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Abstract

Generative adversarial network (GAN) has been applied for low-dose CT images to

predict normal-dose CT images. However, the undesired artifacts and details bring

uncertainty to the clinical diagnosis. In order to improve the visual quality while

suppressing the noise, in this paper, we mainly studied the two key components of

deep learning based low-dose CT (LDCT) restoration models—network architecture

and adversarial loss, and proposed a disentangled noise suppression method based

on GAN (DNSGAN) for LDCT. Specifically, a generator network, which contains the

noise suppression and structure recovery modules, is proposed. Furthermore, a multi-

scaled relativistic adversarial loss is introduced to preserve the finer structures of

generated images. Experiments on simulated and real LDCT datasets show that the

proposed method can effectively remove noise while recovering finer details and

provide better visual perception than other state-of-the-art methods.

Keywords: Image reconstruction, Low-dose CT, Image denoising, Generative

adversarial network

1 Introduction

Low-dose CT denoising has been a hot topic in medical imaging and numerous

methods have been proposed to deal with this problem [1]. These algorithms could be

approximately categorized into three groups according to the processing stage:

Sinogram filtering, iterative reconstruction (IR), and image post processing methods.

Sinogram filtering methods [2, 3] directly process the projection data, but any im-

proper operations would result in undesired artifacts and loss of structural information

or/and spatial resolution. IR methods [4–7] have the advantage in producing results

with high peak signal-to-noise ratio (PSNR). However, the substantial computational

cost and empirical parameter turning limit the extensive applications of this kind of

methods in commercial scanners. Image post processing methods need not access the

measurements and many methods [8–15] proposed for natural image restoration can

be directly introduced for low-dose CT (LDCT) denoising, such as non-local means

[8, 9], K-means singular value decomposition (KSVD) [10], and block-matching and

3D filtering (BM3D) [13]. However, due to the complexity of the statistical property
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of noise in LDCT images, these methods cannot provide similar performance as that

for natural images.

After the pioneering work was proposed by Chen et al. [16], deep neural network

(DNN) approaches have brought a prosperous development in this field [17–19]. Vari-

ous network architectures [20–23] have continuously improved the LDCT denoising

performance. However, most of these methods utilize L2 norm as the target function,

which produce results with high PSNR and structural similarity (SSIM) [24] but in-

crease Fréchet inception distance (FID) [25] scores due to smoothed structural details.

Since the PSNR metric does not completely coherent to the subjective evaluation of

human observers, this fact may have uncertainly negative impact on clinical diagnosis.

To circumvent this obstacle, generative adversarial network (GAN) and different loss

functions were introduced to restore finer structural details as much as possible [26–31].

As the most representative one, WGAN-VGG [26], aided by stable Wasserstein GAN [32]

training and perceptual loss [33], was proposed to encourage the network to favor

solutions that look more like realistic normal-dose CT (NDCT) images. Although consid-

erable improvements have been obtained, there still exists a noticeable gap between

WGAN-VGG results and the NDCT images. One example is shown in Fig. 1. Although

the result generated by WGAN-VGG has similar mottle-like noise, the distribution is quite

different from the real NDCT image. The reason may lie in that most existing methods

endeavor to transform LDCT images directly into corresponding normal-dose CT

(NDCT) ones, which require a quite powerful model. Actually, an important problem was

ignored that for LDCT, noise always adheres to the high frequency details. Therefore, the

DNN-based methods with L2 norm tend to generate over-smooth results and the GAN-

based methods introduce extra noise into the generated images, which would lead to

better visualization but lower PSNR and higher FID scores.

In order to alleviate this contradiction, in this paper, we propose a novel disentangled

noise suppressing method for LDCT. We disentangle the procedure of LDCT denoising

into two stages, noise removal and structural detail enhancement, instead of one-step

mapping. Specifically, we firstly transform the source distribution into an intermediate

distribution by paying more attention on noise removal, which may lead to over-

smooth results with varying degree. After that the intermediate distribution is trans-

formed into the final target distribution. This process is implemented by recovering the

finer details from the denoised images from last step. In addition, the proposed disen-

tangled noise suppressing method is embedded into the framework of GAN [34],

termed as DNSGAN, to further enhance the visual perception of reconstructed images.

