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We investigate the time evolution of entanglement of various entangled states of a two-qubit system exposed

to either thermal or squeezed reservoirs. We show that, except for the vacuum reservoir, the sudden-death of

entanglement always exists in the thermal and squeezed reservoirs. We present explicit expression for the

sudden-death time of entanglement for various entangled states. We find that the sudden-death of entanglement

results from the portion of the double excitation component in the initial entangled state. In this sense, the

maximally entangled states of a two-qubit system that do not have the double excitation component is more

robust against the quantum fluctuations of the vacuum reservoir.
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I. INTRODUCTION

The state superposition principle of quantum theory al-
lows a quantum system to be in a linear and coherent super-
position of all possible states. This results in the coherent
correlations of different states in a superposition leading to
quantum states that are fundamentally different from classi-
cal correlations. In a one-party quantum system, quantum
coherence leads to many novel phenomena such as lasing

without inversion �1�, enhancement of refractive index �2�,
electromagnetically induced transparency �3�, correlated

emission laser �4�. A multiparty quantum system, in addition

to local quantum coherence that exists within each of sub-

systems, may have nonlocal or distributed quantum coher-

ence that exists among several distinct subsystems. This non-

local quantum correlation or quantum entanglement plays a

crucial role in quantum information processing such as quan-

tum teleportation �5�, quantum dense coding �6�, quantum

cryptography �7�, and quantum computing �8�.
Quantum entanglement is, however, too fragile to play a

real role in the real world because the inevitable interaction

of the quantum systems with their surrounding environments

leads to decoherence effects. On the other hand, it is essential

to maintain quantum entanglement for a longer time for

many applications of interest. In order to achieve this objec-

tive, a deep understanding of the decoherence mechanism is

desirable. In recent years, several investigations have fo-

cused on this subject �9–14�. In particular, Yu and Eberly

�11,12� showed that the dynamics of the quantum entangle-

ment between two qubits interacting independently with ei-

ther quantum noise or classical noise displays a completely

different behavior from the dynamics of the local coherence.

Instead of the exponential decay in time of the local coher-

ence, quantum entanglement may disappear within a finite

time in the dynamical evolution. This phenomenon is called

“entanglement sudden death” �11�. The sudden death of en-

tanglement of a two-qubit system under the influence of in-

dependent environments has been experimentally demon-

strated in an all-optical setup �14�.
In this paper, we consider a two-qubit system interacting

with two independent thermal or squeezed environments. For

a general class of two-qubit entangled states, we obtain an

explicit expression of the sudden death time. We find that the

appearance of entanglement sudden death strongly depends

on the initial entangled state and the environment.

II. MODEL

We consider two two-level atoms 1 and 2 that present a

two-qubit system and interact independently with their local

environments, as schematically shown in Fig. 1. There is no

direct interaction between the atoms. The correlation be-

tween the atoms results only from an initial quantum en-

tanglement between them.

In the interaction picture, the Hamiltonian of the atom-

field coupled system has the form ��=1�

H = �
k

�gk
�1�

ei��−�k�t�a1��b1�ak + H.c.�

+ �
k

�gk
�2�

ei��−�k�t�a2��b2�bk + H.c.� , �1�

where �bi� and �ai� are the ground and excited states of the

atom i, � is the frequency separation between the atomic

states, ak�bk� is the annihilation operator for the photons of

the reservoir surrounding atom 1�2� in mode k, �k is the

frequency of the mode k, and g
k

�i�
is the coupling constant of

the interaction between atom i and the local reservoir. When

writing the Hamiltonian �1�, we assume that the rotating-

wave approximation is valid. The same model has been em-

ployed by Yu and Eberly �11,12�. In their investigation, the

local reservoirs are in the vacuum state. In the present inves-

FIG. 1. �Color online� Two two-level atoms, initially prepared in

an entangled state, have no directional interaction with each other

but independently interact with their local reservoirs.
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tigation, we consider two cases where the local reservoirs are

in thermal and squeezed vacuum states. We find that the

thermal and the squeezed reservoir always lead to the

sudden-death of entanglement irrespective of the initial en-

tangled state of the atoms.

