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Dynamical phase transitions (DPTs) occur after quenching some global parameters in quantum systems, and

are signalled by the nonanalytical time evolution of the dynamical free energy, which is calculated from the

Loschmidt overlap between the initial and time evolved states. In a recent Letter [M. Heyl et al., Phys. Rev. Lett.

110, 135704 (2013)], it was suggested that DPTs are closely related to equilibrium phase transitions (EPTs) for

the transverse field Ising model. By studying a minimal model, the XY chain in a transverse magnetic field, we

show analytically that this connection does not hold generally. We present examples where DPT occurs without

crossing any equilibrium critical lines by the quench, and a nontrivial example with no DPT but crossing a critical

line by the quench. Although the nonanalyticities of the dynamical free energy on the real time axis do not

indicate the presence or absence of an EPT, the structure of Fisher lines for complex times reveals a qualitative

difference.

DOI: 10.1103/PhysRevB.89.161105 PACS number(s): 64.70.Tg, 05.30.Rt, 05.70.Ln

Interest in nonequilibrium dynamics has grown immensely

in the past few years [1–4] thanks to experimental advances

made with ultracold atomic gases. The wide controllability

of these systems allows experimentalists to prepare different

kinds of nonequilibrium initial states and it is also possible to

study the dynamics with time resolution that is unreachable in

other physical systems [5–9]. Some of the main questions

concern when and how thermalization, or more generally,

equilibration, occurs and its connection to ergodicity and

integrability. These were first posed by von Neumann in 1929

[10].

The nonequilibrium time evolution can be characterized

in many different ways, borrowing ideas from equilibrium

statistical mechanics. The ultrashort time nonequilibrium

dynamics, revealing the role of high-energy excitations, is also

of interest as well as the stationary state that is reached after

long time evolution. The latter can be described by the diagonal

ensemble, which is roughly the time averaged density matrix.

The results of local measurements can be described by simpler

ensembles, i.e., by the thermal Gibbs ensemble for noninte-

grable (ergodic) systems [11] and by the generalized Gibbs

ensemble for integrable ones [12]. The Loschmidt overlap

(LO), which is the main focus of this Rapid Communication,

is a nonlocal expression and is entirely determined by the

diagonal ensemble, hence it characterizes the stationary state

[13]. Analyzing the LO has proven to be useful in studying

quantum chaos, decoherence, and quantum criticality [14–17].

It is defined as the scalar product of the initial state and

the time evolved state following a sudden global quench

(SQ) as

G(t) = 〈ψ |e−iH t |ψ〉, (1)

and can be regarded as the characteristic function of work

performed on the system during the quench. In a SQ the

parameters of the Hamiltonian are changed suddenly from

some initial to final values, and the system, prepared initially

in the ground state |ψ〉 of the initial Hamiltonian, is assumed to

be well separated from the environment and evolves unitarily

with H .

In a recent Letter, Heyl et al. [18] pointed out a similarity

between the time evolution of the LO overlap and the equi-

librium phase transitions (EPTs). Close to phase transitions

the free energy density is a nonanalytical function of the

temperature. A method proposed by Fisher [19] to analyze

the zeros of the partition function in the complex temperature

plane gives a good understanding of these nonanalyticities. In

a finite system phase transitions cannot occur, and the Fisher

zeros are isolated and do not lie on the real axis. However, in the

thermodynamic limit they coalesce into lines (or, in a general

case, areas [20]) that can cross the real axis. These crossings are

responsible for the breakdown of the analytic continuation of

the free energy density as a function of temperature: Knowing

the free energy above the transition temperature does not give

any information about the free energy below.

The LO in Eq. (1) is formally similar to the canonical

partition function with imaginary temperature. For a large

system G(t) scales exponentially with the system size, and

hence it is worthwhile to study the dynamical free energy

[13,21], which we define as

f (t) = − lim
N→∞

1

N
ln G(t). (2)

Under certain circumstances this quantity shows nonanalytical

time evolution. Due to the similarities with the EPT, the

notion dynamical phase transitions (DPTs) were introduced in

Ref. [18]. It was found that in the transverse field Ising chain

the DPTs and EPTs are ultimately related: The time evolution

of G(t) becomes nonanalytic whenever the magnetic field

is quenched through the (equilibrium) critical value. Similar

observations were made for nonintegrable models [22] and for

complex magnetic fields [23].

