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ABSTRACT
Data sparsity is a long-standing problem in recommender systems.
To alleviate it, Cross-Domain Recommendation (CDR) has attracted
a surge of interests, which utilizes the rich user-item interaction
information from the related source domain to improve the per-
formance on the sparse target domain. Recent CDR approaches
pay attention to aggregating the source domain information to
generate better user representations for the target domain. How-
ever, they focus on designing more powerful interaction encoders
to learn both domains simultaneously, but fail to model different
user preferences of different domains. Particularly, domain-specific
preferences of the source domain usually provide useless informa-
tion to enhance the performance in the target domain, and directly
aggregating the domain-shared and domain-specific information
together maybe hurts target domain performance. This work con-
siders a key challenge of CDR: How do we transfer shared infor-
mation across domains? Grounded in the information theory, we
propose DisenCDR, a novel model to disentangle the domain-
shared and domain-specific information. To reach our goal, we
propose two mutual-information-based disentanglement regulariz-
ers. Specifically, an exclusive regularizer aims to enforce the user
domain-shared representations and domain-specific representa-
tions encoding exclusive information. An information regularizer
is to encourage the user domain-shared representations encoding
predictive information for both domains. Based on them, we fur-
ther derive a tractable bound of our disentanglement objective
to learn desirable disentangled representations. Extensive exper-
iments show that DisenCDR achieves significant improvements
over state-of-the-art baselines on four real-world datasets.
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1 INTRODUCTION
As an important tool to understand user intentions, recommender
systems (RS) have been successfully applied in many real-world
applications, such as Amazon and Youtube. Most current RS mod-
els [11, 12, 55] follow a collaborative filtering (CF) paradigm to
make recommendations by learning the representations of users
and items. However, when user-item interactions are very sparse,
those CF-based methods suffer from a strong decrease in recom-
mendation performance [61]. Recently, cross-domain recommen-
dation (CDR) [26, 30] becomes a promising way to alleviate this
data sparsity problem by utilizing the rich information from the
source domain to improve recommendation performance on the
target domain. For instance (see Figure 1(a)), CDR can leverage the
interest of a user’s taste about the Book domain as an important
support to make recommendations for the Film domain.

With the great success of neural network techniques in RS, sev-
eral deep neural network approaches of CDR have been proposed
by designing more powerful interaction encoders to model both
domains simultaneously. As shown in Figure 1(b), to generate ro-
bust representations, most of existing works first apply two base
encoders to model each domain interactions, and then introduce
different transferring layers to fuse the learned representations
of base encoders in a symmetrical way. For example, CoNet [14]
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Figure 1: (a): An example of user preferences in Film do-
main and Book domain. (b-c): A model comparison: in con-
trast with previous CDR models, DisenCDR disentangles the
domain-shared and domain-specific representations to trans-
fer knowledge across domains.

leverages MLPs as the base encoder for each domain and devises a
cross-connections network to transfer information. DDTCDR [26]
extends the CoNet by learning a latent orthogonal mapping func-
tion to transfer users’ similarity across domains. PPGN [58] learns
user/item representations by stacking several GCNs [23] to directly
aggregate the interaction information of both domains. BiTGCF [30]
utilizes the LightGCN [11] as the encoder to aggregate interaction
information for each domain and further introduces a feature trans-
fer layer to enhance the two base graph encoders.

Although above methods achieve promising results to some ex-
tent, most of them still neglect to disentangle the domain-shared
information and the domain-specific information, which limits the
model transferring effectiveness. A concrete example is depicted
in Figure 1(a), there are two domains: Film and Book. The domain-
shared information, such as the ‘Story Topic’ and ’Category’, can
provide valuable information for both domains. But the domain-
specific information, e.g., the ‘Writing Style’ in Book domain may
provide useless information to making recommendation for Film
domain, even causing the negative transfer problem for CDR [57].
Unfortunately, existing CDR methods ignore this problem and di-
rectly aggregate the domain-shared and domain-specific informa-
tion of both domains. As a result, the learned user representations
entangle both domain preferences together, which would lead to
sub-optimal recommendation results.

To disentangle the domain-shared and domain-specific informa-
tion, we propose a novel deep generation model termed DisenCDR
to learn Disentangled Representations for CDR, which follows the
VAE framework [20] to model the data distribution. As shown in
Figure 1(c), our DisenCDR learns three separate representations
for each user: one domain-shared representation and two domain-
specific representations, for disentangling the user preferences. To
disentangle the three representations, we introduce a variational
bipartite graph encoder (VBGE) and two mutual-information-based
regularizers: the exclusive regularizer and the informative regular-
izer, to constrain them. The exclusive regularizer aims at enforcing
the user domain-shared representations and domain-specific repre-
sentations encoding exclusive information. The information regu-
larizer aims at encouraging the user domain-shared representations
encoding predictive information for both domains. Based on the
two mutual information regularizers, we derive a tractable bound

of our disentanglement objective for CDR. Leveraging disentangled
representations learned by DisenCDR, we show that only transfer-
ring the domain-shared information is a more powerful transfer
strategy than other CDR methods.

Our main contributions are summarized as follows:
• We introduce a fresh perspective to solve CDR by disentan-
gling the domain-shared information and domain-specific
information and only transferring the domain-shared infor-
mation to enhance model recommendation performance. To
the best of our knowledge, this paper is the first work to
learn disentangled representations for CDR.

• We propose a novel model named DisenCDR which contains
two well-designed mutual-information-based regularizers,
and derive a tractable disentanglement objective to learn
meaningful domain-shared and domain-specific user repre-
sentations.

• We conduct experiments on four real-world CDR datasets to
evaluate model performance. Extensive results demonstrate
that our DisenCDR achieves consistent and significant im-
provements over state-of-the-art baselines. Besides, we also
conduct comprehensive ablation studies and detailed analy-
ses to investigate the effectiveness of our model components.
Our source codes and datasets are available at github1 for
further comparisons.

2 PROBLEM DEFINITION
This work considers a general CDR scenario that two domains have
a shared user set. Let D𝑋 = (U ,V𝑋 , E𝑋 ) and D𝑌 = (U ,V𝑌 , E𝑌 )
denote the interaction data of domain 𝑋 and 𝑌 , where U denotes
the shared user set in both domains, V denotes the item set and E
denotes edge set in each domain. Additionally, there are two binary
interaction matrices 𝑨𝑋 ∈ {0, 1} |U |× |V𝑋 | and 𝑨𝑌 ∈ {0, 1} |U |× |V𝑌 |

for𝑋 and𝑌 respectively, where each element𝐴𝑖 𝑗 describes whether
user 𝑢𝑖 ∈ U has interacted with item 𝑣 𝑗 ∈ V in the edge set E .

Given the observed interactions of both domains, DisenCDR
aims to learn disentangled user/item representations, i.e., 𝒁𝑆

𝑢 , 𝒁𝑋
𝑢 ,

𝒁𝑌
𝑢 , 𝒁𝑋

𝑣 and 𝒁𝑌
𝑣 , and transfers the domain-shared representations

𝒁𝑆
𝑢 to enhance recommendation performance in both domains.

Here 𝒁𝑆
𝑢 , 𝒁𝑋

𝑢 , 𝒁𝑌
𝑢 represent the domain-shared, the domain-𝑋 -

specific and the domain-𝑌 -specific user representations; 𝒁𝑋
𝑣 and

𝒁𝑌
𝑣 represent items domain-𝑋 -specific and the domain-𝑌 -specific

representations.