III. SUDDEN-DEATH OF ENTANGLEMENT

IN THERMAL RESERVOIR

In this section, we consider the dynamics of entanglement

of the atoms in a thermal reservoir. According to the general

quantum reservoir theory �15�, with the Hamiltonian �1�, we

can derive the following equation of motion for the reduced

density matrix of the atoms interacting with their local ther-

mal reservoirs of mean thermal photon numbers m and n:

d�

dt
= −

1

2
�1�m + 1���+

1�−
1� − 2�−

1��+
1 + ��+

1�−
1�

−
1

2
�1m��−

1�+
1� − 2�+

1��−
1 + ��−

1�+
1�

−
1

2
�2�n + 1���+

2�−
2� − 2�−

2��+
2 + ��+

2�−
2�

−
1

2
�2n��−

2�+
2� − 2�+

2��−
2 + ��−

2�+
2� , �2�

where �i is the spontaneous emission rate of atom i, and �±
i

are the raising ��� and lowering ��� operators of atom i,

defined as �+
i = �ai��bi� and �−

i = �bi��ai�. When deriving Eq.

�2�, we assume that the interaction between the atoms and

the reservoirs is weak and there is no back reaction effect of

the atoms on the reservoirs. It means that the reservoirs are at

all times in the initial uncorrelated thermal equilibrium mix-

ture of photon number states. Here, we also assume that the

correlation time between the atoms and the reservoirs is

much shorter than the characteristic time of the dynamic evo-

lution of the atoms such as spontaneous emission life and

entanglement sudden-death time so that the Markov approxi-

mation is valid.

The solution of Eq. �2� depends on the initial state of the

atoms. We note that, for a class of the initial states that will

be considered below, the solution of Eq. �2� has the matrix

form in the representation spanned by two-qubit product

states �1�= �a1 ,a2� , �2�= �a1 ,b2� , �3�= �b1 ,a2� , �4�= �b1 ,b2�

� =	
�11 0 0 �14

0 �22 �23 0

0 �32 �33 0

�41 0 0 �44


 . �3�

A measure of entanglement shared by both the atoms is

given by concurrence �16�. In order to calculate the concur-

rence, we first consider the matrix

M = ���Y
1

� �Y
2��*��Y

1
� �Y

2� , �4�

where

�Y
1

� �Y
2 =	

0 0 0 − 1

0 0 1 0

0 1 0 0

− 1 0 0 0

 . �5�

In the representation under consideration �Eq. �3��, the ma-

trix M has the explicit form

M =	
�14�41 + �11�44 0 0 2�11�14

0 �23�32 + �22�33 2�22�23 0

0 2�32�33 �23�32 + �22�33 0

2�44�41 0 0 �14�41 + �11�44


 . �6�

Eigenvalues of the matrix �6� are easily found to be

	1 = ���22�33 + ��23�32�
2,

	2 = ���22�33 − ��23�32�
2,

	3 = ���11�44 + ��14�41�
2,

	4 = ���11�44 − ��14�41�
2. �7�

In terms of these eigenvalues, the concurrence can be ex-

pressed as

C = Max�0,2���23�32 − ��11�44�,2���14�41 − ��22�33�
 .

�8�

In the following, we use this formalism to investigate the
dynamics of entanglement for several different initial cases.

�1� Consider the initial state ��0�= �1−a���a1 ,b2�
+ �b1 ,a2����a1 ,b2�+ �b1 ,a2�� /2+a�a1 ,a2��a1 ,a2� �0
a�1�.
In this state, the maximally entangled state ��a1 ,b2�
+ �b1 ,a2�� /�2 is mixed with the excited state �a1 ,a2�. For this
initial state, the solution of Eq. �2� is given by Eq. �A2�.

First let us consider the simple case of the standard

vacuum reservoir, i.e., n=m=0. For simplicity sake, we as-

sume �1=�2=�. From Eq. �A2�, we obtain the eigenvalues

of the resulting matrix M
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	1 = ��1 − ae−�t�e−�t�2,

	2 = �a�1 − e−�t�e−�t�2,

	3 = 	4 = a�1 − �a + 1�e−�t + ae−2�t�e−2�t. �9�

According to the concurrence formulation

C = Max�0,�	1 − �	2 − 2�	3
 , �10�

we find that the disentanglement process lasts for an infinite

time period when 0
a
3−2�2. However, there exists the

sudden-death phenomenon when 3−2�2�a
1. The

sudden-death time is given by

td =
1

�
ln

2a

�1 + a� − �2�1 − a�
. �11�

In Fig. 2, the time evolution of the concurrence for various

values of the parameter a is shown.

