FORMULARIO DE DUDAS PARA LOS AUTORES

	Revista: HYA	Por favor, envíe un correo electrónico con su respuesta a:
		E-mail: corrections.eses@elsevier.thomsondigital.com
ELSEVIER	Referencia Nº: 9	Fax: +34 932 091 136

Estimado/a autor/a,

En el caso que durante la preparación de su manuscrito hubiera surgido alguna duda o comentario, podrá encontrarlos en el listado que aparece a continuación y señalados en el margen de la prueba. Le rogamos que revise detenidamente la prueba que le enviamos y señale al margen sus correcciones, si las hubiera, o bien nos envíe un texto aparte detallando los cambios necesarios.

En caso de que las correcciones afecten a las ilustraciones, por favor, consulte las instrucciones en: http://www.elsevier.com/ artworkinstructions.

Citas cruzadas: Si en el artículo se hace referencia a otros artículos incluidos en el mismo número, le rogamos que compruebe que se han añadido las palabras "este número" tanto en la bibliografía como en el texto.

Referencias no citadas: En el caso de que existan referencias que se incluyen en la bibliografía pero que no se citan en el texto, se le indicará al final de la prueba. Por favor, cite cada referencia en la parte del texto donde debería aparecer o elimínela de la bibliografía.

Faltan referencias: En el caso de que se citen en el texto referencias que no aparecen en la bibliografía, se le indicará al final de la prueba. Por favor, complete la bibliografía o elimine las referencias del texto.

Situación en el	Dudas / comentarios							
artículo	Por favor, introduzca su respuesta o corrección en la línea correspondiente de la prueba							
Q1	Por favor, confirme que nombre (givenname) y apellido/s (surname) están identificados correcta- mente. Los colores distintos indican si se ha etiquetado como nombre o apellido. Tenga en cuenta							
	que la adecuada identificación es fundamental para la correcta indexación del artículo.							
Q2	Las definiciones de y_c y de y_{cdg} son idénticas. Por favor, revise este aspecto.							
Q3	Por favor, considere la conveniencia de expandir esta primera aparición de la sigla «ELU».							
Q4	Por favor, considere la conveniencia de expandir esta primera aparición de la sigla «ELS».							
Q5	Por favor, facilite la abreviatura de esta revista.							
Q6	Por favor, facilite la abreviatura de esta revista.							
Q7	Por favor, facilite la abreviatura de esta revista.							
Q8	Por favor, facilite la abreviatura de esta revista.							
Q9	Por favor, facilite la abreviatura de esta revista.							
Q10	Por favor, facilite la abreviatura de esta revista.							
Q11	Por favor, facilite la abreviatura de esta revista.							
Q12	Por favor, facilite, si es posible, los datos actualizados de esta referencia.							
	Por favor, marque esta casilla o especifique su aprobación si no tiene correcciones que realizar en el archivo PDF							

Problemas con los archivos electrónicos

En ocasiones los archivos originales de texto o de imágenes no se pueden abrir o procesar correctamente. En caso de que los archivos de su artículo hayan presentado estos problemas, hemos procedido de la siguiente manera:

EVIER

www.elsevierciencia.com/hya

ARTICLE IN PRESS

Disponible en

ScienceDirect

www.sciencedirect.com

Hormigón y Acero xxx (2014) xxx-xxx

Original

Diseño óptimo de dovelas de hormigón reforzado con fibras para el revestimiento de túneles

Optimal design of precast fibre reinforced concrete segments for tunnel support

Albert de la Fuente^a, Ana Blanco^b, Pablo Pujadas^{c,*} y Antonio Aguado^d

^a Dr. Ingeniero de Caminos, Canales y Puertos, Profesor lector del Departamento de Ingeniería de la Construcción de la UPC, Barcelona, España

^b Dr. Ingeniera de Caminos, Canales y Puertos, Departamento de Ingeniería de la Construcción de la UPC, Barcelona, España

° Dr. Ingeniero de Caminos, Canales y Puertos, Departamento de Ingeniería de la Construcción de la UPC, Barcelona, España

^d Dr. Ingeniero de Caminos, Canales y Puertos, Catedrático del Departamento de Ingeniería de la Construcción de la UPC, Barcelona, España

Recibido el 3 de julio de 2014; aceptado el 6 de noviembre de 2014

10 Resumen

4 **O**1

El uso del hormigón reforzado con fibras (HRF) para la fabricación de dovelas de hormigón reforzado con fibras es una práctica en aumento. Sin embargo, aún existe cierta inercia al cambio respecto a la solución tradicional de hormigón armado con armaduras pasivas, pese a haberse demostrado desde el punto de vista técnico y económico que el uso del HRF en esta aplicación es viable y tiene ventajas. Un hecho que pone de manifiesto esta inercia al cambio es que existen numerosas aplicaciones en las que se ha empleado el HRF, en combinación con barras, si bien la contribución resistente de las fibras no se tuvo en cuenta. Esto es principalmente debido a la falta de regulaciones específicas que aborden aspectos de control, producción y diseño de estructuras de HRF. Afortunadamente, a nivel nacional, el Anejo 14 de la instrucción EHE-08 ya plantea unas guías para hacer frente a estos campos y, adicionalmente, el Código Modelo 2010 también presenta una guía para el diseño de estructuras de HRF. Este artículo tiene como objetivos, por una parte, presentar las experiencias más relevantes a nivel internacional del uso de HRF en la ejecución de anillos para el revestimiento de túneles ejecutados con tuneladora y, por otra, plantear un esquema de cálculo para abordar el diseño óptimo del refuerzo de dovelas de HRF. Asimismo, se presentan 3 ejemplos reales en los que se ha empleado el método propuesto.

© 2014 Asociación Científico-Técnica del Hormigón Estructural (ACHE). Publicado por Elsevier España, S.L.U. Todos los derechos reservados.

21

11

12

13

14

15

16

17

18 19

20

22 Palabras clave: Hormigón reforzado con fibras; Revestimiento de túneles; Diseño; Dovelas; Optimización

23 Abstract

The use of fibre reinforced concrete (FRC) in precast segments for tunnel support is an increasing practice. However, although the suitability 24 of this material seems to be proven at a technical and economic level, there is still some reluctance towards the natural implementation of this 25 material. In fact, in those cases in which fibres were added to concrete, the structural contribution was not taken into account in the design. This 26 is mainly due to the lack of specific regulations to deal with this, as well as other aspects related to the control, production and design of FRC 27 structures. Fortunately, at national level, Annex 14 of the Spanish EHE-08 already proposes guidelines as regards these aspects, and the new Model 28 Code 2010 also considers the FRC as a structural material. This paper aims, on the one hand, to analyse the most important applications of FRC in 29 tunnel linings worldwide and, on the other hand, present a design methodology which enables the reinforcement configuration of fibre reinforced 30 concrete in precast segments to be optimised. Furthermore, three real examples of application in which this method has been applied are described. 31 © 2014 Asociación Científico-Técnica del Hormigón Estructural (ACHE). Published by Elsevier España, S.L.U. All rights reserved.

32

Keywords: Fibre reinforced concrete; Tunnel support; Design; Segments; Optimisation

33 34

* Autor para correspondencia. Departamento de Ingeniería de la Construcción de la UPC, Jordi Girona 1-3, Módulo C-1, Despacho 202. 08034 Barcelona, España.

Correo electrónico: pablo.pujadas@upc.edu (P. Pujadas).

http://dx.doi.org/10.1016/j.hya.2014.11.002

0439-5689/© 2014 Asociación Científico-Técnica del Hormigón Estructural (ACHE). Publicado por Elsevier España, S.L.U. Todos los derechos reservados.

Q2

ARTICLE IN PRESS

A. de la Fuente et al / Hormigón y Acero xxx (2014) xxx-xxx

Significado de las variables

Ac	área total de hormigón
A_{f}	área de armado en forma de fibras
As	área de armado en forma de barras
A _{s i}	área de la barra de acero i
AT	área total de armadura
A _{T min}	área mínima de armadura
b	ancho de la dovela
Č _f	cuantía de fibras
C _f ^{opt}	cuantía óptima de fibras
CMOD	crack mouth opening displacement
D;	diámetro interno del túnel
Eem	valor medio del módulo de elasticidad del hormi-
	gón
F	carga
fak	resistencia a compresión característica
f.1. 20	resistencia a compresión característica a los 28
1CK,28	días
f.,	resistencia a tracción
f	resistencia a tracción de diseño
f	resistencia a flevotracción de diseño
f	resistencia a tracción característica
fr.	resistencia residual en servicio a tracción
f_	resistencia residual última a tracción
1Ftu f.	límite de proporcionalidad
IL fra i	resistencia residual
$f_{R,i}$	resistencia residual óptima
frank	resistencia residual de diseño
fru	resistencia residual característica
fpt	resistencia residual media
h	espesor de la dovela
1	longitud característica
M	momento
M	momento de diseño
M _a	momento de fisuración de diseño
M.	momento último
N	axil concomitante
N.	axil concomitante de diseño
w	ancho de fisura
V.	ordenada del centro de gravedad de la sección
Voda	ordenada del centro de gravedad de la sección
V _c ;	ordenada de la barra de acero i
5 8,1 E.	deformación del hormigón
Eah	deformación del hormigón en la fibra inferior
East	deformación del hormigón en la fibra superior
80,1 84 i	valores de deformación de diseño
EEn	deformación última del HRF
eru E	deformación del acero
8.;	deformación del acero en la barra i
λ	esbeltez del anillo
σ	tensión del hormigón
0-e Ω-e :	valores de tensión de diseño
$\sigma_{u,i}$	tensión del acero
σs:	tensión en la barra de acero i
0 s,1	

 χ curvatura

 χ_u curvatura última

1. Introducción

El uso de fibras estructurales en el hormigón conduce a una mejora del comportamiento resistente de la matriz cuando esta está sometida a tensiones de tracción [1-3], aumenta su tenacidad, su resistencia frente al fuego, al impacto y a tensiones concentradas debido a su acción de confinamiento. Entre las distintas mejoras, en el caso particular de dovelas de hormigón prefabricado son ya conocidas las ventajas que el uso de fibras supone cuando estas se emplean para hacer frente a las tensiones concentradas que pueden ocurrir durante las fases transitorias (desmoldeo, apilado, transporte, manipulación y empuje de los gatos; fig. 1). Adicionalmente, es sabido que la contribución estructural de las fibras puede conducir al reemplazo total o parcial de la armadura pasiva en forma de barras y, en global, aumentar la eficiencia de la producción y garantizar la competitividad del hormigón reforzado con fibras (HRF) frente a las alternativas tradicionales en este tipo de aplicación [4-9].

