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Abstract

Spatial-temporal graphs have been widely used by

skeleton-based action recognition algorithms to model hu-

man action dynamics. To capture robust movement patterns

from these graphs, long-range and multi-scale context ag-

gregation and spatial-temporal dependency modeling are

critical aspects of a powerful feature extractor. However,

existing methods have limitations in achieving (1) unbi-

ased long-range joint relationship modeling under multi-

scale operators and (2) unobstructed cross-spacetime in-

formation flow for capturing complex spatial-temporal de-

pendencies. In this work, we present (1) a simple method to

disentangle multi-scale graph convolutions and (2) a uni-

fied spatial-temporal graph convolutional operator named

G3D. The proposed multi-scale aggregation scheme dis-

entangles the importance of nodes in different neighbor-

hoods for effective long-range modeling. The proposed

G3D module leverages dense cross-spacetime edges as skip

connections for direct information propagation across the

spatial-temporal graph. By coupling these proposals, we

develop a powerful feature extractor named MS-G3D based

on which our model1 outperforms previous state-of-the-art

methods on three large-scale datasets: NTU RGB+D 60,

NTU RGB+D 120, and Kinetics Skeleton 400.

1. Introduction

Human action recognition is an important task with

many real-world applications. In particular, skeleton-based

human action recognition involves predicting actions from

skeleton representations of human bodies instead of raw

RGB videos, and the significant results seen in recent

work [50, 33, 32, 34, 21, 20, 54, 35] have proven its merits.

In contrast to RGB representations, skeleton data contain

only the 2D [50, 15] or 3D [31, 25] positions of the human

key joints, providing highly abstract information that is also

1Code is available at github.com/kenziyuliu/ms-g3d

Spatial 

Information 

Flow

Temporal 

Information Flow

Spatial-Temporal 

Information Flow

Disentangled Multi-

Scale Aggregation(a) (b) (c)

Figure 1: (a) Factorized spatial and temporal modeling on skeleton

graph sequences causes indirect information flow. (b) In this work,

we propose to capture cross-spacetime correlations with unified

spatial-temporal graph convolutions. (c) Disentangling node fea-

tures at separate spatial-temporal neighborhoods (yellow, blue, red

at different distances, partially colored for clarity) is pivotal for ef-

fective multi-scale learning in the spatial-temporal domain.

free of environmental noises (e.g. background clutter, light-

ing conditions, clothing), allowing action recognition algo-

rithms to focus on the robust features of the action.

Earlier approaches to skeleton-based action recognition

treat human joints as a set of independent features, and they

model the spatial and temporal joint correlations through

hand-crafted [42, 43] or learned [31, 6, 48, 54] aggrega-

tions of these features. However, these methods overlook

the inherent relationships between the human joints, which

are best captured with human skeleton graphs with joints as

nodes and their natural connectivity (i.e. “bones”) as edges.

For this reason, recent approaches [50, 19, 34, 35, 32] model

the joint movement patterns of an action with a skeleton

spatial-temporal graph, which is a series of disjoint and

isomorphic skeleton graphs at different time steps carrying

information in both spatial and temporal dimensions.

For robust action recognition from skeleton graphs, an

ideal algorithm should look beyond the local joint con-

nectivity and extract multi-scale structural features and

long-range dependencies, since joints that are structurally

apart can also have strong correlations. Many existing ap-

proaches achieve this by performing graph convolutions
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[17] with higher-order polynomials of the skeleton adja-

cency matrix: intuitively, a powered adjacency matrix cap-

tures the number of walks between every pair of nodes

with the length of the walks being the same as the power;

the adjacency polynomial thus increases the receptive field

of graph convolutions by making distant neighbors reach-

able. However, this formulation suffers from the biased

weighting problem, where the existence of cyclic walks on

undirected graphs means that edge weights will be biased

towards closer nodes against further nodes. On skeleton

graphs, this means that a higher polynomial order is only

marginally effective at capturing information from distant

joints, since the aggregated features will be dominated by

the joints from local body parts. This is a critical drawback

limiting the scalability of existing multi-scale aggregators.

Another desirable characteristic of robust algorithms is

the ability to leverage the complex cross-spacetime joint re-

lationships for action recognition. However, to this end,

most existing approaches [50, 33, 19, 32, 21, 34, 18]

deploy interleaving spatial-only and temporal-only mod-

ules (Fig. 1(a)), analogous to factorized 3D convolutions

[30, 39]. A typical approach is to first use graph convo-

lutions to extract spatial relationships at each time step,

and then use recurrent [19, 34, 18] or 1D convolutional

[50, 33, 21, 32] layers to model temporal dynamics. While

such factorization allows efficient long-range modeling, it

hinders the direct information flow across spacetime for

capturing complex regional spatial-temporal joint depen-

dencies. For example, the action “standing up” often has

co-occurring movements of upper and lower body across

both space and time, where upper body movements (leaning

forward) strongly correlate to the lower body’s future move-

ments (standing up). These strong cues for making predic-

tions may be ineffectively captured by factorized modeling.