3 METHODOLOGY
Figure 2 gives a high-level overview of DisenCDR, including the
variational bipartite graph encoders (VBGE), the generation and in-
ference procedures. This section first describes the embedding layer
which provides the initialized representations for users and items
in both domains. Then, VBGE formulates the user-item interactions
as a bipartite graph, and generates the user/item approximate pos-
terior distribution by aggregating their homogeneous information.
Afterward, following the VAE framework, we give the generation
and inference procedures of DisenCDR. The inference procedure
aims to encode the disentangled representations from the observed

1https://github.com/cjx96/DisenCDR
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Figure 2: An overview of DisenCDR. The VBGE means the
variational bipartite graph encoder. The 𝒁𝑋

𝑣 ,𝒁
𝑋
𝑢 ,𝒁𝑌

𝑢 and 𝒁𝑌
𝑣

are user/item domain-specific representations, and 𝒁𝑆
𝑢 is the

user domain-shared representations. The blue KL means cal-
culating KL divergence with prior distributionN (0, 𝑰 ). The
green KL means calculating KL divergence between inputs.
The latent variables 𝒁𝑆

𝑢 , 𝒁𝑆
𝑢 are used to calculate our disen-

tanglement objective.

interactions and the generation procedure aims to decode the ob-
served interactions by the learned disentanglement representations
while constrained by our exclusive and informative regularizers.

3.1 Embedding Layer
The embedding layer embeds user and item into a low-dimensional
vector space. To guarantee that the domain-shared and domain-
specific representations are independent, we introduce multiple
initialization embedding matrices for users. Formally, for the shared
users in U , we embed them with three 𝐹 -dimensional embedding
matrices 𝑼𝑆 ∈ R |U |×𝐹 , 𝑼𝑋 ∈ R |U |×𝐹 , and 𝑼𝑌 ∈ R |U |×𝐹 as domain-
shared, domain-𝑋 -specific and domain-𝑌 -specific initialized embed-
ding matrices, respectively. Meanwhile, we also use 𝑽𝑋 ∈ R |V𝑋 |×𝐹

and 𝑽𝑌 ∈ R |V𝑌 |×𝐹 for two item sets in domain 𝑋 and domain 𝑌

respectively.

3.2 Variational Bipartite Graph Encoder
The user-item interactions are naturally formed as a heterogeneous
bipartite graph (i.e., the interaction graph contains two types of
nodes: the user-type nodes and the item-type nodes), where users
are indirectly connectedwith an even-number-hop, e.g., 2-hop,
4-hop, etc. Nevertheless, existing graph encoders [22, 23, 37, 47, 49,
53] always focus on aggregating features from 1-hop neighboring
information, which leads to the improper information propagation
from its heterogeneous neighbors. Therefore, our VBGE utilizes a
two-step information propagation procedure. It first generates in-
termediate representations with homogeneous neighbors, and then
generates latent variables (a.k.a. representations) by intermediate
representations (as shown in Figure 3).

For simplicity, we take the information propagation procedure
of users in the domain 𝑋 as an example. We first generate the

𝑼!

𝑼" ! ……

……

……

……

……

……

𝑼" ! 𝑼" !

𝝈"!𝝁"!

(a) Intermediate Representations

(b) Mean Representations (c) Standard Deviation Representations

Figure 3: A simple illustration of VBGE. Blue and green cir-
cles denote users and items. Purple, orange and yellow lines
describe the two-step information propagation procedure.
The 𝑼𝑋 is learned intermediate representations. The 𝝁𝑋𝑢 and
𝝈𝑋
𝑢 are used to sample final representations.

intermediate representations 𝑼𝑋 as2:

𝑼𝑋 = 𝛿

(
Norm

(
(𝑨𝑋 )⊤

)
𝑼𝑋𝑾𝑋

𝑢

)
, (1)

where Norm(·) denotes the row normalized function, (𝑨𝑋 )⊤ de-
notes the transpose interaction matrix, 𝛿 (·) is the LeakyReLU func-
tion and the 𝑾𝑋

𝑢 ∈ R𝐹×𝐹 is a parameter matrix. Note that the
𝑼𝑋 ∈ R |V𝑋 |×𝐹 can be considered as user-type representations
to build a bridge between users with their 2-hop neighbors. In this
way, VBGE generates the domain-𝑋 -specific latent variables (a.k.a.
domain-𝑋 -specific representations) 𝒁𝑋

𝑢 for users in domain 𝑋 as
follows:

𝝁𝑋𝑢 = 𝛿

( [
𝛿 (Norm(𝑨𝑋 )𝑼𝑋 �̂�𝑋

𝑢,` ) ⊕ 𝑼𝑋
]
𝑾𝑋
𝑢,`

)
,

𝝈𝑋
𝑢 = 𝜑

( [
𝛿 (Norm(𝑨𝑋 )𝑼𝑋 �̂�𝑋

𝑢,𝜎 ) ⊕ 𝑼𝑋
]
𝑾𝑋
𝑢,𝜎

)
,

𝒁𝑋
𝑢 ∼N

(
𝝁𝑋𝑢 , [diag{𝝈𝑋

𝑢 }]2
)
,

(2)

where ⊕ is the concatenation operation,𝜑 (·) is the Softplus function,
�̂�𝑋
𝑢,` ∈ R𝐹×𝐹 , �̂�𝑋

𝑢,𝜎 ∈ R𝐹×𝐹 ,𝑾𝑋
𝑢,` ∈ R2𝐹×𝐹 and𝑾𝑋

𝑢,𝜎 ∈ R2𝐹×𝐹 are
parameter matrices. 𝝁𝑋𝑢 and 𝝈𝑋

𝑢 are mean and standard deviation of
Gaussian distribution, which is used to sample the latent variables
𝒁𝑋
𝑢 ∈ R |U𝑋 |×𝐹 . Concretely, we apply reparameterization trick [20]

to sample the latent variable 𝒛𝑋𝑢𝑖 for user 𝑢𝑖 :

𝒛𝑋𝑢𝑖 = 𝝁𝑋𝑢𝑖+𝝈
𝑋
𝑢𝑖

⊙ 𝝐, 𝝐 ∼ N (0, 𝑰 ), (3)

where ⊙ is the element-wise product, 𝝐 ∈ R𝐹 is a normal Gaussian
noise vector, 𝝁𝑋𝑢𝑖 ∈ R𝐹 is the mean vector and 𝝈𝑋

𝑢𝑖
∈ R𝐹 is the

standard deviation vector of user 𝑢𝑖 .
According to Eq.(1-3), the information propagation procedure of

generated users latent variables 𝒁𝑋
𝑢 only relies on users represen-

tations 𝑼𝑋 , which achieves proper information propagation from
its homogeneous neighbors. Similarly, the latent variables of item
𝒁𝑋
𝑣 can be also obtained via analogous calculations. All user/item

domain-specific latent variables for the domain 𝑋 and the domain
𝑌 can be summarized as 𝒁𝑋

𝑢 , 𝒁𝑋
𝑣 , 𝒁𝑌

𝑢 and 𝒁𝑌
𝑣 , respectively.