35

37

38

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

70

71

72

73

74

75

77

78

81

82

83

84

Prueba de estas ventajas son las numerosas experiencias existentes en las cuales el HRF se ha empleado para la ejecución de dovelas (tabla 1) en túneles carreteros (TC), túneles ferroviarios (TF), de metro (TM), para el transporte de agua (TA), de gas (TG) y otros servicios (TS); algunos de estos están aún en construcción (e.c.).

En la tabla 1 puede observarse como la esbeltez de los anillos (λ), cociente entre el diámetro interno del túnel (D_i) y el espesor de la dovela (h), varía entre 12,0 y 36,0. En este sentido, valores bajos de λ indican mayor rigidez del mismo y menor sensibilidad de este frente a posibles flexiones derivadas de discontinuidades del terreno, y, por tanto, la sección transversal de la dovela tiende a estar comprimida en régimen de servicio. En estas situaciones, la estrategia de refuerzo responde a la necesidad de proporcionar una cuantía de armadura suficiente para garantizar un comportamiento dúctil, en caso hipotético de rotura, para las fases transitorias de carga (fig. 1). En definitiva, en estos casos, que suelen ser la mayoría, la viabilidad de sustituir la armadura tradicional por una cuantía de fibras estructurales suele ser una alternativa atractiva desde el punto de vista técnico y económico.

Por el contrario, cuanto mayor es λ , mayor es la deformabilidad del anillo y mayor probabilidad de producirse flexiones elevadas concomitantes con el esfuerzo axil de régimen permanente. En estas circunstancias, la condición de servicio (explotación) suele ser la más desfavorable y aquella que gobierna el diseño del refuerzo del hormigón. En consecuencia, la sustitución total de la armadura tradicional por fibras puede no ser viable por aspectos tanto técnicos como económicos. Alternativamente, configuraciones mixtas consistentes en una cuantía de barras suficiente para contribuir en ELU y una cuantía moderada de fibras para controlar el ancho de fisura en

A. de la Fuente et al / Hormigón y Acero xxx (2014) xxx-xxx

Figura 1. Fases transitorias de carga de las dovelas: a) desmoldeo; b) apilado; c) transporte, y d) empuje de los gatos.

aquellos casos que en servicio se prevea la fisuración del anillo,

⁸⁶ pueden ser una solución competitiva y atractiva desde el punto ⁸⁷ de vista de la durabilidad en aquellos casos en los que se trabaje ⁸⁸ con altos valores de λ .

En el área metropolitana de Barcelona se han excavado -o están actualmente en proceso de excavación- varios túneles 90 en los cuales se emplea el HRF para la ejecución de las dove-91 las de revestimiento [9,10]. En varios de estos, el uso de fibras, 92 bien metálicas y/o plásticas, tiene la finalidad de mejorar la res-93 puesta del material frente al impacto y/o la acción del fuego. 94 Sin embargo, su contribución estructural para hacer frente a las 95 tracciones en régimen post-fisuración no se tuvo en cuenta en el 96 proyecto. Esto responde, por una parte, a la falta de normativa 97 en relación al HRF en el momento de la redacción del proyecto 98 (EHE-1998 [11] en aquel momento). Por otra parte, la falta de 99 experiencia de los técnicos de planta y de los ingenieros en rela-100 ción con aspectos de control y caracterización ha sido otro de 101 los factores que ha frenado la tecnología del HRF en esta apli-102 cación como material resistente principal prácticamente hasta 103 la fecha. Si bien debe resaltarse que el interés mostrado por el 104 sector industrial sobre esta línea es evidente y ya se han hecho 105 pruebas experimentales de dovelas de hormigón reforzado, solo 106 con fibras, y añadiendo además la autocompactabilidad [12,13] 107 para mejorar aspectos de fabricación (eliminación del ruido aso-108 ciado a la vibración, mejores acabados, mayores rendimientos, 109 direccionamiento de las fibras en las direcciones de máximas 110 tensiones en servicio). 111

Como resultado de esto, la misión de resistir las tensiones
de tracción se ha confiado exclusivamente a las barras de acero,
cuya cuantía podría haber sido reducida considerablemente si la
contribución de las fibras en régimen post-fisuración se hubiese
tenido en cuenta en fase de diseño.

Afortunadamente, hoy en día ya existen instrucciones y recomendaciones en las que el uso estructural del HRF está contemplado (DBV 1992 [14], CNR DT 204/2006 [15], EHE 2008 [16], Códgio Model 2010 [17]) y que proporcionan guías y herramientas para abordar el diseño de elementos de HRF.

El objetivo de este artículo es presentar un método para evaluar el diseño óptimo de dovelas de HRF utilizando las ecuaciones constitutivas presentadas en el MC-2010, como referencia internacional, para simular la respuesta resistente de este material. Para alcanzar este objetivo, primero se presentan las bases de la filosofía de diseño adoptada, y posteriormente estas se aplican para el diseño de los anillos de revestimiento de 3 túneles reales excavados con tuneladora en el área metropolitana de Barcelona. Concretamente, las dovelas de estos anillos fueron diseñadas en el proyecto inicial sin considerar la contribución resistente de las fibras, pese a que estas se incorporan en el hormigón.

2. Filosofía de diseño propuesta para dovelas de hormigón reforzado con fibras

El refuerzo principal en ambas direcciones de la dovela (fig. 2) se dispone para hacer frente, mayoritariamente, a las tensiones de tracción que pueden aparecer durante las fases transitorias y servicio de la dovela, pudiendo tener estas origen mecánico o deformaciones impuestas de tipo térmico y/o higrométrico. Adicionalmente, se suele disponer un refuerzo complementario (no incluido en la figura 2 por no ser objeto de este estudio) en las zonas en las que se prevé concentración de tensiones con el fin de confinar localmente el hormigón y evitar así el salto del recubrimiento y/o los fenómenos de «desconchamiento» y «aplastamiento». Este tipo de refuerzo no se incluye en la figura 2, pues no es el objeto de este estudio; sin embargo, también se

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

A. de la Fuente et al / Hormigón y Acero xxx (2014) xxx-xxx

4

147

148

149

Tabla 1

Varios ejemplos del uso de fibras para el refuerzo del hormigón prefabricado en dovelas de anillos de revestimiento

Name	Año	País	Función	D_i (m)	<i>h</i> (m)	λ[–]	Barras
Metrosud	1982	IT	TM	5,8	0,30	19,3	No
Túnel de Nápoles	1995	IT	TM	5,8	0,30	19,3	No
Túnel de equipajes de Heathrow	1995	UK	TS	4,5	0,15	30,0	No
Segundo anillo de Heinenoord	1999	NL	TC	7,6	0,27	28,1	No
Extensión de la línea Jubilee	1999	GB	TM	4,5	0,15	30,0	No
Trasvase del Manabi en Ecuador	2001	ECU	TA	3,5	0,20	17,5	No
Túnel Canal de Navarra	2003	ES	TA	5,4	0,25/0,30	21,6/18,0	No
Túnel de Oënzberg	2003	SUI	TF	10,8	0,30	36,0	No
Channel Tunnel Rail Link	2004	FR-UK	TF	7,2	0,35	20,6	No
The Hofoldinger Stollen	2004	DE	TA	2,9	0,18	16,1	No
Túnel de San Vicente	2006	EE. UU.	TA	3,2	0,18	17,8	No
Túnel de Lötschberg	2007	SUI	TF	4,5	0,20	22,5	No
Line 1 del Metro de Valencia	2007	VEN	ТМ	8,4	0,40	21,0	Sí
Túnel Beacon Hill	2007	EE. UU.	TC	6,7	0,30	22,3	No
Túnel de la desalinizadora Gold Coast	2008	AUS	ТА	2,8/3,4	0,20	14,0/17,0	No
Túnel de conexión Heathrow - T5	2008	UK	TF	5,7	0,22	25,9	No
Línea 4 del metro de San Paulo	2009	BRA	TM	8,4	0,35	24,0	No
Túnel Amager - Copenhagen	2009	DEN	TA	4,2	0,30	14,0	No
Túnel de Fontsanta-Trinitat	2010	ES	TA	5,2	0,20	26,0	Yes
Túnel Clem 7	2010	AUS	TC	11,3	0,40	28,3	No
Túnel Ems-Dollard Crossing	2010	DE-NL	TG	3,0	0,25	12,0	No
Túnel Cuty West Cable	2010	AUS	TS	2,5	0,20	12,5	No
Túnel desalinizadora de Adelaide	2010	AUS	TA	2,8	0,20	14,0	No
Extensión de los FGC en Terrassa	2010	ES	TF	6,0	0,30	20,0	Sí
Túnel Brightwater East	2011	EE. UU.	TA	5,1	0,26	19,6	No
Túnel Brightwater Central	2011	EE. UU.	TA	4,7	0,33	14,2	No
Túnel Brightwater West	2011	EE. UU.	TA	3,7	0,26	14,2	No
Túnel East Side CSO	2011	EE. UU.	TA	6,7	0,36	18,6	No
Túnel desalinizadora de la Victoria	2011	AUS	TA	4,0	0,23	17,4	No
Túnel de Monte Lirio	2012	PAN	TA	3,2	0,25	12,8	No
Túnel Lee Tunnel Sewer	e.c.	UK	TA	7,2	0,35	20,6	No
Línea 9 de metro de Barcelona	e.c.	ES	MT	10,9	0,35	31,1	Sí
Túnel Brenner Base	e.c.	ITA-AUT	TC	5,6	0,20	28,0	Sí
Túnel The Wehrhahn Line	e.c.	DE	TM	8,3	0,45	18,4	No
Crossrail	e.c.	UK	TF	6,2	0,30	20,7	No