Fig. 1 The restoration results from WGAN-VGG and proposed DNSGAN. Red and blue arrows denote the zoomed

ROI regions, the circle denotes finer local structures. DNSGAN outperforms WGAN-VGG in sharpness and details
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The main contribution of this paper can be summarized as that proposed a novel dis-

entangled noise suppression method—DNSGAN. Instead of one-step mapping, DNSG

AN is more effective to handle LDCT restoration with the divide and conquer strategy

that decoupling image denoising into two stages—noise removal and structure en-

hancement. Proposed method achieved higher-quality image reconstruction and im-

proved the generalization for kinds of noise-levels than other competitive methods,

resulting in better balance between the details retaining and quantitative metrics.

The rest of this paper is organized as follows. In section 2, the proposed DNSGAN

method is described in detail. The experimental results are demonstrated in section 3

and the final section concludes this paper.

2 Method

2.1 Noise reduction model

The general image restoration problem can be considered from the perspective of do-

main transform [35]. A source domain S and a target domain T contain samples from

two different given distributions PS and PT respectively. x∈S denotes the LDCT image

from the source domain and y∈T denotes the corresponding NDCT image from the

target domain where x ∼ PS, and y ∼ PT.

For the image restoration task, a generic denoising process for LDCT can be

expressed as:

x ¼ F yð Þ þ ε ð1Þ

where F : x→ y represents a nonlinear degrading process by the noise and ε stands

for the additive part of noise and other unmodeled factors. Current methods based

DNN focus on learning a nonlinear function F† to directly map x into y, which can be

expressed as:

F† xð Þ ¼ ŷ ≈ y ð2Þ

The general ideal is to find the optimal F† to minimize the distance between PS and

PT.

Unfortunately, since the noise in LDCT images does not obey any specific statistical

distribution, the denoising operation will inevitably smooth the details to a certain de-

gree, which makes it difficult to directly learn F†, even GAN is introduced to enforce

stronger constraint. As a result, the result may quite depend on the specific form of loss

function.

In order to solve this problem, inspired by the idea of domain transform, this process

is disentangled into two steps: noise reduction and structural enhancement. The first

step follows the general idea of learning based methods to learn an image-to-image

denoising model and the second step is to recover the details smoothed by the first

step. This is similar with the pre-upsampling image super-resolution models [36],

which is upsampling the original image first and then recovering the details on the

upsampled image. The denoised result y' after first step can be viewed as an intermedi-

ate result, which bridge the gap between the low-dose image x and normal-dose image

y. Based on this consideration, Eq. 2 is reformulated as follow,
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F† xð Þ ¼ R y
0

� �

¼ ŷ ≈ y; y
0

¼ S xð Þ ð3Þ

where Sð�Þ : x∈S→y
0
∈I represents the noise suppression process, which transforms

the sample x into the intermediate domain I . Rð�Þ : y
0
∈I→ŷ∈T denotes the detail re-

covery process, which aims to enhance the structures and recover finer details from the

denoised (probably over-smoothed) intermediate image.

2.2 Network architecture

The proposed network model follows the classical architecture of GAN, which contains

a disentangled generator network and a relativistic multi-scale discriminator network.

The generator is composed of two modules, a dynamic filter module for noise suppres-

sion and a structure enhancement module for detail recovery. The network architecture

is shown in Fig. 2 and the details of each module are elaborated in the following

subsections.

2.2.1 Noise removal module

Due to the nondeterminacy of the noise distribution in image domain, we propose to

adopt dynamic filter network (DFN) [37], which is learned adaptively from the input

data. The proposed noise suppressing model could be represented as:

y
0

¼ S xð Þ ¼ f θ⊙x ð4Þ

where fθ =DFN(x), which denotes the output filter generated by DFN. θ ∈ℝs × s is the

parameter set of the filter f. s is the filter size. fθ is applied to the input as y′ = fθ⊙ x,

where ⊙ is the point-wise multiplication operator.

In order to reduce the complexity of network structure while improving the perform-

ance of noise suppression, a LSTM unit is introduced into DFN to progressively gener-

ate dynamic filters. Furthermore, an adaptive strategy is used to guide the dynamic

filter generation and we concatenated the last updated filter f t−1θ and current input as

the updated input in each time step.

Considering that the DFN focuses on noise suppression, mean square error (MSE)

loss function is utilized, which is formulated as:

Fig. 2 A basic architecture for proposed DNSGAN, where generator contains a dynamic filter network (DFN)

and a residual dense network (RDN) to separately model denoising and structural restoration
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ℒdfn y
0

n o

; y
� �

¼
X

N

t¼1

λtℒmse y
0

f tθ
; y

� �

ð5Þ

where y
0

f tθ
¼ DFNðx⊕ f t−1θ Þ is the updated image, and ⊕ denotes the channel-wise

concatenation operation. f 0θ is initialized with Gaussian distribution. To balance the

training time and performance, we set N = 3 and λ = [0.25, 0.5, 1] in our experiments.

