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Abstract

We develop a generalisation of disentanglement in

variational autoencoders (VAEs)—decomposition

of the latent representation—characterising it as

the fulfilment of two factors: a) the latent encod-

ings of the data having an appropriate level of

overlap, and b) the aggregate encoding of the data

conforming to a desired structure, represented

through the prior. Decomposition permits disen-

tanglement, i.e. explicit independence between

latents, as a special case, but also allows for a

much richer class of properties to be imposed on

the learnt representation, such as sparsity, clus-

tering, independent subspaces, or even intricate

hierarchical dependency relationships. We show

that the β-VAE varies from the standard VAE pre-

dominantly in its control of latent overlap and that

for the standard choice of an isotropic Gaussian

prior, its objective is invariant to rotations of the

latent representation. Viewed from the decompo-

sition perspective, breaking this invariance with

simple manipulations of the prior can yield better

disentanglement with little or no detriment to re-

constructions. We further demonstrate how other

choices of prior can assist in producing differ-

ent decompositions and introduce an alternative

training objective that allows the control of both

decomposition factors in a principled manner.

1. Introduction

An oft-stated motivation for learning disentangled represen-

tations of data with deep generative models is a desire to

achieve interpretability (Bengio et al., 2013; Chen et al.,

2017)—particularly the decomposability (see §3.2.1 in Lip-

ton, 2016) of latent representations to admit intuitive ex-

planations. Most work has focused on capturing purely
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independent factors of variation (Alemi et al., 2017; Ansari

and Soh, 2019; Burgess et al., 2018; Chen et al., 2018; 2017;

Eastwood and Williams, 2018; Esmaeili et al., 2019; Hig-

gins et al., 2016; Kim and Mnih, 2018; Xu and Durrett, 2018;

Zhao et al., 2017), typically evaluating this using purpose-

built, synthetic data (Eastwood and Williams, 2018; Higgins

et al., 2016; Kim and Mnih, 2018), whose generative factors

are independent by construction.

This conventional view of disentanglement, as recovering

independence, has subsequently motivated the development

of formal evaluation metrics for independence (Eastwood

and Williams, 2018; Kim and Mnih, 2018), which in turn

has driven the development of objectives that target these

metrics, often by employing regularisers explicitly encour-

aging independence in the representations (Eastwood and

Williams, 2018; Esmaeili et al., 2019; Kim and Mnih, 2018).

We argue that such an approach is not generalisable, and po-

tentially even harmful, to learning interpretable representa-

tions for more complicated problems, where such simplistic

representations cannot accurately mimic the generation of

high dimensional data from low dimensional latent spaces,

and more richly structured dependencies are required.

We posit a generalisation of disentanglement in VAEs—

decomposing their latent representations—that can help

avoid such pitfalls. We characterise decomposition in VAEs

as the fulfilment of two factors: a) the latent encodings of

data having an appropriate level of overlap, and b) the ag-

gregate encoding of data conforming to a desired structure,

represented through the prior. We emphasize that neither of

these factors is sufficient in isolation: without an appropriate

level of overlap, encodings can degrade to a lookup table

where the latents convey little information about data, and

without the aggregate encoding of data following a desired

structure, the encodings do not decompose as desired.

Disentanglement implicitly makes a choice of decomposi-

tion: that the latent features are independent of one another.

We make this explicit and exploit it to both provide im-

provement to disentanglement through judicious choices

of structure in the prior, and to introduce a more general

framework flexible enough to capture alternate, more com-

plex, notions of decomposition such as sparsity, clustering,

hierarchical structuring, or independent subspaces.
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To connect our framework with existing approaches for

encouraging disentanglement, we provide a theoretical anal-

ysis of the β-VAE (Alemi et al., 2018; 2017; Higgins et al.,

2016), and show that it typically only allows control of la-

tent overlap, the first decomposition factor. We show that it

can be interpreted, up to a constant offset, as the standard

VAE objective with its prior annealed as pθ(z)
β

and an addi-

tional maximum entropy regularization of the encoder that

increases the stochasticity of the encodings. Specialising

this result for the typical choice of a Gaussian encoder and

isotropic Gaussian prior indicates that the β-VAE, up to a

scaling of the latent space, is equivalent to the VAE plus

a regulariser encouraging higher encoder variance. More-

over, this objective is invariant to rotations of the learned

latent representation, meaning that it does not, on its own,

encourage the latent variables to take on meaningful repre-

sentations any more than an arbitrary rotation of them.