Figura 2. Vistas superior (a), transversal (b) y frontal (c) del refuerzo de una dovela de hormigón armado.

ha demostrado [4,5] que el efecto confinamiento que ejercen las fibras puede asimismo conducir a la reducción, e incluso a la eliminación, de estos refuerzos locales.

En cualquier caso, la respuesta de una dovela tiene que ser dúctil en régimen de rotura. Este tipo de respuesta se garantiza solo si se dispone una cuantía de refuerzo $(A_{T,min})$, siendo A_T la cuantía total de armadura (suma de la cuantía en forma de barras, A_s , y en forma de fibras, A_f). Dicho de otro modo, $A_{T,min}$ es la mínima cuantía de refuerzo que garantiza que el momento último de la sección (M_u) coincide con el momento de fisuración de diseño $(M_{fis,d})$. Este último, función de las dimensiones de la sección transversal de la dovela $(b \ y \ h; \ fig. 2a)$ y de la resistencia a flexotracción de diseño $(f_{ctd,fl})$. En este sentido, tanto M_u como $M_{fis,d}$ deben evaluarse bajo el mismo axil de diseño concomitante N_d , si bien la situación más desfavorable suele darse durante las situaciones transitorias, en las que N_d es nulo o reducido (flexión simple).

En la figura 3 se presentan los diagramas momento (M) - curvatura (χ) cualitativos para una sección de hormigón considerando distintos grados de refuerzo para visualizar los distintos tipos de rotura posibles.

La figura 3 pone de manifiesto que situaciones con $A_T < A_{T,min}$ conducen a modos de rotura frágiles e inseguros. En la literatura técnica [18,19] estas estrategias de refuerzo se conocen como infracríticas, mientra que si $A_T > A_{T,min}$ (refuerzo supracrítico) el comportamiento de la sección es dúctil. Finalmente, si $A_T = A_{T,min}$ (refuerzo crítico), la respuesta de la sección es estrictamente dúctil sin ningún margen de seguridad, excepto el asociados a los coeficientes parciales de seguridad adoptados para minorar las resistencias de los materiales.

A nivel de diseño, si el momento de diseño (M_d) es menor que $M_{fis,d}$ $(M_d < M_{fis,d})$, la $A_{T,min}$ debe ser evaluada resolviendo

A. de la Fuente et al / Hormigón y Acero xxx (2014) xxx-xxx

Figura 3. Modos de rotura a flexión en función de A_T .

179la ecuación $M_u = M_{fis,d}$. Contrariamente, si $M_d \ge M_{fis,d}$, la con-180dición $M_u = M_d$ es la que se debe imponer para obtener el valor181de A_T (> $A_{T,min}$) que atiende a la capacidad mecánica requerida.182En ambos casos, aunque la respuesta mecánica a nivel sección es183distinta, la seguridad estructural que se alcanza es equivalente,184pues se emplean los mismos coeficientes de seguridad parciales185tanto para las resistencias como para las cargas.

En línea con lo mencionado anteriormente, en la gran mayo-186 ría de los túneles que emplean anillos de dovelas prefabricadas 187 como sistema de revestimiento, el valor más desfavorable de 188 M_d se alcanza en fases transitorias y suele estar asociado al peso 189 propio de la dovela, o al conjunto de dovelas de cada anillo api-190 ladas sobre la dovela base, y este suele ser menor que $M_{fis.d.}$ 191 Por tanto, en estas situaciones el hormigón debe reforzarse con 192 la cuantía mínima de refuerzo A_{T,min} para garantizar la rotura 193 dúctil en caso de producirse la fisuración en alguna etapa. 194

La experiencia indica que este tipo de roturas vienen asocia-195 das a: 1) desmoldeos de la pieza cuando aún no se ha alcanzado 196 la resistencia de diseño establecida en proyecto para evitar la 197 fisuración a corto plazo; 2) excentricidades accidentales no teni-198 das en cuenta en el proyecto de los elementos de izado y/o de 199 los aparatos de apoyo de las dovelas en planta o en transporte 200 [20,21], y 3) manipulaciones indebidas durante las operaciones 201 de colocación y montaje en el escudo; sin embargo, en estas últi-202 mas situaciones la dovela trabaja, por la configuración de apoyo, 203 preferentemente como viga de gran canto [22]. 204

En cualquier caso, debe añadirse que para el cálculo de M_d se acostumbran a considerar coeficientes de mayoración con los que se tienen en cuenta los posibles efectos dinámicos durante las fases transitorias y que aumentan el margen de seguridad frente a la fisuración durante estas fases.

Para la evaluación de las cuantías mínimas de armadura, las 210 expresiones sugeridas en [14–17] tienden a arrojar valores de 211 $A_{T,min}$ y A_T muy conservadores. En esta línea y en aras de la 212 optimización, así como para aprovechar las ventajas asociadas 213 al uso del HRF en términos de reducción de refuerzo tradicional, 214 queda justificado plantear el diseño de la estrategia de refuerzo 215 acudiendo a modelos numéricos que permitan considerar la con-216 tribución resistente de las fibras, máxime cuando se trata de obras 217 lineales con grandes volúmenes de material involucrados. 218

²¹⁹ Se trata de resolver un problema de optimización con 2 varia-²²⁰ bles: la cuantía de armadura tradicional A_s y la cuantía de fibras A_f . En definitiva, minimizar la función $A_T = A_s + A_f$ de modo que se cumplan de forma simultánea las condiciones de ductilidad y alcanzar el requerimiento resistente ($M_u = M_{fis,d}$, o $M_u = M_d$ en caso que $M_d > M_{fis,d}$).

Este problema se simplifica enormemente si de antemano se fija una de las cuantías. Así, el valor de A_s puede fijarse atendiendo a razones técnicas: 1) $A_s \neq 0$ con el fin de proporcionar cierta capacidad resistente a flexión de la sección en ELU, permitiendo así trabajar con cuantías de fibras más reducidas y que conduzcan a hormigones más dóciles y trabajables. Un valor de tanteo inicial de A_s puede ser la cuantía mínima mecánica establecida en las distintas instrucciones, por ejemplo. 2) $A_s = 0$ en aquellos casos en que sea posible la sustitución total de las barras por una cuantía de fibras competitiva a nivel técnico y económico.

Generalmente, en fase de diseño el ingeniero no dispone de información relacionada con el comportamiento post-fisuración del HRF. Por tanto, a nivel de pre-diseño, es necesario considerar valores racionales de la resistencia residual del HRF ($f_{R,i}$), recogidos en la literatura o proporcionados por algún suministrador de HRF y/o fibras, para poder definir la ecuación constitutiva del material en régimen post-fisuración y evaluar la idoneidad del uso de fibras. En consonancia con lo establecido tanto en la EHE-08 como en el MC-2010, los valores de $f_{R,i}$ deben obtenerse mediante el ensayo a 3 puntos de vigas prismáticas con entalla [23] (fig. 4).

Habiendo establecido la respuesta residual del HRF para distintas dosificaciones de fibras (C_f), se pueden representar los diagramas momento-curvatura M- χ de la sección transversal de la dovela empleando algún modelo numérico. Con estos diagramas se pueden obtener los momentos últimos M_{u}^{j} asociados a cada dosificación de fibras C_f^{j} (que conducirán cada una de ellas a resistencias residuales $f_{R,i}^{j}$ distintas). El diagrama de flujo de la figura 5 esquematiza el proceso a seguir para obtener el valor óptimo de C_f (C_f^{opt}) en dovelas de HRF.

El procedimiento de diseño presentado en la figura 5 concluye con una estimación de la resistencia residual óptima del HRF $(f_{R,i}^{opt})$ requerida para satisfacer los requerimientos resistentes. No obstante, en términos de producción y control del HRF, esta $f_{R,i}^{opt}$ debe relacionarse con la dosificación de C_f^{opt} con el fin de formular la composición del hormigón y evaluar la idoneidad técnica y económica de la misma. Para tal fin, una vez se ha establecido el tipo de fibra a emplear, se debe llevar a cabo una campaña experimental empleando el ensayo de flexión [23] (fig. 4) e involucrando distintos valores C_f^j y así poder establecer el valor de C_f^{opt} real con el que deberá llevarse a cabo la producción.

