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Abstract 15 

Background 16 
Ecological interactions among microorganisms are fundamental for ecosystem function, yet 17 
they are mostly unknown or poorly understood. High-throughput-omics can indicate 18 
microbial interactions through associations across time and space, which can be represented 19 
as association networks. Associations could result from either ecological interactions 20 
between microorganisms, or from environmental selection, where the associations are 21 
environmentally-driven. Therefore, before downstream analysis and interpretation, we need 22 
to distinguish the nature of the association, particularly if it is due to environmental selection 23 
or not. 24 
 25 
Results 26 
We present EnDED (Environmentally-Driven Edge Detection), an implementation of four 27 
approaches as well as their combination to predict which links between microorganisms in 28 
an association network are environmentally-driven. The four approaches are Sign Pattern, 29 
Overlap, Interaction Information, and Data Processing Inequality. We tested EnDED on 30 
networks from simulated data of 50 microorganisms. The networks contained on average 50 31 
nodes and 1087 edges, of which 60 were true interactions but 1026 false associations (i.e. 32 
environmentally-driven or due to chance). Applying each method individually, we detected 33 
a moderate to high number of environmentally-driven edges—87% Sign Pattern and Overlap, 34 
67% Interaction Information, and 44% Data Processing Inequality. Combining these methods 35 
in an intersection approach resulted in retaining more interactions, both true and false (32% 36 
of environmentally-driven associations). After validation with the simulated datasets, we 37 
applied EnDED on a marine microbial network inferred from 10 years of monthly 38 
observations of microbial-plankton abundance. The intersection combination predicted that 39 
8.3% of the associations were environmentally-driven, while individual methods predicted 40 
24.8% (Data Processing Inequality), 25.7% (Interaction Information), and up to 84.6% (Sign 41 
Pattern as well as Overlap). The fraction of environmentally-driven edges among negative 42 
microbial associations in the real network increased rapidly with the number of 43 
environmental factors. 44 
 45 
Conclusions 46 
To reach accurate hypotheses about ecological interactions, it is important to determine, 47 
quantify, and remove environmentally-driven associations in marine microbial association 48 
networks. For that, EnDED offers up to four individual methods as well as their combination. 49 
However, especially for the intersection combination, we suggest using EnDED with other 50 
strategies to reduce the number of false associations and consequently the number of potential 51 
interaction hypotheses. 52 
 53 
Keywords: microbial interactions; association network; effect of indirect dependencies; 54 
environmentally-driven edge detection  55 
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Background 56 

Association networks to generate microbial interaction hypotheses 57 

There is a myriad of microorganisms on Earth; current estimates indicate ≈1012 microbial 58 

species (Locey & Lennon, 2016), and ≈1030 microbial cells (Whitman et al., 1998; Kallmeyer 59 

et al., 2012). Microorganisms have crucial roles in the biosphere by contributing to global 60 

biogeochemical cycles (Falkowski et al., 2008) and underpinning diverse food webs. The 61 

importance of microbes for the functioning of ecosystems cannot be understood without 62 

considering their ecological interactions (DeLong, 2009; Krabberød et al., 2017). These 63 

allow transferring carbon and energy to upper trophic levels, and the recycling of nutrients 64 

and energy (Worden et al., 2015). Furthermore, ecological interactions influence microbial 65 

community turnover and composition. These interactions include win-win (e.g. mutual cross-66 

feeding and cooperation), win-loss (e.g. predator-prey and host-parasite), and loss-loss (e.g. 67 

resource competition) relationships (Faust & Raes, 2012). Although microbial communities 68 

are highly interconnected (Layeghifard et al., 2017), our knowledge about ecological 69 

interactions in the microbial world is still limited (Krabberød et al., 2017; Bjorbækmo et al., 70 

2019). 71 

Previous studies have shown relationships between a restricted number of 72 

microorganisms. However, we need a large number of interactions to understand the 73 

functioning of complex ecosystems. This is challenging, in part, due to the vast number of 74 

possible interactions—given n microorganisms, there are (𝑛2) = 𝑛(𝑛 − 1)/2 potential 75 

pairwise interactions. Thus, it is unfeasible to test them experimentally within a reasonable 76 

amount of time and cost. The problem of having a large number of potential interactions can 77 

be partially circumvented with omics technologies coupled to network analyses. 78 

Omics can identify and quantify a large number of microorganisms from a given 79 

sample. Typically, the relative abundance for each identified organism per sample is 80 

estimated. There are multiple methods to determine associations (normally based on 81 

correlations) between microorganisms using their abundances (e.g. eLSA (Xia et al., 2011, 82 

2013), CoNet (Faust & Raes, 2016), SPIEC-EASI (Kurtz et al., 2015), or FlashWeave 83 

(Tackmann et al., 2019)). These abundance-based associations compose a network, where 84 

nodes represent microorganisms and edges represent either co-presence (positive 85 

association) or mutual exclusion (negative association) relationships, which constitute 86 
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microbial interaction hypotheses. 87 

 88 

Challenges in using networks as a representation of the microbial ecosystem 89 

Although networks play an essential role in understanding complex systems, microbial 90 

ecological networks are not yet as developed in terms of inference and biological 91 

interpretation (Lv et al., 2019). Network inference from -omics data is difficult (Li et al., 92 

2016; Layeghifard et al., 2017) because of both technical and interpretation challenges. One 93 

challenge is the compositional nature of the data produced by DNA sequencers (Gloor et al., 94 

2017). There are several network tools (Li et al., 2016) that consider this, e.g., SPIEC-EASI 95 

(Kurtz et al., 2015). Other difficulties include data based on a small number of samples 96 

relative to the number of microorganisms they contain, i.e., a low sample-to-microorganisms 97 

ratio; plus sparse data—too many zeros in the dataset that can wrongly associate 98 

microorganisms (Aitchison, 1981). A zero indicates either the absence of a microorganism 99 

(structural zero), or an insufficient detection level or sequencing depth (sampling zero). Thus, 100 

we should remove microorganisms appearing in just a few samples. 101 

Interpretation of association networks is challenging because they are not equivalent 102 

to ecological networks. Edges in ecological networks represent observed ecological 103 

interactions between different microorganisms like parasitism or competition (Xiao et al., 104 

2017). Ecological networks are directed graphs, where the directed edges (arcs) point from a 105 

start node (source) to an end node (target). In contrast, association networks are undirected. 106 

Although association networks provide ecological insight, they do not necessarily encode 107 

causal relationships or observed ecological interactions. Unless edges are verified with 108 

experiments or additional information, one should be careful when attributing biological 109 

meaning to network properties (Röttjers & Faust, 2018). In addition, networks with too many 110 

edges (dense networks or hairballs) make interpretation more challenging. We can reduce 111 

network density when lowering the corrected 𝑝-value for inferred edges (Weiss et al., 2016), 112 

or increasing the cut-off for other criteria such as the association strength, prevalence, or 113 

abundance filtering (Röttjers & Faust, 2018). Another strategy is agglomeration using 114 

taxonomic or ecological (functional) groupings (Lima-Mendez et al., 2015). 115 

The interpretation challenge addressed in this study are indirect dependencies 116 

(associations) caused by environmental factors. For most microbial association networks, an 117 
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edge indicates one of the following three alternatives: 118 

1. ecological interaction between two microorganisms, 119 

2. similar or contrary dependence (i.e., preference) to environmental factor/s or a third 120 

microorganisms, 121 

3. association by chance. 122 

Indirect associations occur when two microorganisms are both dependent on an abiotic 123 

environmental factor (e.g., same nutrients and temperature requirements) or biotic factor 124 