We confirm these results empirically, while further using

our decomposition framework to show that simple manipu-

lations to the prior can improve disentanglement, and other

decompositions, with little or no detriment to the recon-

struction accuracy. Further, motivated by our analysis, we

propose an alternative objective that takes into account the

distinct needs of the two factors of decomposition, and use

it to learn clustered and sparse representations as demonstra-

tions of alternative forms of decomposition. An implementa-

tion of our experiments and suggested methods is provided

at http://github.com/iffsid/disentangling-disentanglement.

2. Background and Related Work

2.1. Variational Autoencoders

Let x be an X -valued random variable distributed according

to an unknown generative process with density pD(x) and

from which we have observations, X = {x1, . . . ,xn}. The

aim is to learn a latent-variable model pθ(x, z) that captures

this generative process, comprising of a fixed1 prior over

latents p(z) and a parametric likelihood pθ(x|z). Learning

proceeds by minimising a divergence between the true data

generating distribution and the model w.r.t θ, typically

argmin
θ

KL(pD(x) ‖ pθ(x)) = argmax
θ

EpD(x)[log pθ(x)]

where pθ(x) =
∫

Z
pθ(x|z)p(z)dz is the marginal likeli-

hood, or evidence, of datapoint x under the model, approxi-

mated by averaging over the observations.

However, estimating pθ(x) (or its gradients) to any suffi-

cient degree of accuracy is typically infeasible. A common

strategy to ameliorate this issue involves the introduction of

a parametric inference model qφ(z|x) to construct a varia-

1Learning the prior is possible, but omitted for simplicity.

tional evidence lower bound (ELBO) on log pθ(x) as follows

L(x;θ,φ), log pθ(x)− KL(qφ(z|x) ‖ pθ(z|x))
=Eqφ(z|x)[log pθ(x|z)]−KL(qφ(z|x)‖p(z)).

(1)

A variational autoencoder (VAE) (Kingma and Welling,

2014; Rezende et al., 2014) views this objective from the

perspective of a deep stochastic autoencoder, taking the

inference model qφ(z|x) to be an encoder and the like-

lihood model pθ(x|z) to be a decoder. Here θ and φ
are neural network parameters, and learning happens via

stochastic gradient ascent (SGA) using unbiased estimates

of ∇θ,φ
1
n

∑n

i=1 L(xi; θ, φ). Note that when clear from the

context, we denote L(x; θ, φ) as simply L(x).

2.2. Disentanglement

Disentanglement, as typically employed in literature, refers

to independence among features in a representation (Bengio

et al., 2013; Eastwood and Williams, 2018; Higgins et al.,

2018). Conceptually, however, it has a long history, far

longer than we could reasonably do justice here, and is far

from specific to VAEs. The idea stems back to traditional

methods such as ICA Hyvärinen and Oja (2000); Yang and

Amari (1997) and conventional autoencoders Schmidhuber

(1992), through to a range of modern approaches employing

deep learning Achille and Soatto (2019); Chen et al. (2016);

Cheung et al. (2014); Hjelm et al. (2019); Makhzani et al.

(2015); Mathieu et al. (2016); Reed et al. (2014).

Of particular relevance to this work are approaches that ex-

plore disentanglement in the context of VAEs Alemi et al.

(2017); Chen et al. (2018); Esmaeili et al. (2019); Higgins

et al. (2016); Kim and Mnih (2018); Siddharth et al. (2017).

Here one aims to achieve independence between the di-

mensions of the aggregate encoding, typically defined as

qφ(z) , EpD(x) [q(z|x)] ≈ 1
n

∑n

i q(z|xi). The signifi-

cance of qφ(z) is that it is the marginal distribution induced

on the latents by sampling a datapoint and then using the en-

coder to sample an encoding given that datapoint. It can thus

informally be thought of as the pushforward distribution for

“sampling” representations in the latent space.

Within the disentangled VAEs literature, there is also a

distinction between unsupervised approaches, and semi-

supervised approaches wherein one has access to the true

generative factor values for some subset of data (Boucha-

court et al., 2018; Kingma et al., 2014; Siddharth et al.,

2017). Our focus, however, is on the unsupervised setting.

Much of the prior work in the field has either implicitly or

explicitly presumed a slightly more ambitious definition of

disentanglement than considered above: that it is a measure

of how well one captures true factors of variation (which

happen to be independent by construction for synthetic data),

rather than just independent factors. After all, if we wish

for our learned representations to be interpretable, it is nec-

http://github.com/iffsid/disentangling-disentanglement
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essary for the latent variables to take on clear-cut meaning.