En ocasiones, y tal como se ha hecho para este artículo en concreto, se pueden llevar a cabo ensayos previos del hormigón reforzados con las fibras susceptibles a ser empleadas en la fabricación de las dovelas considerando varias cuantías. Los resultados obtenidos pueden emplearse para deducir curvas tipo $f_{R,i}-C_f$ y con estas plantear el diseño estableciendo las ecuaciones constitutivas del HRF que se consideren adecuadas.

Ni que decir tiene que del mismo modo general descrito anteriormente, estas resistencias residuales f_{Ri} deberán verificarse posteriormente en las condiciones reales de obra, con las fibras 221

222

223

224

225

226

227

228

229

250

251

252

253

254

255

256

257

258

259

260

261

262

263

265

266

267

268

269

270

271

272

273

274

275

276

282

283

ARTICLE IN PRESS

A. de la Fuente et al / Hormigón y Acero xxx (2014) xxx-xxx

Figura 4. Ensayo de 3 puntos en vigas prismáticas entalladas: a) configuración del ensayo (mm), y b) curva genérica F-CMOD.

y dosificación del hormigón finalmente establecidas y, si fuere
necesario, plantear los cambios pertinentes (tipo y/o cuantía de
fibra) para alcanzar los requerimientos mecánicos fijados para
el HRF de proyecto.

el HRF de proyecto. Debe recalcarse que el procedimiento planteado permite obtener la cuantía óptima de fibras C_f^{opt} con la que evaluar

la idoneidad técnica y económica del empleo de fibras como refuerzo del hormigón en sustitución parcial o total de la armadura pasiva tradicional. Sin embargo, a nivel de proyecto suelen especificarse exclusivamente los valores característicos de las resistencias residuales f_{R1} y f_{R3} (o f_{R4} , según la normativa de referencia) que debe alcanzar el HRF, así como algún valor

A. de la Fuente et al / Hormigón y Acero xxx (2014) xxx-xxx

7

Figura 6. a) Discretización de la sección; modelos constitutivos para el HRF (b) y el acero para armaduras pasivas (c).

3.

específico de la geometría de la fibra (longitud, diámetro y/o esbeltez); en algunos casos, también el material de la misma. Posteriormente, el suministrador del hormigón, en base a la fibra finalmente elegida, es el que sugiere la dosificación C_f necesaria para alcanzar las $f_{R,i}$ establecidas en proyecto recurriendo a los ensayos característicos previos.

3. Estrategia para la simulación de la respuesta seccional

298 3.1. Introducción

²⁹⁹ La simulación del comportamiento mecánico de una dovela ³⁰⁰ puede llevarse a cabo mediante modelos de elementos finitos. ³⁰¹ Sin embargo, las secciones críticas de una dovela de túnel en ³⁰² términos de solicitaciones normales es la central. Por tanto, el ³⁰³ diseño puede llevarse a cabo simulando la respuesta σ -e de dicha ³⁰⁴ sección.

Esta tarea puede abordarse mediante un modelo de análisis no lineal de secciones considerando la contribución resistente del HRF. Para ello, en este estudio se ha empleado el modelo de Análisis de Secciones Evolutivas (AES) [24,25] desarrollado por los mismos autores de este trabajo. Este modelo ha sido calibrado y contrastado con resultados experimentales obtenidos en diferentes campañas experimentales [26–29].

El modelo AES se emplea en este análisis para obtener el M_u asociado a cada conjunto de $f_{R,i}$ considerado, habiendo establecido previamente una cuantía de refuerzo en forma de barras (A_s) . En consecuencia, este procedimiento ha permitido deducir las curvas M_u - $f_{R,i}$ y la determinación de $f_{R,i}^{opt}$ que atiende a los requerimientos fijados para cada una de las dovelas diseñadas mediante el procedimiento presentado en la figura 5.

En esta sección se exponen las bases del modelo AES, centrándose en las hipótesis relacionadas con la simulación del comportamiento mecánico del HRF.

3.2.1. Simulación de los materiales

La sección de hormigón se discretiza en fibras de espesor constante, y las barras de acero, en áreas de masa concentrada. Una vez se ha discretizado la sección, se asignan las ecuaciones constitutivas adecuadas a cada material para posteriormente obtener la respuesta tensodeformacional de la sección bajo una combinación de esfuerzos axil (N) y momento (M) (fig. 6a).

La adición de fibras modifica la respuesta a compresión del hormigón en función del tipo y dosificación empleada [30]. Concretamente, la resistencia a compresión (f_c) tiende a reducirse con el aumento de C_f debido a un incremento del aire ocluido, mientras que, por contra, aumenta el efecto de confinamiento y la ductilidad del material. No obstante, para el tipo y las cantidades de fibras que se emplean en la fabricación de dovelas, el valor f_c no varía significativamente respecto a un hormigón convencional sin fibras con la misma dosificación; en consecuencia, se adopta la ecuación constitutiva sugerida en [31] para simular el comportamiento del HRF sometido a tensiones de compresión, siendo esta una ecuación propuesta inicialmente para hormigones convencionales.

Por otra parte, la simulación del comportamiento mecánico del HRF sometido a tracciones se puede abordar mediante

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

A. de la Fuente et al / Hormigón y Acero xxx (2014) xxx-xxx

ecuaciones constitutivas tipo tensión (σ_c) - ancho de fisura (w) y/o $\sigma_c \cdot \varepsilon_c$. En el modelo AES se han implementado todas las ecuaciones constitutivas sugeridas en los códigos europeos. En estas, se ha adoptado la ecuación trilineal tipo $\sigma_c \cdot \varepsilon_c$ propuesta en el MC 2010 por tratarse de un referente internacional y que conduce a resultados suficientemente fidedignos según los estudios llevados a cabo en [28] y [32].

En la figura 6b se presenta la curva constitutiva empleada 352 en este trabajo, así como las expresiones utilizadas para evaluar 353 los puntos (σ_i y ε_i) que definen la misma. Se debe remarcar 354 que el valor de la longitud característica (l_{cs}) se ha considerado 355 igual al canto de la dovela (h) [33]. CMOD₁ y CMOD₃ adoptan 356 valores de 0,5 y 2,5 mm, respectivamente, mientras que el ancho 357 de fisura último se evalúa como $w_u = l_{cs} \varepsilon_{Fu}$, siendo $\varepsilon_{Fu} = 20,0\%$ 358 la deformación última del HRF (asumiendo un comportamiento 359 de reblandecimiento del material). Ni que decir tiene que para los 360 cálculos en ELS deben considerarse los valores característicos 361 de $f_{ct}, f_{R,1}$ y $f_{R,3}$ ($f_{ctk}, f_{Rk,1}$ y $f_{Rk,3}$) y los de diseño ($f_{ctd}, f_{Rd,1}$ y 362 $f_{Rd,3}$) para los cálculos en ELU. 366)4

Por último, el acero para armaduras pasivas se han simulado
 considerando un diagrama elastoplástico perfecto (fig. 6c).

366 3.2.2. Hipótesis básicas adicionales

Adicionalmente, se asume adherencia perfecta entre los distintos materiales. Asimismo, se considera que la distorsión angular debida al cortante es poco significativa debido a que el módulo a cortante de la sección es elevado en comparación con los esfuerzos cortantes esperados y, por tanto, no se considera el efecto del cortante en las ecuaciones.

373 3.2.3. Equilibrio y compatibilidad

Asignadas las ecuaciones constitutivas de cada material, se
imponen las ecuaciones de equilibrio (ecuaciones 1 y 2) y compatibilidad (ecuación 3), resultando un sistema de ecuaciones no
lineales. Este sistema se resuelve mediante un esquema iterativo
tipo Newton-Raphson [34].

379
$$N = \int_{A_c} \sigma_c(\varepsilon_c) \, dA_c + \sum_{i=0}^{n_s} \sigma_s(\varepsilon_s) \, A_{s,i} \tag{1}$$

$$_{380} \quad M + Ny_{cdg} = \int_{A_c} \sigma_c \left(\varepsilon_c\right) y_c dA_c + \sum_{i=0}^{n_s} \sigma_s \left(\varepsilon_s\right) y_{s,i} A_{s,i} \tag{2}$$

$$\varepsilon_s(y) = \varepsilon_o + y\chi \tag{3}$$

El diagrama $M \cdot \chi$ de cualquier sección puede ser obtenido fijando un rango de curvaturas $[0 \cdot \chi_u]$ y un axil concomitante N.

384 4. Implementación de la estrategia de diseño

385 4.1. Descripción de los túneles

Con el fin de ilustrar la metodología de diseño propuesta, se presentan a continuación 3 túneles en los que el uso de HRF es ventajoso y adecuado debido a las dimensiones de los mismos (tabla 2) y a las condiciones de carga (tabla 3). El primer túnel (túnel de FGC en Sabadell) proporcionará una nueva conexión de ferrocarril entre las localidades de Barcelona y Sabadell. El segundo túnel (túnel de FGC en el Prat) abrirá un acceso por ferrocarril a la nueva terminal (T1) del aeropuerto del Prat (Barcelona). Finalmente, el tercer túnel (túnel FontSanta-Trinitat), construido en 2010, contiene una tubería de hormigón pretensado de un diámetro de 1.800 mm que transporta agua desalinizada desde FontSanta (Sant Just Desvern, Barcelona) y el distrito de la Trinitat (Barcelona). 391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

A partir de los datos presentados en la tabla 2 se observa que los proyectistas de los túneles de FGC Sabadell y FGC Prat consideraron el uso de fibras de acero y fibras plásticas desde el inicio del proyecto. El motivo de su empleo corresponde a la necesidad de mejorar la respuesta mecánica de la dovela frente a hipotéticos casos de cargas por fuego y frente a las fuerzas localizadas derivadas del empuje de los gatos. Sin embargo, la contribución estructural de dichas fibras tras la fisuración no se consideró en el diseño. En consecuencia, la capacidad resistente se atribuyó al refuerzo tradicional, que corresponde a un contenido mínimo ($A_{s,min}$) en ambos casos debido al bajo nivel de carga esperado durante las etapas de carga transitoria y en servicio (tabla 2).