In this work, we address the above limitations from

two aspects. First, we propose a new multi-scale aggre-

gation scheme that tackles the biased weighting problem

by removing redundant dependencies between further and

closer neighborhoods, thus disentangling their features un-

der multi-scale aggregation (illustrated in Fig. 2). This leads

to more powerful multi-scale operators that can model re-

lationships of joints irrespective of the distances between

them. Second, we propose G3D, a novel unified spatial-

temporal graph convolution module that directly models

cross-spacetime joint dependencies. G3D does so by in-

troducing graph edges across the “3D” spatial-temporal

domain as skip connections for unobstructed information

flow (Fig. 1(b)), substantially facilitating spatial-temporal

feature learning. Remarkably, our proposed disentangled

aggregation scheme augments G3D with multi-scale rea-

soning in spacetime (Fig. 1(c)) without being affected by the

biased weighting problem, despite extra edges were intro-

duced. The resulting powerful feature extractor, named MS-

G3D, forms a building block of our final model architecture

that outperforms state-of-the-art methods on three large-

scale skeleton action datasets: NTU RGB+D 120 [25], NTU

RGB+D 60 [31], and Kinetics Skeleton 400 [15]. The main

contributions of this work are summarized as follows:

(i) We propose a disentangled multi-scale aggregation

scheme that removes redundant dependencies between node

features from different neighborhoods, which allows pow-

erful multi-scale aggregators to effectively capture graph-

wide joint relationships on human skeletons.

(ii) We propose a unified spatial-temporal graph convo-

lution (G3D) operator which facilitates direct information

flow across spacetime for effective feature learning.

(iii) Integrating the disentangled aggregation scheme with

G3D gives a powerful feature extractor (MS-G3D) with

multi-scale receptive fields across both spatial and temporal

dimensions. The direct multi-scale aggregation of features

in spacetime further boosts model performance.

2. Related Work

2.1. Neural Nets on Graphs

Architectures. To extract features from arbitrarily struc-

tured graphs, Graph Neural Networks (GNNs) have been

developed and explored extensively [5, 17, 3, 2, 10, 40, 49,

1, 7, 11, 22]. Recently proposed GNNs can broadly be

classified into spectral GNNs [3, 11, 22, 13, 17] and spa-

tial GNNs [17, 49, 10, 51, 41, 1, 45]. Spectral GNNs con-

volve the input graph signals with a set of learned filters

in the graph Fourier domain. They are however limited

in terms of computational efficiency and generalizability

to new graphs due to the requirement of eigendecomposi-

tion and the assumption of fixed adjacency. Spatial GNNs,

in contrast, generally perform layer-wise update for each

node by (1) selecting neighbors with a neighborhood func-

tion (e.g. adjacent nodes); (2) merging the features from the

selected neighbors and itself with an aggregation function

(e.g. mean pooling); and (3) applying an activated trans-

formation to the merged features (e.g. MLP [49]). Among

different GNN variants, the Graph Convolutional Network

(GCN) [17] was first introduced as a first-order approxima-

tion for localized spectral convolutions, but its simplicity as

a mean neighborhood aggregator [49, 46] has quickly led

many subsequent spatial GNN architectures [49, 1, 45, 7]

and various applications involving graph structured data

[44, 47, 52, 50, 33, 34, 21] to treat it as a spatial GNN base-

line. This work adapts the layer-wise update rule in GCN.

Multi-Scale Graph Convolutions. Multi-scale spatial

GNNs have also been proposed to capture features from

non-local neighbors. [1, 19, 21, 45, 24] use higher order

polynomials of the graph adjacency matrix to aggregate fea-
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tures from long-range neighbor nodes. Truncated Block

Krylov network [29] similarly raises the adjacency matrix to

higher powers and obtains multi-scale information through

dense features concatenation from different hidden layers.

LanczosNet [24] deploys a low-rank approximation of the

adjacency matrix to speed up the exponentiation on large

graphs. As mentioned in Section 1, we argue that adjacency

powering can have adverse effects on long-range modeling

due to weighting bias, and our proposed module aims to

address this with disentangled multi-scale aggregators.

2.2. Skeleton­Based Action Recognition

Earlier approaches [42, 6, 31, 36, 43, 48, 54] to skeleton-

based action recognition focus on hand-crafting features

and joint relationships for downstream classifiers, which

ignore the important semantic connectivity of the human

body. By constructing spatial-temporal graphs and mod-

eling the spatial relationships with GNNs directly, recent

approaches [50, 19, 8, 21, 8, 33, 32, 34, 18] have seen sig-

nificant performance boost, indicating the necessity of the

semantic human skeleton for action predictions.