2.2.2 Structure enhancement module

Inspired by the deep learning based works for image super-resolution [38, 39], our

structural enhancement module used a residual dense network (RDN) [40] to recovery

structural details, as shown in Fig. 2, which is similar with [39]. To further enhance the

performance, we made the following improvements on [39]:

2.2.2.1 Richer input RDN aims to enhance the structure details for the denoised input.

However, DFN tends to generate over-smoothed results with varying degrees. In order

to avoid excessive details loss, we concatenated each y
0

t at different time steps as input

of RDN.

2.2.2.2 Lightweight backbone Compared with other networks for super-restoration

task, our RDN module aims to recovery structural details from over-smoother inputs,

which needs to pay more attention on the finer structures and details. Based on this

consideration, we removed the up/down-sample operations in RDN, and used five re-

sidual dense blocks as backbone of RDN, which demonstrate powerful performance on

detail recovery in our experiments.

2.2.2.3 Improved feature loss Considering that feature loss has been widely used for

detail recovery, we borrowed the improved feature loss [39] into RDN. The features be-

fore the activation layer are utilized to enhance the performance of recovering details,

which can avoid the inconsistent details due to the sparseness of activated feature. A

pretrained VGG-19 [41] model was used for the feature loss.

As a result, the total loss for generator in DNRGAN is defined as:

ℒGen ¼ λℒdfn þ ℒc þ ηℒfea þ γℒGRa ð6Þ

where ℒc ¼ ExkRDNðy0Þ‐yk1 is the content loss that evaluates the differences between

the generated images and ground truth images, ℒfea is the feature loss, ℒGRa is the GAN

loss, and λ, η, and γ are the balancing coefficients.

2.2.3 Relativistic PatchGAN

In order to reduce the complexity of the network and improve the visual quality of the

generated image, we also made two modifications on the traditional discriminator

architecture to enhance the training efficiency: (a) one is introducing the relativistic ad-

versarial loss into discriminator, which mainly predict the probability that a real input

is relatively more realistic than the fake input instead of a binary output, and (b) the

other is using a multi-scale PatctGAN [42, 43] to simplify the network structure while

enhance the performance of discriminator.
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The traditional discriminator can be expressed as D(x) = σ(C(x)), where σ(⋅) is the sig-

moid function and C(x) is the non-transformed discriminator output. In our DNSGAN,

a relativistic average discriminator [44] is used, referred as DRa, which is formulated as

DRaðyr; y f Þ ¼ σðCðyrÞ−Ey f
½Cðy f Þ�Þ, where yr represents the NDCT image, yf represents

the generated denoised CT image, and Ey f
½�� represents the averaging operation on all

fake data in the mini-batch, as shown in Fig. 3.

The discriminator loss is then defined as:

ℒDRa ¼ −Eyr
log DRa yr; y f

� �� �h i

−Ey f
log 1−DRa y f ; yr

� �� �h i

ð7Þ

and the adversarial loss for generator is formulated with a symmetrical form:

ℒGRa ¼ −Eyr
log 1−DRa yr; y f

� �� �h i

−Ey f
log DRa y f ; yr

� �� �h i

ð8Þ

PatchGAN (Markovian discriminator) identifies each N×N image patch real or fake.

It is more suitable for the tasks which focus on detail or texture preservation. Further,

we introduced the relativistic discriminator to further enhance the performance of dis-

criminator. Compared with standard PatchGAN, the relativistic PatchGAN loss in the

proposed DNSGAN can be expressed as:

min
G

max
Dk

X

K

k¼1;2::

ℒGAN GRa
;DRa

k

� �

ð9Þ

The relativistic discriminator contains five convolution layers and an average pooling

layer, in our experiments and we selected two scaled patches from the last and penulti-

mate layers to obtain the scores from real or fake samples.

Proposed method builds on an end-to-end learning architecture, which accepts arbi-

trary image size as input. Therefore, our method is trained using image patches and ap-

plied on the whole images. The details are provided in section 3 on experiments.

3 Experiments

This section presents the experimental setup and evaluates the performance of the pro-

posed DNRGAN. Comprehensive experiments are set up with several competitive

methods on two low-dose CT datasets respectively with simulated and real noise. In

addition, peak noise-to-signal rate (PSNR), structural similarity (SSIM), and Fréchet in-

ception distance (FID) are used to quantitatively evaluate the results. All these metrics

were calculated based on the whole images.

