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Disentangling 3D/4D Facial Affect Recognition With

Faster Multi-View Transformer
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Abstract—In this paper, we propose MiT: a novel multi-view
transformer model1 for 3D/4D facial affect recognition. MiT in-
corporates patch and position embeddings from various patches
of multi-views and uses them for learning various facial muscle
movements to showcase an effective recognition performance. We
also propose a multi-view loss function that is not only gradient-
friendly, and hence speeds up the gradient computation during
back-propagation, but it also leverages the correlation associated
with the underlying facial patterns among multi-views. Addition-
ally, we offer multi-view weights that are trainable and learnable,
and help substantially in training. Finally, we equip our model with
distributed performance for faster learning and computational
convenience. With the help of extensive experiments, we show that
our model outperform the existing methods on widely-used datasets
for 3D/4D FER.

Index Terms—Affect, emotion recognition, multi-views,
transformer, 3D/4D faces.

I. INTRODUCTION

A
TTENTION-BASED architectures, specifically Trans-

formers [1], have shown exemplary performance in nat-

ural language processing (NLP) tasks. One of the main in-

gredients of Transformer’s success is their ability to be pre-

trained on large data, and then having the capability of fine-

tuning for specific tasks [2], [3]. Equipped with computa-

tional efficiency and scalability, and with no sign of saturat-

ing performance [4], the tremendous breakthroughs shown by

Transformers have ignited eager interest in the computer vi-

sion community [5] to adapt these models for vision-related

tasks [6]–[11].

Inspired by the scaling victory of Transformers, we work

towards developing a transformer architecture to disentangle the

correlated patterns in 3D/4D faces for effective facial expres-

sion recognition (FER). Specifically, contrary to the 2D faces

(e.g., [12]–[15]), such expression recognition involves predict-

ing emotions from 3D/4D faces with complementary spatial and
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temporal facial features, and the significant results [16]–[19]

have proven its merits.

To learn from the underlying 3D facial geometry, several

methods exist in the literature. Generally, the most popular

approaches can be categorized as local feature-based [19]–

[21], template-based [22]–[24], curve-based [25], [26] and 2D

projections-based [27], [28] approaches. Recently, 4D FER has

received great deal of interest for allowing deep learning models

to learn effective facial cues. For example, Yin et al. [29] and

Sun et al. [30] used Hidden Markov Models (HMM) to train the

network with temporal facial features via 4D faces. Likewise,

by using the random forest classifier, Ben Amor et al. [31]

demonstrated that a deformation vector field based on Rieman-

nian analysis could produce handy results. Similarly, Sandbach

et al. [32] used HMM and GentleBoost for classifying the pro-

posed free-form representations of the 3D frames. Additionally,

the authors in [33] represented geometrical coordinates and its

normal as feature vectors, and as dynamic local binary patterns

(LBP) in another work [34] for classifying expressions with sup-

port vector machine (SVM). In a similar way, the authors in [35]

extract features from polar angles and curvatures, and propose a

spatio-temporal LBP-based feature extractor for classification.

Although these works report desirable results, the use of local

and manually extracted features make the solutions practically

inconvenient.

In contrast, Li et al. [36] proposed an interesting model for

automatic 4D FER via dynamic geometrical image network.

They generate geometrical images by estimating the differential

quantities from the given facial point clouds. The final emotion

prediction is then a result of score-level fusion from the prob-

ability scores of different geometrical images. Another recent

method takes into account the sparse coding-based represen-

tations of LBP difference [37]. In this work, the appearance

and geometric features are first extracted via mesh-local binary

pattern difference (mesh-LBPD), and then sparse coding is

applied to predict emotions.

Recently, some works [38], [39] used attention-based models

or Transformers for 2D FER and they do not perform 3D/4D

FER. Nevertheless, for a robust FER, an ideal algorithm should

look beyond the apparent feature representations. For example,

the role of multi-views is often ignored its ability to leverage

effective facial cues are not explored.

A. Contributions

In the light of above discussion, we highlight our contributions

here. As a backbone, we use Vision Transformer (ViT) [4]
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Fig. 1. Multi-view Transformer’s overview: we split multi-view faces into
multi-view patches of fixed-size, linearly embed each of them, add multi-view
position embeddings, and feed the resulting sequence of vectors to our proposed
multi-view Transformer encoder. We add learnable classification token to the
sequence for each view, and for classification, we add extra learnable multi-view
weights.

which applies the original Transformer [1]. However, we

substantially extend this backbone to tailor our proposed multi-

view transformer architecture. In particular, our contributions

are as following:

1) We propose a novel multi-view transformer (MiT) that

incorporates patch and position embedding from various

patches of multi-views.

