume that normal tissue spans a subspace N of

dimension kmuch smaller than the number R of normal tissues.
Essentially, we assume that most normal expression lies in the
space N , and wish to recover from the normal data the space

N . We use a modification of the method originally defined

by Wold (Eastment and Krzanowski, 1982; Krzanowski and

Kline, 1995; Wold, 1978). When applying DSGA to microarray

data in Section 3, dimension reduction to N was minimal,

suggesting a need for more normal tissues. Despite this

limitation, DSGA outperformed traditional methods.

2.2.1 Flat construction Starting with the normal tissue

expression vectors N1,N2, . . . ,NR we define new flat vectors:bN1, bN2, . . . , bNR by letting bNi be the least squares fit of Ni to

a linear model in all the other normal tissue arrays

N1,N2, . . . ,Ni�1,Niþ1, . . . ,NR. Roughly, working with the flat

vectors is intended to reduce aspects of the data that are unique

to each normal tissue expression vector Ni, and are not (small)

noise; rather they are (possibly large) biologically meaningful

signal that is unique to Ni. Data simulations in Section 2.3

show that working with the flat vectors greatly improves

our ability to recover the correct dimension reduction. We

construct the matrix with columns the flat normal databN ¼ ½bN1
bN2 . . . bNR�.

2.2.2 The normal space N We wish to reduce the space
generated by the flat normal vectors bN1, bN2, . . . , bNR to an

appropriate principal component subspace. We use the method

in (Wold, 1978). We compute for each l < R the goodness of fit

measure W for the Flat matrix bN.

Wðl Þ �

 
�2l

�2lþ1 þ � � � þ �2R

!
ðn� l� 1ÞðR� l Þ

ðnþ R� 2l Þ
ð2Þ

Here �i is the ith singular value of the flat normal data matrixbN, R is the number of columns (normal samples) and n is the

number of rows (genes). Recall that �i essentially gives a

measure of the amount of data in the ith direction, so that

roughly, Wold’s invariant W(l ) measures the ratio between the

smallest signal (�l) and all noise (the subsequent singular values

�lþ1, . . . , �R.)
We take L so that W(l ) spikes up for the value L,

and construct the matrix bNL the top L-dimensional

principal component approximation of the flat normal data

matrix bN: bNL ¼ U ��L � V t ð3Þ

where bN ¼ U���Vt is the singular value decomposition, and �L

is the diagonal matrix with the first L diagonal entries the same

as the first L singular values for bN and the rest of the entries 0.
The normal space N is the column space of bNL.

2.3 Data simulation

We use data simulations to investigate the ability of PCA to

detect an appropriate dimension reduction when combined

with the flat construction. We compared PCA dimension

reduction, with and without the flat transformation on

simulated data. Roughly, we make the following assumptions

about the normal data: we assume that (1) there is a gene

expression signature common to all normal samples; (2) there is

additional expression in normal data that varies continuously

among the samples; (3) there is biological diversity providing

uniqueness in global expression for each individual normal

Disease-specific genomic analysis (DSGA)
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sample and (4) noise. Specifically, we assume the following

model for the simulated ith normal array Ni, i ¼ 1, 2, . . . ,R:

Ni ¼
Xk
j¼1

aijCj

 !
þ biBþDi þ �i ð4Þ

Here B is a global feature common to all normal arrays,

C1, . . . ,Ck span a virtual normal expression space of dimension

k, Di is data unique to the ith normal tissue, �i is noise, aij and bi
are coefficients. The noise vector �i is smaller than vectors B, Cj

and Di, and Di represents real biology unique to the ith normal

tissue.
For data simulations we assumed: 100 genes, R ¼ 20, k ¼ 5.

We chose the collection of vectors fB,C1,C2, . . .Ckg to be

mutually orthogonal. We wanted to recover the dimension:

kþ 1 ¼ 6 from W(l ). We also wanted to obtain the space

generated by fB,C1,C2, . . . ,Ckg as the top kþ 1 ¼ 6 dimen-

sional subspace by PCA. Details of this simulation are

found in the Computational Details Supplement Section 2.1,

along with additional simulations (Sections 2.2 and 2.3)

investigating the effects of varying the parameters in

Equation (4).
We computed the flat vectors bNi. We then computed

the values for W(l ) for both collections: the original

simulated normal tissue vectors fN1,N2, . . . ;NRg and

the flat simulated data vectors: fbN1, bN2, . . . ; bNRg. Figure 2

shows a plot of the l versusW(l ) for both the original simulated

data vectors and the flat simulated data vectors, showing

that the values of W for the flat data can indeed recover

the dimension kþ 1 ¼ 6. Moreover, when using the flat

normal vectors fbN1, bN2, . . . bNRg the top six dimensional princi-

pal component subspace was indeed the subspace generated by

the classes fC1,C2, . . . ,Ckg together with the common signature

B, but ignoring diversity vectors Di and noise vectors �i.