(e.g., same prey or predator), but do not interact with one another. Here, indirect association 125 

describes the computational effect of indirect dependencies, and observing an association 126 

when in fact there is none. 127 

 128 

Removing indirect dependencies including environmental effects 129 

To distinguish between direct and indirect interactions, several network construction tools 130 

use a probabilistic graphical model (Kurtz et al., 2015; Yang et al., 2017), e.g. SPIEC-EASI 131 

(Kurtz et al., 2015, 2019), miic (Verny et al., 2017), or FlashWeave (Tackmann et al., 2019). 132 

FlashWeave can also integrate metadata to avoid indirect associations driven by 133 

environmental factors but currently does not support missing data. The tool ARACNE 134 

(Margolin et al., 2006) aims to eliminate indirect associations by using an information 135 

theoretic property (the Data Processing Inequality, DPI, in Methods). The extension 136 

TimeDelay-ARACNE (Zoppoli et al., 2010) tries to extract dependencies between different 137 

times. Another approach including time-delay is implemented in the tool MIDER (Villaverde 138 

et al., 2014), which combines mutual information-based distances and entropy reduction to 139 

detect indirect interactions (Mutual Information, MI, in Methods). PREMER (Villaverde et 140 

al., 2018), a successor of MIDER, allows to include previous knowledge, e.g., known non-141 

existent associations. 142 

There are also several prior network construction approaches to reduce indirect 143 

associations, e.g., a high prevalence filter that preserves microorganisms present in many 144 

samples (Pascual-García et al., 2014). However, this will keep generalist while removing 145 

specialist. Another approach divides datasets displaying a great environmental heterogeneity 146 

into sub datasets of similar environmental conditions (Röttjers & Faust, 2018). For example, 147 

a previous work (Mandakovic et al., 2018) constructed two networks representing bacterial 148 
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soil communities from two different sections of a pH, temperature, and humidity gradient. 149 

Another work (Lima-Mendez et al., 2015) constructed ocean depth-specific networks to 150 

account for environmental differences between the surface layer and the deep chlorophyll 151 

maximum layer. In addition to dividing samples, an algorithm aiming to correct for habitat 152 

filtering effects (Brisson et al., 2019), subtracts, for a given habitat, the mean abundance from 153 

each microorganisms within each sample. However, this approach is limited to the identified 154 

habitat groups that should have a similar sample size. 155 

In contrast, there are methods accounting for indirect dependencies after network 156 

construction. For instance, global silencing, (Barzel & Barabási, 2013) and network 157 

deconvolution (Feizi et al., 2013) aim to recover true direct associations from observed 158 

correlations. Both techniques are sensitive to missing variables (Alipanahi & Frey, 2013). 159 

Another method, called Sign Pattern, SP, uses environmental triplets (Lima-Mendez et al., 160 

2015). An environmental triplet contains two microorganisms and one environmental factor, 161 

which are associated to each other. SP combines the signs of association scores (positive or 162 

negative) to determine if a microbial association should be classified as indirect (SP in 163 

Methods). Its major drawback is edge removal where microorganisms with similar 164 

environmental preference interact. Along SP and network deconvolution, the Interaction 165 

Information, II, was applied in (Lima-Mendez et al., 2015). Within an environmental triplet, 166 

the II method aims to indicate whether an edge is due entirely to shared environmental 167 

preferences (II<0) or whether environmental preferences and true interactions are entangled 168 

(II>0). However, II cannot determine which associations in a triplet is indirect (II in 169 

Methods). Here, we study several indirect edge detection methods: SP, Overlap, (OL, 170 

developed here), II, DPI, and their combination. 171 

 172 

EnDED is an implementation of four methods and their combination 173 

This article presents EnDED, which implements four approaches, and their combination, to 174 

indicate environmentally-driven (indirect) associations in microbial networks. The four 175 

methods are: Sign Pattern (Lima-Mendez et al., 2015), Overlap (developed here), Interaction 176 

Information (Lima-Mendez et al., 2015; Ghassami & Kiyavash, 2017), and Data Processing 177 

Inequality (Cover & Thomas, 2001; Margolin et al., 2006). SP requires an association score 178 

that represents co-occurrence when it is positive, and mutual-exclusion when it is negative. 179 
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OL requires temporal data with a known start and end of the association to determine whether 180 

the microbial association occurs in a time window when both microorganisms are associated 181 

to the same environmental factor. The II method indicates the existence of one indirect 182 

dependency between three components that are associated with each other. The DPI method 183 

states that the association with the smallest mutual information is the indirect association. 184 

Here, we evaluate each method and their combination on how well they detect 185 

environmentally-driven associations on association networks from simulated data including 186 

two environmental factors. Combining methods in an intersection approach retains more true 187 

interactions than each method on its own. A union approach was discarded because it would 188 

have retained the smallest number of true interactions. We are able to disentangle and filter 189 

environmentally-driven edges from microbial association networks (0.95-0.96 in positive 190 

predictive value and 0.35-0.83 in accuracy). We also applied EnDED to disentangle and filter 191 

environmentally-driven edges from a real marine microbial association network based on ten 192 

years of monthly sampling including ten environmental factors. EnDED contributed to both, 193 

generating more reliable hypotheses on microbial interactions, and facilitating network 194 

analysis by removing edges from dense “hairball” networks. EnDED is publicly available 195 

(Deutschmann, 2019). 196 

 197 

Results 198 

Simulated data 199 

To evaluate EnDED’s performance in removing environmentally-driven associations, we 200 

simulated 1000 abundance time-series datasets with 50 microorganisms and known true 201 

interactions between them. We obtained another 1000 datasets with noise (hereafter dwn). 202 

We constructed the networks (hereafter simulated networks) with the tool eLSA (Xia et al., 203 

2011, 2013) (see methods). The simulated networks contained on average (computed as the 204 

median) 50 nodes and 1087 edges (1063 dwn), of which 60 (59 dwn) were true interactions 205 

(edges present in the inferred and true network) and 1026 (1005 dwn) false associations 206 

(edges present in the inferred but absent in the true network). Networks inferred from 207 

simulated data without noise contained on average one more true interaction but also 21 more 208 

false interactions than the networks inferred from simulated data with noise. 209 

A simple approach to discriminate true interactions (desired) from false associations 210 
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(undesired) would be to use a threshold for the association strength, which could be suitable 211 

if the values for true interactions and false associations are i) following different distributions, 212 

and ii) the distributions are mainly non-overlapping. We tested the former requirement with 213 

a two-sample Kolmogorov-Smirnov test with the R (R Core Team, 2019) function ks.test. 214 

Using a 95% (99%, 99.9%) confidence level, the distributions were significantly different 215 

for 358 (192, 66) simulated datasets and 355 (173, 68) simulated datasets with noise, which 216 

is slightly more than one third of them. This indicates that an association strength cut-off is 217 

unsuitable to separate true interactions from false associations. More sophisticated 218 

approaches than a simple threshold include the methods implemented in EnDED: SP, OL, II, 219 

DPI, and their combination. 220 

Combining the methods in an intersection approach (hereafter referred to as 221 

intersection combination), we classified on average 348 (228 dwn), that is 32% (22% dwn) 222 

of the associations, to be environmentally-driven. The number of correctly detected false 223 

associations was on average 332 (219 dwn), i.e., 96% of the removed edges. The resulting 224 

networks contained on average 737 (828 dwn) edges. When each method was individually 225 

applied more edges were removed: 87% (86% dwn) for SP and OL, 67% (60% dwn) for II, 226 

and 44% (32% dwn) for DPI. The fraction of correctly removed edges for individual methods 227 

was on average 95%. Comparing the methods on correctly detected false associations, the 228 

greatest agreement was observed between SP and OL, whereas DPI appeared to be the most 229 

conservative in not agreeing with other methods and, subsequently, reducing the number of 230 

detected edges in the intersection combination approach (Supplementary Table 231 

S1).Individual methods removed more edges from the network than the intersection 232 

combination, where all methods must agree. However, a method’s performance is not solely 233 

determined by the number of removed edges. 234 

To evaluate the removal of environmentally-driven edges, we scored the different 235 

approaches based on five evaluation measurements (see Methods): the true positive rate, 236 