2Although recent works [11, 52] empirically show that the nonlinear functions in
GNNs are harmful to capture the collaborative filtering signal, but we still find that
the activation function works in our work.
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Besides the domain-specific representations, VBGE can also uti-
lize the interactions from both domains to generate domain-shared
latent variables 𝒁𝑆

𝑢 for users. To do so, we first use the initialized
domain-shared user representation 𝑼𝑆 as input to generate 𝝁𝑋𝑢 , 𝝈𝑋

𝑢 ,
𝝁𝑌𝑢 and 𝝈𝑌

𝑢 for 𝑋 and 𝑌 . Afterwards, we use a gate operator [6] to
combine them as:

𝝁𝑆𝑢 = 𝝀𝑢 ⊙ 𝝁𝑋𝑢 + (1 − 𝝀𝑢 ) ⊙ 𝝁𝑌𝑢 ,

𝝈𝑆
𝑢 = 𝝀𝑢 ⊙ 𝝈𝑋

𝑢 + (1 − 𝝀𝑢 ) ⊙ 𝝈𝑌
𝑢 ,

_𝑢𝑖 =
𝑁𝑋
𝑢𝑖

𝑁𝑋
𝑢𝑖 + 𝑁𝑌

𝑢𝑖

, 𝒁𝑆
𝑢 ∼ N (𝝁𝑆𝑢 , [diag{𝝈𝑆

𝑢 }]2),

(4)

where the 𝑁𝑋
𝑢𝑖

and 𝑁𝑌
𝑢𝑖

denote the number of 1-hop neighbors of
user 𝑢𝑖 in domain 𝑋 and 𝑌 , and the fixed factor _𝑢𝑖 controls the
contribution ratio of different domains.

Up to now, we have introduced the learning process to generate
domain-shared and domain-specific representations. In the follow-
ing section, we will dive into the VAE framework and explain how
we devise the mutual-information-based tractable objective to con-
strain these representations to achieve desirable disentanglement.

3.3 Generation and Inference
Following the VAE framework [20], we assume that the observed
interactions, D𝑋 and D𝑌 , are sampled from an joint interaction
distribution 𝑝D (𝑢, 𝑣𝑋 , 𝑣𝑌 ). Each triple (𝑢𝑖 , 𝑣 𝑗 , 𝑣𝑘 ) ∼ 𝑝D (𝑢, 𝑣𝑋 , 𝑣𝑌 )
describes that the user 𝑢𝑖 has interacted with the item 𝑣 𝑗 ∈ V𝑋 and
with the the item 𝑣𝑘 ∈ V𝑌 . Given observed interaction data, the
goal of DisenCDR is to learn the disentangled domain-shared and
domain-specific representations. To do so, we adopt the generation
procedure to decode the joint distribution by the inference proce-
dure learned domain-shared (i.e., 𝒁𝑆

𝑢 ) and domain-specific (i.e., 𝒁𝑋
𝑢 ,

𝒁𝑋
𝑣 , 𝒁𝑌

𝑢 and 𝒁𝑌
𝑣 ) representations.

3.3.1 Generation Procedure. Based on the structural assumption
in Figure 4(a), we maximize the likelihood of the joint distribution:

𝑝\ (𝑢, 𝑣𝑋 , 𝑣𝑌 )=
∫

𝑝\𝑋 (𝑨𝑋 |𝒁𝑆𝑢 ,𝒁𝑋𝑢 ,𝒁𝑋𝑣 )𝑝\𝑌 (𝑨𝑌 |𝒁𝑆𝑢 ,𝒁𝑌𝑢 ,𝒁𝑌𝑣 )

𝑝 (𝒁𝑆𝑢 )𝑝 (𝒁𝑋𝑢 )𝑝 (𝒁𝑌𝑢 )𝑝 (𝒁𝑋𝑣 )𝑝 (𝒁𝑌𝑣 )d𝒁𝑆𝑢 d𝒁𝑋𝑢 d𝒁𝑌𝑢 d𝒁𝑋𝑣 d𝒁𝑌𝑣 .
(5)

Noticeably, 𝑝\ (𝑢, 𝑣𝑋 , 𝑣𝑌 ) can be divided as two parts:
• Prior distributions: 𝑝 (𝒁𝑆

𝑢 ), 𝑝 (𝒁𝑋
𝑢 ), 𝑝 (𝒁𝑌

𝑢 ), 𝑝 (𝒁𝑋
𝑣 ), 𝑝 (𝒁𝑌

𝑣 ).
• Decoders: 𝑝\𝑋 (𝑨𝑋 |𝒁𝑆

𝑢 ,𝒁
𝑋
𝑢 ,𝒁𝑋

𝑣 ), 𝑝\𝑌 (𝑨𝑌 |𝒁𝑆
𝑢 ,𝒁

𝑌
𝑢 ,𝒁

𝑌
𝑣 ) .

For the prior distributions, we set all of them as normal Gaussian
distribution N (0, 𝑰 ) as suggested by various variational models [5,
13, 28, 29]. The decoders aim to reconstruct observed interactions.
Given a user-item triple (𝑢𝑖 , 𝑣 𝑗 , 𝑣𝑘 ), we have:

𝑝\𝑋 (𝐴𝑋
𝑖 𝑗 |𝒛

𝑆
𝑢𝑖
, 𝒛𝑋𝑢𝑖 ,𝒛

𝑋
𝑣𝑗
) = 𝜎

(
S\𝑋
𝑆
(𝒛𝑋𝑣𝑗 , 𝒛

𝑆
𝑢𝑖
) + S\𝑋

𝑋
(𝒛𝑋𝑣𝑗 , 𝒛

𝑋
𝑢𝑖
)
)
,

𝑝\𝑌 (𝐴𝑌
𝑖𝑘
|𝒛𝑆𝑢𝑖 , 𝒛

𝑌
𝑢𝑖
,𝒛𝑌𝑣𝑘 ) = 𝜎

(
S\𝑌
𝑆
(𝒛𝑌𝑣𝑘 , 𝒛

𝑆
𝑢𝑖
) + S\𝑌

𝑌
(𝒛𝑌𝑣𝑘 , 𝒛

𝑌
𝑢𝑖
)
)
,

(6)

where𝐴𝑋
𝑖 𝑗
/𝐴𝑌

𝑖𝑘
is an element of𝑨𝑋 /𝑨𝑌 , 𝜎 (·) is the sigmoid function,

S\𝑋
𝑆
(·), S\𝑌

𝑆
(·), S\𝑋

𝑋
(·), S\𝑌

𝑌
(·) are score functions to estimate the

different contributions of those representations. Besides, there are
many alternative methods that can be used to implement the score
functions such as MLPs. In this work, we choose the inner product
operation for fast training speed.

(a) Generation procedure (b) Inference procedure

𝒁!" 𝒁#$𝒁#" 𝒁!$𝒁!% 𝒁!" 𝒁#$𝒁#" 𝒁!$𝒁!%

𝐗 𝐘 𝐗 𝐘

Figure 4: A graphical illustration of the generation and infer-
ence procedures in DisenCDR. The 𝒁𝑆

𝑢 , 𝒁𝑋
𝑢 , 𝒁𝑌

𝑢 , 𝒁𝑋
𝑣 and 𝒁𝑌

𝑣

are disentangled representations of users and items.