3 APPLICATION TO MICROARRAY DATA

We applied our analysis method to several cancer datasets. We first

used these datasets to compare DSGA with other standard methods

of analysis. Specifically, we used PAM to place tumors in different

classes based on clinico-pathological characteristics, and compared

error rates when the PAM analysis was performed on data that had

been transformed in a variety of ways, including DSGA. In most

cases, DSGA outperformed the other transformations. We then

showed separately, by focusing on breast cancer, that DSGA has the

potential to highlight novel biology, rather than merely identify,

albeit with greater accuracy, already known properties. We first

showed that the tumor class predictor genes identified by PAM in

constructing the class shrunken centroids were largely different for

DSGA-transformed data and for non-transformed data. We then

went on to unravel a novel decomposition of the ER cluster in

breast cancer.

3.1 Comparison of DSGA with other methods

We compared the ability of PAM (Tibshirani et al., 2002) to make class

predictions, for known clinico-pathological tumor distinctions. We used

the following notation:

Gene expression cancer datasets were comprised of:

Tumor arrays: T1;T2; . . . ,TS

Normal array: N1;N2; . . . ;NR

Both sets of data consisted of log-transformed cDNA microarray

expression data.

Data from tumor samples was then transformed in several different

ways:

(1) Traditional, log.ratio data fTig

(2) Zero-transformed data fZt:Tig: the vector of gene means �N of all

the normal tissue data vectors was computed:

�N ¼ meanðN1,N2, . . . ,NRÞ

then the tumor data was transformed by subtracting �N from

each of the tumor data vectors:

Zt:Ti ¼ Ti � �N

(3) Paired normal-transformed data fNpair:Tig: when both tumor and

normal tissue data is available for the same patient, the difference

between tumor and normal data:

Npair:Ti ¼ Ti � Ni

(4) Disease components from DSGA transformed data fDc:Tig.

We acknowledge that the number of patients for which paired

samples—tumor and normal—was available was not very large.

Moreover, only one of the cancer datasets had even a limited

subcollection of paired data patients. Nevertheless, for the sake of

completeness, we include in the supplement a comparison between

DSGA-transformed and paired normal-transformed data, and note

that in this case too, DSGA compares favorably with paired normal

transformation. We note too that the paucity of paired tumor–

normal data is often due to the difficulty in obtaining histo-

logically normal tissue samples from a significant number of cancer

patients.

3.1.1 Gastric cancer dataset Gene expression data from gastric

cancer (Chen et al., 2003) consisting of 89 tumor samples and 29 normal

tissue samples was used. Of the 89 patients, 20 provided paired tissue

samples: same-patient tumor and normal tissue. Data was retrieved as

in (Chen et al., 2003): either channel mean intensity over background
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Fig. 2. Data simulation to determine correct dimension reduction for

PCA. The correct dimension for the model should be 6. Graphs

compare (a) singular values and (b) goodness of fit measureW(l ) versus

the number of dimensions l. Graphs show simulated data and simulated

flat data.
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exceeded 3. Only clones with data for at least 80% of the samples were

retained, and the remaining missing values were imputed using KNN

algorithm (Troyanskaya et al., 2001). Finally, data was collapsed

(mean) by UniGene cluster, build 187 yielding 11,711 genes.

We considered four different clinico-pathological distinctions in the

dataset, all known to associate with cancer progression and prognosis:

(1) latent infection with Helicobacter Pylori (HP), (2) latent infection

withEpstein-Barr (EB) virus, (3) tumor site: Antrum versus Body versus

Cardia and (4) tumor type: Diffuse versus Intestinal. For each of these

distinctions, we tested and compared the ability of PAM to distinguish

tumors on the basis of data transformed in several ways. For the entire

dataset, we compared the original log data fTig, the zero-transformed

data fZt:Ti g and the disease components for the DSGA-transformed

data fDc:Tig. TheDSGA transformation was performed after the normal

data was reduced from dimension 29 to 27 by the flat construction

(Section 2.2) and PCA. Supplementary Figure 1S shows the plots

for dimension reduction, and Figure 3 shows the PAM error rates.