TPR, true negative rate, TNR, false positive rate, FPR, positive predicted value, PPV, and 237 

accuracy, ACC, (Figure 1 and Supplementary Table S2). In order to determine these 238 

measurements, we first determined true and false positives, as well as true and false 239 

negatives. A true positive is a false association in the network that is correctly removed by a 240 

method, and a false negative is a false association that is incorrectly not removed. A false 241 
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positive is a true interaction in the network that is incorrectly removed by a method, and a 242 

true negative is a true interaction that correctly is not removed by a method. The ideal method 243 

maximizes true positives and true negatives and minimizes false positives and false 244 

negatives. 245 

The intersection combination under-performed compared to each individual method, 246 

SP and OL perform best, and II performs better than DPI according to TPR, FPR and ACC 247 

(Figure 1). However, applying each method individually has the drawback of removing more 248 

true interactions. On average there are 60 (59 dwn) true interactions in the simulated 249 

networks. The individual methods removed 86% (85% dwn) (SP), 85% (84% dwn) (OL), 250 

60% (51% dwn) (II), and 38% (28% dwn) (DPI). Therefore, although the intersection 251 

combination removed fewer edges, it outperformed the others according to the TNR because 252 

it eliminated fewer of the true interactions, 25% (16% dwn). All methods had high PPV 253 

values with half of all measured PPV above ≈0.95. According to PPV, intersection 254 

combination performed best and SP and OL performed worst (Figure 1). 255 

 256 

Real data 257 

After testing EnDED’s performance on simulated networks, we applied it to a real microbial 258 

association network, which was constructed from 10 years of monthly samples from January 259 

2004 to December 2013 at the Blanes Bay Microbial Observatory (BBMO) (Gasol et al., 260 

2016). These samples included bacteria and eukaryotes of two size-fractions: picoplankton 261 

(0.2-3 µm) and nanoplankton (3-20 µm). We estimated community composition via 262 

metabarcoding of the 16S and 18S rRNA gene, and inferred an association network, hereafter 263 

referred to as BBMO network (see Methods). The BBMO network contained 762 nodes 264 

including 754 ASVs and eight of the ten available environmental factors, and 30498 edges 265 

including 29820 microbial edges and 607 edges between a microorganism and an 266 

environmental factor. The network contained more positive (24458, 82.0%) than negative 267 

(5362, 18.0%) microbial associations (Figure 2). 268 

We found that 25230 (84.6%) of the network edges were in at least one and in 269 

maximum six environmental triplets (Figure 2 and Supplementary Table S3). Overall, we 270 

detected 35166 environmental triplets within the BBMO network. Of the ten considered 271 

environmental factors, PO4
3- and salinity were not associated to any microorganism in the 272 
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network, and turbidity and NH4
+ were not found within a triplet. Thus, six environmental 273 

factors remained: Temperature (1831 environmentally-driven edges were removed due to 274 

Temperature) and day length (652 removed edges) were the top two environmental factors 275 

affecting microbial associations, followed by total chlorophyll (175), SiO2 (5) and NO3
- (1); 276 

no edge was removed due to NO2
-. 277 

The intersection combination removed 2488 (≈8.3%) associations from the BBMO 278 

network. We classified and quantified these indirect edges according to the domain of the 279 

nodes (bacteria - eukaryotes, nanoplankton – picoplankton), environmental factor, and the 280 

number of triplets a microbial edge was in (Figure 2 and Supplementary Table S4). Compared 281 

to the intersection combination, each method individually removed more edges: 84.6% (SP 282 

and OL removing all microbial edges present in a triplet), 25.7% (II), and 24.8% (DPI); that 283 

is, removal was 3 to 10 times larger. 284 

We also determined for each association the Jaccard index, which indicates how often 285 

two microorganisms appear together in the dataset. We assumed that two microbes that 286 

appear together < 50% of the time are less likely to have true contemporary ecological 287 

interactions and the corresponding association is more likely to be false. We found that only 288 

27.7% of the indirect associations had a Jaccard index above 0.5 compared to 61.1% of the 289 

associations that were not indirect. This discrepancy was bigger for negative edges, with 290 

1.2% above and 98.8% below 0.5 (Table 1). The fact that over 72.3% of environmentally-291 

driven associations had a Jaccard index equal or below 0.5 strengthened the decision of their 292 

removal. 293 

The intersection combination removed more negative than positive edges, 1554 and 934, 294 

respectively (Figure 2). However, there were 20334 positive and 4896 negative microbial 295 

associations that were found in at least one environmental triplet, so the method removed 296 

31.7% of the negative and only 4.6% of the positive edges. If we randomly removed 2488 297 

edges, we would expect 18.0 % to be negative (i.e. 448) and 82.0 % of them to be positive 298 

(i.e. 2040). If we restrict these calculations to the 25230 microbial associations that were 299 

found in at least one environmental triplet, with 20334 of them being positive and 4896 being 300 

negative, we would expect to remove 19.4% (i.e. 483) of negative and 80.6% (i.e. 2005) of 301 

positive edges. The probability of randomly removing less positive than negative associations 302 

is nearly zero, since it follows a multivariate hypergeometric distribution: 303 
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𝑃(𝑘𝑛𝑒𝑔 , 𝑘𝑝𝑜𝑠) = (𝑁𝑛𝑒𝑔𝑘𝑛𝑒𝑔) ∙ (𝑁𝑝𝑜𝑠𝑘𝑝𝑜𝑠)(𝑁𝑛)  , Eq. (1) 

where 𝑁𝑝𝑜𝑠 and 𝑁𝑛𝑒𝑔 are the number of positive and negative associations in the network, 304 

respectively, 𝑘𝑝𝑜𝑠 is the number of removed positive and 𝑘𝑛𝑒𝑔 the removed negative 305 

associations from the network, 𝑁 is the number of associations in the network, and 𝑛 is the 306 

number of removed associations from the network. The removal of more negative edges 307 

through intersection combination indicates that this removal was not random or, in other 308 

words, that negative associations are more likely to represent environmentally-driven edges. 309 

To evaluate the performance of EnDED on the BBMO network, we considered 310 

interactions described in literature and collected in the Protist Interaction Database (PIDA) 311 

(Bjorbækmo et al., 2019). Studies typically compare the associations of a network to those 312 

reported in the literature at the genus level (Lima-Mendez et al., 2015). The ambiguity in 313 

taxonomic classification and the large number of edges challenged this comparison. Thus, 314 

we implemented a function to compare strings and match the taxonomic classification of a 315 

microorganism in the BBMO network to those in the scientific literature (PIDA). We found 316 

that only 29 (0.1%) associations were supported by interactions described in the literature 317 

(Table 2). That is, 99.9% of associations in the BBMO network (before applying EnDED) 318 

could not be used to evaluate EnDED’s performance. These 29 associations describe eight 319 

unique interactions between eight microorganisms, and 18 edges were in an environmental 320 

triplet to which each method as well as their combination were applied (summary in Table 321 

2). Ideally none of these described associations should be removed by EnDED. Yet, the 322 

intersection combination removed five associations (Table 2). In contrast and even worse, 323 

SP and OL removed all 18 edges, II eight and DPI nine edges. The additionally removed 324 

edges by individual methods are associations between a diatom (Thalassiosira) and an 325 

unknown Flavobacteriia. Considering only the genus level, there were 171 unique genera in 326 

the BBMO network, and 700 in PIDA, combined there were 837 microbial genera, and 34 327 

genera in both. Thus, 19.9% of the microbial genera found in the BBMO network were also 328 

in PIDA, and 4.9% of the genera found in PIDA were also found in the BBMO network. 329 