Instead of mixing the excited state �e1 ,e2�, we may mix

the ground state �g1 ,g2� with the maximally entangled state.

In that case, we find that the sudden-death of entanglement

never happens. Thus the spontaneous emission of the initial

portion of the double excitation is responsible for the

sudden-death entanglement. From Eq. �11�, we also see that

the larger the portion of the double excitation in the initial

state, the shorter the death time is.

�2� Consider the initial state ��0�=a��a1 ,a2�
+ �b1 ,b2����a1 ,a2�+ �b1 ,b2�� /4+ �2−a��a1 ,a2��a1 ,a2� /2 �0�a


2�. In this state, the maximally entangled state ��a1 ,a2�
+ �b1 ,b2�� /�2 is mixed with the double excited state �a1 ,a2�.
Here, unlike the state considered in the previous example,

the maximally entangled state itself contains the double ex-

citation component. For this initial state, the solution of Eq.

�2� is given by Eq. �A3�.
For the case n=m=0 and �1=�2=�, we obtain the eigen-

values of the matrix M

	1 = 	2 = ��1 −
a

4
��1 − e−�t�e−�t�2

,

	3 = ���1 −
a

4
��1 − 2�1 −

a

4
�e−�t + �1 −

a

4
�e−2�t�

+
a

4
e−�t�2

,

	4 = ���1 −
a

4
��1 − 2�1 −

a

4
�e−�t + �1 −

a

4
�e−2�t�

−
a

4
e−�t�2

, �12�

and the concurrence

C = �a − 2 + �2 −
a

2
�e−�t�e−�t. �13�

From Eq. �13�, we see that the entanglement can survive for

an infinite time period only when a=2. The sudden-death

always happens when 0
a�2. The sudden death time is

given by

td =
1

�
ln

a − 4

2�a − 2�
. �14�

The time evolution of the concurrence is shown in Fig. 3.

This example has two interesting features. One is that

when a=2 the entanglement can last for an infinite period in

spite of the existence of the double excitation component in

the ideal entangled state. Another is that the asymptotical

behavior of entanglement in time is immediately destroyed

no matter how small amount of additional double excitation

component is mixed in the ideal entangled state. In this

sense, the entangled state ��a1 ,a2�+ �b1 ,b2�� /�2 is more frag-

FIG. 2. �Color online� The time evolution of the concurrence in

the vacuum reservoir when the atom initially in the state

�1−a���a1 ,b2�+ �b1 ,a2����a1 ,b2�+ �b1 ,a2�� /2+a�a1 ,a2��a1 ,a2�.

FIG. 3. �Color online� The time evolution of the concurrence

for various values of the parameter a when the atoms

initially in the state a��a1 ,a2�+ �b1 ,b2����a1 ,a2�+ �b1 ,b2�� /4

+ �2−a��a1 ,a2��a1 ,a2� /2.
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ile than the entangled state ��a1 ,b2�+ �b1 ,a2�� /�2 against the

quantum fluctuation of the vacuum.

�3� Consider the Werner state �17�

��0� =
a

2
��a1,b2� − �b1,a2����a1,b2� − �b1,a2��

+
1 − a

4
��a1,a2��a1,a2� + �b1,b2��b1,b2� + �a1,b2��a1,b2�

+ �b1,a2��b1,a2�� . �15�

In this state, the maximally entangled state ��a1 ,b2�
− �b1 ,a2�� /�2 is mixed with the equally-weighted four pos-

sible states. For this initial state, the solution of Eq. �2� is

given by Eq. �A4�. Under the conditions n=m=0 and �1

=�2=�, we find the eigenvalues of the matrix M

	1 = �1

4
�2�1 + a� − �1 − a�e−�t�e−�t�2

,

	2 = �1 − a

4
�2 − e−�t�e−�t�2

,

	3 = 	4 =
1 − a

16
�4 − 4e−�t + �1 − a�e−2�t�e−2�t, �16�

and the concurrence

C = Max�0,�a −��1 − a��1 − e−�t +
1 − a

4
e−2�t��e−�t� .

�17�

From Eq. �17�, we see that the entanglement lasts for an

infinite period when
�5−1

2
�a
1. The sudden death of en-

tanglement happens after a time

td =
1

�
ln

�a − 1�

2��a�a + 1� − 1�
�18�

when 0
a�
�5−1

2
. The time evolution of the concurrence is

shown in Fig. 4.

