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Complex network theory provides a powerful toolbox for studying the structure of statistical interrelationships

between multiple time series in various scientific disciplines. In this work, we apply the recently proposed

climate network approach for characterizing the evolving correlation structure of the Earth’s climate system

based on reanalysis data for surface air temperatures. We provide a detailed study of the temporal variability

of several global climate network characteristics. Based on a simple conceptual view of red climate networks

(i.e., networks with a comparably low number of edges), we give a thorough interpretation of our evolving

climate network characteristics, which allows a functional discrimination between recently recognized different

types of El Niño episodes. Our analysis provides deep insights into the Earth’s climate system, particularly its

global response to strong volcanic eruptions and large-scale impacts of different phases of the El Niño Southern

Oscillation.
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I. INTRODUCTION

During recent years, complex network theory [1–3] has

found wide use not only in the social sciences, engineering,

and biology, but also in Earth and environmental sciences.

Pioneering work on fundamental aspects of many real-world

complex networks has triggered an enormous interest in

applying graph-theoretical concepts for the characterization

of complex geophysical systems. Among others, prominent

examples include applications in hydrology [4], seismology

[5–8], soil sciences [9–11], and geoscientific time series

analysis [12–18]. Recently, climatologists also started to

discover the instruments of complex network theory [19,20].

Having led to novel insights into the climate system, this

promising new branch of climate science is on its way to

refining and consolidating its tools [21–61].

In order to understand the functioning of the climate

system, relevant underlying physical processes and their

interactions have to be identified. For this purpose, a widely

applicable approach is performing a careful statistical analysis

of existing climate data and successively refining existing

mathematical models. Here, we focus on the statistical

aspect only. Traditionally, this problem has been addressed

by methods from multivariate statistics, such as empirical

orthogonal function (EOF) analysis and related techniques.

In order to study spatiotemporal climate variability from a

different perspective, the climate network approach has been

introduced for obtaining a spatially discretized representation

of the spatially extended dynamical system “climate” based on

significant statistical associations extracted from the multitude

of entangled interactions in the original system [19,24]. Thus,

*Corresponding author: reik.donner@pik-potsdam.de

climate network analysis opens a new perspective on the

Earth’s complex climate system.

The bridge from complex network theory to the climate

system is based on two fundamental identifications. First,

a distinct set of climatological time series obtained at fixed

locations on the Earth are interpreted as vertices of the climate

network. Second, relevant statistical associations between the

time series are represented by the network’s edges. The climate

network resulting from this approach is then subject to certain

well-established (but still actively progressing) statistical

methods originating in complex network theory [1–3,62].

While, as sketched above, this approach is a relatively young

one in the climate context, the same structural identification

is nowadays widely used in neuroscience, leading to so-

called functional brain networks [63–67] based on statistical

associations between electromagnetic recordings at different

parts of the brain.

Recent research on climate networks has either investigated

several measures of the static network relying on the complete

time span of observations [30,42,44] or considered the tem-

poral variability of only one specific measure [25–28,45,46].

In this work, we combine these two approaches to analyze the

time evolution of the global climate system from a complex

network perspective using a set of complementary network

characteristics. A similar approach has been recently applied

in the analysis of long-term variability in epileptic brain

networks [68]. We emphasize that the approach of evolving

networks (i.e., complex network structures representing the

system’s state within several consecutive windows in time) as

used in this work is conceptually related to, but distinctively

different from, temporal networks [69]. Notably, the concept of

temporal networks explicitly mixes topological and temporal

information, whereas both are clearly separated in the present

study.
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In this paper, we present several methodological improve-

ments with respect to previous works on climate networks,

such as an alternative type of spatial grid for the network

construction, which avoids distortions of the climate network’s

properties due to the grid geometry [32]. Subsequently, we

apply our modified approach to reanalysis data for surface

air temperature around the globe, spanning the time period

between 1948 and 2009. The meanings of characteristic graph

properties of the climate network in terms of the underlying

physical system as well as their temporal variability when

obtained from running windows in time are systematically

studied and discussed in the context of known large-scale

climate events such as El Niño episodes or strong volcanic

eruptions.

This paper is organized as follows: In Sec. II, we describe

the data set used in this work. Afterwards, the construction and

statistical description of climate networks is discussed in some

detail. The results of an evolving climate network analysis

are presented in Sec. III. Subsequently, we demonstrate the

robustness of our findings regarding various methodological

options in Sec. IV and put them into a climatological context

in Sec. V. Finally, the main conclusions obtained from the

presented work are summarized (Sec. VI).

II. MATERIALS AND METHODS

A. Description of the data

As stated above, climate networks are complex networks

based on statistical associations between climatological time

series obtained at several locations on the Earth. In this study,

we use air temperatures obtained from the NCEP/NCAR re-

analysis I data set [70] jointly provided by the National Centers

for Environmental Prediction (NCEP) and the National Center

for Atmospheric Research (NCAR), which covers the time

period 1948–2009 (i.e., 62 years) with a daily resolution on an

angularly regular 2.5◦ × 2.5◦ grid. Specifically, we investigate

air temperatures obtained at σ level 0.995 (i.e., the atmospheric

height where 99.5% of the surface air pressure is attained),

briefly referred to as surface air temperatures (SATs) in the

following.

The annual cycle of solar insolation is known to induce

the leading-order variation of air temperatures. Since we are

interested in dynamical interactions within the Earth’s climate,

this dominant externally triggered effect is not of interest.

In order to properly remove the effect of seasonality from

observational time series, a number of different methods may

be used [29]. Here, we restrict ourselves to removing the

long-term mean annual cycle (base period is the 62 years

of the record) from the observational data separately for

all considered locations. For this purpose, we subtract the

long-term mean values for each day of the year, a procedure

known as phase averaging [29]. Of course, the resulting

first-order surface air temperature anomalies (SATAs) account

for seasonality only in the mean, while annual variations in

higher-order statistical properties such as the variance are not

removed. Moreover, interannual shifting of seasons [71–73]

is not considered. For technical reasons, all leap days are

removed from the resulting time series, which has only

negligible effects on the results as long as only lag-zero

statistical associations between different sites are studied.

Regarding nonzero lags, the corresponding effects are found

to be statistically negligible as well.

B. Climate network construction

1. Identification of vertices (nodes)

The first step in the construction of a climate network is

the appropriate identification of vertices. For example, the

locations at which the considered time series are available

can be directly used as the spatial locations of network

vertices. When operating with station data [29], this leads to

an irregular spatial distribution of vertices with a large variety

of nearest-neighbor distances. However, even for reanalysis

data sets or climate models, the arrangement of vertices in

the published data sets is commonly regular only with respect

to the difference angles in both longitudinal and latitudinal

coordinates. This results in a significant spread in the actual

spatial distances between neighboring vertices in low and

high latitudes. Specifically, average intervertex distances

are smaller close to the poles than in low-latitude regions

[see Figs. 1(a) and 1(b)]. Such a heterogeneous distribution of

vertices is known to induce severe distortions in the topological

properties of spatially embedded networks [74,75]. Even more,

for reanalysis data, information for high latitudes is typically

provided with rather large uncertainty, since there are hardly

any direct measurements that can be assimilated into the

(a)

(c) (d)

(b)

FIG. 1. (Color online) Geographical neighborhoods of (a), (c)

a high-latitude (North Atlantic between Svalbard and Northern

Greenland) and (b), (d) a low-latitude (close to Singapore) grid point

given on (a), (b) a standard (angularly regular) 2.5◦ × 2.5◦ grid with

10 226 grid points and (c), (d) an icosahedral grid with 10 242 grid

points (i.e., n = 5 completed refinement steps), respectively. The

chosen grid points (red) are connected to all other grid points that

are closer than 500 km. For the standard grid, the high-latitude grid

point has 56 geographical neighbors, whereas the one at low latitude

has only 8. In contrast, for the icosahedral grid, both grid points have

16 neighbors each. Obviously the heterogeneous spatial distribution

of grid points in the standard grid determines the huge difference

between the two neighborhoods, whereas the homogeneous spatial

distribution of grid points of the icosahedral grid enhances the

comparability of vertex properties in different regions of the Earth.
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underlying climate model. As a consequence, there are many

vertices with less reliable data in the polar regions.

In order to correct for the geometrically induced effects,

Heitzig et al. [74] recently introduced a specific class of

vertex-weighted network measures explicitly taking infor-

mation on the spatial distribution of vertices and, hence,

their neighborhood size into account. This concept can be

understood as a sophisticated generalization of area-weighted

connectivity measures previously studied in the context of

climate network analysis [20,21,30,40,60].

As an alternative approach, in this work we project the avail-

able spatially distributed SATA time series onto a different type

of grid with a higher degree of homogeneity and isotropy on the

sphere (i.e., a grid where the typical nearest-neighbor grid point

distances as well as the numbers of neighboring vertices are

the same almost everywhere) by means of interpolation [32].

Specifically, we use a quasi-isotropic icosahedral grid [76]

[see Figs. 1(c) and 1(d)], which is constructed as follows: First,

the vertices of an icosahedron are projected onto the sphere,

yielding 12 initial grid points with constant spacing. As anchor

points defining the icosahedron, we use the North and South

Poles as well as a third point at 26.56◦N, 0◦E (the choice of this

third reference point on the zero meridian is convenient, but

arbitrary); all other initial grid points follow from symmetry.