 330 

 331 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.13.452182doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.13.452182
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

12 

Discussion 332 

Using EnDED to disentangle environmental effects in microbial association networks 333 

EnDED makes several indirect-edge removal techniques accessible to microbial ecologists 334 

without requiring previous programming experience. These techniques can be used 335 

individually or combined. In addition, this work systematically evaluated the different 336 

techniques and their combination to remove indirect edges from microbial association 337 

networks. Here, we tested only the union and intersection combination of all four methods, 338 

but other combination strategies are possible with EnDED. EnDED requires data of the 339 

environmental factors in order to predict if an association is environmentally-driven. This is 340 

a limitation, since it may be impossible to consider all environmental factors (Lv et al., 2019). 341 

However, EnDED can perform well if the major environmental factors, such as, e.g., 342 

temperature and nutrient concentrations for marine microorganisms, are provided. Moreover, 343 

knowledge of microbial interactions in nature is rather limited and therefore determining the 344 

performance of EnDED for real networks is challenging and carries some degree of 345 

uncertainty. Thus, EnDED’s results should be interpreted with care. 346 

For the simulated networks, we found that each method individually removed on 347 

average a moderate to high number of edges. The intersection combination removed fewer 348 

edges but kept more true interactions. To understand the impact of the environment, Röttjers 349 

and Faust simulated an increasing environmental influence and observed a decrease in 350 

retrieving true interactions from inferred associations (Röttjers & Faust, 2018). The 351 

observation holds for several network construction methods for cross-sectional data, 352 

including CoNet (Faust et al., 2012), SparCC (Friedman & Alm, 2012), SPIEC-EASI (Kurtz 353 

et al., 2015), and Spearman correlations. In agreement with these findings, we observed a 354 

slight increase in retrieving true interactions when removing environmentally-driven 355 

associations in our simulation networks. 356 

In our BBMO dataset, the intersection combination removed a modest number of the 357 

edges—a much higher fraction of negative than positive edges. We argue that several 358 

negative associations are probably due to different environmental preference (different 359 

niches) of microorganisms. The Jaccard index representing a level of microbial co-360 

occurrence, scored equal or below 50% for most negative associations. These may partially 361 

represent microorganisms adapted to different seasons. Previous work on the eukaryotic 362 
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pico- and nano-plankton at the BBMO, using the same basal 10-year dataset used here, 363 

indicated a strong seasonality at the community level (Giner et al., 2019). 364 

 365 

Comparisons of indirect edge detection on other datasets 366 

In our BBMO network we found that the majority (84.6%) of the microbial edges was within 367 

at least one environmental triplet. This was 2.6 times higher than what was found for an 368 

association network inferred from data considering microorganisms and small metazoans 369 

from two ocean depths across 68 stations around the world and various size fractions 370 

(hereafter global interactome) (Lima-Mendez et al., 2015). This global interactome contains 371 

29912 (32.3%) edges that were within at least one environmental triplet (Lima-Mendez et 372 

al., 2015). In the previous study, 29900 edges in the global interactome (≈100% of triplets 373 

and 32% of all edges) were attributed to environmental factors by SP, similarly to this study 374 

as SP removed all edges within triplets in the BBMO network. II indicated 11043 375 

environmentally-driven edges in the global interactome (≈37% of triplets and 12% of all 376 

edges) with 𝑝-value below 0.05 in a permutation test with 500 iterations. In comparison, II 377 

removed a higher fraction of edges in the BBMO network when considering all edges 378 

(25.7%), but less when considering within the triplets (30.4%). Network deconvolution 379 

suggested 22439 environmentally-driven edges (≈75% of triplets and 24% of all edges) 380 

within the global interactome, and the three methods agreed for 8209 edges (≈27% of triplets 381 

and 8.9% of all edges). In comparison, we detected slightly less environmentally-driven 382 

associations for the BBMO network (8.3% of all edges). These differences suggest that a 383 

higher environmental heterogeneity in the dataset may induce more indirect edges. Also, the 384 

effects of indirect dependencies may depend on dataset type (e.g., temporal vs. spatial). These 385 

possible differences and their effect on environmentally-driven edges should be further 386 

investigated. 387 

Using II for the BBMO network, we identified a moderate number of 388 

environmentally-driven associations. DPI also identified a moderate number (24.8%, 29.3% 389 

when considering only triplets), whereas SP or OL identified a ubiquitous number of 390 

environmentally-driven edges (84.6%, 100% when considering only triplets). This indicates 391 

that SP and OL are strict and should be used in combination with other methods in an 392 

intersection approach. 393 
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In another study, the tool FlashWeave (Tackmann et al., 2019) predicted direct 394 

microbial interactions in the human microbiome using the Human Microbiome Project 395 

(HMP) dataset, including heterogeneous microbial abundance data of 68818 samples (The 396 

Human Microbiome Project Consortium: Huttenhower et al., 2012). The inferred networks 397 

(with and without metadata) were sparser than our networks. The network with metadata 398 

contained 10.7% fewer associations compared to the network without metadata, slightly 399 

more than in our results from BBMO. 400 

 401 

Factors causing indirect microbial associations 402 

From the simulated networks, we found that using the intersection combination instead of 403 

each method individually, we maintained more true interactions at the cost of more false 404 

associations in the network—more when considering simulated networks including noise. 405 

Comparing our simulated network against the BBMO network, the intersection combination 406 

classified a higher number of edges as environmentally-driven in the simulated networks 407 

32% (22% dwn) than in the BBMO network (8.3%). For the simulated data, we previously 408 

knew the environmental factor influencing pairwise microbial associations. For the BBMO 409 

data, we used ten available environmental factors, but not all factors that could affect 410 

microbial dynamics. Even though the most important factors influencing microbial seasonal 411 

dynamics at BBMO were considered (Giner et al., 2019), there are several factors that were 412 

not measured and that could generate indirect edges. The indirect edges associated to these 413 

factors were not detected in our analyses. Similarly, indirect edges associated to biotic 414 

interactions (e.g., two bacteria sharing a positive edge as they are symbionts in the same 415 

protists) were not considered. Future sampling for microbial interaction research should 416 

expand metadata collection in order to detect (more) abiotic and biotic factors that could 417 

generate indirect edges. 418 

While temperature and day length (hours of light) were the top two environmental 419 

factors affecting microbial associations in the BBMO network, the most important 420 

environmental factors in the global interactome (Lima-Mendez et al., 2015) were phosphate 421 

concentration and temperature, followed by nitrite concentration and mixed-layer depth. 422 

Although we considered PO4
3- and salinity, they were not associated to any microorganism 423 

in the network, which may reflect the low variation of these environmental factors in the 424 
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studied marine site (BBMO). For instance, the standard deviation in the BBMO dataset was 425 

< 1 for PO4
3- and salinity, in contrast to the global interactome dataset (Lima-Mendez et al., 426 

2015), where it was about 20-30 when considering all samples. During the Malaspina-2010 427 

Circumnavigation Expedition, the concentrations of trace metals were determined for 110 428 

surface water samples (Pinedo-González et al., 2015). The previous study indicates 429 

relationships between primary productivity and trace nutrients, more specifically for the 430 

Indian Ocean Cd, the Atlantic Ocean Co, Fe, Cd, Cu, V and Mo, and the Pacific Ocean Fe, 431 

Cd, and V. Thus, trace metals are further environmental factors that may play an important 432 

role in regulating oceanic primary productivity. 433 

 434 

Limitations of EnDED 435 

EnDED detects and removes environmentally-driven indirect edges. However, its triplet 436 

analysis could be extended to remove indirect edges driven by taxa, as done with gene triplets 437 