�4� Finally we consider the initial state

��0�=
a

3
�a1a2 � �a1a2 � +

1−a

3
�b1b2 � �b1b2 � +

1

3
� �a1b2 � + �b1a2 � �

� � �a1b2 � + �b1a2 � � . Unlike the initial state in example �1�,
this state contains both the double excitation and the ground

state components at the same time. This state was considered

by Yu and Eberly and obtained the sudden-death time with

a=1 �11�. We reconsider this example for the sake of com-

pleteness and find the sudden-death time for any value of the

parameter a. For this initial state, the solution of Eq. �2� is

given by Eq. �A5�.
For the standard vacuum n=m=0, and assuming �1=�2

=�, we find the eigenvalues of the matrix M

	1 = �1

3
��2 + a� − ae−�t�e−�t�2

,

	2 = �a

3
�1 − e−�t�e−�t�2

,

	3 = 	4 =
a

9
�3 − 2�a + 1�e−�t + ae−2�t�e−2�t, �19�

and the concurrence

C = Max�0,
2

3
�1 − �3a − 2a�a + 1�e−�t + a2e−2�t�e−�t� .

�20�

From Eq. �20�, we find that when 1/3�a
1 the sudden

death of entanglement always happens and the sudden-death

time is given by

FIG. 4. �Color online� The time evolution of the concurrence

when the atoms are initially in the Werner state.
FIG. 5. �Color online� The time evolution of the concurrence

when the atom initially in the state
a

3
�a1a2 � �a1a2 �

+
1−a

3
�b1b2 � �b1b2 � +

1

3
� �a1b2 � + �b1a2 � � � �a1b2 � + �b1a2 � � .
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td =
1

�
ln

a

�a + 1� − �a2 − a + 2
. �21�

The results obtained by Yu and Eberly �11� are recovered for

the case a=1. From Eq. �21�, td becomes infinite when a


1/3, which means there is no sudden-death of entangle-

ment. The time evolution of the concurrence for various val-

ues of the parameter a is shown in Fig. 5.

In the above examples, we see that the quantum fluctua-

tion of the vacuum reservoir is not sufficient to destroy the

entanglement in a finite time in some situations. The sudden-

death of entanglement results from the decay of the mixed

double excitation state component.

When the mean thermal photon number is not zero, we

find that in the thermal reservoir the entanglement sudden-

death always happens no matter which entangled state the

atoms are initially in and no matter how small the nonzero

mean thermal photon number is. In Fig. 6, the time evolution

of the concurrence is plotted for the thermal reservoir with

the nonzero mean photon number when the atoms are ini-

tially in the entangled state ��a1 ,b2�+ �b1 ,a2�� /�2. In the first

example above, we have shown that the entanglement can

last for an infinite period in the vacuum reservoir for this

initial entangled state. However, as shown in Fig. 6, the

sudden-death of entanglement always happens in a thermal

reservoir of nonzero mean photon number. It is also observed

that the death time decreases as the mean thermal photon

number becomes large.

IV. ENTANGLEMENT SUDDEN-DEATH

IN SQUEEZED RESERVOIR

In this section, we consider the case in which atoms 1 and

2 are exposed in broadband squeezed vacuum reservoirs. Ac-

cording to the general quantum reservoir theory �15�, we

derive the equation of motion for the reduced density matrix

of the atoms independently interacting with their local

squeezed reservoirs

�̇ = �

=1,2

�−
�


2
cosh2�r
���+


�−

� − 2�−


��+

 + ��+


�−

�

− �
e−i�
 sinh�r
�cosh�r
��−

��−


 −
�


2
sinh2�r
���−


�+

�

− 2�+

��−


 + ��−

�+


� − �
ei�
 sinh�r
�cosh�r
��+

��+


� ,

�22�

where r1 and r2 are the squeezing parameters of the reser-

voirs, and �1 and �2 are the squeezing angles. When deriving

the master equation �22�, besides using the same assumptions

as when deriving the master equation �2� but assuming the

reservoirs to be in the squeezed vacuum instead of the un-

correlated thermal equilibrium mixture of photon number

states, we also assume that squeezing bandwidths of the

squeezed reservoirs are much larger than the atomic line-

widths.