The purpose of this Rapid Communication is to show that

this connection is not rigorous. To this aim we investigate the

anisotropic XY chain in a transverse magnetic field and show

that generally DPTs can occur in quenches within the same

phase, i.e., without crossing any equilibrium phase boundary.

Note that numerical evidence for this phenomenon was

reported recently in Refs. [13,24]. In addition, we also present
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a counterexample where the quench crosses an equilibrium

critical point, but the LO remains analytic.

The XY Hamiltonian with periodic boundary conditions

reads as

H (γ,h) =
N

∑

j=1

1 + γ

2
σ x

j σ x
j+1 +

1 − γ

2
σ

y

j σ
y

j+1 − hσ z
j , (3)

where γ and h are the anisotropy parameter and the homoge-

neous external magnetic field, respectively. This model can be

mapped to free fermions with the use of the Jordan-Wigner

transformation as

H (γ,h) =
N−1
∑

j=1

c+
j cj+1 + γ c+

j c+
j+1 − h

(

c+
j cj −

1

2

)

+ H.c.

−μ(c+
Nc1 + γ c+

Nc+
1 + H.c.), (4)

where cj are fermionic operators and μ = eiπNf , Nf =
∑N

i=1 c+
i ci . This Hamiltonian conserves the parity of the

particle number and acts differently on the even and odd sub-

spaces (sometimes referred to as Neveu-Schwarz or Ramond

sectors). The Hamiltonians in the two subspaces are formally

the same if we impose an antiperiodic boundary condition

for the even and periodic boundary condition for the odd

subspace. In wave-number space these boundary conditions

translate to different quantizations of the wave numbers,

k = 2π
N

(n + 1
2
) in the even and k = 2π

N
n in the odd subspace.

In the fermionic language the ground state is unique in a given

subspace, but when |h| < 1, the ground states with even and

odd parity become degenerate in the thermodynamic limit.

These parity eigenstates are the symmetric or antisymmetric

combinations of the fully polarized states, and they do not

possess magnetization in the coupling direction. We start

our investigation with the parity eigenstates and we discuss

polarized ground states in the Supplemental Material [25].

The LO is calculated analytically in both of the even (e)

and odd (o) subspaces as

Gs(t) = eiϕs (t)
∏

0<k<π

[cos(εkt) + i cos(2�k) sin(εkt)], (5)

where �k = θ1
k − θ0

k is the difference between the Bogoliubov

angles diagonalizing the prequench (α = 0) and postquench

(α = 1) Hamiltonians, εk ≡ ε1
k and for s = o,e, εα

k =
2
√

[cos(k) − hα]2 + [γ α sin(k)]2. The Bogoliubov angles are

determined from ei2θα
k = 2[cos(k) − hα − iγ α sin(k)]/εα

k , and

the wave numbers are quantized with respect to the parity

of the initial state. The phase factor satisfies ϕe(t) = 0 and

ϕo(t) = t(±ε0 ± επ )/2, where the signs depend on the position

of the initial and final Hamiltonian on the phase diagram [25].

We focus on the real part of the dynamical free energy,

which is the same in the thermodynamic limit for both sectors.

The nonanalytical behavior of the dynamical free energy

is encoded in the zeros of the partition function G(t) in

the complex time plane [18]. Instead, following the practice

in the literature, we determine these zeros in the complex

“temperature” plane, i.e., the zeros of Z(z) = 〈ψ |e−zH |ψ〉 =
G(−it). Especially in the XY model, the Fisher zeros from

Z(z) = 0 determine the dynamical free energy completely

[25]. From Eq. (5), the Fisher zeros in the thermodynamic

limit form lines indexed by an integer number n as

zn(k) =
iπ

εk

(

n +
1

2

)

−
1

εk

arth[cos(2�k)], (6)

which agrees formally with Ref. [18], but in our case, the

Bogoliubov angles depend on more variables, hence are a

more general function of k. This increased freedom leads to

interesting behavior of the Fisher lines. The main quantity that

determines the dynamical free energy is cos(2�k), which can

be expressed analytically with the parameters of the initial and

final Hamiltonian. Furthermore, cos(2�k) = 1 − 2nk , where

nk is the expectation value of the quasiparticle occupation

number in the postquench Hamiltonian and is conserved under

the time evolution. A Fisher line crosses the imaginary axis

whenever nk = 1/2, which can be interpreted as modes with

infinite effective temperature. These crossings are responsible

for the nonanalytic time evolution of the dynamical free energy.