3.3.2 Inference Procedure. Directly maximizing the joint distribu-
tion in Eq.(5) is intractable, since the true posterior distribution
𝑝\ (𝒁𝑋

𝑢 ,𝒁𝑌
𝑢 ,𝒁

𝑆
𝑢 ,𝒁

𝑋
𝑣 ,𝒁

𝑌
𝑣 |X,Y) is unknown. Therefore, we employ

the amortized inference [7] to approximate the true posterior distri-
bution by using the generated approximated posterior distribution
of our VBGEs. From structural assumption of DisenCDR in Figure
4(b), we factorize the approximated posterior distribution as:

𝑞𝜙 (𝒁𝑋
𝑢 ,𝒁𝑌

𝑢 ,𝒁
𝑆
𝑢 ,𝒁

𝑋
𝑣 ,𝒁

𝑌
𝑣 |X,Y) = 𝑞𝜙𝑋𝑢

(𝒁𝑋
𝑢 |X)𝑞𝜙𝑌𝑢 (𝒁

𝑌
𝑢 |Y)

𝑞𝜙𝑋𝑣
(𝒁𝑋

𝑣 |X)𝑞𝜙𝑌𝑣 (𝒁
𝑌
𝑣 |Y)𝑞𝜙𝑆𝑢 (𝒁

𝑆
𝑢 |X,Y),

(7)

where 𝜙 = {𝜙𝑋𝑢 , 𝜙𝑌𝑢 , 𝜙
𝑋
𝑣 , 𝜙

𝑌
𝑣 , 𝜙

𝑆
𝑢 } is parameter set of all VBGEs, and

X,Y denote the interaction information of domain 𝑋 and 𝑌 . To
achieve ideal disentanglement, the first four terms should encode
the domain-specific information and the last term needs to encode
the domain-shared information.

Nevertheless, Eq.(7) does not guarantee that the domain-shared
and domain-specific representations can be disentangled correctly.
The main reason lies in that we have no control over the encoding
information by three separate users latent variables 𝒁𝑋

𝑢 , 𝒁𝑌
𝑢 and 𝒁𝑆

𝑢 .
This observation motivates us to devise the regularizers of them to
achieve effective disentanglement.

3.4 Disentanglement Objective
In this section, we analyze the entanglement issue from the informa-
tion theory perspective and further derive a novel disentanglement
objective for DisenCDR. Generally, the encoding information of
ideal domain-shared and domain-specific representations should be
mutually exclusive. Thus we devise regularizers to constrain them
to meet the disentanglement goal in the following section.

Before going on, it is necessary to introduce two mutual infor-
mation definitions for better understanding:

Definition 3.1. Conditional Mutual Information 𝐼 (X;Y|Z).
For three random variables X,Y,Z, the conditional mutual infor-
mation is defined as follows:

𝐼 (X;Y|Z) = 𝐼 (X;Y,Z) − 𝐼 (X;Z)
= 𝐻 (X|Z) − 𝐻 (X|Y,Z) (8)

where 𝐻 (·) refers to the information entropy.

Definition 3.2. Interaction Information 𝐼 (X;Y;Z). For three
random variables X,Y,Z, the interaction information is defined as:

𝐼 (X;Y;Z) = 𝐼 (X;Y) − 𝐼 (X;Y|Z)
= 𝐼 (X;Y) + 𝐼 (X;Z) − 𝐼 (X;Y,Z)
= 𝐻 (Y) − 𝐻 (Y|X) − 𝐻 (X|Z) + 𝐻 (X|Y,Z)

(9)
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Algorithm 1 The training procedure of DisenCDR.

Input: the interaction data D𝑋 and D𝑌 ; the interaction matrix
𝑨𝑋 and 𝑨𝑌 ; the dimension size 𝐹 ; the batch size 𝐵; the depth
of VBGE; the disentanglement factor 𝛽

Output: the users’ domain-shared representations 𝒁𝑆
𝑢 ; the users’

domain-specific representations 𝒁𝑋
𝑢 and 𝒁𝑌

𝑢 ; the items’ domain-
specific representations 𝒁𝑋

𝑣 and 𝒁𝑌
𝑣

1: Initialize parameters of Embedding Layer and VBGEs
2: while not convergence do
3: Encode user approximate posterior distribution 𝑞𝜙𝑋𝑢 (𝒁𝑋

𝑢 |X),
𝑞𝜙𝑌𝑢

(𝒁𝑌
𝑢 |Y) and 𝑞𝜙𝑆𝑢 (𝒁

𝑆
𝑢 |X,Y) in Eq.(7)

4: Encode item approximate posterior distribution 𝑞𝜙𝑋𝑣 (𝒁
𝑋
𝑣 |X),

and 𝑞𝜙𝑌𝑣 (𝒁
𝑌
𝑣 |Y) in Eq.(7)

5: Sample a batch of interaction triples B from D𝑋 and D𝑌

6: for each triple (𝑢𝑖 , 𝑣 𝑗 , 𝑣𝑘 ) in B do
7: Make prediction via Eq.(6)
8: Calculate ELBO in Eq.(12)
9: end for
10: Encode variational distribution 𝑞𝜙𝑆

𝑌
(𝒁𝑆

𝑢 |Y) and 𝑞𝜙𝑆
𝑋
(𝒁𝑆

𝑢 |X)
to estimate 𝐼 (𝒁𝑆

𝑢 ;X|Y) and 𝐼 (𝒁𝑆
𝑢 ;Y|X) in Eq.(12)

11: Calculate our disentanglement objective L in Eq.(13)
12: Update model parameters
13: end while
14: return 𝒁𝑆

𝑢 ,𝒁
𝑋
𝑢 ,𝒁𝑌

𝑢 ,𝒁
𝑋
𝑣 ,𝒁

𝑌
𝑣

3.4.1 Exclusive regularizer. For encouraging the domain-shared
and domain-specific latent variables to encode with the exclusive in-
formation, we first introduce the exclusive regularizer tominimize
mutual information between domain-shared and domain-specific
latent variables of users, i.e., 𝐼 (𝒁𝑋

𝑢 ;𝒁𝑆
𝑢 ) and 𝐼 (𝒁𝑌

𝑢 ;𝒁𝑆
𝑢 ). To better

analyze the influence of minimizing this regularizer for learning
disentanglement representations, we rewrite 𝐼 (𝒁𝑋

𝑢 ;𝒁𝑆
𝑢 ) as follows:

𝐼 (𝒁𝑋
𝑢 ;𝒁𝑆

𝑢 ) = 𝐼 (𝒁𝑋
𝑢 ;𝒁𝑆

𝑢 ) −
(
𝐻 (𝒁𝑋

𝑢 |X) − 𝐻 (𝒁𝑋
𝑢 |𝒁𝑆

𝑢 ,X)
)

= 𝐼 (𝒁𝑋
𝑢 ;𝒁𝑆

𝑢 ) − 𝐼 (𝒁𝑋
𝑢 ;𝒁𝑆

𝑢 |X)

= 𝐼 (𝒁𝑋
𝑢 ;𝒁𝑆

𝑢 ;X)

= 𝐼 (X;𝒁𝑋
𝑢 ) + 𝐼 (X;𝒁𝑆

𝑢 ) − 𝐼 (X;𝒁𝑋
𝑢 ,𝒁𝑆

𝑢 ) .

(10)

Here we first use the structural assumption of DisenCDR in Figure
4(b), i.e., 𝑞(𝒁𝑋

𝑢 |X) = 𝑞(𝒁𝑋
𝑢 |X,𝒁𝑆

𝑢 ), and then utilize the Definition
3.1 and Definition 3.2. In general, minimizing the above regularizer
can be interpreted heuristically in the following way: (1) The last
term is to maximize 𝐼 (X;𝒁𝑋

𝑢 ,𝒁𝑆
𝑢 ), which encourages 𝒁𝑋

𝑢 ,𝒁𝑆
𝑢 jointly

to be correlated with interaction information X. (2) The first two
terms are minimized to penalize the separate correlation with 𝒁𝑋

𝑢

and 𝒁𝑆
𝑢 . Thus, minimizing Eq.(10) is forced to preserve exclusive

information between 𝒁𝑋
𝑢 and 𝒁𝑆

𝑢 .
Nevertheless, the above regularizer is still insufficient for learn-

ing the ideal disentangled representations. The main reason is that
any arbitrary mutually exclusive information decomposition can
satisfy the regularizer, even if the 𝒁𝑋

𝑢 encodes total information and
𝒁𝑆
𝑢 is non-informative for both domains. This observationmotivates

us to devise another regularizer to achieve a better disentanglement
on domain-shared and domain-specific representations.