For the initial state

��0� =
1 − a

2
��a1,b2� + �b1,a2����a1,b2� + �b1,a2��

+ a�a1,a2��a1,a2� , �23�

the solution of the master equation �22� is given by Eq. �B2�.
With the solution, we can calculate the concurrence by using

Eqs. �7� and �8�. In the preceding section, we have found that

for the initial state �23� the entanglement lasts for an infinite

time in a vacuum reservoir when a�1. However, in the

squeezed reservoir, we find that the entanglement sudden-

death always happens no matter how small portion of the

double excitation is in the initial state. This is shown explic-

itly in the numerical results plotted in Figs. 7 and 8. In Figs.

9 and 10, the time evolution of the concurrence is shown for

1
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C

FIG. 6. �Color online� The time evolution of the concurrence in

a thermal reservior when the atoms are initially in the entangled

state state ��a1 ,b2�+ �b1 ,a2�� /�2. The solid line is for the vacuum

case �n=m=0�, the dashed line for the thermal reservior with n

=m=0.1, and the dotted line for the thermal reservior with n=m

=0.2.
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FIG. 7. �Color online� The time evolution of the concurrence

when the atoms initially in the state
1−a

2
��a1 ,b2�+ �b1 ,a2����a1 ,b2�

+ �b1 ,a2��+a�a1 ,a2��a1 ,a2� in the squeezed reservior with r=0.3.
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different values of the degree of squeezing. We see that the

sudden-death time of entanglement becomes shorter as r in-

creases, i.e., the entanglement survives for a shorter time

with increasing the degree of squeezing.

V. SUMMARY

We considered a two-qubit system consisting of two two-

level atoms that are spatially separated from each other and

independently coupled to local reservoirs that may be in ei-

ther a thermal state or a vacuum squeezed state. We investi-

gated the dynamical evolution of entanglement between the

atoms coupled to the reservoirs. We show that, for a certain

class of two-qubit entangled states, the entanglement mea-

sured by concurrence can suddenly disappear during the dy-

namic evolution in the vacuum reservoir. We find explicit

expressions for the entanglement sudden death time for vari-

ous entangled states. In contrast with the vacuum reservoir,

we find that sudden death of entanglement always happens in

the thermal reservoir with nonzero mean photon number and

the squeezed reservoir. The exponential decay of entangle-

ment is a very special result to the vacuum reservoir. The

above results are not just for discrete-variable quantum sys-

tems. In fact, for continuous-variable two-party quantum sys-

tems, it has been shown that entanglement initially in a two-

mode squeezed state disappears in a finite time period in the

thermal environment but can last for an infinite time in the

vacuum environment �18,19�.
Note added in proof. Entanglement sudden death has been

observed recently by Almeida et al. �20�. See also the paper

by Eberly and Yu �21�.
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APPENDIX A

In the representation spanned by two-qubit product states

�1�= �a1 ,a2� , �2�= �a1 ,b2� , �3�= �b1 ,a2� , �4�= �b1 ,b2�, Eq. �2�
can be written in the matrix form

�̇11 = − ��m + 1��1 + �n + 1��2��11 + n�2�22 + m�1�33,

�̇22 = − ��m + 1��1 + n�2��22 + �n + 1��2�11 + m�1�44,

FIG. 8. �Color online� The time evolution of the concurrence

when the atoms initially in the state
1−a

2
��a1 ,b2�+ �b1 ,a2����a1 ,b2�

+ �b1 ,a2��+a�a1 ,a2��a1 ,a2� in the squeezed reservior with r=0.1.
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FIG. 9. �Color online� The time evolution of the concurrence

when the atoms initially in the state
1

2
��a1 ,b2�+ �b1 ,a2����a1 ,b2�

+ �b1 ,a2�� in the squeezed rerservior.

FIG. 10. �Color online� The time evolution of the concurrence

when the atoms initially in the state
1

2
��a1 ,b2�+ �b1 ,a2����a1 ,b2�

+ �b1 ,a2�� in the squeezed rerservior with the squeezing parameter

r=0.01,0.1,0.3.
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�̇33 = − ��n + 1��2 + m�1��33 + �m + 1��1�11 + n�2�44,

�̇44 = − �m�1 + n�2��44 + �m + 1��1�22 + �n + 1��2�33,

�̇23 = − ��m +
1

2
��1 + �n +

1

2
��2��23,

�̇32 = − ��m +
1

2
��1 + �n +

1

2
��2��32,

�̇14 = − ��m +
1

2
��1 + �n +

1

2
��2��14,

�̇41 = − ��m +
1

2
��1 + �n +

1

2
��2��41. �A1�

The solution of this equation depends on the initial state. In

the following, we list solutions of Eq. �A1� for various initial

states.