(Margolin et al., 2006). A recent update of the network construction tool eLSA (Xia et al., 438 

2011, 2013) permits to examine how a factor, such as a microorganism or environmental 439 

variable, mediates the association of two other factors (Ai et al., 2019), which allows the 440 

study of interactions between three factors. Furthermore, triplets limit the study to first-order 441 

indirect dependencies, neglecting higher-order indirect dependencies. Such limitation was 442 

solved for the DPI method by examining associations in quadruplets, quintuplets, and 443 

sextuplets (Jang et al., 2013). Implementing higher-order DPI and adjusting the other three 444 

methods to account for higher-order indirect dependencies may be promising but one needs 445 

to be aware that incorporating higher-order dependencies will also increase the risk of over-446 

fitting. Further, all relevant (measured) environmental factors could be incorporated into the 447 

calculation of II, which would combine environmental triplets. However, we reason that such 448 

adjustments would require a larger sample size. Both II and DPI calculate MI that measures 449 

the dependence between two random variables. EnDED is limited by including one function 450 

to estimate the MI. A comparison of four different MI estimates revealed that obtaining the 451 

true value of MI is not straightforward, and minor variations of assumptions yield different 452 

estimates (Fernandes & Gloor, 2010). Lastly, the conditional mutual information, CMI, 453 

which quantifies nonlinear direct relationships among variables, can be underestimated if 454 

variables have tight associations in a network (Zhao et al., 2016). The so-called part mutual 455 
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information, PMI, measurement can help overcome CMI’s underestimations. Although using 456 

PMI instead of CMI looks promising, calculating PMI is computationally more demanding 457 

(Zhao et al., 2016). 458 

 459 

Future Perspectives 460 

In this study, we have shown that EnDED with an intersection combination approach 461 

provides less dense networks, but still with many potential interactions. We observed a trade-462 

off comparing single methods with the combination approach (intersection combination). 463 

Although the latter kept more true interactions, it kept also more false associations. Inferring 464 

emergent properties is a key task in microbial ecology to characterize microbial ecosystems 465 

from a network-perspective. Thus, if the study aim is to explore patterns of network topology 466 

rather than single edges, inferring a network comparable to the real interaction network may 467 

be more useful than accuracy of single edges. However, investigations aiming to provide 468 

potential interaction partners may use EnDED with the intersection combination approach 469 

(e.g., (Latorre et al., 2021)). Specific associations may be validated with experiments or 470 

microscopy (Lima-Mendez et al., 2015; Krabberød et al., 2017). However, we suggest to 471 

first further reduce the set of potential interaction hypotheses. To improve the selection of 472 

interaction hypotheses, we propose to score associations based on re-occurrence: in time, as 473 

done with microbial abundance seasonality (Giner et al., 2019), or space, where an 474 

association appears in different networks based on different datasets, or different regions of 475 

the world. In a previous study using 313 samples, including seven size-fractions, four 476 

domains (Bacteria, Archaea, Eukarya, and viruses), and two depths from 68 stations across 477 

eight oceanic provinces, 14% of the 81590 predicted biotic interactions were identified as 478 

local (Lima-Mendez et al., 2015). Thus, re-occurrent associations may suggest a higher 479 

likelihood that the association represents a true ecological interaction, reducing the number 480 

of interaction hypotheses to the strongest ones. Another strategy to shortlist interaction 481 

hypotheses is to incorporate additional data into the network and use a multi-layer network 482 

approach. Such data could be environmental preferences such as temperature or salinity 483 

optima, size of cells, presence of chloroplasts, or data obtained from High-Throughput 484 

Cultivation (Faust, 2019), microbial community transcriptomes that reveal metabolic 485 

pathways (McCarren et al., 2010), or interactions inferred from Single-Cell genome data 486 
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(Yoon et al., 2011; Krabberød et al., 2017). 487 

 488 

Conclusion 489 

In this paper, we presented EnDED, an analysis tool to reduce the number of environmentally 490 

induced indirect edges in inferred microbial networks. Applying EnDED on simulated 491 

networks indicated that false associations, driven by environmental variables instead of true 492 

interactions, were ubiquitous. However, EnDED’s intersection combination classified a 493 

minority of associations as environmentally-driven in a real (BBMO) network. Depending 494 

on the single method used, we classified a moderate to high number of associations as 495 

environmentally-driven in the same network. Nevertheless, associations driven by 496 

environmental factors must be determined and quantified to generate more accurate insights 497 

regarding true microbial interactions. EnDED provides a step forward in this direction. 498 

 499 

Methods 500 

Simulated dataset: time series based on an adjusted generalized Lotka-Volterra model 501 

To evaluate the performance of EnDED, we simulated a time series using an adjusted version 502 

of the standard generalized Lotka-Volterra model, gLV (Berry & Widder, 2014; Bashan et 503 

al., 2016). The gLV can describe the dynamics of microbial communities, by including a first 504 

order approach of the microbial interactions. The model’s simplicity arises from the 505 

assumption of linear interactions, which facilitates implementation and allows fast numerical 506 

simulations. The gLV has, however, several limitations (Gonze et al., 2018). For example, 507 

gLV neglects higher-order interactions and the additivity of interaction strengths is a 508 

weakness because they may be combined in different ways. Also, interactions are often 509 

assumed to be constant parameters, but a reducing level of a nutrient may weaken cross-510 

feeding relationships. Moreover, gLV omits the influence of environmental factors, which, 511 

for example, can induce oscillations in natural communities (Benincà et al., 2011). Using a 512 

model that accounts for nutrients (Kettle et al., 2018) is more realistic but also more complex. 513 

More elaborate mechanistic models of microbial dynamics than gLV solve explicitly the 514 

global cycling of nutrients and are coupled to the oceanic circulation (see (Vallina et al., 515 

2019) for a review), but the added complexity can hamper understanding about the ecological 516 

interactions among microorganisms when compared to a simpler gLV approach. Thus, we 517 
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chose to use a simpler extension of the gLV to account for the influence of environmental 518 

factors (Stein et al., 2013; Dam et al., 2016). In order to allow the growth rates to vary when 519 

the environmental variables change, environmental variables can be incorporated directly 520 

into the gLV (Dam et al., 2016; Röttjers & Faust, 2018). We simulated a time series using 521 

the Klemm-Eguíluz algorithm (Klemm & Eguíluz, 2002), and an adjusted gLV. We adjusted 522 

the model by defining microbial growth rates as a function dependent on one seasonal abiotic 523 

environmental factor, and added an abiotic environmental factor in the interaction matrix. 524 

We then used the time series generated by the gLV to obtain temporal microbial abundance 525 

data. With this simulated data, we inferred a network that contained environmentally-driven 526 

associations, needed to evaluate the performance of EnDED. We repeated this procedure 527 

1000 times to obtain a large set of simulated networks, and then used the determined 528 

abundance tables and Poisson distribution to obtain another 1000 simulated networks 529 

including noise. The addition of noise was done by randomly drawing an abundance from 530 

the Poisson distribution with λ equaling the original abundance of a specific microorganisms 531 

to a specific time. 532 

 533 

Adjusting the gLV 534 

To evaluate EnDED, we simulated a time series of microbial abundances with a gLV 535 

including true pairwise interactions between 50 microorganisms and adjusted it by 536 

incorporating two environmental factors: 537 𝑑𝑦(𝑡)𝑑𝑡 = 𝑦(𝑡)[𝑏 + 𝐴𝑦(𝑡)] , Eq. (2) 

where 𝑡 is time, 𝑑𝑦(𝑡)/𝑑𝑡 is the rate of change of microbial abundances as a column vector, 538 𝑦(𝑡) is the vector of microbial abundance at time 𝑡, b is the growth rate vector determined 539 

through microorganism’s specific growth rate functions that depend on an environmental 540 

factor (see equation (4)), and 𝐴 is the interaction matrix. 541 

 542 

Interaction matrix 543 

In the interaction matrix 𝐴, each coefficient 𝑎𝑗𝑖 provides the linear effect that a change in the 544 

abundance of microorganism 𝑖 has on the growth of microorganism 𝑗 (Novak et al., 2016). 545 