2) Instead of using independent losses, we propose a multi-

view loss function to facilitate gradient updates across

multi-views during backward propagation.

3) Rather than using fixed/manual weights, we propose

multi-view weights that are trainable and learnable.

4) For computational and practical convenience, we equip

our code with faster distributed training performance2.

Finally, to our best knowledge, MiT is the pioneer multi-view

transformer architecture for 3D/4D facial data.

II. OUR PROPOSED MODEL

Since our MiT model aims to incorporate multi-views, a

benefit of this tremendously robust setup is that scalable and

efficient NLP Transformer architectures – and their effective

implementations – can be utilized almost out of the box.

A. Multi-View Transformer (MiT)

We present an overview of our model in Fig. 1. To handle

multi-view 2D images, we reshape each image Xθ ∈ R
H×W×C

into train a flattened patches xp,θ ∈ R
H×(P 2.C), where (H,W )

denotes input image resolution of each view, θ is the rotation

angle (20◦ for left, 0◦ for right, and −20◦ for front) for each

view,C is the number of channels, (P, P ) is the size of extracted

patch, and N = HW/P 2 refers to total number of patches in

each view. Since the transformer uses constant latent vector size

κ in its layers, we map the flattened patches to κ dimensions

2https://github.com/muzammilbehzad/FasterDistributedTraining

Fig. 2. Illustration of the proposed multi-view Transformer encoder.

with a trainable linear projection as,

ε0,θ = [xclass;x
1
p,θE;x2

p,θE; . . .xN
p,θE; ] +Epos,

E ∈ R
(P 2.C)×κ,Epos ∈ R

(N+1)×κ, (1)

where the output of this projection in (1) corresponds to patch

embeddings for each θ. As a class token, we prepend learnable

embedding to the sequence of embedded patches for each view

(ε00,θ = xclass) whose state at the Transformer’s encoder output

(ε0L,θ) corresponds to the image representation Yθ. To train

positional knowledge, position embeddings are added to patches

via standard learnable 1D position embeddings. Consequently,

the sequences of embedding vectors for each view serve as

input to the encoder. As shown in Fig. 2, the encoder contains

alternating layers of multi-headed self-attention, and multilayer

perceptron (MLP) blocks, where the residual connections are

applied after every block, while layernorm is applied before

every block as,

ε′l,θ = η(Φ(εl−1,θ)) + εl−1,θ, ∀l, (2)

εl,θ = µ(Φ(ε′l,θ)) + ε′l,θ, ∀l, (3)

where l is the layer and, η(.), µ(.) andΦ(.) refer to multi-headed

self-attention, MLP with two layers and GELU non-linearity,

and layernorm operator, respectively, and the image representa-

tion for each view is defined by Yθ = Φ(ε0L,θ).

B. Multi-View Loss

Our transformer model distinguishes itself from other models

via its innovative loss function. Instead of computing indepen-

dent losses for each facial view, we propose a multi-view loss

function to leverage the loss associated with the underlying

correlated facial patterns among multi-views. This collaborative

approach not only yields effective performance results, but it is

also gradient-friendly thereby allowing faster processing. We

therefore formulate our multi-view loss as:

LM � −
∑

i

yi ln

(
∑

θ

ωθŷi,θ

)

, (4)

where yi is the label, and ŷi,θ is model’s prediction at each

view, and ωθ are learnable weights learned while training.