�1� For the initial state

��0� = �1 − a���a1,b2� + �b1,a2����a1,b2� + �b1,a2��/2

+ a�a1,a2��a1,a2��0 
 a � 1� ,

the solution of Eq. �A1� is given by

�11 =
1

2�2m + 1��2n + 1�
�2mn + m�a�2n + 1� + 1�

�e−�2n+1��2t + n�a�2m + 1� + 1�e−�2m+1��1t

+ �4amn + 3am + 3an − 2mn − m − n + 2a�

�e−��2m+1��1+�2n+1��2�t
 ,

�22 =
1

2�2m + 1��2n + 1�
�2m�n + 1� − m�a�2n + 1� + 1�

�e−�2n+1��2t + �n + 1��a�2m + 1� + 1�e−�2m+1��1t − �4amn

+ 3am + 3an − 2mn − m − n + 2a�e−��2m+1��1+�2n+1��2�t
 ,

�33 =
1

2�2m + 1��2n + 1�
�2�m + 1�n + �m + 1��a�2n + 1� + 1�

�e−�2n+1��2t − n�a�2m + 1� + 1�e−�2m+1��1t − �4amn

+ 3am + 3an − 2mn − m − n + 2a�e−��2m+1��1+�2n+1��2�t
 ,

�44 =
1

2�2m + 1��2n + 1�
�2�m + 1��n + 1�

− �m + 1��a�2n + 1� + 1�e−�2n+1��2t − �n + 1�

��a�2m + 1� + 1�e−�2m+1��1t + �4amn + 3am + 3an

− 2mn − m − n + 2a�e−��2m+1��1+�2n+1��2�t
 ,

�23 = �32 =
1 − a

2
exp�− �m +

1

2
��1t − �n +

1

2
��2t� .

�A2�

�2� For the initial state ��0�=a��a1 ,a2�+ �b1 ,b2����a1 ,a2�
+ �b1 ,b2�� /4+ �2−a��a1 ,a2��a1 ,a2� /2�0�a
2�, the solution

of Eq. �A1� is given by

�11 =
1

4�2m + 1��2n + 1�
�4mn − m�2an − 4n + a − 4�

�e−�2n+1��2t − n�2am − 4m + a − 4�

�e−�2m+1��1t − �am + an − 4mn − 4m − 4n + a − 4�

�e−��2m+1��1+�2n+1��2�t
 ,

�22 =
1

4�2m + 1��2n + 1�
�4m�n + 1� + m�2an − 4n + a − 4�

�e−�2n+1��2t − �n + 1��2am − 4m + a − 4�

�e−�2m+1��1t + �am + an − 4mn − 4m − 4n + a − 4�

�e−��2m+1��1+�2n+1��2�t
 ,

�33 =
1

4�2m + 1��2n + 1�
�4�m + 1�n − �m + 1�

��2an − 4n + a − 4�e−�2n+1��2t + n�2am − 4m + a − 4�

�e−�2m+1��1t + �am + an − 4mn − 4m − 4n + a − 4�

�e−��2m+1��1+�2n+1��2�t
 ,

�44 =
1

4�2m + 1��2n + 1�
�4�m + 1��n + 1� + �m + 1�

��2an − 4n + a − 4�e−�2n+1��2t + �n + 1�

��2am − 4m + a − 4�e−�2m+1��1t − �am + an − 4mn − 4m

− 4n + a − 4�e−��2m+1��1+�2n+1��2�t
 ,

�14 = �41 =
a

4
exp�− �m +

1

2
��1t − �n +

1

2
��2t� . �A3�

�3� For the Werner state �15�, the solution of Eq. �A1� is

given by

�11 =
1

4�2m + 1��2n + 1�
�4mn + 2me−�2n+1��2t + 2ne−�2m+1��1t

+ �1 − a�2m + 1��2n + 1��e−��2m+1��1+�2n+1��2�t
 ,

�22 =
1

4�2m + 1��2n + 1�
�4m�n + 1� − 2me−�2n+1��2t

+ 2�n + 1�e−�2m+1��1t − �1 − a�2m + 1��2n + 1��

�e−��2m+1��1+�2n+1��2�t
 ,

�33 =
1

4�2m + 1��2n + 1�
�4�m + 1�n + 2�m + 1�e−�2n+1��2t

− 2ne−�2m+1��1t − �1 − a�2m + 1��2n + 1��

�e−��2m+1��1+�2n+1��2�t
 ,
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�44 =
1

4�2m + 1��2n + 1�
�4�m + 1��n + 1� − 2�m + 1�

�e−�2n+1��2t − 2�n + 1�e−�2m+1��1t

+ �1 − a�2m + 1��2n + 1��e−��2m+1��1+�2n+1��2�t
 ,

�23 = �32 = −
a

2
exp�− �m +

1

2
��1t − �n +

1

2
��2t� .