Por otro lado, en el túnel FontSanta-Trinitat se consideraron 2 valores diferentes de $f_{ck,28}$ y 2 configuraciones de refuerzo diferentes. Esto responde a la existencia de tramos de suelo con monteras de hasta 300 m y con altas presiones de agua que demandaban un hormigón con un valor de $f_{ck,28}$ no inferior a 50 N/mm² para poder resistir las tensiones de compresión previstas en condiciones de servicio. De aquí en adelante, el valor de $f_{ck,28}$, mayor será también el valor de resistencia a tracción directa característica del hormigón f_{ct} . Por este motivo, el valor de $M_{fis,d}$ de la sección transversal es mayor, así como el contenido mínimo de refuerzo $A_{T,min}$ (fig. 5).

Los esfuerzos de diseño presentados en la tabla 3 se obtuvieron recurriendo a modelos simplificados de viga asumiendo un comportamiento lineal-elástico de los materiales y las condiciones de apoyo existentes en las etapas de carga transitorias (desmoldeo, acopio y manipulación). Por otro lado, las cargas de servicio se determinaron por medio del software comercial FLAC3D[®]. En este sentido, tanto el paso a paso del proceso constructivo de cada túnel como la interacción terreno-estructura fueron considerados en el análisis. Asimismo, los valores de cada $M_{fis,d}$ se incluyen con el propósito de ser comparados.

En este sentido, cada valor de $f_{ct,d}$ se ha definido con base en los valores de la resistencia a tracción uniaxial característica $f_{ct,k}$ sugerida en el MC 2010, que depende de f_{ck} . Además, en aquellos casos en los que $M_{fis,d} \ge M_d$, se tomó el valor máximo de la resistencia a tracción uniaxial característica ($f_{ctk,max}$), mientras que para $M_{fis,d} < M_d$ se adoptó el valor mínimo ($f_{ctk,min}$). Finalmente, los valores de $f_{ct,d}$ se determinan dividiendo $f_{ct,k}$ por un factor parcial de seguridad 1,5.

De los valores presentados en la tabla 3 se concluye que se prevé que las secciones transversales se mantengan sin fisurar en condiciones de servicio, puesto que $M_{fis,d}$ es mayor que M_d para los 3 casos estudiados. En consecuencia, las etapas de carga transitoria son más desfavorables en términos del diseño de la armadura. En esta línea, los túneles de FGC Sabadell y

xx urri

A. de la Fuente et al / Hormigón y Acero xxx (2014) xxx-xxx

Tabla 2	
Información relevante	de cada túnel

Nombre	FGC Sabadell (RWT)	FGC Prat (RWT)	Fontsanta-Trinitat (WT)	
Año	En construcción	En construcción	2010	
Tipo	Ferrocarril	Ferrocarril	Conducción agua	
Longitud (m)	4.400	2.840	12.035	
Tipo de anillo	Universal	Universal	Universal	
Número de dovelas	5 + 1 clave	6+1 clave	5 + 1 clave	
Diámetro externo, D_{ext} (m)	6,5	10,2	5,7	
Diámetro interno, D_{int} (m)	6,0	9,6	5,2	
Canto, $h(m)$	0,25	0,32	0,25	
Ancho, b (m)	1,40	1,60	1,40	
Min, res, característica a compresión en desmoldeo, $f_{ck,min}$ (N/mm ²)	20	10	10	
Res, Característica a compresión a 28 días, $f_{ck,28}$ (N/mm ²)	50	45	30	50
Jaula de armado (fig. 2a)	10Φ12/cara	13Φ12/cara	10Φ10/cara	10Φ12/cara
Empuje de gatos (kN)	2.500	7.693	1.646	
Fibras (kg/m ³)	Acero	15	25	0
-	Plástico	1,5	1,2	0

FontSanta-Trinitat presentan ambos un $M_{fis,d}$ igual a 52 kNm ($f_{ctk,max} = 5,3 \text{ N/mm}^2$), siendo este mayor que cualquiera de los M_d con probabilidad de aparecer en las fases de carga transitoria. Contrariamente, durante la manipulación de las dovelas para el túnel FGC Prat se podría alcanzar un momento flector de diseño M_d igual a 88 kNm y superior que $M_{fis,d}$ (49 kNm asumiendo $f_{ctk,min} = 2,7 \text{ N/mm}^2$).

Considerando lo anterior, las dovelas de los túneles de FGC 455 Sabadell y FontSanta-Trinitat se pueden armar de forma óptima 456 imponiendo la condición de refuerzo crítico $M_u = M_{\text{fis.d}}$ (figs. 3 y 457 5). No obstante, las dovelas del túnel FGC Prat se deben diseñar 458 imponiendo la condición de refuerzo supracrítico $M_u = M_d$ (figs. 459 3 y 5). En cualquier caso, las cargas de flexión son bajas, y una 460 sustitución parcial o incluso total de la armadura convencio-461 nal por fibras puede ser considerada como una alternativa de 462 refuerzo adecuada. 463

464 4.2. Parámetros de la ecuación constitutiva para el diseño 465 de HRF

Con el fin de abordar el rediseño de la armadura que se había 466 propuesto inicialmente en el proyecto para cada dovela (tabla 2) 467 es necesario establecer los valores de $f_{R,i}$ del HRF para definir 468 la ecuación constitutiva y obtener los diagramas M_u - $f_{R,i}$ (fig. 5) 469 con el modelo AES. En esta etapa del pre-diseño los valores 470 son desconocidos, y por este motivo se realizó una campaña 471 experimental de ensayos a flexión según la norma UNE-EN 472 14651:2005 [23] (fig. 4) para contenidos de fibra C_f entre 20 473 $y 50 \text{ kg/m}^3$. 474

Se adoptó la dosificación de 20 kg/m^3 como contenido mínimo mecánico para garantizar un confinamiento adecuado de la matriz de hormigón frente a fenómenos de «desconchamiento» y «aplastamiento» durante las fases transitorias así como en servicio, mientras que el valor de 50 kg/m^3 se ha establecido como máximo por criterios económicos. En la campaña experimental se empleó una fibra estructural con extremos conformados con longitud (l_f) de 50 mm, diámetro (d_f) de 1,0 mm y una resistencia a tracción (f_f) de 1.100 N/mm². Estos ensayos corresponden al pre-diseño de las dovelas del túnel de FontSanta-Trinitat, por lo que se empleó un hormigón de f_{ck} igual a 50 N/mm².

En la tabla 4 se presentan los valores de $f_{R,I}, f_{R,3}$ y del límite de proporcionalidad (f_L) obtenidos de 4 probetas para cada valor de C_f necesarios para definir la ecuación constitutiva del HRF (fig. 6). Asimismo, también se incluyen en la tabla los valores medios $f_{Lm}, f_{Rm,1}$ y $f_{Rm,3}$ y el coeficiente de variación. Los resultados muestran, tal y como se esperaba, que los valores de resistencia residual del HRF aumentan con C_f .

De acuerdo con lo observado por otros autores [35], la elevada dispersión de los resultados se puede atribuir a la variabilidad intrínseca del material y a la configuración del ensayo, entre otros motivos. Sin embargo, a pesar de la dispersión, el ensayo de viga con entalla [23] es universalmente aceptado por la comunidad técnica y científica para la caracterización del comportamiento residual post-fisuración del HRF. Alternativamente, existen otros métodos igualmente representativos del comportamiento del material, como el ensayo Barcelona [36,37] o su variante en probeta cúbica, también conocido como MDPT [38].

Tabla 3

Momento de fisuración de diseño $M_{cr,d}$ y esfuerzos de diseño N_d y M_d en cada etapa

Etapas de carga		FGC Sabadell	lell FGC del Prat				Fontanta-Trinitat			
	$\overline{M_{cr,d} (\text{mkN})}$	N _d (kN)	M_d (mkN)	$M_{cr,d}$ (mkN)	N_d (kN)	M_d (mkN)	$\overline{M_{cr,d} \text{ (mkN)}}$	N_d (kN)	M_d (mkN)	
Desmoldeo	15	0	45	33	0	30	10	0	21	
Acopio	15	0	38	33	0	25	10	0	20	
Manipulación	52	0	45	49	0	88	52	0	21	
En servicio	171	4.095	137	280	5.258	70	192	4.604	11	

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

499

500

501

502

503

536

537

Tabla 5

ARTICLE IN PRESS

A. de la Fuente et al / Hormigón y Acero xxx (2014) xxx-xxx

Tabla 4
Valores de f_L y de $f_{R,i}$ en N/mm ² obtenidos en base al ensayo de viga UNE-EN 14651:200

Probeta						Contenid	o de fibras					
	20 kg/m ³			30 kg/m ³			40 kg/m ³			50 kg/m ³		
	f_L	<i>f</i> _{<i>R</i>,1}	<i>f</i> _{R,3}	f_L	<i>f</i> _{<i>R</i>,1}	<i>f</i> _{R,3}	f_L	<i>f</i> _{<i>R</i>,1}	<i>f</i> _{<i>R</i>,3}	f_L	<i>f</i> _{R,1}	<i>f</i> _{R,3}
1	5,1	3,5	2,2	7,2	3,2	2,3	5,9	4,8	4,6	6,6	4,0	3,2
2	4,9	3,1	2,3	6,7	3,2	2,4	6,1	4,7	4,2	6,9	4,5	3,6
3	5,0	2,6	1,0	6,6	2,3	2,1	6,1	3,0	2,5	6,8	5,8	6,1
4	5,0	2,9	1,3	6,5	3,8	3,1	6,0	2,3	1,5	7,5	5,4	5,8
f _{Rm,i}	5,0	3,0	1,8	6,7	3,2	2,4	6,1	3,9	3,4	6,9	5,0	4,7
C,V, (%)	1,6	12,6	37,0	4,7	19,3	18,5	1,6	32,4	43,4	5,7	16,6	31,6

Las ventajas de este ensayo son su menor dispersión, la simplicidad en la ejecución y el menor consumo de material en cada ensayo.