We simulated the interaction coefficients 𝑎𝑗𝑖 with the Klemm-Eguíluz algorithm (Klemm & 546 
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Eguíluz, 2002), which generates a modular and scale-free matrix. We also set the interaction 547 

probability to 0.01, the percentage of positive coefficients to 30%, and diagonal coefficients 548 

to zero. Negative diagonal coefficients 𝑎𝑖𝑖 (i.e., the interaction of a microorganism with itself) 549 

can represent intra-specific competition and provides the carrying capacity for each 550 

microorganism, preventing its explosive growth (Haydon, 1994). We set the diagonal 551 

coefficients 𝑎𝑖𝑖 = −0.5 to avoid excessive microbial abundances in the simulations. 552 

 553 

Two abiotic environmental factors 554 

We adjusted the gLV by including two environmental factors. For simplicity, we assume no 555 

feedback between the microorganisms and the environmental factors. That is, the 556 

environmental factors affect the growth of the microorganisms but not vice-versa. The first 557 

environmental factor affects the specific growth rate of each microorganism by interacting 558 

with two of their traits: optimal environmental value for growth and tolerance range of 559 

environmental values. We simulated the environmental factor using a periodic sinusoidal 560 

function (see equation (3)), rounded to 3 digits: 561 𝜖(𝑡) ≜ 𝑟𝑜𝑢𝑛𝑑(sin(𝜔 ∙ 𝑡) , digits = 3) , Eq. (3) 

where 𝑡 is the time axis (months), 𝜔 = (−2𝜋/𝑇) is the signal frequency (radians) and 𝑇 =562 12 is the signal periodicity (months); resulting in a signal phase shift of 𝑇/4 (months). While 563 

the first environmental factor is considered to be “external” to the microbial community, the 564 

second environmental factor is considered to be “internal”, and therefore it is included in the 565 

interaction matrix. The interaction coefficients between the microorganisms and the second 566 

environmental factor were generated by splitting the microorganisms into two groups: the 567 

second abiotic environmental factor influenced positively one half and negatively the other 568 

half of the microorganisms. We obtained the interaction coefficients from two uniform 569 

distributions defined to range between [-0.8, -0.2] and [0.2, 0.8] respectively. As the 570 

microorganisms did not influence the abiotic factor, the corresponding interaction 571 

coefficients were set to zero. 572 

 573 

Species growth rate 574 

The external seasonal abiotic environmental variable affects the growth rate, 𝑔, of each 575 

microorganism. This dependency is given by: 576 
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𝑔(𝑡) ≜ 𝑔𝑚𝑎𝑥2 exp (− 12 (𝜖𝑜𝑝𝑡 − 𝜖(𝑡))2𝜎2 ) , Eq. (4) 

where 𝐸(𝑡) is the environmental parameter that affects the microorganisms growth rate 𝑔(𝑡) 577 

at time 𝑡, 𝑔𝑚𝑎𝑥  is the microorganism’ specific maximum growth rate that determines the 578 

amplitude of the growth-rate curve, 𝜖𝑜𝑝𝑡  is the microorganism’ specific optimal 579 

environmental value that determines the peak of the growth-rate curve, and 𝜎 is the 580 

microorganism’ specific ecological tolerance (niche width) determining the environmental 581 

range in which the microorganism grows, which determines the length (niche spread) of the 582 

growth-rate curve. We obtained the two constant parameters 𝑔𝑚𝑎𝑥 , and 𝜎 for each 583 

microorganism from a uniform distribution ranging between 0.3 and 1 to assure positive 584 

values. The values 𝜖𝑜𝑝𝑡  were drawn from a uniform distribution ranging between the minimal 585 

and maximal value of the seasonal environmental factor. We defined the internal abiotic 586 

environmental factor, which is included in the interaction matrix, through the same function 587 

with 𝑔𝑚𝑎𝑥 = 0.8, 𝜖𝑜𝑝𝑡 = 0.5, and 𝜎 = 0.5. Since the growth rates depend on the 588 

environmental factor, they vary seasonally. Different microorganisms will grow better or 589 

worse at different times of the year following their environmental niches. This will lead to 590 

an asynchrony of their growth rate responses to the environment that will translate into an 591 

asynchrony of their abundances in time. 592 

 593 

Initial abundances 594 

To obtain the microbial abundances in time with the adjusted gLV, we simulated the initial 595 

microbial abundances with a stick-breaking process such that abundances add up to 1, using 596 

the function bstick (Jackson, 1993; Legendre & Legendre, 2012), and the package vegan 597 

(Oksanen et al., 2019). We generated uneven initial microbial abundances without 598 

introducing zeros and set the initial value for the internal abiotic environmental factor 599 

included in the interaction matrix to 0.001. 600 

 601 

Species abundances in time 602 

Once we have set the initial conditions, we simulated microbial abundances over time by 603 

solving the equations given in the adjusted gLV (see equation (2)). Start time was 0, end time 604 
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49.5, and sample resolution 0.5 resulting in 100 samples. We used the solver function lsoda 605 

(Soetaert et al., 2010). The simulated abundances in time were used to construct an 606 

association network, which is referred to as the simulated network. 607 

 608 

Real dataset: Blanes Bay Microbial Observatory (BBMO) time series 609 

Microbial abundances 610 

Surface water (≈ 1m depth) was sampled monthly from January 2004 to December 2013, at 611 

the BBMO in the North-Western Mediterranean Sea (41◦40′N 2◦48′E) (Gasol et al., 2016). 612 

About 6L of seawater were filtered and separated into picoplankton (0.2-3 µm) and 613 

nanoplankton (3-20 µm), as described in (Giner et al., 2019). The DNA was extracted using 614 

a phenol-chloroform standard method (Schauer et al., 2003), which has been modified by 615 

using Amicon units (Millipore) for purification. 616 

Next, community DNA was extracted, and the 18S ribosomal RNA-gene (V4 region) 617 

was amplified in (Giner et al., 2019) using the primer pair TAReukFWD1 and TAReukREV3 618 

(Stoeck et al., 2010). The 16S ribosomal RNA-gene (V4 region) was also amplified from the 619 

same DNA extracts using the primers Bakt 341F (Herlemann et al., 2011) and 806R (Apprill 620 

et al., 2015). Amplicons were sequenced in a MiSeq platform (2x250bp) at the sequencing 621 

service RTL Genomics in Lubbock, Texas. Read quality control, trimming, and inference of 622 

Operational Taxonomic Units (OTUs) as Amplicon Sequence Variants (ASV) was made 623 

with DADA2 v1.10.1 (Callahan et al., 2016) with the maximum number of expected errors 624 

(MaxEE), set to 2 and 4 for the forward and reverse reads, respectively. 625 

ASV sequence abundance tables were obtained for both microbial eukaryotes and 626 

prokaryotes. We subsampled both tables to the lowest sequencing depth of 4907 reads, with 627 

the rrarefy function from the Vegan package in R (Oksanen et al., 2019) , v2.4-2. We 628 

excluded 29 nanoplankton samples (March 2004, February 2005, and May 2010 to July 2012) 629 

featuring suboptimal amplicon sequencing. In these, we estimated microbial abundances 630 

using seasonally aware missing value imputation by weighted moving average for time series 631 

as implemented in the R package imputeTS (Moritz & Gatscha, 2017), v2.8. 632 

Dislodging cells or particles and filter clogging can bias the collection of DNA in 633 

either small or large organismal size fractions. To reduce the bias, we divided the sequence 634 

abundance sum of the nanoplankton by the picoplankton for each ASV appearing in both size 635 
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4 

fractions and set the picoplankton abundances to zero if the ratio exceeded 2. Likewise, we 636 

set the nanoplankton abundances to zero if the ratio was below 0.5. 637 

 638 

Taxonomic classification 639 

The taxonomic classification of each ASV was inferred with the naïve Bayesian classifier 640 

method (Wang et al., 2007) together with the SILVA version 132 (Quast et al., 2012) 641 

database as implemented in DADA2 (Callahan et al., 2016). In addition, eukaryotic 642 

microorganisms were BLASTed (Altschul et al., 1990) against the Protist Ribosomal 643 