�A4�

�4� For the initial state ��0�=
a

3
�a1a2��a1a2�+

1−a

3 �b1b2
�

��b1b2�+
1

3
��a1b2�+ �b1a2

����a1b2�+ �b1a2 � �, the solution of

Eq. �A1� is given by

�11 =
1

3�2m + 1��2n + 1�
�3mn + m�2an + a − n + 1�e−�2n+1��2t

+ n�2am + a − m + 1�e−�2m+1��1t

+ �am + an + a − mn − m − n�e−��2m+1��1+�2n+1��2�t
 ,

�22 =
1

3�2m + 1��2n + 1�
�3m�n + 1� − m�2an + a − n + 1�

�e−�2n+1��2t + �n + 1��2am + a − m + 1�e−�2m+1��1t

− �am + an + a − mn − m − n�e−��2m+1��1+�2n+1��2�t
 ,

�33 =
1

3�2m + 1��2n + 1�
�3�m + 1�n

+ �m + 1��2an + a − n + 1�e−�2n+1��2t

− n�2am + a − m + 1�e−�2m+1��1t

− �am + an + a − mn − m − n�e−��2m+1��1+�2n+1��2�t
 ,

�44 =
1

3�2m + 1��2n + 1�
�3�m + 1��n + 1�

− �m + 1��2an + a − n + 1�e−�2n+1��2t

− �n + 1��2am + a − m + 1�e−�2m+1��1t

+ �am + an + a − mn − m − n�e−��2m+1��1+�2n+1��2�t
 ,

�23 = �32 =
1

3
exp�− �m +

1

2
��1t − �n +

1

2
��2t� . �A5�

APPENDIX B

In the representation employed in writing Eq. �A1�, the

master equation �22� yields the following equation for the

various matrix elements:

�11
˙ = − ��1 cosh2�r1� + �2 cosh2�r2���11 + �2 sinh2�r2��22

+ �1 sinh2�r1��33,

�22
˙ = − ��1 cosh2�r1� + �2 sinh2�r2���22 + �2 cosh2�r2��11

+ �1 sinh2�r1��44,

�33
˙ = − ��1 sinh2�r1� + �2 cosh2�r2���33 + �1 cosh2�r1��11

+ �2 sinh2�r2��44,

�44
˙ = − ��1 sinh2�r1� + �2 sinh2�r2���44 + �1 cosh2�r1��22

+ �2 cosh2�r2��33,

�23
˙ = −

1

2
���1 cosh�2r1� + �2 cosh�2r2���23

+
1

2
��2ei�2 sinh�2r2��14 + �1ei�1 sinh�2r1��41�� ,

�32
˙ = −

1

2
���1 cosh�2r1� + �2 cosh�2r2���32

+
1

2
��1ei�1 sinh�2r1��14 + �2ei�2 sinh�2r2��41�� ,

�14
˙ = −

1

2
���1 cosh�2r1� + �2 cosh�2r2���14

+
1

2
��2ei�2 sinh�2r2��23 + �1ei�1 sinh�2r1��32�� ,

�41
˙ = −

1

2
���1 cosh�2r1� + �2 cosh�2r2���41

+
1

2
��1ei�1 sinh�2r1��23 + �2ei�2 sinh�2r2��32�� .