An early application of graph convolutions is ST-GCN

[50], where spatial graph convolutions along with inter-

leaving temporal convolutions are used for spatial-temporal

modeling. A concurrent work by Li et al. [19] presents

a similar approach, but it notably introduces a multi-scale

module by raising skeleton adjacency to higher powers.

AS-GCN [21] also uses adjacency powering for multi-scale

modeling, but it additionally generates human poses to

augment the spatial graph convolution. Spatial-Temporal

Graph Routing (STGR) network [18] adds extra edges to the

skeleton graph using frame-wise attention and global self-

attention mechanisms. Similarly, 2s-AGCN [33] introduces

graph adaptiveness with self-attention along with a freely

learned graph residual mask. It also uses a two-stream en-

semble with skeleton bone features to boost performance.

DGNN [32] likewise leverages bone features, but it instead

simultaneously updates the joint and bone features through

an alternating spatial aggregation scheme. Note that these

approaches primarily focus on spatial modeling; in contrast,

we present a unified approach for capturing complex joint

correlations directly across spacetime.

Another relevant work is GR-GCN [8], which merges ev-

ery three frames over the skeleton graph sequence and adds

sparsified edges between adjacent frames. Whereas GR-

GCN also deploys cross-spacetime edges, our G3D mod-

ule has several important distinctions: (1) Cross-spacetime

edges in G3D follow the semantic human skeleton, which is

naturally a more interpretable and more robust representa-

tion than the sparsified, one-size-fits-all graph in GR-GCN.

The underlying graph is also much easier to compute. (2)

GR-GCN has cross-spacetime edges only between adjacent

frames, which prevents it to reason beyond a limited tempo-

ral context of three frames. (3) G3D can learn from multiple

temporal contexts simultaneously leveraging different win-

dow sizes and dilations, which is not addressed in GR-GCN.

3. MS-G3D

3.1. Preliminaries

Notations. A human skeleton graph is denoted as G =
(V, E), where V = {v1, ..., vN} is the set of N nodes repre-

senting joints, and E is the edge set representing bones cap-

tured by an adjacency matrix A ∈ R
N×N where initially

Ai,j = 1 if an edge directs from vi to vj and 0 otherwise.

A is symmetric since G is undirected. Actions as graph se-

quences have a node features set X = {xt,n ∈ R
C | t, n ∈

Z, 1 ≤ t ≤ T, 1 ≤ n ≤ N} represented as a feature tensor

X ∈ R
T×N×C , where xt,n = Xt,n,: is the C dimensional

feature vector for node vn at time t over a total of T frames.

The input action is thus adequately described by A struc-

turally and by X feature-wise, with Xt ∈ R
N×C being the

node features at time t. Θ(l) ∈ R
Cl×Cl+1 denotes a learn-

able weight matrix at layer l of a network.

Graph Convolutional Nets (GCNs). On skeleton inputs

defined by features X and graph structure A, the layer-wise

update rule of GCNs can be applied to features at time t as:

X
(l+1)
t = σ

(
D̃

− 1
2 ÃD̃

− 1
2X

(l)
t Θ(l)

)
, (1)

where Ã = A+ I is the skeleton graph with added self-

loops to keep identity features, D̃ is the diagonal degree

matrix of Ã, and σ(·) is an activation function. The term

D̃
− 1

2 ÃD̃
− 1

2X
(l)
t can be intuitively interpreted as an ap-

proximate spatial mean feature aggregation from the direct

neighborhood followed by an activated linear layer.

3.2. Disentangled Multi­Scale Aggregation

Biased Weighting Problem. Under the spatial aggrega-

tion framework in Eq. 1, existing approaches [21] employ

higher-order polynomials of the adjacency matrix to aggre-

gate multi-scale structural information at time t, as:

X
(l+1)
t = σ

(
K∑

k=0

Â
k
X

(l)
t Θ

(l)
(k)

)
, (2)

where K controls the number of scales to aggregate. Here,

Â is a normalized form of A, e.g. [19] uses the symmetric

normalized graph Laplacian Â = L
norm = I − D

1
2AD

1
2 ;

[21] uses the random-walk normalized adjacency Â =
D

−1
A; more generally, one can use Â = D̃

− 1
2 ÃD̃

− 1
2

from GCNs. It is easy to see that Ak
i,j = A

k
j,i gives the

number of length k walks between vi and vj , and thus

the term Â
k
X

(l)
t is performing a weighted feature average

based on the number of such walks. However, it is clear
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Figure 2: Illustration of the biased weighting problem and the

proposed disentangled aggregation scheme. Darker color indi-

cates higher weighting to the central node (red). Top left: closer

nodes receive higher weighting from adjacency powering, which

makes long-range modeling less effective, especially when multi-

ple scales are aggregated. Bottom left: our proposed disentangled

aggregation models joint relationships at each neighborhood while

keeping identity features. Right: Visualizing the corresponding

adjacency matrices. Node self-loops are omitted for visual clarity.

that there are drastically more possible length k walks to

closer nodes than to the actual k-hop neighbors due to cyclic

walks. This causes a bias towards the local region as well

as nodes with higher degrees. The node self-loops in GCNs

allow even more possible cycles (as walks can always cycle

on self-loops) and thus amplify the bias. See Fig. 2 for illus-

tration. Under multi-scale aggregation on skeleton graphs,

the aggregated features will thus be dominated by signals

from local body parts, making it ineffective to capture long-

range joint dependencies with higher polynomial orders.