Reference database [PR2, version 4.10.0; (Guillou et al., 2012)]. If the taxonomic assignment 644 

for eukaryotes disagreed between SILVA and PR2, we used the PR2 classification. We 645 

removed microorganisms identified as either Metazoa, or Streptophyta, plastids and 646 

mitochondria. In addition, we removed Archaeas since the 341F primer is not optimal for 647 

recovering this domain (McNichol et al., 2021). The resulting microbial sequence abundance 648 

table contained microbial eukaryotic and bacterial ASVs. Rare ASVs were removed, i.e., we 649 

kept only ASVs present in more than 15% of the samples and with a sequence abundance 650 

sum above 100. 651 

 652 

Environmental factors 653 

We measured environmental factors that may affect the ecosystem’s dynamics. We 654 

considered a total of ten contextual abiotic and biotic variables: day length (hours of light), 655 

temperature (C◦), turbidity (Secchi depth m), salinity, total cholorophyll (µg/l), and inorganic 656 

nutrients— PO4
3- (µM), NH4

+ (µM), NO2
- (µM), NO3

- (µM), and SiO2 (µM) (Giner et al., 657 

2019). Water temperature and salinity were sampled in situ with a CTD (Conductivity, 658 

Temperature, and Depth) measuring device. Inorganic nutrients were measured with an 659 

Alliance Evolution II autoanalyzer (Grasshoff et al., 2009). See (Gasol et al., 2016) for 660 

specific details on how other variables were measured. 661 

 662 

Network construction 663 

We constructed association networks from the simulated and the real microbial abundance 664 

tables and environmental parameters using eLSA (Xia et al., 2011, 2013). We included 665 

default normalization and a z-score transformation using median and median absolute 666 
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deviation. We estimated the 𝑝-value with a mixed approach that performs a random 667 

permutation test if the theoretical 𝑝-values for the comparison are below 0.05; the number of 668 

iterations was 2000. Although we are aware of time-delayed interactions and that eLSA (Xia 669 

et al., 2011, 2013) could account for them, we considered our sampling interval as too large 670 

(1 month) for inferring time-delayed associations with a solid ecological basis. Thus, in our 671 

study, we focused on contemporary interactions between co-occurring microbes. For the 672 

BBMO dataset, the Bonferroni false discovery rate, 𝑞, was calculated for all edges from the 673 𝑝-values using the R function p.adjust (R Core Team, 2019). Lastly, we used a significance 674 

threshold for the 𝑝 and 𝑞 value of 0.001 as suggested in other works (Weiss et al., 2016). 675 

 676 

Intersection combination of EnDED—Environmentally-Driven Edge Detection 677 

methods 678 

EnDED includes four methods: SP, OL, II, DPI (described below) and their intersection 679 

combination (an ensemble approach of the four methods). We applied these methods to find 680 

environmentally-driven associations of microorganisms that were within an environmental 681 

triplet, as in (Lima-Mendez et al., 2015). An environmental triplet is a special case of a closed 682 

triplet where one of the nodes corresponds to an environmental factor and the other two nodes 683 

correspond to microorganisms. We define the closed triplet, where there is an edge between 684 

each pair of three nodes, as 𝑇 =  {𝑣, 𝑤, 𝑓} where 𝑣 and 𝑤 are two microorganisms, and 𝑓 is 685 

an environmental component (see Figure 3).  686 

For the intersection combination, all four individual methods must converge to the 687 

same solution, i.e., if all methods classify the microbial edge as environmentally-driven, the 688 

edge is removed from the network. If a microbial association is within several environmental 689 

triplets, at least one of them must indicate the association as environmentally-driven. In sum, 690 

the intersection combination retains an association in the network if no triplet classifies the 691 

association as environmentally-driven. 692 

 693 

Sign Pattern 694 

The SP method (Lima-Mendez et al., 2015) filters environmentally-driven edges from a 695 

network in which a positive association score indicates co-occurrence, and a negative 696 

association score indicates mutual exclusion. Let 𝑠𝑣𝑤 be the sign of the association score of 697 
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the association between 𝑣 and 𝑤 (i.e., 𝑠𝑣𝑤 = + or 𝑠𝑣𝑤 = −). A closed triplet 𝑇 has eight SP 698 

combinations that group into two sets (see Figure 3). If the product of the three association 699 

scores is positive, then the SP suggests that the edge between the two microorganisms is 700 

environmentally-driven. Otherwise, if the product of the three association scores is negative, 701 

SP does not suggest that the association is environmentally-driven. 702 

 703 

Overlap 704 

We have developed the OL method to support the SP for temporal data: a microbial edge 705 

should be disregarded as environmentally-driven when the associations are misaligned in 706 

time. Thus, OL requires the time when the association begins as well as how long the 707 

associations lasts, i.e., duration or length of association in time, both determined by the 708 

network construction tool eLSA (Xia et al., 2011, 2013). Given an association between 𝑣 and 709 𝑤, let 𝑏𝑣𝑤𝑣  be the beginning of the association for 𝑣, 𝑏𝑣𝑤𝑤  the beginning of the association for 710 𝑤, and 𝑑𝑣𝑤 be the duration of the association between 𝑣 and 𝑤. Although not used in the 711 

BBMO network, OL can consider time-delays by assuming that the beginning of the 712 

association is the minimum of the two beginnings, 𝑏𝑣𝑤 = min (𝑏𝑣𝑤𝑣 , 𝑏𝑣𝑤𝑤 ), and the end of the 713 

association is the maximum, 𝑒𝑣𝑤 = max (𝑏𝑣𝑤𝑣 + 𝑑𝑣𝑤 , 𝑏𝑣𝑤𝑤 + 𝑑𝑣𝑤). We indicate two 714 

microorganisms with 𝑣 and 𝑤, and the factor by 𝑓 . The OL method calculates the overlap O 715 

of the microbial association with the two microorganism-environment associations through 716 

equation (5). As depicted in Figure 3, if 𝑂>60%, the microbial association is considered 717 

environmentally-driven. 718 𝑂 = 100 𝑚𝑖𝑛(𝑒𝑣𝑤 , 𝑒𝑣𝑓, 𝑒𝑤𝑓) − max (𝑏𝑣𝑤 , 𝑏𝑣𝑓 , 𝑏𝑤𝑓)𝑒𝑣𝑤 − 𝑏𝑣𝑤  
Eq. (5) 

Mutual Information and Conditional Mutual Information 719 

The method II employs two measurements: MI and CMI. The former is also used by DPI. 720 

Thus, before describing the methods, we first describe the two measurements. MI is a 721 

measure of the degree of statistical dependency between two variables (Margolin et al., 722 

2006). We first consider 𝒗 =  𝑣1, . . . , 𝑣𝑛 , 𝒘 =  𝑤1, . . . , 𝑤𝑛, and 𝒇 =  𝑓1, . . . , 𝑓𝑛 as discrete 723 

random variables. The marginal probability of each discrete state (value) of the variable is 724 

denoted by 𝑝(𝑣𝑖)  =  𝑃 (𝒗 =  𝑣𝑖), the joint probability by 𝑝(𝑣𝑖 , 𝑤𝑗), and 𝑝(𝑣𝑖 , 𝑤𝑗 , 𝑓𝑘), and 725 

the conditional probability by 𝑝(𝑣𝑖|𝑓𝑘), and 𝑝(𝑣𝑖 , 𝑤𝑗|𝑓𝑘). To obtain MI, we calculate the 726 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.13.452182doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.13.452182
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