�B1�

For the initial state �23�, the solution of Eq. �B1� is given

by

�11 =
1

2�C2 + S2��C1 + S1�
�2S1S2 + S2�aS1 + aC1 + C1 − S1�

�e−�C1+S1�t + S1�aS2 + aC2 + C2 − S2�e−�C2+S2�t

+ �aS1C2 + aC1S2 + 2aC2C1 − C2S1 − C1S2�

�e−�C1+S1+C2+S2�t� ,

�22 =
1

2�C2 + S2��C1 + S1�
�2S1C2 + C2�aS1 + aC1 + C1 − S1�

�e−�C1+S1�t − S1�aS2 + aC2 + C2 − S2�e−�C2+S2�t − �aS1C2

+ aC1S2 + 2aC2C1 − C2S1 − C1S2�e−�C1+S1+C2+S2�t� ,
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�33 =
1

2�C2 + S2��C1 + S1�
�2C1S2 − S2�aS1 + aC1 + C1 − S1�

�e−�C1+S1�t + C1�aS2 + aC2 + C2 − S2�e−�C2+S2�t − �aS1C2

+ aC1S2 + 2aC2C1 − C2S1 − C1S2�e−�C1+S1+C2+S2�t� ,

�44 =
1

2�C2 + S2��C1 + S1�
�2C1C2 − C2�aS1 + aC1 + C1 − S1�

�e−�C1+S1�t − C1�aS2 + aC2 + C2 − S2�e−�C2+S2�t + �aS1C2

+ aC1S2 + 2aC2C1 − C2S1 − C1S2�e−�C1+S1+C2+S2�t� ,

�23 = �32 =
1 − a

2
e−1/2�C3+C4�t cosh�1

2
�S3 + S4�t� ,

�14 = �41 = −
1 − a

2
e−1/2�C3+C4�t sinh�1

2
�S3 + S4�t� ,

�B2�

where

C
 = �
 cosh2�r
�, S
 = �
 sinh2�r
�, �
 = 1,2� ,

C� = �� cosh�2r��, S� = �� sinh�2r��, �� = 3,4� .

�B3�

In the above, for simplicity, we assume �1=�2=0.

�1� O. Kocharovskaya and Ya. I. Khanin, JETP Lett. 48, 630

�1988�; S. E. Harris, Phys. Rev. Lett. 62, 1033 �1989�; M. O.

Scully, S.-Y. Zhu, and A. Gavrielides, Phys. Rev. Lett. 62,

2813 �1989�.
�2� M. O. Scully, Phys. Rev. Lett. 67, 1855 �1991�.
�3� S. E. Harris, J. E. Field, and A. Imamoğlu, Phys. Rev. Lett. 64,

1107 �1990�.
�4� M. O. Scully, Phys. Rev. Lett. 55, 2802 �1985�; M. O. Scully

and M. S. Zubairy, Phys. Rev. A 35, 752 �1987�.
�5� C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres,

and W. K. Wootters, Phys. Rev. Lett. 70, 1895 �1993�.
�6� C. H. Bennett and S. J. Wiesner, Phys. Rev. Lett. 69, 2881

�1992�.
�7� A. K. Ekert, Phys. Rev. Lett. 67, 661 �1991�.
�8� A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, Phys. Rev.

Lett. 74, 4083 �1983�.
�9� P. J. Dodd and J. J. Halliwell, Phys. Rev. A 69, 052105 �2004�;

P. J. Dodd, ibid. 69, 052106 �2004�.
�10� M. F. Santos, P. Milman, L. Davidovich, and N. Zagury, Phys.

Rev. A 73, 040305�R� �2006�.
�11� T. Yu and J. H. Eberly, Phys. Rev. Lett. 93, 140404 �2004�.
�12� T. Yu and J. H. Eberly, Phys. Rev. Lett. 97, 140403 �2006�.
�13� T. Yu and J. H. Eberly, Opt. Commun. 264, 393 �2006�.
�14� M. P. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S. P.

Walborn, P. H. Souto Ribeiro, and L. Davidovich, eprint

arXiv:quant-ph/0701184.

�15� M. O. Scully and M. S. Zubairy, Quantum Optics �Cambridge

University Press, London, 1997�.
�16� W. K. Wootters, Phys. Rev. Lett. 80, 2245 �1998�.
�17� R. F. Werner, Phys. Rev. A 40, 4277 �1989�.
�18� L. M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Phys. Rev.

Lett. 84, 2722 �2000�.
�19� F. L. Li and H. R. Li, Chin. Phys. Lett. 6, 991 �2004�.
�20� M. P. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S. P.

Walborn, P. H. Souto Ribeiro, and L. Davidovich, Science

316, 579 �2007�.
�21� J. H. Eberly and T. Yu, Science 316, 555 �2007�.

DISENTANGLEMENT IN A TWO-QUBIT SYSTEM… PHYSICAL REVIEW A 75, 062336 �2007�

062336-9