Due to the parity of the cosine function it is evident that

if a Fisher line crosses the imaginary axis for a quench

(h0,γ0) → (h1,γ1), it implies a crossing in the reversed

protocol (h1,γ1) → (h0,γ0) as well. We call this the symmetric

property of DPT. This seems to be plausible in quenches

crossing critical points, but it is less trivial for quenches within

the same phase.

The phase diagram of the XY chain is drawn in Fig. 1. The

excitation spectrum is gapless when h = ±1 or when γ = 0,

|h| < 1. The Fisher lines, and hence the LO, show different

behavior for quenching between different regions in the phase

diagram. The exact values of the initial and final parameters

h0, γ0, h1, and γ1 in given phases do not modify qualitatively

the behavior of the LO as a sign of some kind of universality.

We consider four types of quenches, where three of them can

be realized by quenching one parameter only, while in third

example one needs to quench both the magnetic field and the

anisotropy parameter.

2 1 0 1 2
2

1

0

1

2

h

γ

I

II

III

0, 1

0,0.3

1.5,1.6

1.5,0.9

1.5.1.6

1.5,0.9

0,0.3

0,1

FIG. 1. (Color online) The phase diagram of the XY model in a

magnetic field. The three studied phases (I, II, III) are marked on the

plot. These gapless phases are separated by critical lines that form

an H letterlike shape. DPTs can occur in quenches within the same

phase. The domains D(h0,γ0) of the final parameters where DPTs

appear are shown for four given initial conditions (h0,γ0). Except

from the region h1 < −1, the domains are determined from Eq. (7).

Note that when quenching from II to h1 < −1, nonanalyticities only

show up in the top left corner of the phase diagram and remain absent

otherwise, in spite of crossing several critical lines.

161105-2



RAPID COMMUNICATIONS

DISENTANGLING DYNAMICAL PHASE TRANSITIONS . . . PHYSICAL REVIEW B 89, 161105(R) (2014)

10 5 0 5 10

30

20

10

0

10

20

30

a II II Im z

Re z

z2 k

z1 k

z0 k

z 1 k

z 2 k

z 3 k

10 5 0 5 10

30

20

10

0

10

20

30

b II II

10 5 0 5 10

30

20

10

0

10

20

30

c I II

10 5 0 5 10

30

20

10

0

10

20

30

d XX II

10 5 0 5 10

30

20

10

0

10

20

30

e XX I

10 5 0 5 10

30

20

10

0

10

20

30

f I III

FIG. 2. (Color online) The flow of Fisher lines zn(k) [n = (−3, . . . ,2)] for various types of quenches discussed in the main text.

DPT without EPT: Quenches not crossing critical points.

We start our discussion with quenches inside phase II, where

h0,1 > 1, and we assume that γ0 > 0 without loss of generality.

In this setup no critical lines are crossed by the parameters

of the Hamiltonian during the quench, but DPTs can occur.

Generally one can show that the k → 0,π tails of the Fisher

lines lie in the left half plane: limk→0 Re{zn(k)} = −∞ and

limk→π Re{zn(k)} = −∞. For small quenches all lines lie

in the left half plane [Fig. 2(a)], hence the time evolution of

the dynamical free energy is analytical. However, the turning

point of the Fisher lines can move to the right half plane

[Fig. 2(b)]. In this case each Fisher line crosses the time

axis twice at wave numbers k∗
1 and k∗

2 . The nonanalytical

times are given by t∗i = π
εk∗

i

(n + 1
2
), i = 1,2. This occurs if

the anisotropy parameter is quenched to a sufficiently negative

value at a fixed magnetic field. No matter how γ is quenched,

an equilibrium critical point is never approached, but DPT

shows up.