The same procedure applies to the edges of the icosahedron

(forming 20 equilateral triangles), which are also projected

onto the sphere. Second, every projected triangle is partitioned

into four smaller triangles with approximately the same area on

the sphere by bisecting the projected edges. At each bisection

point, a new vertex is introduced. This procedure of grid

refinement is repeated as often as desired. The number of

vertices grows as N = 5 × 22n+1 + 2 with n being the number

of completed refinement steps, i.e., N = 42, 162, 642, 2 562,

and 10 242 for n = 1, . . . ,5. Conversion of the available data

is performed using a standard bilinear interpolation scheme

using the four angularly regular grid points of the quadrilateral

surrounding the respective icosahedral grid point [77].

We emphasize that for the SATA data used in this study, the

described spatial interpolation does not cause any considerable

errors, since the SATA variability at geographically close

points is typically very similar. However, interpolation can

generally induce spurious correlations [78], which are not

necessarily spatially homogeneous. Since the framework used

in this paper is based on correlations between time series from

different locations (see below), we cannot completely rule out

a possible effect on the resulting climate network properties.

Given the widespread use of such interpolation approaches in

climate sciences, we conjecture that a possible bias (given its

existence) can be widely neglected. A detailed examination of

this point is, however, beyond the scope of the present study.

2. Identification of edges (links)

Having thus defined the vertices of the climate network, in

a second step, the corresponding connectivity is established.

This step requires two basic ingredients: the selection of a

pairwise measure of statistical association between time series

obtained at each grid point (vertex), and the definition of an

appropriate threshold criterion determining which of these

associations are statistically relevant. Specific association

measures previously used for climate network construction

include the linear (Bravais-Pearson) correlation coefficicent

[19], (cross-)mutual information [30,31], a phase synchro-

nization index based on the normalized Shannon entropy of the

associated phase difference time series [28], the (cross-)mutual

information of order patterns [40,59,60,79], event synchro-

nization [41–43], transfer entropy [56], or graphical models

for identifying “causal” climate networks [47,48,80,81]. We

refer to the corresponding references for details. Of course,

other association measures could be used here as well.

In all cases, the resulting matrix of normalized pairwise sta-

tistical associations, e.g., cross-correlation coefficients (here

within a given time window) is considered as the weight

matrix W = (Wij ) of a fully connected weighted graph. In

order to obtain a climate network representation (as a simple

unweighted graph), thresholding is applied to this matrix to

infer the climate network’s adjacency (connectivity) matrix

A = (Aij ) defined as

Aij = �(Wij − W ∗
ij ) − δij . (1)

Here, W ∗
ij is a threshold deciding whether or not the

association between vertices i and j is considered statistically

relevant, �(·) is the Heaviside function, and δij is Kronecker’s

delta. In principle, this thresholding can be performed in two

different ways:

(i) On the one hand, it is possible to locally select an

appropriate threshold separately for each pair of vertices

[34,44,79], where the significance is determined independently

by taking the individual time series’ probability distribution

and autocovariance structure into account, for example,

by means of amplitude-adjusted Fourier transform (AAFT)

surrogates [82] or block bootstrapping [83]. In this spirit,

local thresholding has the important conceptual advantage of

representing only the statistically significant interrelationships

with respect to some specific null model.

(ii) On the other hand, the threshold can be defined globally,

i.e., W ∗
ij ≡ W ∗ [19,27,31]. This can be achieved by considering

a fixed quantile of the empirical distribution p(W••) [84]

of all weights Wij (e.g., determined by the significance of

associations of a proper statistical model), which results in an

edge density

ρ =

N−1
∑

i=1

N
∑

j=i+1

Aij

/(

N

2

)

(2)

(i.e., the fraction of possible edges realized in the network).

Obviously, global thresholding is computationally by far less

demanding than local thresholding and allows a more direct

comparison of network patterns obtained at different parts of

the globe.

Notably, both approaches are not equivalent, since global

thresholding can lead to spurious results in the presence of

strong serial dependences (e.g., autocorrelations) in some

individual time series [44]. Nevertheless, in this work, we

will restrict ourselves exclusively to global thresholding in

order to reduce the computational efforts. Note that, in general,

thresholding results in a loss of information about the exact

strengths of pairwise associations. Hence, different thresholds

represent different levels of considered association strength (or

different significance levels in the case of local thresholding)
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and result in different edge densities of the derived networks.

Consequently, looking at climate networks with different edge

densities highlights distinct aspects and intrinsic scales of the

underlying association structure of the climate system.

C. Network quantifiers

After having transformed the available climate data into a

complex network representation, the next step is to character-

ize the resulting discrete structures. For this purpose, there is a

large amount of statistical characteristics quantifying different

aspects of network topology on both local (vertex or edge) and

global scales [1–3,62]. In recent research on climate networks,

much attention has been spent on the probability distributions

and spatial patterns of vertex characteristics, such as degree

ki =

N
∑

j=1

Aij , (3)

area-weighted connectivity [20,21,40,44], or betweenness

centrality [30,31,44].

Besides such measures characterizing exclusively network

topology (connectivity), there are those quantifying certain

aspects of the spatially embedded geometry of the graph. These

measures rely on the geographical distance matrix d = (dij )

which stores the shortest spatial distances (along geodesics

on the sphere) between all pairs of vertices i and j . Notable

examples are the edge length distribution p(d••|A•• = 1)—in

the following understood as referring to present edges—and

the maximal edge length per vertex

dmax
i = max

j
(dij |Aij = 1). (4)

The latter quantity allows identifying vertices possessing long-

range connections (teleconnections).

In contrast to these local measures, in this work we are

mostly interested in characterizing temporal changes of the

climate network topology on a global scale, which primarily

calls for the study of scalar-valued network characteristics

evolving in time. Of course, one has to be aware of the fact that

changes of such global characteristics always reflect changes

at a local scale.

Temporal changes in climate networks have already been

considered by different authors. Tsonis and Swanson [21]

compared the number and geographic length distribution of

edges as well as the spatial connectivity pattern for El Niño

(EN) and La Niña (LN) years. They found that under EN

conditions, the global climate network contains considerably

fewer and geographically shorter edges when considering a

fixed threshold W ∗ for network construction. Using a more

subtle approach, Yamasaki and co-workers [25–28] confirmed

a considerable global impact of El Niño on the climate

network in terms of the appearance and disappearance of edges

(“blinking links”).

Here, we mainly focus on the time evolution of three global

network characteristics, which are widely used in complex

network research:

(i) The average path length L [2,3] measures the mean

shortest (geodesic) graph distance between all pairs of vertices

in the network, i.e., the average smallest number of edges to be

traversed to cover the distance between two randomly chosen

vertices on the graph,

L =
1

N
Li with Li =

1

N − 1

N
∑

j=1

Lij , (5)

with Lij denoting the length of the shortest path (i.e., the

number of edges) between vertices i and j , and Lii = 0 by

definition. Note that for ensembles of spatially embedded

networks with the same edge density, transfer of connectivity

between spatial scales (i.e., changes in the edge length

distribution) can change the average path length. However,

spatial redistribution of edges alone (i.e., even without transfer

between spatial scales) can lead to similar changes in L.

(ii) The network transitivity T [3]—sometimes also

referred to as the (Barrat-Weigt) clustering coefficient [2,85]—

characterizes the degree of transitivity in the connectivity

relations in the network relative to the maximally possible

value (or, put differently, the global density of closed “trian-

gles” in the network):

T =

∑N
i,j,k=1 AijAikAjk

∑N
i,j,k=1,j �=k AijAik

. (6)

(iii) The global (Watts-Strogatz) clustering coefficient C

[86] measures the average density of triangles centered at all

vertices of a network,

C =
1

N

N
∑

i=1

Ci with Ci =

∑N
j,k=1 AijAikAjk

ki(ki − 1)
, (7)

where Ci is the local clustering coefficient of vertex i. C is

conceptually related to, but distinct from, T and actually

captures a different property of the network under study.

Particularly, T does not explicitly take the degree of each

vertex into account, whereas C does.

For spatially embedded networks such as climate net-

works, the possible ranges of the aforementioned global

characteristics are often predetermined by the associated

spatial constraints [52,75,87–90], which calls for a careful

interpretation of the corresponding results. For example, the

small-world property (i.e., high global clustering coefficient

and short average path length [86]) common to many real-

world networks can be induced by the spatial embedding

alone [75].

D. Characterization of graph dissimilarity

In addition to the scalar network characteristics discussed

above, for studying dynamical changes in climate network

topology, it is useful to consider a measure for comparing two

networks with the same set of vertices. This is traditionally

achieved by the Hamming distance [30,91]

H(G ,G ′) =

N−1
∑

i=1

N
∑

j=i+1

|Aij − A′
ij |

/(

N

2

)

, (8)

where G and G ′ are the two graphs to be compared with

adjacency matrices A and A′, respectively. By definition, we

have H = 0 for identical networks, and H = 1 for networks

that are inverse with respect to the presence and absence of

edges. Note that H treats the combined presence and absence
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of edges in the two networks symmetrically, i.e., an inversion

of both networks does not alter the result.