For the smaller set of 20 tumors where data was available in pairs

from the same patient: normal and tumor data, we compared disease

components of DSGA-transformed data fDc:Tig with the paired normal-

transformed data fNpair:Ti ¼ Ti �Nig. Although the sample size was

not very large, we include comparison of the performance with PAM of

these two types of data transformations, both of which highlight a type

of deviation in expression between tumor and normal tissue. As shown

in Supplementary Figure 2S, while the ability to distinguish seems to be

the same for both HP and EB class distinctions, DSGA-transformed

data outperformed the paired normal data transformation for both

tumor site and tumor type distinctions.

3.1.2 Breast cancer dataset Gene expression data from breast

cancer (Zhao et al., 2004) consisting of 63 primary tumor samples and

13 normal tissue samples was retrieved. Data was retrieved if either the

spot regression correlation exceeded 0.6 or if both channels mean

intensity over background exceeded 1.5. Only clones with data for at

least 80% of the samples were retained, remaining missing values were

imputed using KNN algorithm (Troyanskaya et al., 2001). Finally, data

was collapsed (mean) by UniGene cluster, build 187 yielding 14,237

genes. Most tumor samples, 57 of the original 63 tumors, were either

ductal or classical lobular tumors. This distinction is known to be

associated with a range of disease-related characteristics. We compared

the original log ratio expression data fTig, the zero-transformed

expression fZt:Tig, and the disease component for the DSGA-

transformed data fDc:Tig. The DSGA transformation was performed

after the normal data was reduced from dimension 13 to 12 by the flat

construction (Section 2.2) and PCA. Supplementary Figure 3S shows

the plots for dimension reduction, and Figure 3 shows the PAM error

rates. The DSGA-transformed data outperformed both the original log

ratio data and the zero-transformed data.

3.2 Comparison of PAM centroids for breast cancer

While the error rates for running PAM were improved with the

DSGA transformation, we wanted to compare the predictor genes in

the PAM-shrunken centroids. The diagram in Figure 4 shows the extent

of overlap in the collection of predictor genes using the original log

ratio data, zero-transformed data and DSGA-transformed data,

and Supplementary Figure 4S shows in detail the shrunken centroids

generated by PAM. While the zero-transformed gene list from PAM is

a slight expansion of the original log ratio data gene list, with even the

order of predictor genes being identical in both, all but 2 of the DSGA

genes from PAM are different. This suggests that the underlying biology

highlighted by the DSGA transformation may be quite different from

that highlighted by log-transformed data, or the zero-transformed data.

3.3 Unraveling the estrogen receptor cluster in

breast cancer

Cluster analysis can provide a wealth of information and often

suggests putative biologically meaningful associations of genes

(Eisen et al., 1998). However, data transformations often change the
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mathematical associations between genes, and consequently they can

drastically affect the clustering. We investigated the effect of the DSGA

transformation on clustering the breast cancer dataset, and compared it

to clustering the same data, using traditional, gene mean-centered,

log—transformed data. Clustered data was viewed using Java Treeview

(Saldanha, 2004). Specifically we focused on a specific cluster of genes,

known to be important in breast cancer—the ER cluster. ER, and

generally hormone receptor status, is known to be profoundly involved

in the pathology of breast cancer. The involvement of ER is so

fundamental that a multitude of variables are associated with ER status

in breast cancer: age, time to metastasis, overall survival and response

to therapy, and there is strong evidence that ER coregulation, and

GATA3 coexpression constitute strong outcome predictors for a large

class of breast cancers—luminal breast cancers (Oh et al., 2006). Thus

understanding ER coregulation is a fundamental step in unraveling the

underlying biology of various types of breast cancer.

One important advantage to using DSGA-transformed data is that all

expression is relative to a biologically meaningful standard: expression

levels in normal tissue. For log ratio expression data, Pearson

correlation of gene mean-centered data identifies two genes as highly

similar (correlated) as long as their expression relative to the mean is

similar. This can occur even if one gene is consistently over-expressing

relative to normal tissue, and the other is consistently under-expressing.

For DSGA-transformed data, we retain expression relative to normal

tissue levels, and the distinction between genes that are over- and under-

expressing relative to normal tissue can be easily identified by using

uncentered correlation.

To investigate the effect on clustering of the DSGA decomposition,

we considered the breast cancer dataset consisting of all 63 primary

tumor samples: ductal, classical lobular, solid, trabecular alveolar

lobular and classic trabecular lobular tumors. UniGene-collapsed data

was further reduced by testing (1) Deviation from a normal tissue

expression null hypothesis, and (2) Deviation from mean null hypothesis,

as we now explain.