Disentangling Neighborhoods. To address the above

problem, we first define the k-adjacency matrix Ã(k) as

[Ã(k)]i,j =





1 if d(vi, vj) = k,

1 if i = j,

0 otherwise,

(3)

where d(vi, vj) gives the shortest distance in number of

hops between vi and vj . Ã(k) is thus a generalization of

Ã to further neighborhoods, with Ã(1) = Ã and Ã(0) = I.

Under spatial aggregation in Eq. 1, the inclusion of self-

loops in Ã(k) is critical for learning the relationships be-

tween the current joint and its k-hop neighbors, as well as

for keeping each joint’s identity information when no k-hop

neighbors are available. Given that N is small, Ã(k) can be

easily computed, e.g., using differences of graph powers as

Ã(k) = I + ✶

(
Ã

k ≥ 1
)
− ✶

(
Ã

k−1 ≥ 1
)

. Substituting

Â
k with Ã(k) in Eq. 2, we arrive at:

X
(l+1)
t = σ

(
K∑

k=0

D̃
− 1

2

(k) Ã(k)D̃
− 1

2

(k)X
(l)
t Θ

(l)
(k)

)
, (4)

where D̃
− 1

2

(k) Ã(k)D̃
− 1

2

(k) is the normalized [17] k-adjacency.

Unlike the previous case where possible length k walks

are predominantly conditioned on length k − 1 walks,

the proposed disentangled formulation in Eq. 4 addresses

the biased weighting problem by removing redundant de-

pendencies of distant neighborhoods’ weighting on closer

neighborhoods. Additional scales with larger k are there-

fore aggregated in an additive manner under a multi-scale

operator, making long-range modeling with large values of

k to remain effective. The resulting k-adjacency matrices

are also more sparse than their exponentiated counterparts

(see Fig. 2), allowing more efficient representations.

3.3. G3D: Unified Spatial­Temporal Modeling

Most existing work treats skeleton actions as a sequence

of disjoint graphs where features are extracted through

spatial-only (e.g. GCNs) and temporal-only (e.g. TCNs)

modules. We argue that such factorized formulation is less

effective for capturing complex spatial-temporal joint rela-

tionships. Clearly, if a strong connection exists between a

pair of nodes, then during layer-wise propagation the pair

should incorporate a significant portion each other’s fea-

tures to reflect such a connection [50, 33, 34]. However, as

signals are propagated across spacetime through a series of

local aggregators (GCNs and TCNs alike), they are weak-

ened as redundant information is aggregated from an in-

creasingly larger spatial-temporal receptive field. The prob-

lem is more evident if one observes that GCNs do not per-

form a weighted aggregation to distinguish each neighbor.

Cross-Spacetime Skip Connections. To tackle the above

problem, we propose a more reasonable approach to allow

cross-spacetime skip connections, which are readily mod-

eled with cross-spacetime edges in a spatial-temporal graph.

Let us first consider a sliding temporal window of size τ

over the input graph sequence, which, at each step, ob-

tains a spatial-temporal subgraph G(τ) = (V(τ), E(τ)) where

V(τ) = V1 ∪ ... ∪ Vτ is the union of all node sets across τ

frames in the window. The initial edge set E(τ) is defined

by tiling Ã into a block adjacency matrix Ã(τ), where

Ã(τ) =




Ã · · · Ã

...
. . .

...

Ã · · · Ã


 ∈ R

τN×τN . (5)

Intuitively, each submatrix [Ã(τ)]i,j = Ã means every node

in Vi is connected to itself and its 1-hop spatial neighbors

at frame j by extrapolating the frame-wise spatial connec-

tivity (which is [Ã(τ)]i,i for all i) to the temporal domain.

Thus, each node within G(τ) is densely connected to itself

and its 1-hop spatial neighbors across all τ frames. We

can easily obtain X(τ) ∈ R
T×τN×C using the same sliding

window over X with zero padding to construct T windows.

Using Eq. 1, we thus arrive at a unified spatial-temporal

graph convolutional operator for the tth temporal window:

[X
(l+1)
(τ) ]t = σ

(
D̃

− 1
2

(τ) Ã(τ)D̃
− 1

2

(τ) [X
(l)
(τ)]tΘ

(l)
)
. (6)
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Dilated Windows. Another significant aspect of the

above window construction is that the frames need not to

be adjacent. A dilated window with τ frames and a dilation

rate d can be constructed by picking a frame every d frames,

and reusing the same spatial-temporal structure Ã(τ). Sim-

ilarly, we can obtain node features X(τ,d) ∈ R
T×τN×C

(d = 1 if omitted) and perform layer-wise update as in

Eq. 6. Dilated windows allow larger temporal receptive

fields without growing the size of Ã(τ), analogous to how

dilated convolutions [53] keep constant complexities.