Trivially two networks with different numbers of edges

always have H > 0. Hence, separating the corresponding

effect from a “real” difference in the placement of (present)

edges provides additional insights into network topology. Let

us define

a = |{(i,j )|i < j ∧ Aij = 0 ∧ A′
ij = 0}|,

b = |{(i,j )|i < j ∧ Aij = 1 ∧ A′
ij = 0}|

c = |{(i,j )|i < j ∧ Aij = 0 ∧ A′
ij = 1}|

d = |{(i,j )|i < j ∧ Aij = 1 ∧ A′
ij = 1}|,

where |S| is the number of elements of the set S, i.e., a is

the number of edges absent in both networks, d is the number

of edges present in both networks, and b and c refer to the

respective numbers of edges present in exactly one of the

two networks. This implies H(G ,G ′) = (b + c)/( N
2 ). Let ρ =

(b + d)/( N
2 ) and ρ ′ = (c + d)/( N

2 ) be the edge densities of

the two networks. Without loss of generality, ρ � ρ ′ (i.e.,

b � c). With the edge density difference �ρ := |ρ − ρ ′| =

(b − c)/( N
2 ) � 0, we obtain

H(G ,G ′) = �ρ + 2c

/(

N

2

)

= �ρ + H
⋆(G ,G ′), (9)

i.e., H⋆(G ,G ′) = 2c/( N
2 ). Recall that c is the number of edges

that are present in the network with the lower edge density but

not in the network with the higher edge density. For the mutual

comparison of different climate networks the latter part, which

we refer to as the corrected Hamming distance

H
⋆(G ,G ′) = H(G ,G ′) − �ρ, (10)

is of particular interest, since it measures the structural

dissimilarity one would find for two networks of the same

edge density, disregarding the effect of different numbers of

edges. By definition, we have 0 � H⋆(G ,G ′) � H(G ,G ′) � 1,

i.e., the same range as for the original Hamming distance.

In the context of complex networks representing subsequent

snapshots of the evolving network topology, i.e., G = Gt and

G ′ = Gt−δt with t denoting some time interval of interest and

δt being a fixed time increment, the Hamming distance

Ht,t−δt = H(G ,G ′) (11)

(as well as its counterpart corrected for the effect of different

edge densities) can be interpreted as the relative change in

connectivity between subsequent networks, i.e., a discrete

“network derivative” given the direct analogy with the classical

difference quotient. This viewpoint is of particular interest in

the context of evolving climate networks, since strong differ-

ences between networks obtained for subsequent time intervals

point to a (temporary) global-scale instability of the spatial

interdependence structure of the considered climatological

observable.

III. RESULTS

A. Methodological setting

In order to study the signatures of annual- to decadal-scale

variability in the climate network, we determine the underlying

connectivity as described in Sec. II for running windows of a

given width w in time and study the temporal variability of

the resulting global network characteristics. For comparing

the topological properties of evolving climate networks, two

different methodological settings are possible:

(i) On the one hand, the global threshold W ∗ used for

edge generation can be kept constant. In this case, we expect

variations in the number of edges present in the network as

previously found by other authors [21,25,27,28], related to

the global signature of El Niño Southern Oscillation (ENSO)

variability. We will specifically discuss this situation in

Sec. IV B.

(ii) On the other hand, many complex network character-

istics depend on the number of vertices and edges present

in the network (cf. our discussion on the Hamming distance

in Sec. II D). Hence, comparing the properties of climate

networks with different numbers of edges and thoroughly

interpreting the corresponding results can be a nontrivial task.

Therefore, it is desirable to keep the edge density ρ of the

networks fixed when studying their time evolution [92]. In

this case, the threshold W ∗ varies in time. A higher threshold

thus implies that the empirical distribution p(W••) of the

considered pairwise statistical association measure is shifted

towards higher values of W••. Thus, periods with increased

W ∗ indicate that there is a higher fraction of strong statistical

associations in the climate system, i.e., the obtained edges

represent stronger mutual interdependences.

In the following, we study the resulting properties of the

global SATA network based on the reanalysis data set (time

resolution �t = 1 day) projected onto an icosahedral grid

with N = 10 242 vertices (i.e., n = 5 refinement steps of the

grid construction algorithm described in Sec. II B). For the

network evolution, running windows of width w = 1 yr and

offset �w = 30 days are considered. Network connectivity is

established based on the lag-zero cross-correlations Cij (s = 0)

between all pairs (i,j ) of records (the alternative case of

maximum cross correlation after allowing for nonzero lags will

be discussed in Sec. IV A). Only the 0.5% strongest pairwise

associations between time series are considered as edges (ρ =

0.005). Such sparse climate networks have been introduced

and partly studied in previous works [19,21,30–32,49], where

ρ ∼ 0.01 . . . 0.05 or W ∗ = 0.5 have been typical choices.

A brief discussion of climate networks with higher edge

densities can be found in Sec. IV D [93]. In order to guarantee

that the climate network at a given point in time only

considers dynamical information of its past, we will display

the network measures at the end point of the associated running

window.

B. A conceptual view on sparse climate networks

Before investigating the time dependence of global climate

network characteristics, let us have a detailed look at the spatial

patterns associated with the connectivity of these networks. In

the following, we will provide a general discussion of these

patterns. Thereby, we obtain a conceptual view on sparse

climate networks, which will subsequently prove to be helpful

for understanding the temporal variability of evolving climate

network properties.

052807-5



RADEBACH, DONNER, RUNGE, DONGES, AND KURTHS PHYSICAL REVIEW E 88, 052807 (2013)

(a)

(b)

FIG. 2. (Color online) Spatial distribution of the degree k• for

two typical time windows (a) without (May 1960 to April 1961) and

(b) with (May 1982 to April 1983) marked localized structures for the

surface air temperature anomalies network obtained using the setting

described in Sec. III A.

When looking at the evolution of spatial connectivity

patterns, we find two prototypical phases of the sparse

climate network [Figs. 2(a) and 2(b)]. For certain episodes,

it reveals one (or more) distinct strongly connected region(s),

i.e., with vertices having extraordinarily high degrees ki

[Fig. 2(b)], while such are not present during other periods

[Fig. 2(a)]. Inspired by this observation, we propose a simple

idealized view on this phenomenon: Certain instances of an

evolving climate network—constructed in the way outlined in

Sec. III A—exhibit (at least) two types of (temporarily)

coexisting structures.

First, there is a “substrate lattice” which reflects strong

short-range associations between mutually close grid points

affected by the same atmospheric circulation patterns. Typ-

ically, we observe an approximately exponential decay of

the strengths of statistical associations between vertices with

increasing distance [30], since shorter distances between grid

points are typically accompanied by stronger associations

between the respective temporal climate variabilities. Hence,

the substrate lattice describes “trivial” spatial correlations

due to typical (synoptic-scale) atmospheric patterns. We

emphasize that this type of structure is always present in

our climate networks and behaves relatively statically, i.e., its

edges do not fluctuate much in time. Further research should

clarify the relation to the concept of a “skeleton of strongly

correlated links” as introduced in [25].

Second, there are regions of larger spatial extension

(≈3000–9000 km), which display very high internal connec-

tivity [19,30]. The presence of such “localized structures”

indicates that the spatial correlation length is significantly

enhanced within a confined region, i.e., beyond typical

synoptic scales. Hence, the corresponding connectivity covers

both short (synoptic-scale) and intermediate distances (see

Sec. III C for a detailed discussion). Note that localized struc-

tures appear only episodically in the evolving SATA network

[cf. Figs. 2(a) and 2(b) and [21]], but typically repeatedly in

the same region (especially the Eastern Equatorial Pacific).

As a consequence, we expect them to contribute significantly

to the climate network connectivity when considering the

full 62-yr-long records, which is supported by other studies

[30,44].

The postulated separation of the climate network into

substrate lattice and localized structures is supported by the

(evolving) edge length distribution [see Figs. 3(e) and 3(f)],

showing one dominant peak for short-range edges (substrate

lattice) and far fewer longer connections. In addition, there

are edges of lengths that exceed the typical extension of

the described localized structures, which are denoted as

“teleconnections” and interrelate climate variability at distant

(a)

(c)

(e) (f)

(d)

(b)

FIG. 3. Kernel estimates of the probability density functions

p(·) (obtained using a Gaussian kernel function with a bandwidth

following Scott’s rule [95]) of (a), (b) vertex degree k•, (c), (d) local

clustering coefficient C•, and (e),(f) edge lengths d••|A•• = 1 for

the same time intervals and setting as in Fig. 2. In all cases, the

empirical distributions have been normalized by the distribution of

edge lengths of a fully connected graph in order to eliminate purely

geometric effects.
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parts of the globe. We hypothesize that the latter show

more “ordered” placement during certain climatic episodes,

although they cannot be clearly separated by means of the

edge length distribution only.

Localized structures seem to be favored starting points of

long-range edges. For example, the phasing on the El Niño

Southern Oscillation in the Equatorial Pacific [see Fig. 2(b)]

is known to have considerable influence on climate variability

in distant parts of the Earth [96], such as the Indian monsoon

system [97,98].

The proposed qualitative view is consistent with previous

results for static (time-independent) climate networks, which

clearly demonstrated that the majority of vertices are char-

acterized by low connectivity [19–21,30] [see also Figs. 3(a)

and 3(b)]. Furthermore, the localized structures in the Eastern

Equatorial Pacific [Fig. 2(b)] related to ENSO variability

closely resemble the corresponding results of recent studies

[19,30]. Notably, these observations hold for our analysis using

an icosahedral grid, whereas former studies were based on on

a standard (angularly regular) grid.

Note that our conceptual view refers to the membership

of vertices in one or another category, but is induced by the

placement and temporal behavior of edges. In turn, analyzing

fields of (topological or geographical) vertex properties pro-

vides only implicit information on the edges. However, even

though the degree field (Fig. 2) does not describe the spatial

distribution of long-range connections [Figs. 3(e) and 3(f)], our

idealized conceptual view holds, since the joint distribution of

maximal edge length per vertex dmax
• and degree k• [Figs. 4(c)

and 4(d)] shows that the vast majority of vertices with small

degree have indeed almost no long-range edges (dmax
i �

2500 km). Further relationships between network properties

will be discussed below.