3.4.2 Informative regularizer. To enable the domain-shared repre-
sentation 𝒁𝑆

𝑢 to be informative for both domains, we maximize
the mutual information 𝐼 (𝒁𝑆

𝑢 ;X;Y) for encouraging 𝒁𝑆
𝑢 encoding

the shared information across domains. Specifically, for the domain
𝑋 , we have:

𝐼 (𝒁𝑆
𝑢 ;X;Y) = 𝐼 (𝒁𝑆

𝑢 ;X) − 𝐼 (𝒁𝑆
𝑢 ;X|Y)

= 𝐼 (𝒁𝑆
𝑢 ;X) −

(
𝐼 (𝒁𝑆

𝑢 ;X,Y) − 𝐼 (𝒁𝑆
𝑢 ;Y)

)
.

(11)

In practice, maximizing the above regularizer also can be inter-
preted heuristically in the following way: (1) The former term is
maximized 𝐼 (𝒁𝑆

𝑢 ;X) to encourage 𝒁𝑆
𝑢 to be correlated with domain

𝑋 . (2) The latter term is minimized, whichmeans the domain-shared
representation 𝒁𝑆

𝑢 not only can be inferred from joint information
of domains 𝑋 and 𝑌 , but also can be directly inferred from separate
domain 𝑌 . Thus, maximizing Eq.(11) will naturally encourage 𝒁𝑆

𝑢

to encode the shared information across domains.

3.4.3 Objective Function. Based on the two mutual-information-
based regularizers, we derive our final disentanglement objective
by combining the regularizers on both domains together:

L =𝐼 (𝒁𝑋
𝑢 ;𝒁𝑆

𝑢 ) + 𝐼 (𝒁𝑌
𝑢 ;𝒁𝑆

𝑢 ) − 2𝐼 (𝒁𝑆
𝑢 ;X;Y)

=𝐼 (X;𝒁𝑋
𝑢 ) + 𝐼 (𝒁𝑆

𝑢 ;X|Y) − 𝐼 (X;𝒁𝑋
𝑢 ,𝒁𝑆

𝑢 )

+ 𝐼 (Y;𝒁𝑌
𝑢 ) + 𝐼 (𝒁𝑆

𝑢 ;Y|X) − 𝐼 (Y;𝒁𝑌
𝑢 ,𝒁

𝑆
𝑢 )

≤𝐼 (X;𝒁𝑋
𝑢 ) + 𝐼 (X;𝒁𝑋

𝑣 ) + 𝐼 (Y;𝒁𝑌
𝑢 ) + 𝐼 (Y;𝒁𝑌

𝑣 )

+ 𝐼 (X,Y;𝒁𝑆
𝑢 ) + 𝐼 (𝒁𝑆

𝑢 ;X|Y) + 𝐼 (𝒁𝑆
𝑢 ;Y|X)

− 𝐼 (X;𝒁𝑋
𝑢 ,𝒁𝑆

𝑢 ,𝒁
𝑋
𝑣 ) − 𝐼 (Y;𝒁𝑌

𝑢 ,𝒁
𝑆
𝑢 ,𝒁

𝑌
𝑣 )

≤ELBO + 𝐼 (𝒁𝑆
𝑢 ;X|Y) + 𝐼 (𝒁𝑆

𝑢 ;Y|X) .

(12)

Fortunately, many terms of our disentanglement objective are al-
ready covered in the standard Evidence Lower Bound (ELBO) [29]
according to the relationship between the variation bound and the
mutual information [39]. Therefore, the tractable objective of our
objective can derive:

• For the encoding terms in ELBO (e.g., 𝐼 (X;𝒁𝑋
𝑢 )), as most

variational models adopted [20, 28], those terms encourage
that the generated posterior distributions (e.g., 𝑞𝜙𝑋𝑢 (𝒁𝑋

𝑢 |X))
close to the prior distributions (e.g., 𝑝 (𝒁𝑋

𝑢 )). We measure it
by the Kullback-Leibler (KL) divergence;

• For the tractable objective of the decoding terms in ELBO
(e.g., 𝐼 (X;𝒁𝑋

𝑢 ,𝒁𝑆
𝑢 ,𝒁

𝑋
𝑣 )), as discussed in BiVAE [46], those

aims to reconstruct the observed interactions. We estimate
them by maximizing the log-likelihood of our decoders;

• For the rest two terms, i.e., 𝐼 (𝒁𝑆
𝑢 ;X|Y) and 𝐼 (𝒁𝑆

𝑢 ;Y|X), as
discussed above, those encourage the representations 𝒁𝑆

𝑢 en-
coding meaningful domain-shared information. To estimate
them, we first additionally introduce two VBGEs to generate
variational distributions 𝑞𝜙𝑆

𝑌
(𝒁𝑆

𝑢 |Y), 𝑞𝜙𝑆
𝑋
(𝒁𝑆

𝑢 |X), and then

calculate KL divergence with 𝑞𝜙𝑆𝑢
(𝒁𝑆

𝑢 |X,Y). Note that the
encoding procedure of the two additionally distributions are
similar with 𝑞𝜙𝑋𝑢 (𝒁𝑋

𝑢 |X) and 𝑞𝜙𝑌𝑢 (𝒁
𝑌
𝑢 |Y)).
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Thus, the variational lower bound of our disentanglement objective
is defined as3:
L ≤D𝐾𝐿 (𝑞 (𝒁𝑋𝑢 |X) | |𝑝 (𝒁𝑋𝑢 )) + D𝐾𝐿 (𝑞 (𝒁𝑋𝑣 |X) | |𝑝 (𝒁𝑋𝑣 ))

+ D𝐾𝐿 (𝑞 (𝒁𝑌𝑢 |Y) | |𝑝 (𝒁𝑌𝑢 )) + D𝐾𝐿 (𝑞 (𝒁𝑆𝑢 |X,Y) | |𝑝 (𝒁𝑆𝑢 ))

+ D𝐾𝐿 (𝑞 (𝒁𝑌𝑣 |Y) | |𝑝 (𝒁𝑌𝑣 ))

− E
𝑞 (𝒁𝑋𝑢 ,𝒁𝑋𝑣 |X)𝑞 (𝒁𝑆𝑢 |X,Y) [log𝑝 (𝑨

𝑋 |𝒁𝑆𝑢 ,𝒁𝑋𝑢 ,𝒁𝑋𝑣 ) ]

− E
𝑞 (𝒁𝑌𝑢 ,𝒁𝑌𝑣 |Y)𝑞 (𝒁𝑆𝑢 |X,Y) [log𝑝 (𝑨

𝑌 |𝒁𝑆𝑢 ,𝒁𝑌𝑢 ,𝒁𝑌𝑣 ) ]

+ 𝛽D𝐾𝐿 (𝑞 (𝒁𝑆𝑢 |X,Y) | |𝑞 (𝒁𝑆𝑢 |Y)) + 𝛽D𝐾𝐿 (𝑞 (𝒁𝑆𝑢 |X,Y) | |𝑞 (𝒁𝑆𝑢 |X))

=E𝑝D (𝑢,𝑣𝑋 ,𝑣𝑌 ) [ELBO(𝑝,𝑞) + 𝛽D𝐾𝐿 (𝑞 (𝒁𝑆𝑢 |X,Y) | |𝑞 (𝒁𝑆𝑢 |Y))

+ 𝛽D𝐾𝐿 (𝑞 (𝒁𝑆𝑢 |X,Y) | |𝑞 (𝒁𝑆𝑢 |X)) ],
(13)

where 𝛽 > 0 is a disentanglement factor to control the disentangling
capacity of users representations. The pseudo-code of the training
procedure is shown in Algorithm 1.