Importantly, we theoretically demonstrate the gradient-friendly

nature of our proposed loss function advocating its efficiency

for faster network training. Let ϕj denote the model’s learnable

parameter/weight at index j, we can then compute the derivative

https://github.com/muzammilbehzad/FasterDistributedTraining
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of (4) w.r.t the learnable parameter as:

∂LM

∂ϕj

= −
∂

∂ϕj

∑

i

yi ln(
∑

θ

ωθŷi,θ), (5)

∂LM

∂ϕj

= −
∑

i �=j

yi
1

∑

θ ωθŷi,θ
×

∂

∂ϕj

(
∑

θ

ωθŷi,θ)

︸ ︷︷ ︸

i �=j

− yj
1

∑

θ ωθŷj,θ
×

∂

∂ϕj

(
∑

θ

ωθŷi,θ)

︸ ︷︷ ︸

i=j

(6)

Using the standard derivation of the gradients, we express the

derivative terms in (6) as,

∂

∂ϕj

∑

θ

ωθŷi,θ =

{∑

θ ωθŷi,θ(1−
∑

θ ωθŷi,θ), i = j

−
∑

θ ωθŷi,θ
∑

θ ωθŷj,θ, i �= j
(7)

Manipulating and rearranging the terms in (6) and (7) yields

∂LM

∂ϕj

=
∑

θ

ωθŷj,θ − yi, (8)

which translates into a very elegant and gradient-friendly ex-

pression especially for computational reasons.

C. Trainable Multi-View Weights

To effectively incorporate information flow from different

views, we propose trainable multi-view weights for each view as

expressed in earlier equations. Our multi-view weights learn to

assign larger weights to the view that comparatively contributes

more in correct predication, and vice versa. For this, we use

the cross-entropy loss of each view. Specifically, given ωθ as

the multi-view weights with θ = {20◦, 0◦,−20◦}, and loss of

each view independently as Lθ = −
∑

yi ln ˆyi,θ, we update the

existing value of the multi-view weight as,

ωθ :=
e−

∑
yi ln ˆyi,θ

∑K
j=1 e

−
∑

yj ln ˆyj,θ

. (9)

These learned weights reflect the contribution of each view, in

terms of correct classification, and therefore, helps the recog-

nition performance. Consequently, unlike the traditional ap-

proaches [36], [40], [41] which rely on constant and manually

selected weights, we let the network learn the most suitable

weights. This way, the networks not only learns to compute

appropriate weights, but it also produces effective results which

can be adapted for works where the need of manually-injected

weights is discouraged [42], [43].

D. Faster Distributed Training

Contrary to the existing methods, we use PyTorch’s dis-

tributed communication package (torch.distributed) for

faster training capabilities, of multi-view learning, which are

distributed over available resources. As a backend, we rely

on NVIDIA Collective Communications Library (NCCL). By

dynamically allocating available, and accessible, network’s port

and IP to form a TCP communication socket, we ensure syn-

chronization of distributed processes in case of multiple GPUs

or even multiple nodes. Our solution effectively offers com-

munication primitives and support for multiprocess parallelism

TABLE I
ACCURACY (%) COMPARISONS WITH STATE-OF-THE-ART METHODS ON THE

BU-3DFE SUBSET I AND SUBSET II, AND BOSPHORUS DATASETS

across several computation GPUs/nodes connected to one or

more machines for efficient 3D/4D FER training.

III. EXPERIMENTS AND RESULTS

To validate our proposed multi-view transformer architecture,

we use Bosphorus [44], BU-3DFE [45], BU-4DFE [29] and

BP4D-Spontaneous [46] datasets. Note that from the 3D/4D

point cloud data, we first compute projected 2D images in

multi-views by following previous works [36], [40], [41], [47].

Moreover, for video data, we form dynamic images via rank

pooling [48] for each view [40] to feed our Transformer. For ex-

periments, a 10-fold subject-independent cross-validation (CV)

is used. Moreover, we validate our multi-view Transformer

(MiT) by using the Tiny, Small and Base model variants - each

with 14 patches, 12 layers and 224×224 resolution per view.

The embedding dimension/heads/number of parameters in MiT-

Tiny, MiT-Small and MiT-Base are 576/9/15 M, 1152/18/63 M,

and 2304/36/255 M, respectively. This implies that the smaller

MiT variant has a lower parameter count with faster throughput,

and vice versa.

A. Comparisons With 3D FER Methods

As in the previous solutions [27], [28] for 3D FER, the

BU-3DFE dataset containing 101 subjects is divided into two

subsets: Subset I – the standard dataset including expressions

with two higher levels of intensities, and Subset II – rarely

applied in 3D FER, containing all four levels of intensities

except the 100 neutral samples. For Bosphorus dataset, only 65

subjects perform the six expressions with each subject having

one sample per expression. Table I summarizes the accuracy

results from our extensive experiments for 3D FER. The overall

impression from the reported results advocate the effectiveness

of our method. Specifically, for Subset I dataset, we show that our

multi-view transformer outperforms the previous most accurate

state-of-the-art method [28] by 2.26%, 3.75% and 5.01%, when

using the Tiny, Small and Base variants, respectively. A similar

trend is noted for Subset II and Bosphorus datasets. From Tiny

to Base, we improve the prediction results from 4.46% - 6.92%

for Subset II, and from 3.51% - 6.95% for the Bosphorus dataset.