C. Temporal variability of global network properties

Performing an evolving climate network analysis as de-

scribed above, we first observe that the two network measures

L and T as well as the Hamming distance Ht,t−1 change

typically in parallel with each other and with the threshold

W ∗, with characteristic peaks from a certain constant base

level (Fig. 5). We emphasize that this coevolution is ex ante

nontrivial, since these three measures capture distinctively

different network properties. In turn, the variability of the

global clustering coefficient C is strongly anticorrelated with

that of the aforementioned characteristics, which also deserves

further discussion since C captures a similar network property

as does T .

Because the total number of edges has been kept fixed,

all scalar network characteristics are unaffected if the edge

density ρ is varied within a certain range still corresponding to

a “sparse” connectivity. Hence, the strong similarity between

the variations of both L and T in the climate network most

probably originates from complex rewiring processes driven

by climate variability, although we cannot fully rule out minor

effects due to changing autocorrelations. In the following, we

will provide a detailed graph-theoretical interpretation of these

results, whereas the climatological mechanisms beyond the

obtained temporal variability pattern will be discussed in detail

in Sec. V.

(a)

(c)

(e) (f)

(g) (h)

(d)

(b)

FIG. 4. (Color online) Joint probability distributions p(·,·) of (a),

(b) strength of statistical association W•• and geographical distance

d•• between all pairs of vertices (i.e., without thresholding), and (c),

(d) degree k• and maximum edge length dmax
• , (e), (f) average shortest

path length per vertex L• and maximum edge length dmax
• , and (g), (h)

local clustering coefficient C• and degree k• of all vertices (i.e., after

thresholding), for the same time intervals and settings as in Fig. 2.

All distributions are represented as histograms using 100 (90 for W••)

equidistant bins. The gray lines in (a) and (b) depict the thresholds

above which edges are established (here, 0.5% of all possible pairs

of vertices). Wherever appropriate, the distance dependences of the

distributions have been corrected as in Fig. 3.

1. Association strengths and spatial scales

Since the SATA networks studied in this work solely

rely on those pairs of time series the statistical association

between which exceeds W ∗, the evolving joint probability

density function p(d••,W••) [Figs. 4(a) and 4(b)] reveals first

deep insights into relevant spatiotemporal modes of climate

variability. Specifically, this distribution can be qualitatively

decomposed into the components introduced in Sec. III B:

The substrate lattice manifests itself as dominant, strong, and

rather persistent associations at small edge lengths. For larger

edge lengths, there is a more or less continuous distribution

of association values. During some periods [e.g., in Fig. 4(b)],

the corresponding distribution of statistical association values

for distant vertices is shifted towards higher values, indicating

the presence of localized structures.

Considering the evolution of p(d••,W••), we see as a first

approximation a net amplification of association values for
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1961

1983

FIG. 5. (Color online) Threshold W ∗, average path lengthL, tran-

sitivity T , global clustering coefficient C, and (standard) Hamming

distance Ht,t−1 between networks obtained for successive periods

in time for the evolving SATA network (using the settings given in

Sec. III A). Note that due to the fixed ρ, we have H∗
t,t−1 = Ht,t−1.

Vertical bars indicate fall and winter seasons (September to November

and December to February, respectively) with maximal intensity of

EN (red) and LN (blue; darker colors represent stronger episodes

according to the Niño 3.4 index; cf. [99,100]).

several time windows, leading to the peaks in the threshold

W ∗ visible in Fig. 5. This amplification is not uniform with

respect to the spatial scale d••. Consequently, not only the

degree distribution p(k•) [Fig. 6(a)], but also the edge length

distribution varies substantially with time [cf. Fig. 6(b)]. For

several time windows exhibiting strong peaks in the evolving

scalar network characteristics, we observe more long edges—

but yet cannot find a clear separation of the longer spatial

scales. This suggests that these time windows are accompanied

by the emergence of localized structures and, hence, hub

vertices [Fig. 6(a)]. Recall that localized structures consist

of vertices with very high degrees [cf. Fig. 3(b)] and exhibit

high internal connectivity. Typically, but not necessarily, the

associated structures are located in the Equatorial Pacific

[cf. Fig. 2(b)].

2. Transitivity

By forming groups of vertices with very high degree

(commonly in the presence of localized structures), the

network’s total number of connected triples rises, since the

possible number of triples centered at one particular vertex i

grows with its degree ki as ki(ki − 1)/2. As a consequence,

although the denominator in Eq. (6) peaks at those time

windows within which the strength of statistical associations

is amplified (peaking W ⋆), the transitivity T still increases

(b)

(a)

1961

1983

FIG. 6. (Color online) Evolution of (a) degree distribution p(k•)

and (b) edge length distribution p(d••|A•• = 1) with the settings given

in Sec. III A. In (b), the distributions obtained for all time windows

have been corrected as in Fig. 3.

because the total number of closed triangles [numerator in

Eq. (6)] increases even more strongly than the number of

connected triples.

In analogy with the local clustering coefficient [Eq. (7)],

we can formally split the transitivity [Eq. (6)] into (non-

normalized) “local” transitivities Ti by just decomposing the

sum in the denominator of Eq. (6) as

T =
1

N

N
∑

i=1

Ti with Ti =

∑N
j,k=1 AijAikAjk

1
N

∑N
i,j,k=1,j �=k AijAik

, (12)

i.e., Ti gives the ratio between the number of triangles centered

at vertex i and the average number of connected triples

centered at all vertices. We find that vertices i with high degree

in the localized structures contribute more strongly (i.e., with

higher Ti) to the overall transitivity than those exclusively

belonging to the substrate lattice.

3. Global clustering coefficient

Unlike network transitivity, the global clustering clustering

coefficient C—as the arithmetic mean of all local clustering

coefficients—drops when localized structures emerge. This

behavior appears somewhat unexpected, since both charac-

teristics quantify conceptually related properties and exhibit

values within the interval [0,1]. In connection with this fact,

note that the variability of C is by about one order of magnitude
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smaller than that of T , another observation that calls for

explanation.

In order to resolve the reason for the behavior described

above, a deeper look into the probability distribution of C•

[Figs. 3(c) and 3(d)] gives a twofold finding: For several

time windows we observe a secondary maximum of p(C•) at

higher C• as well as a shift of the primary maximum towards

smaller values. If we furthermore consider the dependence

on the vertices’ degrees k•, we find that the hubs show a

broad range of higher C• values than the vertices exclusively

belonging to the substrate lattice [cf. Fig. 4(h)]. Still, the

vast majority of vertices with low degrees show declining

C• during periods with marked localized structures. This

causes the global clustering coefficient to drop (even though a

notable fraction of vertices increase their C•). We can exclude

that the observed drops in C have been induced by vertices

i of degree ki = 0 or ki = 1, since only five of such vertices

emerge in the entire time evolution of the SATA network.

According to the general shape of the probability density

p(d••,W••) [Figs. 4(a) and 4(b)], for a fixed time window

we can expect that the distributions of k• and C• will exhibit

remarkable changes as the edge density ρ is varied. As a

consequence, we hypothesize that the general behavior of C

(for fixed ρ as a function of time) is much more strongly

affected by the specific choice of ρ than that of T . The

validity of this hypothesis, and particularly the dependence

of the distinct anticorrelation between T and C on the chosen

edge density, will be further discussed in Sec. IV D.

4. Average path length

Ad hoc it seems counterintuitive that a spatially embedded

network (with periodic boundary conditions and fixed edge

density) exhibits a rising topological path length when there

is a transfer of connectivity towards longer spatial scales.

Specifically, in spatially embedded networks (e.g., airline

transportation), longer edges typically act as shortcuts. Thus,

the presence of such long-range connections is particularly

reflected in shortest-path-based quantities. In our SATA net-

works, the same observation holds in each time window: Ver-

tices i with dmax
i � 2500 km have always minimal Li . How-

ever, at the same time we observe a total shift of p(dmax
• ,L•)

towards higher L• values in these time windows [Figs. 4(e)

and 4(f)]. We deduce that this can be caused by a more

redundant, partially parallel geographical placement of long-

range edges compared to the base-level situation (cf. Fig. 2).

This explanation is consistent with the physical continuity

of the climate system: Spatially close points tend to behave

similarly and thus correlate groupwise with others. Another

possible cause is the loss of edge density in the substrate lattice,

enlarging shortest paths starting or ending at (the majority

of) vertices i with small ki . In a nutshell, building up lots

of parallel highways by dismantling rural roads does stretch

shortest pathways in the entire frame.

5. Hamming distance

In a similar spirit as for the global network characteristics

discussed above, the peaks of the Hamming distance Ht,t−1

[Eq. (11)] coinciding with those of W ∗ can be explained

as indicators of a persistent redistribution of edges between

different spatial scales, which is known to be a typical signature

of EN episodes [21,25,27]. Specifically, Ht,t−1 exhibits a

double-peak structure around time windows characterized by

single peaks of the other network characteristics (T , C, and L).

Given our interpretation of the Hamming distance as a “net-

work derivative,” this finding is consistent with the expected

behavior: Large values coincide with time periods where the

SATA network connectivity is changing considerably, i.e., in

parallel with the emergence and disappearance of localized

structures.

D. Possible implications for local network organization

Following the observations described in Sec. III C in com-

bination with our conceptual view on sparse climate networks

(Sec. III B), we are able to derive some preliminary insights

into the spatial organization of the association structure of

SATA fields on the local (network) scale, which complement

recent findings [31]. For this purpose, let us examine Fig. 4 in

some more detail.

In many examples of complex networks [101–105], hubs

have a tendency to contribute to a lower fraction of triangles

than vertices with intermediate degree. In the climate network,

this effect is visible only for those vertices i with the highest

degrees [i.e., ki � 450 in Fig. 4(h)], which belong to densely

connected and spatially localized structures [see Fig. 2(b)].