(1) Deviation from normal expression null hypothesis A leave-

one-out step was performed on the normal dataset, by computing

disease component of each normal tissue expression vector Ni using as

normal data the flat normal dataset of all normal array data, excluding

Ni. The PCA dimension reduction used was the same as that obtained

for the original normal dataset: dim ¼ 12. This produced disease

components for each normal tissue expression vector:

Dc:N1,Dc:N2, . . . ,Dc:Nk: For each gene G, the 95th percentile QG95

of absolute value of leave-one-out residuals was computed, as was the

99th percentile of these for all genes: Q99. This defined a filter bound

for each gene G Normal Filter to be the greater of QG95 and Q99.DSGA

was performed on the tumor data, and for each gene in the disease

components of tumors the 5th and 95th percentiles were computed for

the entire set of tumors. Genes were retained if the larger in absolute

value of the 5th and 95th percentiles for the genes exceeded the filter

Normal Filter. This step reduced the total number of genes to 1610.

(2) Deviation from mean tumor expression null
hypothesis For each gene G retained above, the difference between

the 95th and 5th percentiles was computed, and genes were retained if

this exceeded the top 45th percentile of all such deviations for the

retained genes. This step reduced the total number of genes to 885.

Data was then clustered as follows:

� Arrays were clustered by Pearson correlation: disease components

of DSGA tumor data fDc:Tig were gene mean-centered.

� Genes were clustered by uncentered correlation of disease

components of DSGA tumor data fDc:Tig (not mean-centered.)

� The heatmap for clustered data shows the disease component

values ðDc:TiÞ for each gene. Thus up and down regulation in the

heatmap indicates up and down regulation relative to normal tissue

levels.

Additionally, a 0 array vector, a virtual normal array, was included in

the DSGA decomposed dataset of tumors, prior to clustering, thereby

providing additional information for comparing tumor data with

normal expression.

In order to compare with clustering on traditional, log-transformed

data, unsupervised hierarchical clustering was performed on the same

dataset of 63 tumors, with three normal tissue arrays. The dataset was

gene and array mean-centered, and genes were retained if they deviated

from the mean by at least log2ð3Þ on at least three arrays. This reduced

the number of genes to 2287. Hierarchical clustering was then

performed on this reduced dataset. Figure 5a shows side by side the

two heatmaps resulting from clustering the traditional log-transformed

and the DSGA-transformed datasets. Many distinctions between the

two analyses ensue, but our focus is the estrogen receptor co-expressing

genes: the ER-cluster.

Interestingly, the DSGA decomposition causes a splitting of the

traditional ER cluster into at least three distinct subclusters: a proper

ER-associated cluster, a Forkhead box A1 (FOXA1) and GATA3

associated cluster and a Signal peptide, CUB domain, EGF-like 2

(SCUBE2) associated cluster. These three clusters show coherent

expression in corresponding clusters of tumors, known to be of distinct

cancer phenotype: (1) tumors showing low expression of ER and

ERBB2 or HER2/neu; (2) tumors showing low ER expression but over-

expression of ERBB2 or HER2/neu; (3) lobular tumors and (4) ductal

ER positive tumors. We emphasize that, since data is DSGA

transformed, positive and negative status are indeed relative to

normal expression, rather than to the mean expression of the group

of tumors included in the study. Figure 5b shows the detail of the

DSGA decomposition of the ER cluster into these three clusters, along

2 common genes

DSGA-transformed data
11 predictive genes PAM
cv classification error 0.036

Traditional log ratio data
16 predictive genes by PAM
cv classification error 0.089

Zero-transformed data
23 predictive genes by PAM
cv classification error 0.089

Fig. 4. Overlap of predictive genes in the PAM-shrunken centroids

using traditional log-transformed data, zero-transformed data and

DSGA-transformed data. Breast cancer dataset: tumor type class

distinction ductal versus classical lobular. Zero-transformed data

centroids were a slight expansion of the log-transformed data centroids.