3.4.4 Time Complexity. DisenCDR can be optimized with mini-
batch manner, which keeps promising time complexity. In par-
ticular, the computational complexity of the generation proce-
dure is O(𝐵𝐹 ), and the inference procedure is O( |E𝑋 | + |E𝑌 |)𝐹 2),
where 𝐵 is the batch size. Empirically, in the same running en-
vironment, DisenCDR, PPGN [58] and BiTGCF [30] would cost
around 0.69s/0.121ms, 0.50s/0.108ms and 0.53s/0.112ms pre 1000
training/inference samples on Elec&Cloth dataset, respectively.

4 EXPERIMENTS
In this section, we give detailed analyses to answer the following
major research questions (RQs):

• RQ1: Does our method achieve the significant performances
in comparison with other state-of-the-art methods?

• RQ2: When we change the basic graph encoder, is our pro-
posed disentanglement objective still able to achieve im-
provements?

• RQ3: Besides of the experiment results, is our proposed
disentanglement objective reaches the desirable disentan-
glement? Further, what impact does our disentanglement
objective function achieve?

• RQ4: How does different hyperparameter settings influence
the performance of our method?

4.1 Datasets
For a fair comparison with previous methods, we evaluate our
model on four real-world benchmark datasets from Amazon4 [10]:
Elec, Phone, Sport and Cloth. As used in BiTGCF [30], they pre-
process those datasets and combine them into four CDR scenarios:
Elec&Phone, Sport&Cloth, Sport&Phone and Elec&Cloth. However,
in their preprocessed datasets, we found that there are many cold-
start items acting as ground truths5 in the preprocessed test
sets, which may lead to improper evaluations. Thus, in this work,
we use the same training set with BiTGCF, but we filter out the
cold-start item entry in the test set. The concrete statistics of our
preprocessed data are listed in Table 1.
3For notation brevity, we omit the subscripts \ and 𝜙 .
4http://jmcauley.ucsd.edu/data/amazon/index_2014.html
5Wefind about 20% ground-truth items are cold-start items in BiTGCF released datasets.

Table 1: Statistics of four CDR scenarios.

Datasets |U | |V | Training Test Density
Elec 3,325 17,709 50,407 2,559 0.089%
Phone 3,325 38,706 115,554 2,560 0.091%
Sport 9,928 30,796 92,612 8,326 0.033%
Cloth 9,928 39,008 87,829 7,540 0.024%
Sport 4,998 20,845 50,558 3,698 0.052%
Phone 4,998 13,655 42,446 3,999 0.068%
Elec 15,761 51,447 210,865 13,824 0.027%
Cloth 15,761 48,781 121,083 12,526 0.017%

4.2 Experiment Setting
4.2.1 Evaluation Protocol. Following BiTGCF [30], the widely used
leave-one-out method is adapted to show the performance. To en-
sure unbiased discoveries for every method, we follow Rendle’s
suggestion [24] to calculate 1000 records. Concretely, for a ground
truth user-item pair (𝑢𝑖 , 𝑣 𝑗 ) in domain 𝑋 , DisenCDR predicts 1000
candidates score (including 999 negative items 𝑣 𝑗 and 1 ground
truth item 𝑣 𝑗 ) by the learned representation 𝒛𝑆𝑢𝑖 , 𝒛

𝑋
𝑢𝑖
, 𝒛𝑋𝑣𝑗 and 𝒛𝑋

�̃�𝑗
.

Afterward, we adopt two widely-used metrics HR (Hit Ratio) and
NDCG (Normalized Discounted Cumulative Gain [17]) to evaluate
performance on the top-10 ranking result.

4.2.2 Compared Methods. We compare DisenCDR with the follow-
ing strong single-domain and cross-domain baselines.

To verify the effectiveness of CDR methods, we mix all interac-
tions of both domains, and then apply the following CF-based single
domain methods: (1) BPRMF [41] is a famous method which learns
representations with pairwise ranking loss. (2) NeuMF [12] is also
a well-known approach which learns representations with several
MLP layers. (3) NGCF [49] stacks three GNN layers to aggregate
the high-order neighboring information to learn representations.
(4) LightGCN [11] is an extension of NGCF, which devises a linear
propagating encoder to learn representations.

We also compare the state-of-the-art cross-domain methods: (1)
CDFM [32] focuses on transferring knowledge from source domain
to target domain. In our setting, we run two times for each CDR sce-
nario to get the source and target evaluation results. (2) CoNet [14]
first models interactions of two domains by two base networks,
and then transfer knowledge by a cross-connection network be-
tween the two base networks. (3)DDTCDR [26] focuses on transfer
users’ similarity across domains, it first encodes users/items rep-
resentations for each domain, then introduces a latent orthogonal
mapping function to transfer users’ similarity across domains. (4)
PPGN [58] learns user/item representations by two separate GCNs
with a shared initialized user embedding layer. (5) BiTGCF [30]
extends the LightGCN to CDR task. It first uses two linear graph
encoders to generate users/items representations for each domain,
then utilizes a feature transfer layer to fuse users representations.

Additionally, we further implement our introduced VBGE as
a cross-domain model, which utilizes the standard ELBO as the
objective function. We rename this variant as VBGE*.

4.2.3 Implementation Details. In our experiments, the side infor-
mation of users/items is not exploited. For BPRMF and CDFM, we
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Table 2: Performance comparison (%) of different methods on four CDR scenarios (𝛽 = 0.7, 2-layer VBGEs).

Datasets Metrics@10 Single-Domain Methods Cross-Domain Methods Ours
BPRMF NeuMF NGCF LightGCN CDFM CoNet DDTCDR PPGN BiTGCF DisenCDR

Elec HR 15.71 16.17 18.55 19.17 18.24 17.22 18.47 21.68 22.14 24.57* (+2.43)
NDCG 9.19 9.24 10.87 10.28 10.92 9.86 11.08 11.63 12.20 14.51* (+2.31)

Phone HR 16.32 15.84 22.79 23.25 17.97 17.66 17.23 24.54 25.71 28.76* (+3.05)
NDCG 8.53 8.02 12.38 12.72 9.72 9.30 8.58 13.34 13.93 16.13* (+2.20)

Sport HR 10.43 10.74 13.13 13.19 11.61 12.09 11.86 15.10 14.83 17.55* (+2.45)
NDCG 5.41 5.46 6.87 6.94 6.33 6.41 6.37 8.03 7.95 9.46* (+1.51)

Cloth HR 11.53 11.18 13.22 13.58 12.32 12.40 12.54 14.23 14.68 16.31* (+1.63)
NDCG 6.25 6.02 6.97 7.29 7.05 6.62 7.13 7.68 7.93 9.03* (+1.10)

Sport HR 9.89 10.11 16.06 16.33 11.97 12.88 12.14 18.00 18.63 20.17* (+1.54)
NDCG 5.16 5.19 8.53 9.16 6.55 6.91 6.47 10.54 10.11 11.80* (+1.26)

Phone HR 13.60 14.67 17.07 16.47 16.32 16.60 16.17 20.40 21.10 23.55* (+2.45)
NDCG 7.27 7.80 9.22 8.95 9.01 9.15 8.98 11.09 11.25 12.97* (+1.72)

Elec HR 20.65 20.08 20.20 19.97 21.09 21.26 21.70 21.85 21.61 23.71* (+1.86)
NDCG 11.66 11.79 11.74 10.73 11.89 12.61 13.10 12.36 12.25 13.56* (+1.20)

Cloth HR 9.47 10.84 10.86 11.24 10.37 11.35 11.47 12.98 13.11 15.13* (+2.02)
NDCG 5.07 5.80 5.92 6.11 5.63 6.19 6.38 6.88 6.80 8.37* (+1.49)

* indicates that the improvements are statistically significant for p < 0.05 judged with the runner-up result in each case by paired t-test.