Fig. 3 The comparison between the standard discriminator and the relativistic discriminator, where (a) and

(b) separately denotes standard GAN and relativistic GAN
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3.1 Low-dose CT dataset with simulated noise

The Mayo clinic CT dataset [45] was used in our experiments, which is prepared

for “the 2016 NIH-AAPM-Mayo Clinic Low Dose CT Ground Challenge” to

evaluate competing LDCT image reconstruction algorithms. The dataset consists

of 5936 normal-dose abdominal CT images with 512×512-pixel taken from 10 an-

onymous patients and corresponding simulated quarter-dose images after realistic

noise insertion. The slice thickness and reconstruction interval in this dataset are

1.0 mm and 3.0 mm, respectively. The scanning tube potential and effective mAs

used for this dataset were 120 kV and 200 mAs, respectively. All data were ob-

tained on similar scanner models (Somatom Definition AS+, or Somatom Defin-

ition Flash operated in single-source mode, Siemens Healthcare, Forchheim,

Germany). Please refer [45] for more details.

3.1.1 Experiment setting

We randomly selected 4000 slices from the LDCT images and corresponding NDCT

images as training set, and the rest 1936 LDCT images were used as testing set. We

generated approximately 120,000 samples with size of 128×128-pixel randomly cropped

from the training set and validated the proposed model with the whole images in the

testing set. The data in the experiments is normalized to [0, 1]. The batch size was set

to 8. In order to speed up the training process, a PSNR-oriented model was trained.

The learning rate is initialized as 2 × 10−4. A GAN-based model is trained by fine-

turning with learning rate 1 × 10−4. For optimization, we used Adam algorithm [46]

with β1 = 0.9 and β2 = 0.99. We implemented our model with the PyTorch framework

[47] and trained on a NVIDIA Titan V GPU.

3.1.2 Components analysis

We first investigated the impacts of different modules and loss function combin-

ation for the proposed DNSGAN in noise suppression and structure recovery. For

PSNR-oriented generator network, we first studied the effect of separate DFN

module for noise removal, referred as DNSN-DF. For the enhancement module

RDN, we mainly analyzed the effect on richer inputs, referred as DNSN and

DNSGAN. For discriminator, we mainly focused on the factor of adversarial loss.

A standard cross entropy loss was used in our proposed method for comparison.

In addition, the improved feature loss was also analyzed. Table 1 gives the

detailed descriptions on each variant combining different modules and loss

functions.

A representative slice from testing set was selected to show the performance of

method in Fig. 4. It is obvious that the methods with L2/L1 norm achieved

smoother results, e.g., DNSN-DF, DNSN-1, and DNSN. Compared with DNSN-DF,

DNSN-1, and DNSN with RDN module obtained more clear structures but

smoother details, which resulted in higher FID scores, and revealed that the

richer input is effective for structure enhancement. On the other hand, the

methods with adversarial loss, such as DNSGAN-1, DNSGAN, DNSGAN-CS, and

DNSGAN-NF, achieved better visual perception with lower FID scores. DNSGAN-

1 and DNSGAN had finer structures. In addition, improved feature loss promoted
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the structure recovery and artifact removal compared to DNSGAN-NF. The

quantitative results from the whole testing set are shown in Table 2. It can be

noticed that DNSN had the best PSNR and SSIM values, but DNSGAN achieved

better balance between the visual perception and noise suppression.

3.1.3 Qualitative and quantitative results

In this section, DNSN, DNSGAN-CS, and DNSGAN were selected as our baselines

to compare with other state-of-the-art methods including BM3D, RedCNN [21],

and WGAN-VGG. A visualized result is given in Fig. 5. The zoomed regions (indi-

cated by red and blue arrows) are used to visualize structural differences. All the

methods presented powerful capacity of noise removal, but BM3D, RedCNN, and

DNSN had smoother local details. BM3D even introduced extra artifacts compared

with the other methods. DNSN achieved the best PSNR scores with only L1/L2

norm. The adversarial learning based methods brought better visual perception

than the PSNR-oriented methods. However, WGAN-VGG generated some unpleas-

ing artifacts. DNSGAN-CS achieved better qualitative results on noise reduction

and structure restoration. The improved discriminator further enhanced the ability

of model on details retaining.