Multi-Scale G3D. We can also integrate the proposed dis-

entangled multi-scale aggregation scheme (Eq. 4) into G3D

for multi-scale reasoning directly in the spatial-temporal do-

main. We thus derive the MS-G3D module from Eq. 6 as:

[X
(l+1)

(τ) ]t = σ

(

K
∑

k=0

D̃
− 1

2

(τ,k)Ã(τ,k)D̃
− 1

2

(τ,k)[X
(l)

(τ)]tΘ
(l)

(k)

)

, (7)

where Ã(τ,k) and D̃(τ,k) are defined similarly as Ã(k) and

D̃(k) respectively. Remarkably, our proposed disentangled

aggregation scheme complements this unified operator, as

G3D’s increased node degrees from spatial-temporal con-

nectivity can contribute to the biased weighting problem.

Discussion. We give more in-depth analyses on G3D as

follows. (1) It is analogous to classical 3D convolutional

blocks [38], with its spatial-temporal receptive field defined

by τ , d, and Ã. (2) Unlike 3D convolutions, G3D’s param-

eter count from Θ
(·)
(·) is independent of τ or |E(τ)|, making

it generally less prone to overfitting with large τ . (3) The

dense cross-spacetime connections in G3D entail a trade-

off on τ , as larger values of τ bring larger temporal recep-

tive fields at the cost of more generic features due to larger

immediate neighborhoods. Additionally, larger τ implies

a quadratically larger Ã(τ) and thus more operations with

multi-scale aggregation. On the other hand, larger dilations

d bring larger temporal coverage at the cost of temporal res-

olution (lower frame rates). τ and d thus must be balanced

carefully. (4) G3D modules are designed to capture com-

plex regional spatial-temporal instead of long-range depen-

dencies that are otherwise more economically captured by

factorized modules. We thus observe the best performance

when G3D modules are augmented with long-range, factor-

ized modules, which we discuss in the next section.

3.4. Model Architecture

Overall Architecture. The final model architecture is il-

lustrated in Fig. 3. On a high level, it contains a stack

of r spatial-temporal graph convolutional (STGC) blocks

to extract features from skeleton sequences, followed by a

global average pooling layer and a softmax classifier. Each

STGC block deploys two types of pathways to simultane-

ously capture complex regional spatial-temporal joint corre-

lations as well as long-range spatial and temporal dependen-

cies: (1) The G3D pathway first constructs spatial-temporal

windows, performs disentangled multi-scale graph convo-

lutions on them, and then collapses them with a fully con-

nected layer for window feature readout. The extra dotted

G3D pathway (Fig. 3(b)) indicates the model can learn from

multiple spatial-temporal contexts concurrently with differ-

ent τ and d; (2) The factorized pathway augments the G3D

pathway with long-range, spatial-only, and temporal-only

modules: the first layer is a multi-scale graph convolutional

layer capable of modeling the entire skeleton graph with the

maximum K; it is then followed by two multi-scale tempo-

ral convolutions layers to capture extended temporal con-

texts (discussed below). The outputs from all pathways are

aggregated as the STGC block output, which has 96, 192,

and 384 feature channels respectively within a typical r=3

block architecture. Batch normalization [14] and ReLU is

added at the end of each layer except for the last layer. All

STGC blocks, except the first, downsample the temporal di-

mension with stride 2 temporal conv and sliding windows.

Multi-Scale Temporal Modeling. The spatial-temporal

windows G(τ) used by G3D are a closed structure by them-

selves, which means G3D must be accompanied by tempo-

ral modules for cross-window information exchange. Many

existing work [50, 18, 33, 32, 21] performs temporal mod-

eling using temporal convolutions with a fixed kernel size

kt × 1 throughout the architecture. As a natural extension

to our multi-scale spatial aggregation, we enhance vanilla

temporal convolutional layers with multi-scale learning, as

illustrated in Fig. 3(c). To lower the computational costs

due to the extra branches, we deploy a bottleneck design

[37], fix kernel sizes at 3×1, and use different dilation rates

[53] instead of larger kernels for larger receptive fields. We

also use residual connections [12] to facilitate training.