One such definition is given by Eastwood and Williams

(2018), who define it as the extent to which a latent dimen-

sion d ∈ D in a representation predicts a true generative

factor k ∈ K, with each latent capturing at most one gener-

ative factor. This implicitly assumes D ≥ K, as otherwise

the latents are unable to explain all the true generative fac-

tors. However, for real data, the association is more likely

D ≪ K, with one learning a low-dimensional abstraction

of a complex process involving many factors. Consequently,

such simplistic representations cannot, by definition, be

found for more complex datasets that require more richly

structured dependencies to be able to encode the informa-

tion required to generate higher dimensional data. Moreover,

for complex datasets involving a finite set of datapoints, it

might not be reasonable to presume that one could capture

the elements of the true generative process—the data itself

might not contain sufficient information to recover these

and even if it does, the computation required to achieve this

through model learning is unlikely to be tractable.

The subsequent need for richly structured dependencies

between latent dimensions has been reflected in the mo-

tivation for a handful of approaches (Bouchacourt et al.,

2018; Esmaeili et al., 2019; Johnson et al., 2016; Siddharth

et al., 2017) that explore this through graphical models,

although employing mutually-inconsistent, and not general-

isable, interpretations of disentanglement. This motivates

our development of a decomposition framework as a means

of extending beyond the limitations of disentanglement.

3. Decomposition: A Generalisation of

Disentanglement

The commonly assumed notion of disentanglement is quite

restrictive for complex models where the true generative

factors are not independent, very large in number, or where

it cannot be reasonably assumed that there is a well-defined

set of “true” generative factors (as will be the case for many,

if not most, real datasets). To this end, we introduce a gen-

eralization of disentanglement, decomposition, which at a

high-level can be thought of as imposing a desired structure

on the learned representations. This permits disentangle-

ment as a special case, for which the desired structure is that

qφ(z) factors along its dimensions.

We characterise the decomposition of latent spaces in VAEs

to be the fulfilment of two factors (as shown in Figure 1):

a. An “appropriate” level of overlap in the latent space—

ensuring that the range of latent values capable of encod-

ing a particular datapoint is neither too small, nor too

large. This is, in general, dictated by the level of stochas-

ticity in the encoder: the noisier the encoding process is,

the higher the number of datapoints which can plausibly

give rise to a particular encoding.
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Figure 1. The two factors of decomposition. [Top] Overlap be-

tween encodings qφ(z | xi), showing cases with (l) too little over-

lap, (m) too much overlap, and (r) an “appropriate” level of overlap.

[Bottom] Illustration of (l) good and (r) bad regularisation between

the aggregate posterior qφ(z) and the desired prior p(z).

b. The aggregate encoding qφ(z) matching the prior p(z),
where the latter expresses the desired dependency struc-

ture between latents.

The overlap factor (a) is perhaps best understood by con-

sidering extremes—too little, and the latents effectively be-

come a lookup table; too much, and the data and latents

do not convey information about each other. In either case,

meaningfulness of the latent encodings is lost. Thus, with-

out the appropriate level of overlap—dictated both by noise

in the true generative process and dataset size—it is not

possible to enforce meaningful structure on the latent space.

Though quantitatively formalising overlap in general scenar-

ios is surprisingly challenging (c.f. § 7 and Appendix D), we

note for now that when the encoder distribution is unimodal,

it is typically well-characterized by the mutual information

between the data and the latents I(x; z).

The regularisation factor (b) enforces a congruence between

the (aggregate) latent embeddings of data and the depen-

dency structures expressed in the prior. We posit that such

structure is best expressed in the prior, as opposed to explicit

independence regularisation of the marginal posterior (Chen

et al., 2018; Kim and Mnih, 2018), to enable the generative

model to express the desired decomposition, and to avoid

potentially violating self-consistency between the encoder,

decoder, and true data generating distributions. The prior

also provides a rich and flexible means of expressing desired

structure by defining a generative process that encapsulates

dependencies between variables, as with a graphical model.

Critically, neither factor is sufficient in isolation. An inap-

propriate level of overlap in the latent space will impede

interpretability, irrespective of quality of regularisation, as

the latent space need not be meaningful. Conversely, with-

out the pressure to regularise to the prior, the latent space is

under no constraint to exhibit the desired structure.

Decomposition is inherently subjective as we must choose

the structure of the prior we regularise to depending on how

we intend to use our learned model or what kind of features

we would like to uncover from the data. This may at first
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seem unsatisfactory compared to the seemingly objective

adjustments often made to the ELBO by disentanglement

methods. However, disentanglement is itself a subjective

choice for the decomposition. We can embrace this sub-

jective nature through judicious choices of the prior dis-

tribution; ignoring this imposes unintended assumptions

which can have unwanted effects. For example, as we will

later show, the rotational invariance of the standard prior

p(z) = N (z; 0, I) can actually hinder disentanglement.