Debe recalcarse que estos ensayos llevados a cabo responden 507 a la necesidad de plantear una relación $f_{R,i}$ - C_f para abordar el 508 pre-diseño del hormigón y evaluar la viabilidad económica y 509 técnica del empleo de fibras y, por tanto, pueden considerarse 510 como ensayos previos. En cualquier caso, una vez elegido el 511 tipo, la cuantía y la dosificación del hormigón, se deben llevar a 512 cabo los ensayos característicos en planta y que, como mínimo, 513 deberían consistir en el ensayo de 6 probetas, preferiblemente 514 de 2 amasadas distintas. 515

La tabla 5 incluye los valores característicos mínimos de f_L , $f_{R,1}$ y $f_{R,3}$ para cada C_f , así como los valores de tensiones de diseño ($\sigma_{d,i}$) y las deformaciones asociadas ($\varepsilon_{d,i}$). Los valores característicos mínimos $f_{Rk,i}$ se obtuvieron multiplicando los valores medios $f_{Rm,i}$ (tabla 4) por un factor de 0,7 [17].

Los valores de σ_1 se definen como función de $f_{ctk,min}$ 521 o $f_{ctk,max}$ dependiendo de cuál es más desfavorable, siendo 522 $\sigma_{d,1}$ igual a 3,5 N/mm² ($f_{ctk,max}/\gamma_{c,R} = 5,3/1,5$) para los túne-523 les de FGC Sabadell y FontSanta-Trinitat y de 1,8 N/mm² 524 $(f_{ctk,min}/\gamma_{c,R}=2,7/1,5)$ para el túnel de FGC Prat. Por otro 525 lado, los valores de $\varepsilon_{d,1}$ asociados a cada $\sigma_{d,1}$ se determina-526 ron dividiendo este último por el valor medio del módulo de 527 elasticidad del hormigón (E_{cm}) obteniendo valores de $\varepsilon_{d,1}$ de 528 0,10% ($\sigma_{d,1}/E_{cm} = 3,5/36.000$) para los túneles de FGC Saba-529 dell y FontSanta-Trinitat y de 0,06% para el túnel de FGC Prat 530 $(\sigma_{d,1}/E_{cm} = 1,8/31.350).$ 531

De acuerdo con los requisitos establecidos en el MC 2010, el
 proyectista debe especificar:

- Intervalo, que se define por 2 números consecutivos en la serie
 1,0; 1,5; 2,0; 2,5; 3,0; 4,0; 5,0; 6,0; 7,0; 8,0 N/mm².
 - Cocientes de resistencias residuales: a) si $0,5 \le \mathbf{f_{Rk,3}}/\mathbf{f_{Rk,1}} \le 0,7$; b) si $0,7 \le \mathbf{f_{Rk,3}}/\mathbf{f_{Rk,1}} \le 0,9$; c) si

Valores característicos de f_L y de $f_{R,i}$ y valores de diseño ($\sigma_{d,i}, \varepsilon_{d,i}$)

 $0.9 \le \mathbf{f_{Rk,3}}/\mathbf{f_{Rk,1}} \le 1.1; \text{ d}$ si $1.1 \le \mathbf{f_{Rk,3}}/\mathbf{f_{Rk,1}} \le 1.3, \text{ y f}$ si $\mathbf{f_{Rk,3}}/\mathbf{f_{Rk,1}} > 1.3.$

• Material de la fibra: acero en estas aplicaciones.

Considerando estas normas de clasificación, los HRF de la tabla 5 se clasifican como: 2,5a (C_f de 20 kg/m^3), 2,5b (C_f de $30 \text{ y} 40 \text{ kg/m}^3$) y 3,0c para C_f igual a 50 kg/m^3 .

Además, los cocientes $f_{Rk,1}/f_{Lk}$ y $f_{Rk,3}/f_{Rk}$ deben ser superiores a 0,4 y 0,5, respectivamente, siempre que el HRF se use para remplazar el refuerzo tradicional. En este sentido, el HRF con $C_f = 40 \text{ kg/m}^3$ presenta un cociente mínimo $f_{Rk,1}/f_{Lk} = 0,6$. Por otro lado, el cociente de resistencia residual mínimo $f_{Rk,3}/f_{Rk,1}$ se alcanza con $C_f = 20 \text{ kg/m}^3$, siendo este cociente igual a 0,6. En cualquier caso, los valores mínimos de los cocientes $f_{Rk,1}/f_{Lk}$ y $f_{Rk,3}/f_{Rk}$ son superiores a los valores requeridos de 0,4 y 0,5, concluyendo que estos HRF pueden ser utilizados para sustituir parcial o totalmente el refuerzo tradicional de las dovelas.

Adicionalmente, debe ponerse de manifiesto que el MC-2010 sugiere el uso de un factor de orientación **K** para corregir los valores de las tensiones σ_i del HRF y tener de este modo en cuenta la orientación de las fibras respecto al flujo de tensiones principales a las que se espera que esté sometido el elemento estructural en fase servicio. En este sentido, en el citado código se proponen valores de $\mathbf{K} \ge 1,0$ para orientaciones favorables de las fibras y $\mathbf{K} < 1,0$ en situaciones opuestas, si bien no se recogen recomendaciones o valores de referencia para establecer de forma unívoca el valor de \mathbf{K} , dejando esta tarea a criterio del proyectista [39,40].

Para este trabajo se consideró un coeficiente \mathbf{K} de valor unidad, del lado de la seguridad, a sabiendas de que el proceso de vertido del hormigón, la consistencia del mismo, el tipo de vibrado y los efectos de contorno generados por los moldes de la dovela, en conjunto conducen a orientaciones favorables de las fibras en referencia a los campos de tensiones de tracción principales que se producen en la dovela tanto en fases

$\overline{C_{f} (kg/m^{3})}$	f _{Lk} (N/mm ²)	f _{Rk,1} (N/mm ²)	f _{Rk,3} (N/mm ²)	$\sigma_{d,2} (N/mm^2)$	$\varepsilon_{\mathrm{d},2}~(\%)$	$\sigma_{d,3} (N/mm^2)$	ε _{d,3} (‰)
20	3,5	2,1	1,3	0,7	0,18	0,3	20,0
30	4,7	2,2	1,7	0,8	0,18	0,3	20,0
40	4,3	2,7	2,4	1,0	0,18	0,4	20,0
50	4,8	3,5	3,3	1,1	0,18	0,5	20,0

Cómo citar este artículo: A. de la Fuente, et al., Diseño óptimo de dovelas de hormigón reforzado con fibras para el revestimiento de túneles,

Hormigón y Acero (2014), http://dx.doi.org/10.1016/j.hya.2014.11.002

547

548

549

550

551

552

539

540

541

542

567 568

569

570

A. de la Fuente et al / Hormigón y Acero xxx (2014) xxx-xxx

Figura 7. Curvas M_u - C_f obtenidas con el modelo AES para las diferentes estrategias de refuerzo.

transitorias como en régimen de explotación. Este aspecto 572 ya ha sido probado a nivel experimental en dovelas [41] y 573 losas [42–44] y cuantificado de forma cualitativa por [43–46]; 574 asimismo, en [47,48] se han llevado a cabo simulaciones 575 numéricas del comportamiento mecánico en losas de HRF, 576 empleando distintas ecuaciones constitutivas, con el fin de 577 poder calibrar dicho coeficiente. Sin embargo, pese a los 578 avances en esta dirección, aún no se ha podido establecer un 579 método sistemático y fiable para poder evaluar el coeficiente K 580 para los distintos HRF y distintas condiciones de contorno. 581

582 4.3. Resultados

En la figura 7 se presentan los diagramas M_u - C_f obtenidos 583 con el modelo AES para las dovelas de los túneles de FGC de 584 Sabadell y FontSanta-Trinitat (ambos con idénticas dimensiones 585 b = 1,40 m y h = 0,25 m; tabla 2), considerando 2 estrategias de586 refuerzo: 1) la sustitución total del refuerzo tradicional (curva 587 A), y 2) la sustitución parcial del refuerzo tradicional (reducción 588 de un 75%) y manteniendo $4\Phi 10$ en ambas caras de la dovela 589 $(A_s = 314 \text{ mm}^2/\text{cara}, \text{curva B})$ a causa de las tensión de tracción 590 por flexión que podrían aparecer en la cara superior o en la cara 591 inferior dependiendo de la configuración de apoyo durante el 592 acopio y el transporte, así como en la posición final en el anillo. 593

Asimismo, se incluye el diagrama M_u - C_f para las dovelas del túnel FGC Prat (b = 1,60 m y h = 0,32 m; tabla 2), considerando la sustitución del 80% del refuerzo tradicional (manteniendo $4\Phi 10/cara, A_s = 314$ mm²/cara) por fibras (curva C).