More generally, for each point (h0,γ0) in phase II, the

domain D(h0,γ0) ⊂ II of (h1,γ1) where DPT occurs is given

by

D(h0,γ0)=
{

(h1,γ1)|2γ0γ1 < 1−h0h1−
√

(

h2
0−1

)(

h2
1−1

)}

(7)

within phase II. The boundary of these regions is a second order

curve (a cone section). A few examples for these domains are

shown in Fig. 1.

A similar phenomenon can be observed in quenches inside

phase I. The Fisher lines start and end in the left half of

the complex plane, but some parts of the lines can move to

the right half plane. Given (h0,γ0) in phase I, the domain

of the final parameters where the nonanalyticities occur is

given by Eq. (7) within phase I. For example, starting from

the Ising model (γ0 = 1, h0 = 0), one needs to quench the

magnetic field and the anisotropy parameter as well to see

the nonanalytic behavior (see Fig. 1). However, considering

smaller anisotropy, the DPT can appear by quenching solely

the magnetic field when γ0 <
√

1 + |h0|/
√

2 is satisfied for

the initial Hamiltonian.

161105-3
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DPT together with EPT: Quench between phases I and

II. In this setup the quenched parameters cross at least one

critical point, and the time evolution of the dynamical free

energy is always nonanalytical. The asymptotic behavior

of the Bogoliubov angles guarantees that the Fisher lines

cross the imaginary axis, that is, limk→0 Re{zn(k)} = ∞
and limk→π Re{zn(k)} = −∞ [Fig. 2(c)]. Because of the

symmetries of the XY model, quenches between phase II and

III behave in the same way.

EPT without DPT: Quench from phase II to the critical XX

line (γ = 0, |h| < 1). In quenches II → I,III, DPTs showed up

everywhere except for quenches from phase II to the boundary

of I and III. Though the asymptotic behavior of the Bogoliubov

angles is similar to the I → II case, there is an interesting

difference as well: There are no Fisher zeros in the vicinity of

the imaginary axis. The function cos(2�k) is not continuous

at k̃ = arccos(
h1γ0−h0γ1

γ0−γ1
), therefore limε→0+ cos(2�k̃∓ε) ≶ 0.

Hence the Fisher lines split into two sections that do not cross

the imaginary axis [Fig. 2(d)].

By considering the XX line as the γ1 → 0 limit, then as we

approach the XX line, the slope of cos(2�k) diverges at k̃, hence

the density of the Fisher zeros vanishes near the imaginary axis.

As opposed to previous examples, when the initial and final

Hamiltonians did lie in the gapped phase, quenching to the

XX line is a special case because the final parameters are on a

critical line. Nevertheless, it is still surprising that for quenches

II → I,III DPTs occur everywhere except for the boundary of

these regions.

However, nonanalytical behavior in the dynamical free

energy can be observed in quenches to the critical lines as

well. One example is a quench from I or III to the XX line:

(γ0 �= 0,|h0| < 1) → (γ1 = 0,|h1| < 1) with h1 �= h0. In this

case, one would think naively that the Fisher lines would

cross the imaginary axis twice, similarly to quenches I → I

and I → III, but one of the crossings does not manifest itself

[Fig. 2(e)] in a similar manner, as it was discussed above.

The other example, which we only mention here, is a quench

crossing a critical line [26]: starting from III to the h = 1

critical boundary of I.

Quench from phase I to III. In this case the anisotropy

parameter is quenched from positive to negative values in a

low magnetic field (−1 < h0,1 < 1). The system goes through

an anisotropy transition at γ = 0. At γ > 0 the ground

state polarization is in the x, while at γ < 0 it is in the

y direction. For these quenches limk→0,π Re{zn(k)} = −∞,

meaning that the Fisher lines start and end at the left half

plane. However, there is a wave number 0 < k̃ < π defined by

cos(k̃) = h1γ0−h0γ1

γ0−γ1
, for which cos(2�k̃) = −1. This means that

while k goes through the interval (0,π ), the Fisher lines come

from Re{z} = −∞, reach Re{z} = ∞ at k̃, and finally go back

to Re{z} = −∞ again [Fig. 2(f)]. Hence all the Fisher lines

cross the imaginary axis twice, giving rise to two emergent

time scales in the dynamical free energy [Fig. 3(a)]. This is the

qualitative difference between the quenches I to II and I to III.