4. Deconstructing the β-VAE

To connect existing approaches to our proposed framework,

we now consider, as a case study, the β-VAE (Higgins et al.,

2016)—an adaptation of the VAE objective (ELBO) to learn

better-disentangled representations. Specifically, it scales

the KL term in the standard ELBO by a factor β > 0 as

Lβ(x)=Eqφ(z|x)[log pθ(x|z)]−β KL(qφ(z|x)‖p(z)). (2)

Hoffman et al. (2017) showed that the β-VAE target can

be viewed as a standard ELBO with the alternative prior

r(z) ∝ qφ(z)
(1−β)

p(z)β , along with terms involving the

mutual information and the prior’s normalising constant.

We now introduce an alternate deconstruction as follows

Theorem 1. The β-VAE target Lβ(x) can be interpreted in

terms of the standard ELBO, L (x;πθ,β , qφ), for an adjusted

target πθ,β(x, z) , pθ(x | z)fβ(z) with annealed prior

fβ(z) , p(z)
β
/Fβ as

Lβ(x) = L (x;πθ,β , qφ) + (β − 1)Hqφ + logFβ (3)

where Fβ ,
∫

z
p(z)

β
dz is constant given β, and Hqφ is

the entropy of qφ(z | x).

Proof. All proofs are given in Appendix A.

Clearly, the second term in (3), enforcing a maximum en-

tropy regulariser on the posterior qφ(z | x), allows the value

of β to affect the overlap of encodings in the latent space.

We thus see that it provides a means of controlling decompo-

sition factor (a). However, it is itself not sufficient to enforce

disentanglement. For example, the entropy of qφ(z | x) is

independent of its mean µθ(x) and is independent to rota-

tions of z, so it is clearly incapable of discouraging certain

representations with poor disentanglement. All the same,

having the wrong level of regularization can, in turn, lead to

an inappropriate level of overlap and undermine the ability

to disentangle. Consequently, this term is still important.

Although the precise impact of prior annealing depends on

the original form of the prior, the high-level effect is the

same—larger values of β cause the effective latent space

to collapse towards the modes of the prior. For uni-modal

priors, the main effect of annealing is to reduce the scaling

of z; indeed this is the only effect for generalized Gaus-

sian distributions. While this would appear not to have any

tangible effects, closer inspection suggests otherwise—it

ensures that the scaling of the encodings matches that of the

prior. Only incorporating the maximum-entropy regulari-

sation will simply cause the scaling of the latent space to

increase. The rescaling of the prior now cancels this effect,

ensuring the scaling of qφ(z) matches that of p(z).

Taken together, this implies that the β-VAE’s ability to en-

courage disentanglement is predominantly through direct

control over the level of overlap. It places no other direct

constraint on the latents to disentangle (although in some

cases, the annealed prior may inadvertently encourage better

disentanglement), but instead helps avoid the pitfalls of inap-

propriate overlap. Amongst other things, this explains why

large β is not universally beneficial for disentanglement, as

the level of overlap can be increased too far.

4.1. Special Case – Gaussians

We can gain further insights into the β-VAE in the common

use case—assuming a Gaussian prior, p(z) = N (z; 0,Σ),
and Gaussian encoder, qφ(z | x) = N (z;µφ(x), Sφ(x)).
Here it is straightforward to see that annealing simply scales

the latent space by 1/
√
β, i.e. fβ(z) = N (z; 0,Σ/β).

Given this, it is easy to see that a VAE trained with the

adjusted target L (x;πθ,β , qφ), but appropriately scaling the

latent space, will behave identically to one trained with the

original target L(x). It will also have an identical ELBO as

the expected reconstruction is trivially the same, while the

KL between Gaussians is invariant to scaling both equally.

More precisely, we have the following result.

Corollary 1. If p(z) = N (z; 0,Σ) and qφ(z | x) =
N (z;µφ(x), Sφ(x)), then,

Lβ(x; θ, φ) = L (x; θ′, φ′) +
(β − 1)

2
log|Sφ′(x)|+ c (4)

where θ′ and φ′ represent rescaled networks such that

pθ′(x | z) = pθ

(

x | z/
√

β
)

,

qφ′(z|x) = N (z;µφ′(x), Sφ′(x)) ,

µφ′(x) =
√

βµφ(x), Sφ′(x) = βSφ(x),

and c ,
D(β−1)

2

(

1 + log 2π
β

)

+ logFβ is a constant,

with D denoting the dimensionality of z.