Adaptive Graphs. To improve the flexibility of graph

convolutional layers which performs homogeneous neigh-

borhood averaging, we add a simple learnable, uncon-

strained graph residual mask A
res inspired by [33, 32] to

every Ã(k) and Ã(τ,k) to strengthen, weaken, add, or re-

move edges dynamically. For example, Eq. 4 is updated to

X
(l+1)
t = σ

(

K
∑

k=0

D̃
− 1

2

(k) (Ã(k) +A
res
(k))D̃

− 1
2

(k) X
(l)
t Θ

(l)

(k)

)

. (8)

A
res is initialized with random values around zero and is

different for each k and τ , allowing each multi-scale context

(either spatial or spatial-temporal) to select the best suited

mask. Note also that since A
res is optimized for all possi-

ble actions, which may have different optimal edge sets for

feature propagation, it is expected to give minor edge cor-

rections and may be insufficient when the graph structures

have major deficiencies. In particular, Ares only partially

mitigates the biased weighting problem (see Section 4.3).
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Figure 3: (Match components with colors) Architecture Overview. “TCN”, “GCN”, prefix “MS-”, and suffix “-D” denotes temporal

and graph convolutional blocks, and multi-scale and disentangled aggregation, respectively (Section 3.2). Each of the r STGC blocks

(b) deploys a multi-pathway design to capture long-range and regional spatial-temporal dependencies simultaneously. Dotted modules,

including extra G3D pathway, 1×1 conv, and strided temporal convolutions, are situational for model performance/complexity trade-off.

Joint-Bone Two-Stream Fusion. Inspired by the two-

stream methods in [33, 32, 34] and the intuition that visu-

alizing bones along with joints can help humans recognize

skeleton actions, we use a two-stream framework where a

separate model with identical architecture is trained using

the bone features initialized as vector differences of adja-

cent joints directed away from the body center. The softmax

scores from the joint/bone models are summed to obtain fi-

nal prediction scores. Since skeleton graphs are trees, we

add a zero bone vector at the body center to obtain N bones

from N joints and reuse A for connectivity definition.

4. Experiments

4.1. Datasets

NTU RGB+D 60 and NTU RGB+D 120. NTU RGB+D

60 [31] is a large-scale action recognition dataset containing

56,578 skeleton sequences over 60 action classes captured

from 40 distinct subjects and 3 different camera view an-

gles. Each skeleton graph contains N = 25 body joints as

nodes, with their 3D locations in space as initial features.

Each frame of the action contains 1 to 2 subjects. The au-

thors recommend reporting the classification accuracy un-

der two settings: (1) Cross-Subject (X-Sub), where the 40

subjects are split into training and testing groups, yielding

40,091 and 16,487 training and testing examples respec-

tively. (2) Cross-View (X-View), where all 18,932 samples

collected from camera 1 are used for testing and the rest

37,646 samples used for training. NTU RGB+D 120 [25]

extends NTU RGB+D 60 with an additional 57,367 skele-

ton sequences over 60 extra action classes, totalling 113,945

samples over 120 classes captured from 106 distinct sub-

jects and 32 different camera setups. The authors now rec-

ommend replacing the Cross-View setting with a Cross-

Setup (X-Set) setting, where 54,468 samples collected from

half of the camera setups are used for training and the rest

59,477 samples for testing. In Cross-Subject, 63,026 sam-

ples from a selected group of 53 subjects are used for train-

ing, and the rest 50,919 samples for testing.

Kinetics Skeleton 400. The Kinetics Skeleton 400 dataset

is adapted from the Kinetics 400 video dataset [15] us-

ing the OpenPose [4] pose estimation toolbox. It contains

240,436 training and 19,796 testing skeleton sequences over

400 classes, where each skeleton graph contains 18 body

joints, along with their 2D spatial coordinates and the pre-

diction confidence score from OpenPose as the initial joint

features [50]. At each time step, the number of skele-

tons is capped at 2, and skeletons with lower overall confi-

dence scores are discarded. Following the convention from

[15, 50], Top-1 and Top-5 accuracies are reported.

4.2. Implementation Details

Unless otherwise stated, all models have r = 3 and are

trained with SGD with momentum 0.9, batch size 32 (16

per worker), an initial learning rate 0.05 (can linearly scale

up with batch size [9]) for 50, 60, and 65 epochs with step

LR decay with a factor of 0.1 at epochs {30, 40}, {30, 50},

and {45, 55} for NTU RGB+D 60, 120, and Kinetics Skele-

ton 400, respectively. Weight decay is set to 0.0005 for final

models and is adjusted accordingly during component stud-

ies. All skeleton sequences are padded to T = 300 frames

by replaying the actions. Inputs are preprocessed with nor-

malization and translation following [33, 32]. No data aug-

mentation is used for fair performance comparison.
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4.3. Component Studies

We analyze the individual components and their configu-

rations in the final architecture. Unless stated, performance

is reported as classification accuracy on the Cross-Subject

setting of NTU RGB+D 60 using only the joint data.