As discussed in Sec. III C, these hubs have higher local

clustering coefficients than the substrate lattice, even though

the associated spatial scales captured by the adjacent edges are

considerably larger than the typical “correlation range” [i.e.,

synoptic scales of up to O(103 km)] within which mutual

associations are on average statistically relevant. Notably,

this effect acts against the decrease of the local clustering

coefficients in the substrate lattice, which dominates the

resulting signature in the global clustering coefficient for

sparse climate networks with an edge density of 0.5% as

considered here.

In order to derive an alternative explanation, note again that

in the presence of localized structures, vertices belonging to the

substrate lattice are characterized by a lower average degree

than otherwise, since the total edge density ρ is conserved

(compare the left and right panels in Figs. 3 and 4). We

suggest that this finding could indicate that the connectivity in

the substrate lattice becomes less isotropic, but rather reflects

the actual preferred directions of atmospheric dynamics (e.g.,

westerlies, trade winds, etc.). This hypothesis is supported

by recent findings of Paluš et al. [44] who, by using a

different climate network approach, observed that a stronger

transport of air masses during positive phases of the North

Atlantic Oscillation enhances the network connectivity in the

directly affected areas. Particularly, it is likely that vertices

aligned in parallel with the preferrred direction of atmospheric

flow have on average stronger statistical associations over a

wider spatial range than those in the perpendicular direction.

A detailed examination of the associated climate network

connectivity patterns on the local scale is, however, beyond

the scope of this study and will be subject of future work. We

conjecture that in addition to established vertex characteristics,

purely geometric measures related to the spatial anisotropy of

connections [106,107] can provide relevant complementary

information for this purpose.
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FIG. 7. Linear cross-correlation functions C(s) between the dif-

ferent evolving climate network characteristics from Fig. 5. Positive

(negative) s refers to the situation of the measure in the row leading

(lagging) the measure in the column.

E. Statistical interdependences between measures

Beyond the qualitative interpretation of the observed

similarities and dissimilarities of various characteristics of

evolving climate networks, we will next provide a quantitative

assessment of the statistical interrelationships between these

measures, empirically supplementing our arguments from the

former sections. For this purpose, Fig. 7 displays the linear

cross-correlation functions between the temporal variability

of different measures. For the global network characteristics,

the most significant (positive or negative) interdependences are

found when considering the same time window. In contrast,

for the Hamming distance, the maximum correlations with

the other considered measures show a delay between 3�w

and 6�w (i.e., of 3–6 months), underlining the distinctively

different meaning of Ht,t−1 as a “network derivative” indicat-

ing structural changes before and after their most significant

reflection in the global network characteristics. In this respect,

the observed delay reflects the typical time scale associated

with the emergence and disappearance of localized structures

and, thus, of the underlying climate phenomena (cf. Sec. V).

IV. ROBUSTNESS OF THE RESULTS

The results described so far have been obtained using one

specific setting of methodological options for climate network

construction. In the following, we test the qualitative robust-

ness of the obtained results using different methodological

choices.

A. Nonzero lags

Our results in Sec. III refer to climate networks

based on lag-zero statistical associations between first-order

1961

1983

FIG. 8. (Color online) As in Fig. 5 for SATA networks based on

the maximum cross correlation for time lags s ∈ [0,30] days. Note

that W ∗ is larger than in Fig. 5 for s = 0 as expected.

deseasoned SAT time series at distinct parts on the globe.

Since atmospheric circulation patterns always travel with a

finite velocity, the same variations usually affect different grid

points at different times, so that the cross-correlation function

Cij (s) between different grid points i,j could peak at nonzero

mutual lags (s �= 0). In order to study the impact of such lags

on the topology and time evolution of the SATA network,

in the following we replace the lag-zero cross correlation

Cij (s = 0) as the criterion for edge creation by the maximum

value of the cross-correlation function Cij (s) for time lags s �
30 days. This choice allows consideration of typical large-scale

atmospheric wave phenomena that could mediate between

the temperature variability at distant parts on the Earth, and

respects the typical lifetime of weather regimes. Keeping

all other parameters of our analysis the same as above, the

resulting variations of climate network properties are shown

in Fig. 8.

As for the lag-zero case, we observe a sharp increase of

the threshold W ∗ at the previously identified time windows,

which mainly coincide with certain phases of the El Niño

Southern Oscillation (see Sec. V). Related to this finding, we

note that other authors (e.g., [25,27]) even found signatures

corresponding to a decrease rather than increase in W ∗.

On the one hand, Tsonis and Swanson [21] as well as

Paluš et al. [44] compared climate networks obtained for

EN and LN phases and found higher connectivity during LN

in comparison with EN episodes. For a fixed edge density,

this would correspond to higher values of W ∗. However, the

aforementioned studies did not explicitly consider the neutral

state as opposed to both EN and LN conditions. In turn, the

results of our evolving network analysis displayed in Figs. 5
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and 8 do not allow a systematic confirmation or rejection of

any particular asymmetry between the values of W ∗ or the

considered network characteristics for all EN and LN phases,

although there are two LN episodes (1973–74 and 1988–89)

that exhibit higher W ∗ values than during all EN phases. We

note that these results are consistent with recent findings of

Martin et al. [57], who observed higher correlations during

EN periods than under “normal” climate conditions, and even

stronger pairwise associations during LN phases, in agreement

with [21,44].

On the other hand, [25,27] considered a setting with a fixed

threshold rather than a fixed edge density. Since W ∗ and ρ

are closely interrelated, the decrease in the number of edges

during EN phases reported in these studies would coincide with

a decrease in W ∗ if ρ were kept constant, which is different

from our results. One possible reason for this difference is that

we prefer not to normalize the estimated association strengths

Wij by the standard deviations of the measure taken over all

considered time lags as in [25,27]. Specifically, we can argue

that the absolute value of the maximum statistical association

and its magnitude relative to the fluctuations over a range of

delays (as defined in [25,27]) provide complementary results.

A decreasing relative magnitude in parallel with an increasing

absolute value indicates stronger statistical associations for

most other delays. Here, we keep the two quantities (i.e., the

absolute value of the maximal statistical association and the

standard deviation of associations over a certain range of s)

separated. This point of view is supported by [57], who found

that the temporal fluctuations in the network connectivity

obtained using the approach of [25,27] do not necessarily

reflect changes in the coupling between different regions. Even

more, this method appears to have a lower degree of robustness

under changes of its basic parameters than other approaches

for climate network construction [57].

For the temporal variation of the considered network

characteristics, we find no qualitative deviations from the

findings previously obtained for the lag-zero SATA network

(compare Figs. 5 and 8). A detailed inspection of the

delays associated with the maximum cross correlation (not

shown) or, alternatively, the maximum mutual information

[108] reveals that except for an exceptionally strong peak

around s = 0, almost all delays contribute with comparable

frequencies. This observation demonstrates that statistically

relevant atmospheric interactions appear predominantly on

very short time scales, reflecting the presence of particularly

strong interactions between geographically close grid points,

and subsequently on all other (here considered) time scales. By

doing this, we qualitatively reproduce the results of [25,27].

Note that the absence of marked changes on the global

network scale in comparison with the lag-zero case does not

necessarily imply that there are no changes at the local scale.

A deeper discussion of the associated fields of local (vertex)

characteristics is to be resumed in future work.

B. Fixed thresholds

As initially discussed in Sec. III A, there are two possible

and theoretically justified options for selecting a global

threshold W ∗ in evolving climate network analysis. While all

previous considerations have focused on a fixed edge density

1961

1983

FIG. 9. (Color online) As in Fig. 5 for SATA networks with a

fixed threshold W ∗ ≈ 0.4958 chosen as the minimal threshold from

the evolution for fixed edge density of ρ = 0.005 (see topmost panel

in Fig. 5) —a value which was also used in [19–21]. Thus, ρ = 0.005

is a lower boundary for the evolving edge density, ensuring that

the network does not tend towards disintegration. In addition to the

standard Hamming distance Ht,t−1 (bottom panel, black line), the

corrected Hamming distance H ∗
t,t−1 is shown (red line).

ρ and, hence, a variable threshold W ∗, in the following we

consider the alternative choice of a fixed threshold W ∗, which

in turn implies that ρ becomes time dependent. We emphasize

that the resulting variations of W ∗ and ρ, respectively, are

directly interrelated, since maxima of both W ∗ (for fixed ρ)

and ρ (for fixed W ∗) indicate a shift of the distribution p(W )

of association strengths towards larger values. Consequently,

the temporal variability pattern of ρ (see Fig. 9) inferred from

the lag-zero-based cross correlation Cij (s = 0) is similar to

that of W ∗ in Fig. 5.

A detailed inspection of the different global network

characteristics (cf. Fig. 9) shows that the behavior of the

transitivity T is qualitatively similar to that in the case of fixed

edge density ρ, whereas the global clustering C exhibits peaks

instead of troughs in the previously identified time windows,

and the average shortest path length L lacks the formerly

observed peaks from a constant base level.

Clearly, the occurrence of localized structures as described

in Sec. III B takes place in the case of fixed threshold as well.

Specifically, in the presence of such structures, we observe a

considerably higher edge density. Hence, not only are edges

spatially redistributed, but additional significant associations

emerge.

Since the transitivity T shows the same signal as before,

our considerations from Sec. III C still apply. Specifically, the

emergence of localized structures results in a marked increase
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in local transitivities (even overshadowing a potential decrease

of local transitivity at the majority of lower-degree vertices).