Table 3: Performance comparison (%) of different variants.

Datasets Metrics@10 VPPGN variants VBGE variants
VPPGN* VPPGN# VBGE* DisenCDR

Elec HR 22.34 23.40 23.36 24.57
NDCG 12.16 13.86 13.71 14.51

Phone HR 26.37 27.43 27.35 28.76
NDCG 14.34 15.43 15.25 16.13

Sport HR 16.32 17.21 16.74 17.55
NDCG 8.84 9.23 9.08 9.46

Cloth HR 14.88 15.92 15.76 16.31
NDCG 8.60 9.08 8.85 9.03

Sport HR 18.93 19.84 19.36 20.17
NDCG 10.73 11.43 10.92 11.80

Phone HR 20.95 22.98 21.83 23.55
NDCG 11.16 12.39 11.75 12.97

Elec HR 22.15 22.78 22.19 23.71
NDCG 12.53 12.79 12.66 13.56

Cloth HR 13.95 14.87 14.33 15.13
NDCG 7.37 8.15 7.80 8.37

implement them by ourselves. Except them, we directly use official
implementations of other baseline models in our experiment set-
ting. For all methods, the common hyper-parameters are listed as
follows: the initializing embedding dimension 𝐹 is fixed as 128, the
mini-batch size 𝐵 is fixed as 1024, the learning rate is fixed as 0.001,
the L2 regularization coefficient is fixed as 0.0005, the dropout rate
is fixed as 0.3, the number of graph encoder is selected from 1 to
4, the negative sampling number is fixed as 1, the cross entropy is
used as reconstruction loss and the Adam [21] optimizer is used to
update all parameters. Besides, the slope of LeakyReLU is fixed as
0.1, the 𝛽 of our disentanglement objective is chosen from {0.1, 0.3,
0.5, 0.7, 0.9}. We train all models with 100 epochs for convergence,
and evaluate the model prediction scores every 10 epochs. In the

Table 4: KL divergence between domain-shared&specific Rep.

Variants Elec&Phone Sport&Cloth Sport&Phone Elec&Cloth
VBGE* 50.4 24.7 37.6 58.2

DisenCDR 270.9 273.5 238.1 300.6

following section, we conduct experiments under the 𝛽 is 0.7 and
the 2-layer VBGEs by default.

4.3 Performance Comparisons (RQ1)
Table 2 shows the comparison results on the four CDR scenarios ac-
cording to HR@10 and NDCG@10. From the experimental results,
we have the following observations: (1) Compared with BPRMF
and NeuMF, the GNN-based methods NGCF and LightGCN achieve
significant improvement. It demonstrates the effectiveness of cap-
turing the high-order neighboring information to learn users/items
representations. Meanwhile, NGCF and LightGCN are comparable
in most cases, it might be that the key idea of their information
propagating layers are similar. (2) The cross-domain methods are
superior to corresponding single-domain methods (e.g., CoNet with
NeuMF, BiTGCF with LightGCN), which demonstrates that design-
ing different transferring strategiesfor CDR is better than using
one single network to model the mixed dataset. (3) Compared with
BPRMF and NeuMF, CoNet gains better performance over them,
which demonstrates that transferring knowledge between two base
networks is a promising transferring strategy. (4) DDTCDR reaches
better performance than CoNet, which indicates that transferring
the similarity between users could be a better transfer strategy
than directly transferring user-item interaction features. (5) More-
over, PPGN and BiTGCF achieve significant improvement than
other methods, which demonstrates that transferring knowledge
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Figure 5: The predictive ability of domain-shared representations with different objective. The (a) and (b) show the former
domain results (e.g., Elec of Elec&Phone), (c) and (d) show the latter domain results (e.g., Cloth of Sport&Cloth).

Table 5: The impact of observed interaction in both domains.

#Elec_Inter #Cloth_Inter VBGE* DisenCDR
HR NDCG HR NDCG

1-10

1-10 22.93 13.02 23.46 13.74
11-20 24.88 14.34 25.49 14.82
21-30 30.06 20.23 31.28 21.02
>30 30.88 19.79 32.35 20.45

11-20

1-10 21.35 12.01 21.88 12.16
11-20 26.42 14.73 27.46 15.32
21-30 22.33 13.45 24.27 15.15
>30 24.32 14.24 27.02 18.58

21-30

1-10 19.88 11.31 20.72 11.53
11-20 30.81 15.71 31.35 16.82
21-30 35.71 17.84 35.71 18.13
>30 16.66 6.93 16.66 9.25

>30

1-10 19.73 10.20 20.26 11.00
11-20 21.03 11.78 22.68 12.06
21-30 15.49 8.14 16.90 8.75
>30 16.32 12.40 20.40 14.82

between GNNs is a strong transferring strategy for CDR. (6) Com-
pared with state-of-the-art baselines, our DisenCDR consistently
yields the best performances on these datasets for all metrics, which
reveals that learning disentangled representations and transferring
the user domain-shared representations is a more powerful transfer
strategy.

4.4 Discussion of Model Variants (RQ2)
In this section, we construct several variants and conduct experi-
ments on four CDR scenarios. Specifically, to validate our transfer-
ring framework the extensibility and effectiveness. We adapt the
PPGN into our framework, named VPPGN, and then we employ
VPPGN to replace VBGE and train them with two different objec-
tives.We use ‘*’ and ‘#’ to denote the variant using standard
ELBO or our disentanglement objective, respectively. The ex-
perimental results are reported in Table 3, and we can draw the
following observations. (1) For VPPGN variants, it is obvious that
VPPGN# outperforms BiTGCF, which demonstrates our transfer
strategy is effective for other graph encoders. Further, VPPGN#
gains stability improvement from VPPGN*, indicating our objective

is helpful to learn user domain-shared representations to transfer
knowledge. (2) The VBGE variants show more robust performance
than VPPGN variants. We suppose the reason lies in that VBGE
only aggregates user-level homogenous information which can
learn more fine-grained domain-shared and domain-specific rep-
resentations. Moreover, comparing VBGE*, our DisenCDR further
yields satisfactory improvement. It also verifies the effectiveness of
our disentanglement objective.

4.5 Analysis of Disentanglement (RQ3)
In this section, to validate that our disentanglement objective is able
to learn the domain-shared and domain-specific representations for
users, we conduct an analysis between DisenCDR and VBGE* (The
VBGE* only uses the standard ELBO as the objective function). To
be specific, we directly calculate average KL divergence to measure
the mutual information in Eq.(10) after the training procedure of
both models is finished (higher KL divergence means lower mu-
tual information). According to Table 4, it is obvious that the KL
divergence score of DisenCDR is much higher than the VBGE* vari-
ant, which reflects our DisenCDR achieves better disentanglement
between domain-shared and domain-specific representations.