In addition, we introduced the noise power spectrum (NPS) [48] to validate the

performance of our method. We selected a structure-rich ROI area from the

LDCT image, which was indicated by an orange rectangle in Fig. 5, to calculate

the 2D and 1D NPS metrics and the results using different methods are shown

in Fig. 6. All the methods presented the ability in noise removal to varying de-

gree. However, undesired waxy artifacts leaded BM3D has a higher peak. Al-

though WGAN-VGG brought better visual perception than BM3D, unpleasant

details lead to a higher peak in 1D NPS curve and lower metrics (i.e., PSNR and

SSIM). Instead, our method achieved a better trade-off between the noise removal

and visual perception than other methods.

Table 1 Summary of components and loss functions

Components Loss function Description

DNSN-DF minℒdfn Dynamic filter network with MSE loss

DNSN-1 min(ℒdfn + ℒc) Oriented-PSNR model with single input for RDN

DNSN min(ℒdfn + ℒc) Oriented-PSNR model with multi-inputs for RDN

DNSGAN-CS
min
G

max
Dk

X

K

k¼1;2::

ℒ
Std
GANðG;DkÞ þ λℒdfn þ ℒc þ ηℒfea

DNSGAN with cross entropy loss

DNSGAN-NF
min
G

max
Dk

X

K

k¼1;2::

ℒ
Ra
GANðG;DkÞ þ λℒdfn þ ℒc

DNSGAN without improved feature loss

DNSGAN-1
min
G

max
Dk

X

K

k¼1;2::

ℒ
Ra
GANðG;DkÞ þ λℒdfn þ ℒc þ ηℒfea

DNSGAN with single-input for RDN module

DNSGAN
min
G

max
Dk

X

K

k¼1;2::

ℒ
Ra
GANðG;DkÞ þ λℒdfn þ ℒc þ ηℒfea

DNSGAN with multi-input for RDN module
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Figure 7 presents the results in coronal and sagittal planes with different methods.

All the methods demonstrated similar trend to that in transverse plane and our method

show the best balance between the fine structure recovery and noise reduction.

The quantitative results on the whole testing set are given in Table 3. DNSN achieved

the higher PSNR and SSIM scores. The proposed DNSGAN achieved a better balance

among these metrics.

3.2 Low-dose CT dataset with real noise

The proposed DNSGAN was also validated on a real low-dose CT dataset, Dongpu

General Hospital (DGH) dataset, which contains 4872 one-sixth-dose head CT scans

Fig. 4 Transverse CT image through the abdomen. The red and blue arrows denote zoomed ROI regions.

The display window of this slice is [−180, 200] HU and quantitative metrics are from entire image. Zoomed

in for better visualization
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with 512×512 pixels and corresponding normal-dose CT images from 11 patients with

representative protocols. All data were obtained on same scanner (MinFound ScintCare

CT16). Each head CT scan data from patients consist of three different scan thick-

nesses, e.g., 1.16 mm, 2.32 mm, and 4.64 mm. In addition, these CT scans are acquired

by two different reconstructed kernels. Since the low-dose CT images and correspond-

ing normal-dose CT images are not in perfect registration due to the error in the pa-

tient table re-positioning and uncertainty in the source angle initialization, in this

experiment, we just validated the generalization performance of the proposed method

on different noise-level datasets. The data in the experiments is normalized to [0 1].

Fig. 5 Transverse CT image through the abdomen. The red and blue arrows denote zoomed ROI regions.

The display window of this slice is [−180, 200] HU

Fig. 6 The 2D (a) and radial 1D (b) normalized NPS results from all the methods. NPS is calculated with a

120 × 120 pixel ROI and ground truth subtraction is used as the background removal method. Our

methods, i.e., PNSR-oriented DNSN and visual perception-oriented DNSGAN achieved noticeable

improvements on noise removal
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3.2.1 Experiment setting

Considering DGH dataset contains varying scan thickness, which results in differ-

ent noise levels in LDCT images. The dataset is divided into three parts accord-

ing to the scan thickness, referred as DGH-L, DGH-M, and DGH-H, which

separately denote different noise-level LDCT with the thickness of 4.64 mm, 2.32

mm, and 1.16 mm. In this experiment, we did not retrain models due to the

non-ideal data situation. An alternative method was adopted that the pre-trained

model on Mayo dataset was used to evaluate the results of DGH dataset, which

is effective to evaluate the generalization ability of the proposed method for dif-

ferent data sources.