B. Comparisons With 4D FER Methods

We also conduct several experiments on BU-4DFE dataset

which contains posed video clips of 101 subjects with six

facial expressions. As shown in Table II, we report our accu-

racy results in comparison with several state-of-the-art meth-

ods. We illustrate that our model outperforms the compet-

ing methods by a considerable margin thanks to its effec-

tive multi-view strategy. Specifically, by comparing with the
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TABLE II
PERFORMANCE (%) COMPARISON OF 4D FER WITH THE STATE-OF-THE-ART

METHODS ON THE BU-4DFE DATASET

∗Click on Tiny, Small, and Base to access corresponding MiT.s training logs.

TABLE III
ACCURACY (%) COMPARISON ON THE BP4D-SPONTANEOUS DATASET.

(A) RECOGNITION (B) CROSS-DATASET EVALUATION

most accurate state-of-the-art method [40], we demonstrate im-

provements of 0.73%, 2.98%, and 3.16%, by using the Tiny,

Small and Base variants, respectively, reaching the highest

accuracy of 99.66% on MiT-Base. This superior performance

dictates that MiT offers a desirable solution via collaboration

among embeddings from multi-views, together with our loss

function.

C. Towards Spontaneous 4D FER

The BP4D-Spontaneous dataset contains a total of 41 sub-

jects showing spontaneous expressions with two additional

nervousness and pain expressions. In Table III, we report the

recognition and cross-dataset evaluation results. With 3.10%

improvement comparatively [50], MiT shows a dominant recog-

nition performance by cruising to an accuracy of 91.67%.

Following the experimental settings in [46], [47], we per-

form cross-dataset evaluations to highlight our model’s ro-

bustness and generalizability. Here, the BU-4DFE dataset is

chosen for training while a subset of the BP4D-Spontaneous

dataset (i.e., Task 1 and Task 8, containing happy and dis-

gust expressions) is chosen to validate the model’s perfor-

mance. With improvement of 2.32% compared to the most ac-

curate method [47], MiT shows promising results indicating its

robustness.

D. Multi-View Loss Ablation

We further demonstrate the effectiveness of the multi-view

loss by comparing it with the loss of fusion of one ViT per

view (as independent view) in Fig. 3. Comparatively, the closer

accuracy gap in MiT-Small and MiT-Base against independent

view is due to the higher complexity and number of parameters.

Importantly, however, our multi-view loss is able to reduce the

loss and boost the accuracy faster and to a better level. The is

attributed to the gradient-friendly loss function and the trainable

multi-view weights. We also show the role of each view towards

Fig. 3. Training loss and accuracy via proposed multi-view loss function.

Fig. 4. Contribution of each view towards recognition.

Fig. 5. Performance of distributed processing on different machines.

recognition in Fig. 4. Multi-view can achieve significantly better

performance, i.e., of about 10%, than single views via the

proposed MiT model.

E. Faster Distributed Training

We mainly use Xeon Gold 6230, NVIDIA Volta V100 GPUs

(referred as machine-A) for experiments, but to demonstrate the

performance efficiency via distributed training, we also report re-

sults for GP100GL, NVIDIA Tesla P100-PCIE GPUs (referred

as machine-B) as well. In Fig. 5, we compare the average time

to complete one epoch in training. As illustrated, the distributed

processing yields results faster demonstrating the capability

of our model to leverage available resources efficiently and

effectively. The reported training times for Tiny, Small and Base

models on machine-A are roughly 13.9 hours, 15.2 hours, and

18.6 hours, respectively.

IV. CONCLUSIONS

We presented MiT: a multi-view transformer model for 3D/4D

facial affect recognition. MiT incorporates various facial pat-

terns from multi-views and showed an effective recognition

performance thanks additionally to our proposed multi-view

loss function and trainable multi-view weights. Equipped with

distributed training, our model showed significant results on

widely-used datasets for 3D/4D FER.
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