Noting that as c is irrelevant to the training process, this

indicates an equivalence, up to scaling of the latent space,

between training with the β-VAE objective and a maximum-

entropy regularised version of the standard ELBO

LH,β(x) , L(x) + (β − 1)

2
log|Sφ(x)|, (5)

whenever p(z) and qφ(z | x) are Gaussian. Note that we

implicitly presume suitable adjustment of neural-network

hyper-parameters and the stochastic gradient scheme to ac-

count for the change of scaling in the optimal networks.
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Moreover, the stationary points for the two objectives

Lβ(x; θ, φ) and LH,β (x; θ
′, φ′) are equivalent (c.f. Corol-

lary 2 in Appendix A), indicating that optimising for (5)

leads to networks equivalent to those from optimising the β-

VAE objective (2), up to scaling the encodings by a factor of√
β. Under the isotropic Gaussian prior setting, we further

have the following result showing that the β-VAE objective

is invariant to rotations of the latent space.

Theorem 2. If p(z) = N (z; 0, σI) and qφ(z | x) =
N (z;µφ(x), Sφ(x)), then for all rotation matrices R,

Lβ(x; θ, φ) =Lβ(x; θ
†(R), φ†(R)) (6)

where θ†(R) and φ†(R) are transformed networks such that

pθ†(x | z) = pθ
(

x | RT
z
)

,

qφ†(z|x) = N
(

z;Rµφ(x), RSφ(x)R
T
)

.

This shows that the β-VAE objective does not directly en-

courage latent variables to take on meaningful representa-

tions when using the standard choice of an isotropic Gaus-

sian prior. In fact, on its own, it encourages latent representa-

tions which match the true generative factors no more than it

encourages any arbitrary rotation of these factors, with such

rotations capable of exhibiting strong correlations between

latents. This view is further supported by our empirical

results (see Figure 2), where we did not observe any gains

in disentanglement (using the metric from Kim and Mnih

(2018)) from increasing β > 0 with an isotropic Gaussian

prior trained on the 2D Shapes dataset (Matthey et al., 2017).

It may also go some way to explaining the extremely high

levels of variation we found in the disentanglement-metric

scores between different random seeds at train time.

It should be noted, however, that the value of β can indirectly

influence the level of disentanglement when using a mean-

field assumption for the encoder distribution (i.e. restricting

Sφ(x) to be diagonal). As noted by Rolinek et al. (2018);

Stühmer et al. (2019), increasing β can reinforce existing

inductive biases, wherein mean-field assumptions encourage

representations which reduce dependence between the latent

dimensions (Turner and Sahani, 2011).

5. An Objective for Enforcing Decomposition

Given the characterisation set out above, we now develop

an objective that incorporates the effect of both factors (a)

and (b). Our analysis of the β-VAE tells us that its ob-

jective allows direct control over the level of overlap, i.e.

factor (a). To incorporate direct control over the regulari-

sation (b) between the marginal posterior and the prior, we

add a divergence term D(qφ(z), p(z)), yielding

Lα,β(x) = Eqφ(z|x)[log pθ(x | z)]
− β KL(qφ(z | x) ‖ p(z))− α D(qφ(z), p(z))

(7)

allowing control over how much factors (a) and (b) are en-

forced, through appropriate setting of β and α respectively.

Note that such an additional term has been previously con-

sidered by Kumar et al. (2017), with D(qφ(z), p(z)) =
KL(qφ(z) ‖ p(z)), although for the sake of tractability they

rely instead on moment matching using covariances. There

have also been a number of approaches that decompose

the standard VAE objective in different ways (e.g. Dilok-

thanakul et al., 2019; Esmaeili et al., 2019; Hoffman and

Johnson, 2016) to expose KL(qφ(z) ‖ p(z)) as a compo-

nent, but, as we discuss in Appendix C, this can be difficult

to compute correctly in practice, with common approaches

leading to highly biased estimates whose practical behaviour

is very different than the divergence they are estimating, un-

less very large batch sizes are used.

Wasserstein Auto-Encoders (Tolstikhin et al., 2018) formu-

late an objective that includes a general divergence term

between the prior and marginal posterior, computed us-

ing either maximum mean discrepancy (MMD) or a varia-

tional formulation of the Jensen-Shannon divergence (a.k.a

GAN loss). However, we find that empirically, choosing the

MMD’s kernel and numerically stabilising its U-statistics

estimator to be tricky, and designing and learning a GAN to

be cumbersome and unstable. Consequently, the problems

of choosing an appropriate D(qφ(z), p(z)) and generating

reliable estimates for this choice are tightly coupled, with

a general purpose solution remaining an important open

problem; see further discussion in Appendix C.