For EPTs, the nonanalyticity of the free energy is also

imprinted in the nonanalytic behavior of other physical

quantities, e.g., the order parameter or its susceptibility. A

similar phenomenon is expected to occur for the DPTs as well

[18]. For the XY model, the equilibrium order parameter is the
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FIG. 3. (Color online) The dynamical free energy is nonanalyti-

cal at Fisher times ti,n = t∗
i (n + 1/2), i = 1,2 (solid and dashed lines,

respectively). The time unit was chosen to be t∗
1 . The longitudinal

magnetization also shows two time scales: In (b) the zeros of the

magnetization approximately lie at the Fisher times, and in (d) the

relation between them is more involved. Quench parameters for

(a) and (b) are (h0 = 0,γ0 = 1) → (h1 = 0.6,γ0 = −1) and for (c)

and (d) they are (h0 = 0,γ0 = 0.1) → (h1 = 0.6,γ0 = 0.1).

magnetization in the XY plane. Therefore, we determined its

absolute value for the nonequilibrium situation by a numerical

evaluation of Pfaffians [27]. Whenever the Fisher line crosses

the imaginary axis once, only a single emergent nonequi-

librium time scale appears from the dynamical free energy,

which matches exactly that of the magnetization. However,

for quenches I → I and I → III, each Fisher line crosses the

imaginary axis twice, which implies two nonequilibrium time

scales. Only these two time scales and their higher harmonics

[in Fig. 3(d)] appear in the dynamics of magnetization, though

generally we were not able to express analytically the zeros of

the magnetization by the nonanalytic time scales. However, in

the I → III quench protocol when γ0 and γ1 are not too close

to the γ = 0 critical line, the magnetization takes zero values

in the vicinity of the Fisher times [Figs. 3(a) and 3(b)].

Until now we considered quenches starting from even or

odd parity eigenstates. It is an important question whether or

not the nonanalytic behavior is present in quenches starting

from polarized states. For quenches through the critical point

in the transverse field Ising model it has been shown that

DPTs can be observed, but the nonanalyticities are not at the

Fisher times of the parity subspaces [18,22]. We found similar

behavior in the XY model [25].

Though we calculated the LO and the dynamical free

energy directly from the time evolution of the initial wave

function, they describe the stationary state after the quench

[13]. That is, as the time evolution operator is diagonal in the

eigenbasis of H , G(t) depends only on the diagonal elements

of the density matrix, G(t) = Tr{ρDEe−iH t }, where ρDE is the

diagonal ensemble. The diagonal density matrix depends on

the fermion occupation numbers nk and it can be expressed

explicitly [25],

ρDE =
∏

0<k<π

[nkn−k + cos2(�k)(1 − nk − n−k)] (8)

=
∏

0<k<π

cos2(�k)δnk ,0δn−k ,0 + sin2(�k)δnk ,1δn−k ,1. (9)

161105-4
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From the latter form it is straightforward to reproduce Eq. (5).

The correlation between wave numbers k and −k comes from

the BCS superconductorlike initial state. The LO—up to a

trivial phase factor—is the characteristic function of work done

on the system [28], hence it depends on all moments of the

energy. As it is a nonlocal quantity, the generalized Gibbs

ensemble ρGGE ∼ e
∑

λknk , where λk fixes the expectation value

of nk , would not give the proper result for the LO, because it

does not describe well the correlations between nk and n−k .

With the diagonal ensemble in Eq. (8), we took into account

the correlations among the modes, hence it can be applied to

calculate any moment of the energy.

Conclusion. We analyzed the dynamical free energy for

quenches in the XY model in a magnetic field. The singular

behavior of the dynamical free energy is determined solely by

the Bogoliubov angles through the quasiparticle occupation

numbers and it is not sensitive to the spectra of the initial

or final Hamiltonians. The appearance of DPTs is connected

to the existence of modes with 1/2 occupancy probability. In

this particular system we explicitly demonstrated the existence

of DPTs without an EPT as well as the absence of DPTs

in the presence of EPTs. Though the dynamical free energy

does not distinguish between DPTs with or without EPTs,

the Fisher lines do. If the quench crosses a critical line, the

Fisher lines sweep through the whole real axis. However, for

quenches inside a given phase, the Fisher lines reach either ∞
or −∞.
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