Disentangled Multi-Scale Aggregation. We first justify

our proposed disentangled multi-scale aggregation scheme

by verifying its effectiveness with different number of

scales over sparse and dense graphs. In Table 1, we

do so using the individual pathways of the STGC blocks

(Fig. 3(b)), referred to as “GCN” and “G3D”, respectively,

with suffixes “-E” and “-D” denoting adjacency powering

and disentangled aggregation. Here, the maximum K = 12
is the diamater of skeleton graphs from NTU RGB+D 60,

and we set τ = 5 for G3D modules. To keep consistent nor-

malization, we set Â = D̃
− 1

2 ÃD̃
− 1

2 in Eq. 2 for GCN-E

and G3D-E. We first observe that the disentangled formula-

tion can bring as much as 1.4% gain over simple adjacency

powering at K = 4, underpinning the necessity for neigh-

borhood disentanglement. In this case, the residual mask

A
res partially corrects the weighting imbalance, narrowing

the largest gap to 0.4%. However, the same set of experi-

ments on the G3D pathway, where the window graph G(τ)

is denser than the spatial graph G, shows wider accuracy

gaps between G3D-E and G3D-D, indicating a more severe

biased weighting problem. In particular, we see 0.8% per-

formance gap at K = 12 even if residual masks are added.

These results verify the effectiveness of the proposed dis-

entangled aggregation scheme for multi-scale learning; it

boosts performance across different number scales not only

in the spatial domain, but more so in the spatial-temporal

domain where it complements the proposed G3D module.

In general, the spatial GCNs benefits more from large K

than do the spatial-temporal G3D modules; for final archi-

tectures, we empirically set K ∈ {12, 5} for MS-GCN and

MS-G3D blocks respectively.

Effectiveness of G3D. To validate the efficacy of G3D

modules to capture complex spatial-temporal features, we

build up the model incrementally with its individual com-

ponents, and show its performance in Table 2. We use the

joint stream from 2s-AGCN [33] as the baseline for con-

trolled experiments, and for fair comparison, we replaced its

regular temporal convolutional layers with MS-TCN layers

and obtained an improvement with less parameters. First,

we observe that the factorized pathway alone can outper-

form the baseline due to the powerful disentangled aggre-

gation in MS-GCN. However, if we simply scale up the

factorized pathway to larger capacity (deeper and wider),

or duplicate the factorized pathway to learn from different

feature subspaces and mimic the multi-pathway design in

STGC blocks, we observe limited gains. In contrast, when

Methods
Number of Scales

K = 1 K = 4 K = 8 K = 12

GCN-E 85.1 85.6 86.5 86.6

GCN-D 85.1 87.0 86.9 86.8

GCN-E + Mask 86.1 87.0 87.5 87.7

GCN-D + Mask 86.1 86.9 87.9 87.8

G3D-E 85.1 85.5 85.4 85.5

G3D-D 85.1 86.4 86.5 86.4

G3D-E + Mask 86.6 87.0 86.5 86.2

G3D-D + Mask 86.6 87.4 87.1 87.0

Table 1: Accuracy (%) with multi-scale aggregation on individual

pathways of STGC blocks with different K. “Mask” refers to the

residual masks Ares. If K>1, GCN/G3D is Multi-Scale (MS-).

Model Configurations Params Acc (%)

Baseline (Js-AGCN [33]) 3.5M 86.0

Baseline + MS-TCN 1.6M 86.7

MS-GCN (Factorized Pathway) Only 1.4M 87.8

with 2.5× Capacity 3.5M 88.5

with Dual Pathway 2.8M 88.6

MS-GCN (Factorized Pathway)

with MS-G3D (τ = 3, d = 1) 2.7M 89.0

with MS-G3D (τ = 3, d = 2) 2.7M 89.1

with MS-G3D (τ = 3, d = 3) 2.7M 89.1

with MS-G3D (τ = 5, d = 1) 3.2M 89.2

with MS-G3D (τ = 5, d = 2) 3.2M 89.2

with MS-G3D (τ = 7, d = 1)† 3.0M 89.0

with 2 MS-G3D Pathways†
2.8M 89.3

τ = (3, 3), d = (1, 2)
with 2 MS-G3D Pathways†

3.2M 89.4
τ = (3, 5), d = (1, 1)

Table 2: Model accuracy with various settings. MS-GCN and MS-

G3D uses K ∈ {12, 5} respectively. †Output channels double at

the collapse window layer (Fig. 3(d), Cmid to Cout) instead of at the

graph convolution (Cin to Cmid) to maintain similar budget.

G3D Graph Connectivity Params Acc (%)

(1) Grid-like 2.7M 88.7

(2) Grid-like + dense self-edges 2.7M 88.6

(Eq. 5) Cross-spacetime edges 2.7M 89.1

Table 3: Comparing graph connectivity settings (τ = 3, d = 2).

the G3D pathway is added, we observe consistently bet-

ter results with similar or less parameters, verifying G3D’s

ability to pick up complex regional spatial-temporal corre-

lations that are previously overlooked by modeling spatial

and temporal dependencies in a factorized fashion.