6. Experiments

6.1. Prior for Axis-Aligned Disentanglement

We first show how subtle changes to the prior distribution

can yield improvements in disentanglement. The standard

choice of an isotropic Gaussian has previously been justified

by the correct assertion that the latents are independent

under the prior (Higgins et al., 2016). However, as explained

in § 4.1, the rotational invariance of this prior means that

it does not directly encourage axis-aligned representations.

Priors that break this rotational invariance should be better

suited for learning disentangled representations. We assess

this hypothesis by training a β-VAE (i.e. (7) with α = 0) on

the 2D Shapes dataset (Matthey et al., 2017) and evaluating

disentanglement using the metric of Kim and Mnih (2018).

Figure 2 demonstrates that notable improvements in disen-

tanglement can be achieved by using non-isotropic priors:

for a given reconstruction loss, implicitly fixed by β, non-

isotropic Gaussian priors got better disentanglement scores,

with further improvement achieved when the prior variance

is learnt. With a product of Student-t priors pν(z) (noting

pν(z) → N (z;0, I) as ν → ∞), reducing ν only incurred a

minor reconstruction penalty, for improved disentanglement.
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Figure 2. Reconstruction loss vs disentanglement metric of Kim and Mnih (2018). [Left] Using an anisotropic Gaussian with diagonal

covariance either learned, or fixed to principal-component values of the dataset. Point labels represent different values of β. [Right]

Using pν(z)=
∏

d
STUDENT-T(zd; ν) for different ν with β = 1. Note the different x-axis scaling. Shaded areas represent ±2 standard

errors for estimated mean disentanglement calculated using 100 separately trained networks. We thus see that the variability on the

disentanglement metric is very large, presumably because of stochasticity in whether learned dimensions correspond to true generative

factors. The variability in the reconstruction was only negligible and so is not shown. See Appendix B for full experimental details.

β = 0.01 β = 0.5 β = 1.0 β = 1.2

α
=

0
β
=

0

α = 1 α = 3 α = 5 α = 8
Figure 3. Density of aggregate posterior qφ(z) with different α, β

for spirals dataset with a mixture of Gaussian prior.

Interestingly, very low values of ν caused the disentangle-

ment score to drop again (though still giving higher values

than the Gaussian). We speculate that this may be related to

the effect of heavy tails on the disentanglement metric itself,

rather than being an objectively worse disentanglement. An-

other interesting result was that for an isotropic Gaussian

prior, as per the original β-VAE setup, no gains at all were

achieved in disentanglement by increasing β.

6.2. Clustered Prior

We next consider an alternative decomposition one might

wish to impose—clustering of the latent space. For this, we

use the “pinwheels” dataset from (Johnson et al., 2016) and

a mixture of four equally-weighted Gaussians as our prior.

We then conduct an ablation study to observe the effect of

varying α and β in Lα,β(x) (as per (7)) on the learned rep-

resentations, taking the divergence to be KL (p(z)||qφ(z))
(see Appendix B for details).

We see in Figure 3 that increasing β increases the level of

overlap in qφ(z), as a consequence of increasing the encoder

variance for individual datapoints. When β is too large, the

encoding of a datapoint loses meaning. Also, as a single

datapoint encodes to a Gaussian distribution, qφ(z|x) is

unable to match p(z) exactly. Because qφ(z|x) → qφ(z)
when β → ∞, this in turn means that overly large values

of β actually cause a mismatch between qφ(z) and p(z)
(see top right of Figure 3). Increasing α, instead always

improved the match between qφ(z) and p(z). Here, the

finiteness of the dataset and the choice of divergence results

in an increase in overlap with increasing α, but only up

to the level required for a non-negligible overlap between

the nearby datapoints: large values of α did not cause the

encodings to collapse to a mode.

6.3. Prior for Sparsity

Finally, we consider a commonly desired decomposition—

sparsity, which stipulates that only a small fraction of avail-

able factors are employed. That is, a sparse representation

(Olshausen and Field, 1996) can be thought of as one where

each embedding has a significant proportion of its dimen-

sions off, i.e. close to 0. Sparsity has often been considered

for feature-learning (Coates and Ng, 2011; Larochelle and

Bengio, 2008) and employed in the probabilistic modelling

literature (Lee et al., 2007; Ranzato et al., 2007).

Common ways to achieve sparsity are through a specific

penalty (e.g. l1) or a careful choice of prior (peaked at

0). Concomitant with our overarching desire to encode

requisite structure in the prior, we adopt the latter, construct-

ing a sparse prior as p(z) =
∏

d (1 − γ) N (zd; 0, 1) +
γ N (zd; 0, σ

2
0) with σ2

0 = 0.05. This mixture distribution

can be interpreted as a mixture of samples being either off

or on, whose proportion is set by the weight parameter γ.