Thus, additional edges (of lower association strengths) follow

the formerly discussed mechanisms.

The switch in the qualitative behavior of the global

clustering coefficient C (from troughs to peaks) is due to the

fact that the additional edges (which preferentially connect

vertices within the localized structures) do not substantially

affect the edge structure of the substrate lattice. Consequently,

we do not find a shift of the primary maximum of p(k•,C•)

towards smaller values of C•, while the secondary maximum

shows the formerly described behavior, contributing to an

overall increase in C.

The average shortest path length L is governed by two

competing mechanisms. While the effect pointed out in

Sec. III C (i.e., a spatial redistribution of edges leading to

a more redundant placement, yielding an overall increasing

path length) is still present, additionally occurring edges

trivially reduce the lengths of shortest paths. A further detailed

investigation of the distribution of shortest path lengths per

vertex could separate the two effects but exceeds the scope of

this work.

Since the Hamming distance Ht,t−1 as well as its density-

corrected counterpart H∗
t,t−1 indicate general connectivity

changes, both have high values whenever localized structures

emerge or disappear. In general, the amplitudes of Ht,t−1 are

about a factor of 3 larger than in the case of fixed edge densities

(Figs. 5 and 8). This observation is probably related to the

fact that the edge densities in the considered fixed threshold

scenario are bound from below by the value used in the fixed

edge density scenario. Hence, for most time intervals, there

are considerably more edges contained in the networks of

Fig. 9 than in those of Figs. 5 and and 8 (up to about three

times more). Since the higher the edge density, the more edges

can be rewired between two subsequent time intervals (note

that the range of possible Hamming distances is bound from

above by the sum of the edge densities of the two networks to

be compared if the latter is smaller than 1), the difference in the

realized edge densities could explain the observed behavior.

Comparing the classical and corrected Hamming distance,

we find that the contribution of edge rewiring mostly dominates

the effect of a changing edge density ρ, i.e., both Ht,t−1 and

H∗
t,t−1 display qualitatively the same variability. However,

in some time windows (e.g., in 1957, 1976, or 1993), the

corrected version of this measure remains at a much lower level

(cf. Fig. 9), indicating that during these periods, the changes

in the edge density ρ are particularly relevant as well.

C. Further methodological options

Besides the methodological choices discussed above, there

are further options that can be used for modifying the setting

of our evolving climate network analysis. In the following,

we just briefly note some of the possibilities that have been

tested within the course of the described work (see [108] for

examples), but are not discussed here in detail since they lead

to results that are qualitatively equivalent to those already

presented above:

(a) Use another statistical association measure, e.g., the

nonlinear (cross-)mutual information or Spearman correlation

coefficient (functions) instead of linear Pearson correlation,

further measures are possible (cf. Sec. II B2);

(b) change the temporal resolution of the considered time

series data (e.g., 6 hr or 1 month);

(c) change the size w of the running windows in time used

for the evolving network analysis within a reasonable range.

In contrast to the aforementioned options, the choice of the

spatial resolution of the icosahedral grid (e.g., use of n = 4

or n = 6 instead of n = 5 refinement steps; cf. Sec. II B) is

crucial. Using a coarser grid than presented here leads to a

significantly increased fraction of (almost) disconnected nodes

(ki = 0 or ki = 1) for the edge densities used in this study,

especially in the presence of localized structures. This effect

then biases other network measures (e.g., the global clustering

coefficient C) and reduces accessible information about the

network’s structure. In turn, considering a finer grid would

require data provided with a higher spatial resolution. For the

large-scale global climate characteristics we are interested in,

the considered resolution is reasonable, whereas consideration

of specific regional atmospheric processes and associated

statistical association patterns [41–43,52] would call for a

denser grid.

D. Denser climate networks

All previous considerations referred to sparse evolving

climate networks, i.e., networks with a very low edge density.

While there have been several studies using this setting

(e.g., [19,21,30–32,49]), one might argue for analyzing denser

networks (as used in [50,52]) in order to obtain possibly

better statistical estimates of network characteristics. In the

following, we discuss to what extent our results described

above are modified in case of higher edge densities.

As Fig. 10 shows, we find that many of the previously

discussed signatures of global network characteristics are

qualitatively robust when considering higher fixed edge

FIG. 10. (Color online) Global network measures (without Ham-

ming distance) for denser climate networks. The displayed results

correspond to a fixed edge density ρ = 0.15 (left axes, gray lines) and

a fixed threshold W ∗ = 0.2997 (right axes, black lines), respectively.
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densities up to ρ = 0.25, as well as lower fixed thresholds

[e.g., W ∗ = 0.2997, corresponding to ρ ∈ (0.016,0.072)].

This observation partially confirms the previous result of [23]

that “the effect of different correlation thresholds (between 0.4

and 0.6) does not affect the conclusions reached.” Specifically,

we make the following observations:

(i) In accordance with its previously discussed robustness

against different methodological choices (e.g., in Sec. IV B),

we find the transitivity T to be the most robust measure.

Not only for relatively large edge densities, but also at

extremely high thresholds [W ∗ = 0.9, corresponding to ρ ∈

(0.0004,0.0010)], the evolution of Fig. 5 is confirmed.

(ii) In contrast to this, the global clustering coefficient C

shows a marked sensitivity to variations of the edge density:

it drops during certain time intervals for low edge densities

(e.g., ρ � 0.01; cf. Sec. III C), but peaks for higher ones.

The critical edge density at which this behavior switches is

determined by p(d••,W••): When W ∗ lies above the typical

association strength of intermediate and longer edges, we

find the behavior of Sec. III C. In turn, for lower thresholds,

edges are permanently present at all spatial scales, leading to

generally higher C• in the substrate lattice and, hence, episodic

peaks of C since vertices in localized structures exhibit very

high C•.

(iii) Finally, since the considered climate networks are

associated with a continuous dynamics close to the Earth’s

surface, high edge densities lead to very low average shortest

path lengths [up toL = O(1)]. This makesL a less informative

measure at high edge densitities, even if the basic signature

described in Sec. III C is still present at ρ = 0.15.

Conclusively, lower edge densities are generally at least

as informative as higher ones, while the former rely on

probably more reliable statistical associations (with respect

to any kind of significance test). Information on climate

dynamics becomes partially distorted at extremely low edge

densities (ρ � 0.005), where the fraction of disconnected

vertices becomes non-negligible) and blurred for extremely

high edge densities (ρ � 0.15).

V. DISENTANGLING ENSO VARIABILITY

Recent studies have revealed a distinct influence of ENSO

variability on the topological properties of SATA networks

[21,25–28,57]. Here, we study the corresponding relationship

more deeply. Specifically, we hypothesize that the temporal

variability of the climate network characteristics discussed

in Secs. III and IV is mainly determined by the large-scale

connectivity patterns associated with ENSO-related global

climate episodes.

The latter hypothesis is further supported by Figs. 5, 8,

9, and 10, where recent EN and LN episodes have been

displayed for a better comparison. Here, we observe a striking

coincidence between the emergence of enhanced localized

structures in the SATA network and the timing of certain ENSO

phases. However, a detailed inspection of these figures reveals

that pronounced maxima (minima) of the different scalar

network characteristics as well as the Hamming distance do

not always coincide unequivocally with EN and LN episodes,

as was reported for another climate network approach [27].

For example, for the relatively strong 1990–91 EN episode,

we find no marked signature in the evolving climate network

characteristics. In turn, some marked extreme values of all

considered measures are found in the time periods 1988–89

and 1992–93, which were characterized by a strong LN episode

and the aftermath of the Mount Pinatubo eruption, respectively.

In the following, we will discuss the climatological reasons for

this complex behavior and demonstrate how the signatures in

different network characteristics can be utilized for disentan-

gling the signatures of different types of ENSO phases.

A. ENSO vs volcanic eruptions

In order to understand why some time intervals display

extreme values of various SATA network characteristics even

without any associated ENSO phase, we first note that not

only EN or LN episodes, but also strong volcanic eruptions

have a considerable large-scale impact on the Earth’s climate

system [97]. Here we describe a corresponding effect on

climate networks. Specifically, as we will explain below,

both types of “events” can lead to the emergence of marked

localized structures in the climate network. If a sufficiently

large amount of aerosols is injected into the stratosphere in

the course of a strong volcanic eruption, it can eventually stay

there for a relevant period of time (depending on the specific

conditions) leading to a large-scale temporary coevolution of

SAT variability in terms of a common cooling trend over

a possibly large region. Due to the corresponding relevant

physical processes, this mechanism requires a certain period of

time. Hence, the associated signatures in the climate network

properties can be observed only with some delay. In this

respect, strong volcanic eruptions can have a similar impact

on the global climate system as do EN and LN episodes in

terms of a marked covariation of climatic observables over a

relatively large part of the globe.