By contrast, these had only two genes in common with the centroids

produced by DSGA data.
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(b)

Fig. 5. Decomposition of the ER gene cluster as a consequence of using the DSGA transformation on a breast cancer dataset. (a) Comparison of

global heatmaps showing hierarchical clustering on the data. The position of the traditional ER cluster using log-transformed data, and its splitting

into three separate smaller clusters in the DSGA-transformed heatmap are shown. TRADITIONAL heatmap data values are gene and array mean-

centered. DSGA heatmap data values are the disease components of the data (deviation from normal expression.) The traditional ER cluster unravels

into three clusters in the DSGA analysis: ER cluster; FOXA1–GATA3 cluster; and SCUBE2 cluster. (b) Close-up view of the three DSGA gene

clusters, together with a comparison to the mean DSGA-expression levels of the 17q amplicon containing the ERBB2 gene. The distinction between

the GATA3–FOXA1 cluster and the ER cluster occurs primarily along tumors that are ER negative, ERBB2 overexpressing. The distinction between

the ER cluster and the SCUBE2 cluster occurs primarily along lobular tumors, and ER positive, ERBB2 overexpressing tumors.
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with the expression level of the ERBB2/17q amplicon. It is evident that

the distinction between the FOXA1/GATA 3 cluster and the ER cluster

occurs primarily within the ER-negative ERBB2 or HER2/

neu-overexpressing tumors. The distinction between the ER cluster

and the SCUBE2 cluster appears to be mostly within the lobular

tumors, as well as the ER-positive ERBB2 or HER2/neu-overexpressing

tumors.

While we acknowledge the need for an in-depth extensive analysis of

the split in the traditional ER cluster, this exploratory analysis suggests

that further investigation in the differential disruption of co-expression

for these genes may highlight distinctions in the underlying biology of

what are known to be different molecular subtypes of breast cancer.

4 DISCUSSION

DSGA highlights a series of issues that merit further investiga-

tion. Our understanding of disease necessitates extensive

understanding of normal phenotypes to ensure that the

characteristics we study are indeed aberrant and clearly deviate

from the realm of healthy phenotype. Extensive normal data

would thus expand our understanding of disease. The paucity

of available normal expression data may explain the phenom-

enon observed in Section 3 where dimension reduction for

normal data was minimal for both gastric and breast cancer

datasets. Additional normal data would also allow investigating

methods to assess the relative benefit of including additional

normal data or tumor data in studying the disease.

Supplementary Figure 11S provides a comparison using the

gastric cancer data. Finally, extensive normal tissue data

provides an opportunity to investigate optimal models for

normal expression.
DSGA is intended to address a series of biological

characteristics of diseased tissue expression and normal tissue

expression:

(1) Our definition of disease is the deviation of expression

from the normal or healthy state; thus rather than merely

identifying variables (genes) whose expression is signifi-

cantly distinct in diseased versus normal tissue and

working with the original diseased tissue data along these

significant genes, we first decompose the original data

T into normal-like expression Nc:T and deviation Dc:T
from normal-like expression. The disease is then defined

to be the difference ðDc:T Þ between diseased tissue

expression and normal-like expression.

(2) Our model N for the normal state incorporates some of

the biological diversity inherent in normal tissue. This

diversity stems from a multitude of sources: normal

expression fluctuates in response to different conditions;

normal tissue of distinct individuals can vary extensively;

normal tissue is composed of a many distinct cell types

with distinct expression patterns. The space N consists of

linear combinations of normal data, thus providing a

continuum of virtual normal expression vectors repre-

senting a range of combinations of these varied normal

phenotypes, including a range of cell type mixtures.

(3) We do not require that each patient provide a normal

tissue sample. This is important from a practical view-

point, since for many patients the entire organ is visibly

altered by the presence of the disease thereby making it

impossible to obtain such samples.

(4) Each diseased tissue sample is analyzed and decomposed

along the normal tissue null hypothesis alone, without

reference to any other diseased tissues in the study. The

disease component of each individual diseased tissue

is obtained from the original array data vector T and

the entire normal state model N . In particular, the

disease component Dc:T is independent of the particular

collection of diseased tissues included in a study. This is

not the case, for example, when data is transformed by

gene mean-centering, since the mean of each gene is

determined by the values for the entire collection of

samples.

We saw that DSGA outperforms other methods for class

prediction where the classes were defined in terms of clinico-

pathology known to be relevant to outcome of disease.

5 CONCLUSION

We introduced a method for analysis of microarray data that

highlights and separates aberrant expression in diseased tissue

in order to understand the underlying biology of the pathologic

process. The method first uses linear models (flat construction)

and principal component analysis to construct a normal

expression null hypothesis space N . The diseased tissue

expression data is then decomposed into two orthogonal

components: the normal component best mimics normal

expression in terms of linear models, and the disease

component measures the deviation from the normal expression

null hypothesis.
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