Cabe destacar que, para este estudio, los autores poseían 598 relaciones entre $f_{R,i}$ y C_f para un tipo de fibra de acero esta-599 blecido (tabla 4), permitiendo obtener directamente las curvas 600 M_u - C_f . Sin embargo, tal y como se especifica en el MC 2010 601 para el diseño de estructuras de HRF, se deben proporcionar las 602 características mecánicas del hormigón en términos de $f_{Rk,1}$ y el 603 cociente $f_{Rk,3}/f_{Rk,1}$ para garantizar un diseño independiente del 604 tipo de fibra. 605

Los resultados recogidos en la figura 7 indican que el contenido óptimo de fibras C_f^{opt} necesario para alcanzar los requisitos mecánicos $M_u = M_{fis,d} = 52$ kNm (refuerzo crítico) es elevado (≈ 110 kg/m³) si no se mantiene ningún armado tradicional ($A_s = 0$, curva A) para las dovelas de los túneles de FGC Sabadell y el Prat. En este caso, dicha estrategia de armado es inviable desde un punto de vista económico, pues sería necesario un hormigón de ultra alta resistencia ($f_{Rk,I} > 8,0$ N/mm² y $f_{Rk,3}/f_{Rk,I} > 1,3$), a no ser que se seleccione otra geometría para la dovela u otro tipo de fibra.

De forma alternativa, la curva B revela que, para el mismo requisito mecánico, la sustitución del armado tradicional $(4\Phi 10/\text{cara}, A_s = 314 \text{ mm}^2/\text{cara}, \text{ en contraste con } 10\Phi 12/\text{cara}, A_s = 1.131 \text{ mm}^2/\text{cara}, \text{ considerado en el proyecto inicial) es posible con valores de <math>C_f^{opt}$ superiores a 28 kg/m^3 (30 kg/m^3 teniendo en cuenta su potencial producción en planta). En este contexto, esta estrategia es una alternativa atractiva posible en virtud de la sinergia de la combinación de las fibras y el armado tradicional. El mecanismo de cosido de las fibras en las fisuras permite un mejor control de su ancho y las barras de acero proporcionan una capacidad resistente significativa en ELU, ya que se encuentran colocadas de forma eficiente en el bloque traccionado.

La figura 8 ilustra la configuración de armado propuesto para la dovela en el diseño inicial del túnel FontSanta-Trinitat y el proyectado tras la optimización del proceso realizado en este estudio (fig. 8a). Este último consiste en: 1) 2 estribos (Φ 8/180 mm) para dotar al hormigón de confinamiento en áreas donde se esperan tensiones máximas de compresión debido a la acción del terreno, y 2) 4 barras de 10 mm de diámetro en la zona interior de las esquinas de cada estribo para resistir las tensiones de tracción previstas en las etapas de cargas transitorias. Además, se emplea un contenido de 30 kg/m³ de fibras definido en la sección 4.2 en combinación con el armado tradicional descrito. Consecuentemente, la especificación de este HRF, de acuerdo con las recomendaciones del MC 2010, es 2,5*b* (*f*_{R1,k} entre 2,5 606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

ARTICLE IN PRESS

A. de la Fuente et al / Hormigón y Acero xxx (2014) xxx-xxx

Figura 8. Configuración de armado de las dovelas del túnel FontSanta-Trinitat; a) proyecto inicial, y b) propuesta tras el proceso de optimización.

⁶⁴² y 3,0 N/mm² y 0,7 $\leq f_{Rk,3}/f_{Rk,1} \leq 0,9$) que puede corresponder ⁶⁴³ a un C_f igual a 30 kg/m³ teniendo en cuenta el comportamiento ⁶⁴⁴ mecánico considerado en este estudio (tablas 4 y 5).

Finalmente, la curva C de la figura 7 revela que un contenido 645 óptimo C_f^{opt} igual a 41 kg/m³ (40 kg/m³ por aspectos relativos 646 a la producción) es estrictamente necesario para cumplir con la 647 condición mecánica $M_u = M_d = 88$ kNm (refuerzo supracrítico) 648 de las dovelas del túnel FGC Prat, que por los mismos motivos 649 técnicos del caso anterior llevan a una reducción del armado (de 650 hasta el 80%). Finalmente, la especificación de este HRF es 3,0b 651 $(f_{R1,k} \text{ entre } 3,0 \text{ y } 4,0 \text{ N/mm}^2 \text{ y } 0,9 \le f_{Rk,3}/f_{Rk,1} \le 1,1)$, que puede 652 corresponder a un C_f igual a 40 kg/m³ teniendo en cuenta de 653 nuevo la respuesta mecánica considerada en este estudio (tablas 654 4 y 5). 655

⁶⁵⁶ Cabe destacar que los requisitos mecánicos establecidos para ⁶⁵⁷ esta dovela se pueden alcanzar con otro tipo de fibra y valores ⁶⁵⁸ de C_f . No obstante, para hallar los nuevos valores asociados a ⁶⁵⁹ C_f^{opt} sería necesario realizar una campaña experimental.

5. Conclusiones

El significativo número de túneles construidos con HRF es 661 indicativo del creciente interés en este tipo de material desde 662 el punto de vista económico y técnico. Los motivos principales 663 para dicho incremento son: 1) un conocimiento más profundo 664 del comportamiento mecánico; 2) la publicación de recomenda-665 ciones de diseño, y 3) un cambio en la inercia del sector de la 666 construcción hacia la búsqueda de soluciones estructurales opti-667 mizadas de materiales-cementíceos que mejoran aspectos en los 668 que el armado tradicional del hormigón pueda ser deficiente. 669

El método para el diseño óptimo del armado presentado en 670 este artículo se ha aplicado a 3 casos reales, conduciendo a una 671 reducción del armado tradicional con respecto al definido ini-672 cialmente en proyecto del 75% (en los túneles de FGC Sabadell 673 y FontSanta-Trinitat) y del 80% (en el túnel FGC Prat). Los 674 contenidos óptimos de fibras C_f^{opt} derivados del análisis son 675 30 y 40 kg/m³, respectivamente. Alternativamente, y siguiendo 676 el criterio establecido en el MC 2010, las especificaciones 677

mecánicas de dichos hormigones son 2,5*b* ($f_{R1,k}$ entre 2,5 y 3,0 N/mm² y 0,7 $\leq f_{Rk,3}/f_{Rk,1} \leq 0,9$) para los túneles FGC Sabadell y FontSanta-Trinitat, y 3,0*b* ($f_{R1,k}$ entre 3,0 y 4,0 N/mm² y 0,9 $\leq f_{Rk,3}/f_{Rk,1} \leq 1,1$) para el túnel FGC Prat.

En este estudio se ha usado únicamente un tipo de fibra y la ecuación constitutiva propuesta en el MC-2010 para simular el comportamiento post-fisuración del HRF. Sin embargo, existen otros tipos de fibras disponibles en el mercado que pueden conducir a una respuesta diferente del HRF (y en consecuencia valores diferentes de C_f^{opt} con respecto a los obtenidos en este análisis). Asimismo, existen ecuaciones constitutivas más sofisticadas en la literatura técnica con las que se puede alcanzar un mayor nivel de optimización.

Por último, es necesario destacar que los contenidos de fibras definidos y los requisitos mecánicos no dificultan la definición de la dosificación ni la producción de estos HRF. De ahí que su implementación puede ser incorporada y asumida sin interferir excesivamente en la producción habitual de cualquiera planta de dovelas prefabricadas.

Agradecimientos

Este artículo se ha completado bajo el marco de trabajo del proyecto «FIBHAC: *self-compacting fibre reinforced concrete. Development of a new concept of precast segments for tunnels*», suscrito al programa INNPACTO 2011(IPT-2011-1613-420000). En este sentido, los autores del artículo agradecen al Ministerio de Ciencia e Innovación el apoyo económico proporcionado para su ejecución. El tercer autor agradece el apoyo del *Departament d'Universitats, Recerca i Societat de la Informació* de la Generalitat de Catalunya.

Bibliografía

- M. Di Prisco, G. Plizzari, L. Vandewalle, Fibre reinforced concrete: New design perspectives, Mater. Struct. 42 (9) (2009) 1169–1269.
- [2] J. Walraven, 2009 High performance fibre reinforced concrete: Progress in knowledge and design codes, Mater. Struct. 42 (9) (2009) 1247–1260.