In addition, due to the lack of referenced images with accurate registration, PSNR

and SSIM were abandoned in DGH dataset. Instead, the histogram of the gray-level,

and FID were used to measure the capacity of model for noise removal and structure

recovery.

3.2.2 Results for blind image restoration

One slice is selected from the DGH-L dataset and shown in Fig. 8. It is obvious

that BM3D led to smoother result than RedCNN and DNRN. WGAN-VGG,

DNSGAN-CS, and DNSGAN generate better results, but WGAN-VGG introduced

extra artifacts at the edges. The histogram of DGH-L is illustrated in Fig. 9. All

the methods tended to produce similar distribution with the ground truth in

Fig. 7 The coronal and sagittal images reconstructed by different methods for comparison. The top row is

the result in coronal plane and the bottom is in median sagittal plane. Red and purple arrows indicate the

regions with visually distinguishable details for different methods

Table 3 The qualitative results of compared methods in the TestSet (mean±std)

LDCT BM3D RedCNN WGAN-VGG DNSN DNSGAN-CS DNSGAN

PSNR 38.127±1.916 41.932±1.427 43.496±1.577 40.367±1.471 43.630±1.587 42.616±1.638 42.670±1.635

SSIM 0.961±0.016 0.983±0.006 0.989±0.004 0.980±0.008 0.990±0.004 0.988±0.005 0.987±0.005

FID 7.069 5.203 2.027 1.052 2.451 0.542 0.503
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Fig. 9a. However, PSNR-oriented methods had smoother curves due to lack of

finer details. Proposed DNSGAN fitted the curve of ground truth best. Similar

trends can be observed from DGH-M and DGH-H in Fig. 9b and c.

In order to evaluate the robustness of the proposed method further, a slice with

higher noise-level from DGH-H is shown in Fig. 10. DNSGAN still achieved the

better metric than others. In addition, Table 4 gives the statistical results of FID

produced by different methods on each datasets. All the methods presented

strong ability on noise removal, but BM3D led to the worst FID value due to

over-smoothing structures. Although RedCNN and DNSN had better results than

BM3D, they had lower FID values than LDCT due to lack of finer details. GAN-

based models achieved a better balance between the noise removal and detail

preservation, but WGAN-VGG brought extra artifacts near the edges due to its

poor generalization.

Furthermore, in Table 4, we can find that all the supervised learning based

methods attained the best metric on DGH-M. However, CNN-based models

Fig. 8 Transverse CT slice of the head from DGH-L. The display window is [−20, 90] HU. The red, blue, and

green arrows indicate the richer detailed edges of local structure. Zoomed in for better visualization

Fig. 9 The gray histogram statistic results of all the compared methods on the DGH dataset. (a), (b), and (c)

separately denote result from the DGH-L, DGH-M, and DGH-H. Zoomed in for better visualization
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achieved better results on DGH-L and followed by DGH-H, but for GAN-based

models, both WGAN-VGG and ours have opposite trend. Considering that all the

methods were trained on Mayo dataset with specific low dose scans (e.g.,

quarter-dose), they tend to achieve better results on similar or lower noise levels,

but for GAN-based methods, extra discriminative constraints provide more gener-

alized ability on higher noise-level, which enables better results on DGH-H than

DGH-L. Even so, the proposed DNSGAN still had the best metrics on all the

datasets.

4 Conclusion

In this paper, we mainly propose a disentangled LDCT restoration model-DNSG

AN, which explicitly decouples noise removal into two steps: noise suppression

and structure recovery and achieves a better balance between quantitative metrics

and visual perception than other state-of-the-art methods. In addition, some ad-

vanced techniques including dynamic filter network and residual dense network

were introduced. Relativistic multi-scaled PatchGAN was also injected into the

discriminator network to recover finer structures further. Experiments on both

datasets with simulated and real noise respectively show that the proposed DNSG

AN has competitive performance for LDCT restoration and strong generalization

for different imaging protocols.

Fig. 10 Transverse CT slice of the head from DGH-H. The display window is [−20, 90] HU

Table 4 The results of the FID for each methods on the DGH dataset

LDCT BM3D RedCNN WGAN-VGG DNRN DNRGAN-CS DNRGAN

DGH-L 9.298779 12.592485 9.497512 8.939175 9.760384 8.738773 8.738769

DGH-M 9.226559 12.355052 9.376246 8.547891 9.695343 8.179189 8.178490

DGH-H 10.097047 13.119213 9.753763 8.831236 10.323053 8.351237 8.336177
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