We use this prior to learn a VAE for the Fashion-MNIST

dataset (Xiao et al., 2017) using the objective Lα,β(x) (as

per (7)), taking the divergence to be an MMD with a kernel

that only considers difference between the marginal distri-

butions (see Appendix B for details).

We measure a representation’s sparsity using the Hoyer
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Figure 4. [Left] Sparsity vs regularisation strength α (c.f. (7), high better). [Center] Average reconstruction log-likelihood

EpD(x)[Eqφ(z|x)[log pθ(x|z)]] vs α (higher better). [Right] Divergence (MMD) vs α (lower better). Note here that the different

values of γ represent regularizations to different distributions, with regularization to a Gaussian (i.e. γ = 0) much easier to achieve than

the sparse prior, hence the lower divergence. Shaded areas represent ±2 standard errors in the mean estimate calculated using 8 separately

trained networks. See Appendix B for full experimental details.

extrinsic metric (Hurley and Rickard, 2008). For y ∈ R
d,

Hoyer (y) =

√
d− ‖y‖1/‖y‖2√

d− 1
∈ [0, 1],

yielding 0 for a fully dense vector and 1 for a fully sparse

vector. Rather than employing this metric directly to the

mean encoding of each datapoint, we first normalise each

dimension to have a standard deviation of 1 under its aggre-

gate distribution, i.e. we use z̄d = zd/σ(zd) where σ(zd) is

the standard deviation of dimension d of the latent encoding

taken over the dataset. This normalisation is important as

one could achieve a “sparse” representation simply by hav-

ing different dimensions vary along different length scales

(something the β-VAE encourages through its pruning of

dimensions (Stühmer et al., 2019)), whereas we desire a rep-

resentation where different datapoints “activate” different

features. We then compute overall sparsity by averaging

over the dataset as Sparsity = 1
n

∑n

i Hoyer (z̄i). Figure 4

(left) shows that substantial sparsity can be gained by replac-

ing a Gaussian prior (γ = 0) by a sparse prior (γ = 0.8).

It further shows substantial gains from the inclusion of the

aggregate posterior regularization, with α = 0 giving far

low sparsity than α > 0, when using our sparse prior. The

use of our sparse prior did not generally harm the recon-

struction compared. Large values of α did slightly worsen

the reconstruction, but this drop-off was much slower than

increases in β (note that α is increased to much higher levels

than β). Interestingly, we see that β being either too low or

too high also harmed the sparsity.

We explore the qualitative effects of sparsity in Figure 5, us-

ing a network trained with α = 1000, β = 1, and γ = 0.8,

corresponding to one of the models in Figure 4 (left). The

top plot shows the average encoding magnitude for data

corresponding to 3 of the 10 classes in the Fashion-MNIST

dataset. It clearly shows that the different classes (trousers,

dress, and shirt) predominantly encode information along

different sets of dimensions, as expected for sparse represen-

tations (c.f. Appendix B for plots for all classes). For each

of these classes, we explore the latent space along a partic-
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Figure 5. Qualitative evaluation of sparsity. [Top] Average encod-

ing magnitude over data for three example classes in Fashion-

MNIST. [Bottom] Latent interpolation (↓) for different datapoints

(top layer) along particular ‘active’ dimensions. (a) Separation

between the legs of trousers (dim 49). (b) Top/Collar width of

dresses (dim 30). (c) Shirt shape (loose/fitted, dim 19). (d) Style

of sleeves across different classes—t-shirt, dress, and coat (dim

40).
ular ‘active’ dimension—one with high average encoding

magnitude—to observe if they capture meaningful features

in the image. We first identify a suitable ‘active’ dimen-

sion for a given instance (top row) from the dimension-wise

magnitudes of its encoding, by choosing one, say d, where

the magnitude far exceeds σ2
0 . Given encoding value zd,

we then interpolate along this dimension (keeping all others

fixed) in the range (zd, zd + sign(zd)); the sign of zd indi-

cating the direction of interpolation. Exploring the latent

space in such a manner demonstrates a variety of consistent

feature transformations in the image, both within class (a,

b, c), and across classes (d), indicating that these sparse

dimensions do capture meaningful features in the image.