Figure 11 demonstrates that the described effect is particu-

larly well visible in the SATA network for the year 1992–93,

i.e., the time period succeeding the largest stratospheric aerosol

injection of the 20th century, the Mount Pinatubo eruption

in June 1991 [113], which had a distinct impact on global

temperatures [114,115]. Like strong EN and LN episodes, this

period was characterized by a markedly localized structure in

the climate network emerging from the Philippines and then

spreading over vast parts of South-East Asia and the Western

Pacific [108], which is manifested in the climate network in

terms of pronounced extreme values of all considered network

quantifiers (see Figs. 5, 8, 9, and 10). A similar effect on the

global network characteristics can be observed following the

El Chichón and Mount Agung eruptions in 1982 and 1963–64,

respectively, the second and third largest injections of volcanic

aerosols into the stratosphere within the time interval under

consideration in this work. However, the El Chichón eruption

approximately coincided with a strong EN episode (1982–83),

so that the resulting variability in the global SATA network

properties cannot be unequivocally attributed to either of the

two phenomena without further detailed investigations of the

associated local structures. In contrast, the Mount Agung

eruption clearly preceded a marked EN episode, resulting in a

triple-peak signature in the evolving SATA network transitivity

(Fig. 11) instead of the double-peak structure exhibited

by some other EN events (e.g., 1982–83 and 1997–98) or
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1961

1983

Mount Agung
El Chichon

Mount Pinatubo

FIG. 11. (Color online) Evolving SATA network transitivity T

and Hamming distance Ht,t−1 for the same setting as in Fig. 5. In

addition, the global mean temperature anomalies T̄ , the Niño 3.4

index (base period 1948–2010; vertical lines represent thresholds of

±0.4 ◦C as an indication of EN and LN episodes [109], respectively),

and the stratospheric aerosol optical depth (SOD) (i.e., the global

monthly mean optical thickness at 550 nm wavelength; cf. [110]) are

shown. Vertical bars indicate fall and winter seasons (SON-DJF) with

maximal intensity of EN (red) and LN (blue), respectively. Symbols

(bullets, shifted towards the top, cold tongue; asterisks, warm pool)

indicate EN episodes unambiguously classified in the literature (e.g.,

[111,112]). Note that there is no 1:1 correspondence between the

shown definitions of EN and LN based on the Niño 3.4 index and

other methods.

the single-peak pattern associated with the Mount Pinatubo

eruption. We conjecture that this multipeak structure highlights

the emergence and disappearance of localized structures at

different spatial locations relatively shortly after each other.

These results show the considerable effect of strong

volcanic eruptions on the global SATA network characteristics,

offering directions for further research and serving as an

additional proof of the usefulness of the climate network

approach in general.

B. El Niño vs La Niña phases

In addition to volcanic eruptions, we find that both EN and

LN episodes can cause comparable (or even higher) peaks

in the different evolving climate network properties, since

they can also be associated with certain localized structures

in the climate network. Specifically, Paluš et al. [44] reported

a confinement of these structure to the tropical Pacific for EN,

but an extension to all tropical areas during LN phases. These

findings relating to geographical aspects not explicitly studied

in this work appear largely consistent with our results.

We emphasize that the physical mechanisms beyond the

emergence of localized structures are, however, completely

different for EN and LN episodes and volcanic eruptions. On

the one hand, volcanic activity with a considerable strato-

spheric aerosol injection results in a consistent regional cooling

trend due to reduced solar insolation, inducing generally

stronger spatial correlations within a confined region. On the

other hand, both extreme phases of ENSO variability (i.e., EN

and LN) lead to a synchronization of variability within large

areas of the globe (due to some internal dynamics of the cou-

pled atmosphere-ocean system [96]). As a consequence of their

similar signatures in the SATA network, these different types

of events apparently cannot be distinguished by just studying

individual network characteristics. However, considering the

temporal variability of a variety of complementary climate

network characteristics provides a more holistic picture than

earlier works focusing on one parameter only [25–28,45,46].

Notably, this conceptual idea could be important for the

general understanding of the potentials of the climate network

approach. Specifically, regarding the particular problem of

disentangling the signatures of ENSO variability in the

evolving SATA network properties, the simultaneous study

of multiple characteristics has the potential to identify some

general mechanisms. Further methodological improvements

such as the consideration of more sophisticated statistical

association measures of time series (e.g., [80,81,116]) remain

a subject of future work.

C. Discriminating different types of El Niño episodes

Beyond our previous considerations, recent research

provided considerable evidence that there are actually

two qualitatively different types of EN episodes

[111,112,117,118]. On the one hand, many EN phases follow

the traditional EN pattern with strong positive sea-surface

temperature anomalies starting in the Eastern Equatorial

Pacific and then successively propagating westward. This

class of events in particular includes the two strongest EN

episodes (1997–98 and 1982–83) recorded in the time period

studied in this work with respect to the Niño 3.4 index [99,100]

as well as the 1972–73 EN episode [111,112]. On the other

hand, over recent decades there has been an increasing

number of EN-like phases which are characterized by large

sea-surface temperature anomalies in the Central Pacific (but

smaller ones in the Eastern Pacific), including the 1990–91,

1994–95, 2002–2003, and 2004/05 EN episodes. The latter

type of event has been referred to as dateline El Niño [117] or

El Niño Modoki [118] by different authors. Here, we adopt the

terminology used by Kug et al. [112], distinguishing between

cold tongue (CT) and warm pool (WP) episodes corresponding

to the traditional EN pattern centered in the Eastern Pacific

(EP) and the Central Pacific (CP) pattern [111], respectively.

We will discuss the signatures of the two aforementioned

EN types in the global SATA network characteristics next.

Indeed, we are able to identify some distinctive features of

the climate network associated with CT-EP episodes:

First, peaks of L, T , and H perfectly coincide with the

timing of the CT-EP episodes, which is not the case for

WP-CP events (cf. Figs. 5 and 11) where such peaks are

generally absent.
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Second, for strong CT-EP episodes the Hamming distance

H fluctuates at a high level for more than one year, indicating a

persistent redistribution (i.e., fluctuations or blinking; cf. [27])

of edges. For WP-CP episodes such fluctuations are present

as well, but exhibit a considerably smaller amplitude and

shorter duration. With respect to the known recent history

of ENSO, we note that the three strongest unambigously

classified CT-EP episodes (1972–73, 1982–83, and 1997–

98) within the studied time interval have been directly

followed by considerable LN phases (i.e., the associated

Niño 3.4 index exhibits a particularly marked drop from

strongly positive to strongly negative values, which is not as

strong for WP-CP events). This sudden shift in the ENSO

phase enhances the proposed mechanism of a sustained

rewiring in the evolving climate networks during these

periods.

Notably,L,T , andH also show pronounced maxima during

some strong LN episodes (this applies to both “isolated” LN

episodes as in 1988–89 and LN phases directly following

a CT-EP episode—cf. the double-peak pattern of the cor-

responding maxima in Figs. 5 and 8), which is due to the

emergence of (though a possibly different type of) localized

structures in the climate network. However, for other LN

phases, such peaks are absent. This observation suggests the

existence of two different climatological mechanisms, which

could result in a classification of LN episodes in a similar way

as for EN phases. We leave a more detailed investigation and

discussion of this idea for future work.

The distinctively different behavior of SATA networks

during the two types of EN episodes can probably be

explained by reconsidering the associated typical spatiotem-

poral patterns. On the one hand, CT-EP episodes exhibit

a relatively sharp, regionally confined pattern leading to a

common SAT trend starting from the Eastern Equatorial

Pacific and then propagating westward. In this spirit, the

spatiotemporal signature in the SAT field resembles a wave

traveling through the Equatorial Pacific from east to west,

leading to a successive synchronization of tropical climate

variability over an increasingly large region. On the other

hand, the typical pattern of WP-CP episodes commonly

appears like a diffuse pulse spreading from one region in

the Central Equatorial Pacific into different directions. The

associated EOF patterns display more fuzzy spatial structures

and are less well localized in space than those of CT-EP

episodes [111,112,118]. Due to this spatiotemporal footprint,

the spatial correlations in the Equatorial Pacific change their

magnitude in a much less coordinated and marked way than

under the influence of the sharper pattern associated with

CT-EP episodes. As a consequence, there is only a relatively

minor redistribution of connectivity in the SATA network,

explaining the weaker signatures in the considered network

characteristics.

Notably, at this point we are not able to give a complete

classification of EN episodes based on our complex network

characteristics. This is particularly due to the fact that there

are EN episodes of mixed characteristics already known in the

literature, so that there is no unique reference for classification.

Moreover, the definition of EN itself is partly ambiguous

and depends on the specific method or index of choice

(e.g., [99,112,117–127]).

FIG. 12. Linear cross-correlation functions C(s) between the

evolving SATA network characteristics transitivity T and Hamming

distance Ht,t−1 (obtained based on lag-zero cross correlation with

fixed ρ = 0.005), the global mean temperature anomaly T̄ , the

absolute value of the Niño 3.4 index, and the SOD index.

D. Network characteristics and climate-related indices

In order to further support our previous results, the cross-

correlation functions between the evolving climate network

characteristics T and Ht,t−1, on the one hand, and the global

average temperature anomalies T̄ and the absolute value of

the Niño 3.4 index as well as the stratospheric aerosol optical

depth SOD (as indicators of ENSO and volcanic activity,

respectively), on the other hand, have been computed (Fig. 12).

Notably, we do not find any systematic effect of the average

temperature anomalies on the evolving climate networks. This

indicates that the general global warming trend is not directly

reflected in the corresponding network properties. However,

such trends are relevant in practice only for time scales clearly

above the window sizes of one year studied in this work.

In turn, dynamical characteristics such as are captured by

evolving climate network analysis reveal signatures that go

clearly beyond the behavior of global mean temperatures.

Regarding the impact of volcanic activity, the results

obtained demonstrate a considerable influence on the SATA

network topology. Despite recent findings suggesting a pos-

sible effect of climatic processes on volcanic activity on

longer time scales [128,129], we can essentially rule out a

significant climatic forcing of volcanism at the time scales

considered in this work. Specifically, the network transitivity

shows similar variations as does the SOD index with a delay

of about 8 months, which is in reasonable agreement with

the typical lifetime of volcanic particles in the stratosphere

and the expected delay of SAT changes due to a reduction

of solar irradiation. Note, however, that the SOD index only

shows some distinct events and remains close to 0 for most

of the time. In this case, linear cross correlation is not the
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best-suited measure for characterizing the co-occurrence of

volcanic eruptions and peaks in the SATA network charac-

terics. In contrast, event-based characteristics such as event

synchronization [41,42,130] or coincidence analysis [14] are

tailored for such purposes, but require a larger number of

events than those recorded in the studied data sets.