709

710

711

RTICLE IN PRI

A. de la Fuente et al / Hormigón y Acero xxx (2014) xxx-xxx

- 712 [3] N. Buratti, C. Mazzotti, M. Savoia, Post-cracking behaviour of steel and macro-synthetic fibre-reinforced concretes, Constr. Build. Mater. 25 (5) 713 (2011) 2713-2722 714
- [4] B. Chiaia, A.F. Fantilli, P. Vallini, Combining fiber-reinforced concrete with 715 traditional reinforcement in tunnel linings, Engineering and Structures 31 7165 717 (7) (2009) 1600–1606.
- [5] Burguers R, Walraven J, Plizzari GA, Tiberti G. Structural behavior of 718 SFRC tunnel segments during TBM operations. In: World Tunnel Congress 719 ITA-AITES 2007, Prague (Czech Republic), 1461-67. 720
- [6] M. Hilar, J. Beño, Steel fibre reinforced segmental tunnel linings, Tunel 21 721 722 (3)(2012)31-37.
- [7] B. Chiaia, A.P. Fantilli, P. Vallini, Evaluation of minimum reinforcement 723 724 ratio in FRC members and application to tunnel linings, Mater. Struct. 42 725 (3)(2009)339-351.
- [8] De la Fuente A, Blanco A, Pujadas P, Aguado A. Advances on the use 726 of fibres in precast concrete segmental linings. Engineering a Concrete 727 Future: Technology, Modeling & Construction. International Federation 728 for Structural Concrete (fib). Fib Symposium, 22-24 of April, Tel-Aviv 729 (Israel). Full Text in Proceedings pp. 691-694 (4 pp.). 730
- [9] A. De la Fuente, A. Blanco, P. Pujadas, A. Aguado, Experiences in Barce-731 lona with the use of fibres in segmental linings, Tunnelling Underground 732 733 Space Technol. 27 (1) (2012) 60-71.
- [10] C. Molins, O. Arnau, Experimental and analytical study of the structural 734 response of segmental tunnel linings based on an in situ loading test: Part 1: 735 Test configuration and execution, Tunnelling Underground Space Technol. 736 26 (6) (2011) 764-777. 737
- 738 [11] CPH 1998. EHE-98. Spanish Structural Concrete Standard [in Spanish].
- [12] S.H.P. Cavalaro, A. Aguado, F.N. Klein, Fabricación de dovelas de túne-739 les en posición horizontal con hormigones autocompactantes, Hormigon y 740 Acero 61-257 (2010) 57-68. 74**Q6**
- 742 [13] Liao L, de la Fuente A, Cavalaro SHP, Aguado A. Analysis of differences in the behaviour of traditional and self-compacting steel fibre reinfor-743 ced concrete. Fibre Concrete 2013, Technology, Design, Application. 7th 744 International Conference Fibre Concrete, 12-13 of September, Czech Tech-745 nical University, Prage (Czech Republic). Full Text in Proceedings CD 746 747 (7 pp.).
- [14] DBV-Recommendation (German Concrete Association), 1992. Design 748 principles of steel fibre reinforced concrete for tunnelling works, pp. 19-29. 749
- [15] CNR. DT 204/2006. 2006. Guidelines for the Design, Construction and Pro-750 751 duction Control of Fibre Reinforced Concrete Structures, Italian National Research Council - CNR. 752
- [16] CPH 2008. EHE-08. Spanish Structural Concrete Standard. Annex 14: 753 Recommendations for the use of fibre reinforced concrete. 754
- 755 [17] fib Bulletin 65 (2010), Model code 2010 Final Draft, Fédération Internationale du béton (fib), Lausanne, Switzerland. 756
- [18] C. Montaner, Minimum bending reinforcement for rectangular sections: a 757
- comparative study, Hormigón y Acero 63 (265) (2012) 83-97 [in Spanish]. 75<mark>Q7</mark> F. Levi, On minimum reinforcement in concrete structures, J. Struct. Eng. 759 [19]
- 111 (12) (1985) 2791-2796. 760 [20] S.H.P. Cavalaro, C. Blom, J. Walraven, A. Aguado, Structural analysis of 761 contact deficiencies in segmented lining, Tunnelling Underground Space 762 Technol. 26 (6) (2011) 734-749. 763
- 764 [21] S.H.P. Cavalaro, C. Blom, J. Walraven, A. Aguado, Formation and accumulation of contact deficiencies in a tunnel segmented lining, Appl. Math. 765 Modell. 36 (9) (2011) 4422-4438. 766
- [22] S.H.P. Cavalaro, A. Aguado, Packer behavior under simple and coupled 767 stresses, Tunnelling Underground Space Technol. 28 (1) (2012) 159-173. 768
- [23] EN 14651:2005 Test method for metallic fibrered concrete Measuring the 769 flexural tensile strength (limit of proportionality (LOP), residual), 2005. 770
- 771 [24] A. De la Fuente, A. Aguado, C. Molins, J. Armengou, Numerical model 772 for the analysis up to failure of precast concrete sections, Comput. Struct. 106-107 (2012) 105-114. 773
- [25] A. De la Fuente, A. Aguado, C. Molins, Modelo numérico para el análisis 774 no lineal de secciones prefabricadas construidas evolutivamente, Hormigón 775 Q8 y Acero. 246 (2008) 69-87.

- [26] A. Blanco, P. Pujadas, A. de la Fuente, A. Aguado, Análisis comparativo de los modelos constitutivos del hormigón reforzado con fibras, Hormigón y Acero. 61 (256) (2012) 83-100 [in Spanish].
- [27] P. Pujadas, A. Blanco, A. de la Fuente, A. Aguado, Cracking behavior of FRC slabs with traditional reinforcement, Mater. Struct. 45 (5) (2012) 707 - 725
- [28] A. Blanco, P. Pujadas, A. de la Fuente, S. Cavalaro, A. Aguado, Application of constitutive models in European codes to RC-FRC, Constr. Build. Mater. 40 (2012) 246-259.
- [29] A. De la Fuente, R. Campos, A. Figueiredo, C. Molins, A. Aguado, A new design method for steel fibre reinforced concrete pipes, Constr. Build. Mater. 30 (2012) 547-555.
- [30] F. Bencardino, L. Rizzuti, G. Spadea, R.N. Swamy, Stress-strain behavior of steel fiber-reinforced concrete in compression, J. Mater. Civ. Eng. 20 (3) (2008) 255-263.
- [31] J.A.O. Barros, J.A. Figueiras, Flexural behaviour of SFRC: Testing and modelling, J. Mater. Civ. Eng. 11 (4) (1999) 331-339.
- [32] F. Laranjeira, C. Molins, A. Aguado, Predicting the pullout response of inclined hooked steel fibers, Cem. Concr. Res. 40 (10) (2010) 1471-1487.
- [33] C. Pedersen, The Moment-Rotation Relationship With Implementation of Stress-Crack Width Relationships, Department of Structural Engineering, Technical University of Denmark, 1995.
- [34] W.Y. Yang, C. Wenwu, T.S. Chung, J. Morris, Applied Numerical Methods Using Matlab, John Wiley & Sons Inc, Hoboken, New Jersey, 2005.
- [35] J.A.O. Barros, V.M.C.F. Cunha, A.F. Ribeiro, J.A.B. Antunes, Postcracking behaviour of steel fibre reinforced concrete, Mater. Struct. 38 (1)(2005)47-56.
- [36] A. Blanco, P. Pujadas, S.H.P. Cavalaro, A. de la Fuente, A. Aguado, Constitutive model for fibre reinforced concrete based on the Barcelona test, Cem. Concr. Compos. 53 (2014) 327-340.
- [37] P. Pujadas, A. Blanco, S.H.P. Cavalaro, A. de la Fuente, A. Aguado, New analytical model to generalize the Barcelona Test using axial displacement, Journal of Civil Engineering and Management 19 (2) (2013) 259-271. **Q10** 808
- [38] P. Pujadas, A. Blanco, S. Cavalaro, A. de la Fuente, A. Aguado, Multidirectional double punch test to assess the post-cracking behaviour and fibre orientation of FRC, Constr. Build. Mater. 58 (2014) 214-224.
- [39] P. Pujadas, Caracterización y diseño del hormigón reforzado con fibras plásticas [tesis doctoral], Universitat Politècnica de Catalunya, Barcelona, 2013.
- [40] A. Blanco, Characterization and modelling of SFRC elements [tesis doctoral], Universitat Politècnica de Catalunva, Barcelona, 2013.
- [41] F. Mora, A. Aguado, C. Molins, Distribución y orientación de fibras en dovelas aplicando el ensayo Barcelona, Cemento Hormigón 931 (2009) 011 818 28 - 37
- [42] P. Pujadas, A. Blanco, S. Cavalaro, A. Aguado, Plastic fibres as the only reinforcement for flat suspended slabs: Experimental investigation and numerical simulation, Constr. Build. Mater. 57 (2014) 92-104.
- [43] P. Pujadas, A. Blanco, S. Cavalaro, A. de la Fuente, A. Aguado, Fibre distribution in macro-plastic fibre reinforced concrete slab-panels, Constr. Build. Mater. 64 (2014) (2014) 496-503.
- [44] Blanco A, Pujadas P, Cavalaro S, de la Fuente A, Aguado A. Assessment of the fibre orientation factor in SFRC slabs. Composites Part B. DOI: 10.1016/j.compositesb.2014.09.001.
- [45] F. Laranjeira, Design-Oriented Constitutive Model for Steel Fibre Reinforced Concrete [tesis doctoral], Universitat Politècnica de Catalunya, Barcelona, 2010.
- [46] F. Laranjeira, S. Grünewald, J. Walraven, C. Blom, C. Molins, A. Aguado, Characterization of the orientation profile of steel fibre reinforced concrete, Mater. Struct. 44 (6) (2011) 1093-1111.
- [47] A. Blanco, S. Cavalaro, A. de la Fuente, S. Grünewald, C.B.M. Blom, J.C. Walraven, Application of FRC constitutive models to modelling of slabs, Mater. Struct. (2014), http://dx.doi.org/10.1617/s11527-014-0369-5.
- [48] P. Pujadas, A. Blanco, S. Cavalaro, A. Aguado, Plastic fibres as the only 838 reinforcement for flat suspended slabs: Parametric study and design consi-839 derations, Constr. Build. Mater. 57 (2014) (2014) 92-104. 840

13

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

809

810

811

812

813

819 820

821

822

823

824

825

834