Concurrent to our work, Tonolini et al. (2019) also consid-

ered imposing sparsity in VAEs with a spike-slab prior (such
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that σ0 → 0). In contrast to our work, they do not impose

a constraint on the aggregate encoder, nor do they evaluate

their results with a quantitative sparsity metric that accounts

for the varying length scales of different latent dimensions

7. Discussion

Characterising Overlap Precisely formalising what con-

stitutes the level of overlap in the latent space is surprisingly

subtle. Prior work has typically instead considered control-

ling the level of compression through the mutual information

between data and latents I(x; z) (Alemi et al., 2018; 2017;

Hoffman and Johnson, 2016; Phuong et al., 2018), with,

for example, (Phuong et al., 2018) going on to discuss how

controlling the compression can “explicitly encourage use-

ful representations.” Although I(x; z) provides a perfectly

serviceable characterisation of overlap in a number of cases,

the two are not universally equivalent and we argue that it is

the latter which is important in achieving useful representa-

tions. In particular, if the form of the encoding distribution

is not fixed—as when employing normalising flows, for

example—I(x; z) does not necessarily characterise overlap

well. We discuss this in greater detail in Appendix D.

However, when the encoder is unimodal with fixed form (in

particularly the tail behaviour is fixed) and the prior is well-

characterised by Euclidean distances, then these factors have

a substantially reduced ability to vary for a given I(x; z),
which subsequently becomes a good characterisation of the

level of overlap. When qφ(z|x) is Gaussian, controlling the

variance of qφ(z|x) (with a fixed qφ(z)) should similarly

provide an effective means of achieving the desired over-

lap behaviour. As this is the most common use case, we

leave the development of more a general definition of over-

lap to future work, simply noting that this is an important

consideration when using flexible encoder distributions.

Can VAEs Uncover True Generative Factors? In con-

currently published work, Locatello et al. (2019) question

the plausibility of learning unsupervised disentangled rep-

resentations with meaningful features, based on theoretical

analyses showing an equivalence class of generative mod-

els, many members of which could be entangled. Though

their analysis is sound, we posit a counterargument to their

conclusions, based on the stochastic nature of the encodings

used during training. Namely, that this stochasticity means

that they need not give rise to the same ELBO scores (an

important exception is the rotational invariance for isotropic

Gaussian priors). Essentially, the encoding noise forces

nearby encodings to relate to similar datapoints, while stan-

dard choices for the likelihood distribution (e.g. assuming

conditional independence) ensure that information is stored

in the encodings, not just in the generative network. These

restrictions mean that the ELBO prefers smooth represen-

tations and, provided the prior is not rotationally invariant,

means that there no longer need be a class of different rep-

resentations with the same ELBO; simpler representations

are preferred to more complex ones.

The exact form of the encoding distribution is also important

here. For example, imagine we restrict the encoder variance

to be isotropic and then use a two dimensional prior where

one latent dimension has a much larger variance than the

other. It will be possible to store more information in the

prior dimension with higher variance (as we can spread

points out more relative to the encoder variance). Conse-

quently, that dimension is more likely to correspond to an

important factor of the generative process than the other. Of

course, this does not imply that this is a true factor of varia-

tion in the generative process, but neither is the meaning that

can be attributed to each dimension completely arbitrary.

All the same, we agree that an important area for future

work is to assess when, and to what extent, one might expect

learned representations to mimic the true generative process,

and, critically, when it should not. For this reason, we

actively avoid including any notion of a true generative

process in our definition of decomposition, but note that,

analogously to disentanglement, it permits such extension

in scenarios where doing so can be shown to be appropriate.

8. Conclusions

In this work, we explored and analysed the fundamental

characteristics of learning disentangled representations, and

showed how these can be generalised to a more general

framework of decomposition (Lipton, 2016). We charac-

terised the learning of decomposed latent representation

with VAEs in terms of the control of two factors: i) overlap

in the latent space between encodings of different datapoints,

and ii) regularisation of the aggregate encoding distribution

to the given prior, which encodes the structure one would

wish for the latent space to have.

Connecting prior work on disentanglement to this frame-

work, we analysed the β-VAE objective to show that its

contribution to disentangling is primarily through direct

control of the level of overlap between encodings of the

data, expressed by maximising the entropy of the encoding

distribution. In the commonly encountered case of assuming

an isotropic Gaussian prior and an independent Gaussian

posterior, we showed that control of overlap is the only

effect of the β-VAE. Motivated by this observation, we

developed an alternate objective for the ELBO that allows

control of the two factors of decomposability through an

additional regularisation term. We then conducted empirical

evaluations using this objective, targeting alternate forms

of decompositions such as clustering and sparsity, and ob-

served the effect of varying the extent of regularisation to

the prior on the quality of the resulting clustering and sparse-

ness of the learnt embeddings. The results indicate that we

were successful in attaining those decompositions.
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