Besides, to investigate the impact of our disentanglement ob-
jective, we conduct another comparison between VBGE* and our
DisenCDR. As shown in Figure 5, this ablation study tests the predic-
tive ability of the trained domain-shared representation which plays
the central role to transfer knowledge across domains. Specifically,
for VBGE* and our DisenCDR, we only leverage the domain-
shared representations to predict the target items for each
domain in the test stage. From Figure 5, we have the following
observations: (1) The learned domain-shared representations from
our framework always show robust recommendation performance,
which reflects that transferring the domain-shared information is a
powerful strategy in the CDR task. (2) The domain-shared repre-
sentations of DisenCDR show consistent improvements than the
domain-shared representations of VBGE*. It demonstrates that our
disentanglement objective could learn enhanced domain-shared
representation to transfer knowledge across domains.

Moreover, to analyze our objective effectiveness regarding the
number of observed interactions, we further conduct experiments
on groups with different amounts of source interactions. In Table
5, we report the Elec domain results from Elec&Cloth scenario in
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Figure 6: Results of disentanglement factor 𝛽 .

terms of the four different interaction number groups. For each Elec
group, we also divide four sub-groups in terms of interaction num-
ber in Cloth domain. From it, we can observe that: (1) For each Elec
group, more interactions shown in Cloth domain are helpful for bet-
ter recommendation, especially in the data sparsity group, e.g., 1-10
in Elec. (2) DisenCDR shows statistic improvements than VBGE*,
and especially in the cases that Cloth domain contains diverse infor-
mation, i.e., >30 interactions in each sub-groups. This fact indicates
that our disentanglement objective has the ability to recognize the
domain-shared information from diverse user preferences.

4.6 Parameter Sensitivity (RQ4)
In this section, we investigate two hyper-parameter sensitivity: the
disentanglement factor 𝛽 and the number of VBGE layers on the
recommendation performance. The Figure 6(a)(b) and 7(a)(b) show
results of former domains (e.g., Elec of Elec&Phone), and the (c)(d)
for latter domain. For the disentanglement factor 𝛽 , according to
Figure 6, we find 𝛽 can be set as a larger value for larger interaction
scenarios, such as Elec&Cloth. The reason might be that the larger
interaction scenario contains more domain-specific information
which should increase the factor to reach better disentanglement.
For the number of VBGE layers, according to Figure 7, the 1-layer
variant always shows the lowest performance, which demonstrates
aggregating higher-order neighboring information helpful to learn
robust representations. Further, 2-layer and 3-layer variants achieve
best results than the 4-layer variant. The reason might be that the
deep graph neural networks easily cause the over-smoothing issue.
In addition, the experiment results are stable which verifies that
our method is robust to the change of the two parameters.

5 RELATEDWORK
5.1 Cross-Domain Recommendation
Following the collaborative filtering (CF) paradigm, a significant
amount of studies [3, 11, 12, 49, 55] have been proposed to build an
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Figure 7: Impact of VBGE layer number.

effective yet efficient recommender system, to capture the dynamic
user interests from massive user-item interaction networks [2].
Although existing CF-based methods achieve promising 𝑡𝑜𝑝 − 𝑘

results to some extent, but they severely suffer from the cold-start
and data sparsity issues. To alleviate such issues, the progress of
CDR [27, 31, 43, 48, 54, 60, 62, 63] can be roughly divided into the
following two branches: (1) recommendation items for cold-start
users and (2) recommendation items for shared users. Since the
total different research purposes for the two group users, therefore,
the previous works learning idea of them are completely in distinct
ways.

To recommend items for cold-start users, several CDR ap-
proaches have been proposed to model different correlations be-
tween source and target domains, such as CBMF [38], DSN [18],
EMCDR [36], SSCDR [19], CATN [59] and CDRIB [4]. To be specific,
CBMF learns the cluster-level information of users and items across
domains. DSN learns source representations to predict in the target
domain by the domain adaption technique. EMCDR and SSCDR
propose a general CDR framework to a learn user feature map-
ping function between source and target domain. CATN develops a
review-based model to match user’s aspect-level preferences across
domains. CDRIB is the most related work, which attempts capturing
the domain-shared information via information bottleneck princi-
ple [45]. Nevertheless, these methods aim to make recommendation
for the non-overlapped (cold-start) users in target domain, having
fundamental different task definition with this work.

To recommend items for shared users, most typical CDR
approaches, including shallow models and deep models, focus on
transferring knowledge from the source domain to the target do-
main. Specifically, shallow models, such as CMF [44], CDFM [32]
and CDCF [15, 25], are based onMatrix Factorization [12], Factoriza-
tion Machines [9, 40] or CF paradigm, and try to effectively transfer
knowledge by utilizing source domain interaction as additional
features. Additionally, several neural network models have been
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proposed, such as CoNet [14], DDTCDR [26], PPGN [58] and Bi-
TGCF [30]. CoNet transfers knowledge across domains by using the
cross-connections network between feed-forward MLPs. DDTCDR
learns a latent orthogonal mapping function of shared users to trans-
fer user preferences across domains. Besides, the DARec [56] trans-
fers knowledge across domain by the domain adaptive technique,
but fail to learn the disentanglement representations. The PPGN
and BiTGCF are two state-of-the-art graph neural network [53]
based models, PPGN simply stacking several graph convolution
networks [23] on two domains and transfer knowledge by shar-
ing common user hidden features. BiTGCF also aims to transfer
the domain-shared information. But it devises a feature transfer
layer between domain-specific representations, which is hard to
disentangle the domain-specific and domain-shared information.

Our DisenCDR belongs to the latter branch and aims to trans-
fer the domain-shared information across domains, which reaches
state-of-the-art performance and learns disentangled representa-
tions.

5.2 Disentangled Representation Learning
Disentangled representation learning focuses on factorizing the
unobservable structural factors from data, which achieves great
success on many downstream tasks [8, 34, 42, 50]. Following vari-
ational inference [7] based on VAE [20], the well-known method
𝛽-VAE [13] demonstrates that penalizing the KL divergence term
in the ELBO can easily derive the disentanglement representations.
Based on 𝛽-VAE, extensive researches of learning disentangled
representation are proposed by introducing extra regularization
terms to ELBO, such as total correlation term [51] and information
bottleneck term [1, 45]. Although existing learning disentangled
representation approaches made majority contributions in the com-
puter vision field [5, 8, 16], it is not studied over graph-structured
data. In recent years, some works try to learn disentangled repre-
sentation of users and items for different recommendation tasks,
such as Top-k [33, 34, 50] and sequential [35] recommendation. Dif-
ferent from these works, DisenCDR focus on learning disentangled
representation for cross-domain recommendation task, which is a
challenging and unexplored area.

6 CONCLUSION
In this paper, we present a novel deep generationmethod namedDis-
enCDR. Different from previous works which entangle the domain-
shared information and domain-specific information, our model
utilizes two mutual-information-based regularizers to disentangle
these two types of information. Specifically, the exclusive regular-
izer aims to enforce the user domain-shared representations and
domain-specific representations encoding exclusive information.
The information regularizer is to encourage the user domain-shared
representations encoding predictive information for both domains.
Empirically experimental results on four real-world datasets demon-
strate the effectiveness of DisenCDR on cross-domain recommen-
dation against several state-of-the-art baseline models. Besides,
detailed analyses in various CDR datasets show the effectiveness
of our transferring strategy and robustness of our model compo-
nents. In the future, we will investigate learning disentanglement
representations for multi-domain recommendation.
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