More interestingly, cross-correlation analysis reveals

considerable interdependences between the SATA network

properties and the absolute value of the Niño 3.4 index,

characterizing the deviation of sea-surface temperature anoma-

lies from the standard values in some defined region of the

Pacific associated with ENSO. From Fig. 12, we find that

the network transitivity T and Hamming distance Ht,t−1

show distinct maxima preceding the peak amplitudes of EN

and LN by 6 and 5 months, respectively, with correlation

values of about 0.4. Moreover, secondary maxima of the

cross-correlation functions with smaller amplitudes are found

8 and 5 months after the correspondent peaks of the ENSO

index, respectively. While we can unequivocally attribute

this finding for the Hamming distance as resulting from

the largest rate of redistribution of connectivity within the

SATA network, the corresponding signature of T seems to

rather relate to the presence of common SAT trends over

a substantial region associated with both the emergence

and disappearance of localized structures in the Equatorial

Pacific and beyond. (In turn, for the SOD index there exists

only one maximum, indicating that the disappearance of the

associated characteristic structures in the SAT field behaves

fundamentally differently than for EN and LN episodes.) It will

be the subject of future studies to what extent this information,

in combination with the distinct temporal variability profiles of

different SATA network measures, not only provides important

insights into the function of the climate system in general, but

can be specifically exploited for anticipating or even predicting

the type and strength of approaching EN and LN episodes [61].

VI. CONCLUSIONS

In this work, we have considered interannual climate

variability in terms of evolving climate network analysis,

i.e., we have studied the variation of a set of complementary

global climate network characteristics with time. Our analysis

has provided additional insights into the functionality of the

global climate system and impacts of different types of climate

episodes, particularly such as are related to ENSO variability.

Our findings particularly highlight the effects of “classical”

El Niño and some La Niña episodes as well as very strong

volcanic eruptions on the global climate system. Specifically,

all three types of “events” lead to a common large-scale

temperature trend (i.e., some kind of synchronization) over a

considerably large region. In the climate network, this results

in the emergence of marked localized structures, for ENSO

particularly in the tropical Pacific. As one achievement, we

can not only clearly distinguish between the signatures of

different ENSO phases, but also differentiate different types

of EN and LN episodes with our approach. Specifically,

we have developed some initial understanding of similarities

and differences between the climate network reflections of

physical mechanisms acting during strong volcanic eruptions

and different types of EN and LN episodes.

Beyond the specific consideration of ENSO variability, our

results have led to an improved understanding of the structures

present in climate networks based on surface air temperatures.

As a general finding, we have proposed a simple conceptual

view of the climate network based on the alternating presence

of different types of structures: the substrate lattice mainly

capturing short-range connections versus enhanced localized

structures (i.e., densely connected parts of the network

covering larger spatial scales). In this respect, the temporal

variability of the climate network topology can be understood

as an effect of a persistent redistribution of connectivity

between these different types of structures.

We note that our approach is distinctively different from

those usually used previously by other authors in the sense that

we have considered a multiplicity of comprehensive measures

from complex network theory. Only this consideration of com-

plementary characteristics allowed derivation of a holistic un-

derstanding of the underlying dynamical processes. Motivated

by its successful application, we suggest further use of not

only the global characteristics of climate networks as studied

in this work, but also the associated spatial patterns of (both

topological and geometric) vertex properties (i.e., information

on the placement of edges in physical space) for future inves-

tigations of the detailed spatial backbones of different climate

episodes. Initial results in this direction can be found in [108].

We conjecture that this evolving network approach has great

potential for supplementing other studies based on traditional

methods of multivariate statistics such as EOF analysis.

As underlined by our analysis, different ENSO phases have

a distinct impact on the spatial organization of the global

climate system. Since ENSO is a coupled atmosphere-ocean

phenomenon, we additionally suggest the consideration of

complementary climatological observables (e.g., geopotential

height, sea-surface temperatures, sea-level pressure, etc.) in

corresponding future analyses. A methodological extension

that is particularly tailored for such investigations is the use of

coupled climate networks [32,49].
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[104] G. Szabó, M. Alava, and J. Kertész, Phys. Rev. E 67, 056102

(2003).

[105] A. Vázquez, Phys. Rev. E 67, 056104 (2003).

[106] S. H. Y. Chan, R. V. Donner, and S. Lämmer, Eur. Phys. J. B

84, 563 (2011).

[107] H. Kutza, MS thesis, Humboldt University of Berlin, 2012.

[108] A. Radebach, MS thesis, Humboldt University of Berlin, 2010.

[109] K. E. Trenberth and D. P. Stepaniak, J. Clim. 14, 1697 (2001).

[110] M. Sato, J. E. Hansen, M. P. McCormick, and J. B. Pollack,

J. Geophys. Res. Atmos. 98, 22987 (1993).

[111] H.-Y. Kao and J.-Y. Yu, J. Clim. 22, 615 (2009).

[112] J.-S. Kug, F.-F. Jin, and S.-I. An, J. Clim. 22, 1499 (2009).

[113] M. P. McCormick, L. W. Thomason, and C. R. Trepte, Nature

(London) 373, 399 (1995).

052807-18

http://dx.doi.org/10.3390/e15062023
http://dx.doi.org/10.1209/0295-5075/102/48003
http://dx.doi.org/10.1209/0295-5075/102/48003
http://dx.doi.org/10.1002/grl.50515
http://dx.doi.org/10.1002/grl.50515
http://dx.doi.org/10.1209/0295-5075/102/59003
http://dx.doi.org/10.1209/0295-5075/102/59003
http://dx.doi.org/10.1140/epjst/e2013-01856-5
http://dx.doi.org/10.1140/epjst/e2013-01856-5
http://dx.doi.org/10.1073/pnas.1309353110
http://dx.doi.org/10.1073/pnas.1309353110
http://dx.doi.org/10.1080/00018730601170527
http://dx.doi.org/10.1103/PhysRevLett.97.238103
http://dx.doi.org/10.1063/1.2966112
http://dx.doi.org/10.1038/nrn2575
http://dx.doi.org/10.3389/fnins.2011.00083
http://dx.doi.org/10.3389/fnins.2011.00083
http://dx.doi.org/10.1063/1.3504998
http://dx.doi.org/10.1063/1.3504998
http://dx.doi.org/10.1016/j.physrep.2012.03.001
http://dx.doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
http://dx.doi.org/10.1126/science.268.5207.59
http://dx.doi.org/10.1029/2005GL022838
http://dx.doi.org/10.1029/2005GL022838
http://dx.doi.org/10.1016/j.physa.2010.10.043
http://dx.doi.org/10.1016/j.physa.2010.10.043
http://dx.doi.org/10.1140/epjb/e2011-20678-7
http://dx.doi.org/10.1063/1.3360561
http://dx.doi.org/10.1063/1.3360561
http://dx.doi.org/10.1175/1520-0493(1995)123<1862:NIOTSW>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1995)123<1862:NIOTSW>2.0.CO;2
http://dx.doi.org/10.5194/npg-18-389-2011
http://dx.doi.org/10.5194/npg-18-389-2011
http://dx.doi.org/10.1103/PhysRevLett.108.258701
http://dx.doi.org/10.1103/PhysRevLett.108.258701
http://dx.doi.org/10.1103/PhysRevE.86.061121
http://dx.doi.org/10.1103/PhysRevE.86.061121
http://dx.doi.org/10.1016/S0167-2789(00)00043-9
http://dx.doi.org/10.1007/s100510050067
http://dx.doi.org/10.1038/30918
http://dx.doi.org/10.1038/30918
http://dx.doi.org/10.1371/journal.pone.0022826
http://dx.doi.org/10.1371/journal.pone.0022826
http://dx.doi.org/10.1103/PhysRevE.66.016121
http://dx.doi.org/10.1140/epjb/e2011-10899-1
http://dx.doi.org/10.1103/PhysRevE.85.046105
http://dx.doi.org/10.1103/PhysRevE.85.046105
http://dx.doi.org/10.1002/j.1538-7305.1950.tb00463.x
http://dx.doi.org/10.1016/j.physa.2011.05.011
http://dx.doi.org/10.1029/2005GL023225
http://dx.doi.org/10.1029/2005GL023225
http://dx.doi.org/10.1029/2010GL045932
http://dx.doi.org/10.1029/2010GL045932
http://dx.doi.org/10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2
http://dx.doi.org/10.1029/2002JD002670
http://dx.doi.org/10.1126/science.1073374
http://dx.doi.org/10.1103/PhysRevE.67.026112
http://dx.doi.org/10.1103/PhysRevE.65.066122
http://dx.doi.org/10.1103/PhysRevE.67.056102
http://dx.doi.org/10.1103/PhysRevE.67.056102
http://dx.doi.org/10.1103/PhysRevE.67.056104
http://dx.doi.org/10.1140/epjb/e2011-10889-3
http://dx.doi.org/10.1140/epjb/e2011-10889-3
http://dx.doi.org/10.1175/1520-0442(2001)014<1697:LIOENO>2.0.CO;2
http://dx.doi.org/10.1029/93JD02553
http://dx.doi.org/10.1175/2008JCLI2309.1
http://dx.doi.org/10.1175/2008JCLI2624.1
http://dx.doi.org/10.1038/373399a0
http://dx.doi.org/10.1038/373399a0
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