Exploring G3D Configurations. Table 2 also compares

various G3D settings, including different values of τ , d,

and the number of G3D pathways in STGC blocks. We
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Methods
NTU RGB+D 120

X-Sub (%) X-Set (%)

ST-LSTM [26] 55.7 57.9

GCA-LSTM [27] 61.2 63.3

RotClips + MTCNN [16] 62.2 61.8

Body Pose Evolution Map [28] 64.6 66.9

2s-AGCN [33] 82.9 84.9

MS-G3D Net 86.9 88.4

Table 4: Classification accuracy comparison against state-of-the-

art methods on the NTU RGB+D 120 Skeleton dataset.

Methods
NTU RGB+D 60

X-Sub (%) X-View (%)

IndRNN [23] 81.8 88.0

HCN [20] 86.5 91.1

ST-GR [18] 86.9 92.3

AS-GCN [21] 86.8 94.2

2s-AGCN [33] 88.5 95.1

AGC-LSTM [34] 89.2 95.0

DGNN [32] 89.9 96.1

GR-GCN [8] 87.5 94.3

MS-G3D Net (Joint Only) 89.4 95.0

MS-G3D Net (Bone Only) 90.1 95.3

MS-G3D Net 91.5 96.2

Table 5: Classification accuracy comparison against state-of-the-

art methods on the NTU RGB+D 60 Skeleton dataset.

Methods
Kinetics Skeleton 400

Top-1 (%) Top-5 (%)

ST-GCN [50] 30.7 52.8

AS-GCN [21] 34.8 56.5

ST-GR [18] 33.6 56.1

2s-AGCN [33] 36.1 58.7

DGNN [32] 36.9 59.6

MS-G3D Net 38.0 60.9

Table 6: Classification accuracy comparison against state-of-the-

art methods on the Kinetics Skeleton 400 dataset.

first observe that all configurations consistently outperform

the baseline, confirming the stability of MS-G3D as a ro-

bust feature extractor. We also see that τ = 5 give slightly

better results, but the gain diminishes at τ = 7 as the ag-

gregated features become too generic due to the oversized

local spatial-temporal neighborhood, thus counteracting the

benefits of larger temporal coverage. The dilation rate d has

varying effects: (1) when τ = 3, d = 1 underperforms

d ∈ {2, 3}, justifying the need for larger temporal contexts;

(2) larger d has marginal benefits, as its larger temporal cov-

erage come at a cost of temporal resolution (thus coarsened

skeleton motions). We thus observe better results when two

G3D pathways with d = (1, 2) are combined, and as ex-

pected, we obtain the best results when the temporal reso-

lution is unaltered by setting τ = (3, 5).

Cross-spacetime Connectivity. To demonstrate the need

for cross-spacetime edges in G(τ) defined in Eq. 5 instead of

simple, grid-like temporal self-edges (on which G3D also

applies), we contrast different connectivity schemes in Ta-

ble 3 while fixing other parts of the architecture. The first

two settings refer to modifying the block adjacency matrix

Ã(τ) such that: (1) the blocks Ã on the main diagonal are

kept, the blocks on superdiagonal/subdiagonal is set to I,

and the rest set to 0; and (2) all blocks but the main diago-

nal of Ã are set to I. Intuitively, the first produces “3D grid”

graphs and the second includes extra dense self-edges over

τ frames. Clearly, while all settings allow unified spatial-

temporal graph convolutions, cross-spacetime edges as skip

connections are essential for efficient information flow.

Joint-Bone Two-Stream Fusion. We verify our method

under the joint-bone fusion framework on the NTU RGB+D

60 dataset in Table 5. Similar to [33], we obtain best per-

formance when joint and bone features are fused, indicating

the generalizablity of our method to other input modalities.

4.4. Comparison against the State­of­the­Art

We compare our full model (Fig. 3(a)) to the state-of-the-

art in Tables 4, 5, and 6. Table 4 compares non-graph [26,

27, 16, 28] and graph-based methods [33]. Table 5 com-

pares non-graph methods [23, 20], graph-based methods

with spatial edges [18, 21, 33, 34, 32] and with spatial-

temporal edges [8]. Table 6 compares single-stream [50, 21]

and multi-stream [18, 33, 32] methods. On all three large-

scale datasets, our method outperforms all existing methods

under all evaluation settings. Notably, our method is the first

to apply a multi-pathway design to learn both long-range

spatial and temporal dependencies and complex regional

spatial-temporal correlations from skeleton sequences, and

the results verify the effectiveness of our approach.

5. Conclusion

In this work, we present two methods for improving

skeleton-based action recognition: a disentangled multi-

scale aggregation scheme for graph convolutions that re-

moves redundant dependencies between different neighbor-

hoods, and G3D, a unified spatial-temporal graph convolu-

tional operator that directly models spatial-temporal depen-

dencies from skeleton graph sequences. By coupling these

methods, we derive MS-G3D, a powerful feature extrac-

tor that captures multi-scale spatial-temporal features pre-

viously overlooked by factorized modeling. With experi-

ments on three large-scale datasets, we show that our model

outperforms existing methods by a sizable margin.
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