25 

entropy of 𝒗 as 727 

𝑆(𝒗) = − ∑ 𝑝(𝑣𝑖) log(𝑝(𝑣𝑖)) ,𝑛
𝑖=1  

Eq. (6) 

and the joint entropy of 𝒗 and 𝒘 as 728 

𝑆(𝒗, 𝒘) = − ∑ 𝑝(𝑣𝑖 , 𝑤𝑗) log (𝑝(𝑣𝑖 , 𝑤𝑗)) ,𝑛
𝑖=1,𝑗=1  

Eq. (7) 

using the natural logarithm. The MI of 𝒗 and 𝒘 is defined through the sum of their entropies 729 

subtracted by their joint entropy: 730 MI(𝒗; 𝒘) = 𝑆(𝒗) + 𝑆(𝒘) − 𝑆(𝒗, 𝒘) 

 

Eq. (8) 

                                         = ∑ ∑ 𝑝(𝑣𝑖 , 𝑤𝑗) log ( 𝑝(𝑣𝑖 , 𝑤𝑖)𝑝(𝑣𝑖)𝑝(𝑤𝑗)) ,𝑛
𝑗=1

𝑛
𝑖=1  

Eq. (9) 

with marginal probabilities 𝑝(𝑣𝑖)  =  ∑ 𝑝(𝑣𝑖 , 𝑤𝑗)𝑛𝑗=1 , and 𝑝(𝑤𝑗)  =  ∑ 𝑝(𝑣𝑖 , 𝑤𝑗)𝑛𝑖=1 . 731 

The measurement CMI is the expected value of the MI of two random variables given 732 

a third random variable. It is defined as 733 CMI(𝒗; 𝒘|𝒇) = 𝑆(𝒗, 𝒇) + 𝑆(𝒘, 𝒇) − 𝑆(𝒗, 𝒘, 𝒇) − 𝑆(𝒇)             
 

Eq. (10) 

                                         = ∑ 𝑝(𝑓𝑘)𝑛
𝑘=1 ∑ ∑ 𝑝(𝑣𝑖 , 𝑤𝑗|𝑓𝑘) log ( 𝑝(𝑣𝑖 , 𝑤𝑖|𝑓𝑘)𝑝(𝑣𝑖|𝑓𝑘)𝑝(𝑤𝑗|𝑓𝑘))𝑛

𝑗=1
𝑛

𝑖=1  

Eq. (11) 

                              = ∑ ∑ ∑ 𝑝(𝑣𝑖 , 𝑤𝑗 , 𝑓𝑘) log (𝑝(𝑓𝑘)𝑝(𝑣𝑖 , 𝑤𝑖 , 𝑓𝑘)𝑝(𝑣𝑖 , 𝑓𝑘)𝑝(𝑤𝑗 , 𝑓𝑘))𝑛
𝑗=1

𝑛
𝑖=1

𝑛
𝑘=1  .  

 734 

Interaction Information 735 

The II is calculated with microbial abundance and environmental data. In this study, as in 736 

(Lima-Mendez et al., 2015), II is computed as the difference of the CMI and MI: 737 II = CMI − MI. Eq. (12) 

In other works (Ghassami & Kiyavash, 2017), the II is defined with a different sign 738 

convention: II = MI − CMI. In our study, if II is positive, the method suggests that the 739 

microbial association is not environmentally-driven. If II is negative, there is an 740 
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environmentally-driven association within the closed triplet. However, this method cannot 741 

detect which of the three associations is indirect. In other works (Lima-Mendez et al., 2015), 742 

the microbial association is assumed to be environmentally-driven if II is negative, but here 743 

we suggest to combine it with DPI (see below). 744 

 745 

Significance of Interaction Information 746 

We determined the significance of II following a strategy from (North et al., 2002; Veech, 747 

2012). We used a parameter-free permutation test and computed the 𝑝-value by randomizing 748 

the environmental vector 𝒇. Since the MI is independent of the environmental factor and 749 

therefore remains constant, the significance of the II is the same as the CMI. Thus, we 750 

determined the significance of CMI with 1000 permutations: we randomized the 751 

environmental vector 𝒇 and recalculated the CMI 1000 times, obtaining a CMI𝑖 with 𝑖 ∈752 {1, . . . , 1000}. Afterwards, we quantified with 𝑐 how many random CMI𝑖 were at least as 753 

small as the original CMI𝑖: 𝑐 = |𝑖: CMI𝑖 ≤ CMI𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 , 𝑖 ∈ {1, . . . ,1000}|. We calculated the 754 𝑝-value as 755 𝑝 = 𝑐 + 11000 + 1  . Eq. (13) 

 756 

Data Processing Inequality 757 

As mentioned above, the II method can detect if an indirect association exists within a triplet 758 

but cannot determine which of the three associations is indirect. Thus, we added DPI to 759 

EnDED. DPI states that if two components 𝑣 and 𝑤 interact only through a third component 760 𝑓 (i.e., in a network 𝑣 and 𝑤 are connected through a path containing 𝑓 and there is no 761 

alternative path between 𝑣 and 𝑤), then the MI of 𝑣 and 𝑤, MI(𝒗;  𝒘) is smaller than 762 

MI(𝒗;  𝒇) and MI(𝒘;  𝒇) (Cover & Thomas, 2001): 763 MI(𝒗; 𝒘) ≤ min {MI(𝒗; 𝒇), MI(𝒘; 𝒇)} . Eq. (14) 

While DPI has been used in previous works on gene triplets (Margolin et al., 2006), we used 764 

the DPI method for environmental triplets. We compared the MI between the two 765 

microorganisms with the MI between a microorganism and the environmental factor. If the 766 

MI between the microorganisms is the smallest, then the method suggests that the edge is 767 

environmentally-driven. This method complements the II method. 768 
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 769 

Equal Width Discretization 770 

To compute the MI, CMI, and subsequently II, we discretized the abundance data and 771 

environmental parameters. EnDED uses the equal width discretization algorithm, which 772 

creates equal sized ranges (also called bins or buckets) for an abundance vector 𝒗 =773 (𝑣1, . . . , 𝑣𝑛) between the lowest value (𝑣𝑚𝑖𝑛) and highest value (𝑣𝑚𝑎𝑥). It is a procedure 774 

implemented in other works (Meyer et al., 2008). Given vector 𝒗 of length 𝑛 (that is the 775 

sample size) and number of bins |𝐵| = ⌊√𝑛⌋, the discretized value 𝑣𝑑 of variable 𝑣 in vector 776 𝒗 is: 777 𝑣𝑑 = ⌈(𝑣 − 𝑣𝑚𝑖𝑛) ∙ |𝐵|𝑣𝑚𝑎𝑥 ⌉ . Eq. (15) 

This equation assumes positive values. However, if 𝒗 contains negative values, 𝑣𝑚𝑖𝑛 < 0, 778 

we adjust equation (15) by substituting 𝑣𝑚𝑎𝑥 for 𝑣𝑚𝑎𝑥′ = 𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛. This method does not 779 

fill in missing values, and it is limited by the presence of outliers as most values would go 780 

within the same bin. We can solve this problem with a different discretization method (where 781 

bins have the same number of elements) but we have not implemented it in the current version 782 

of EnDED. 783 

 784 

Applying EnDED to networks constructed from simulated and real data 785 

We applied EnDED to association networks constructed from time series of simulated 786 

abundances and estimated microbial abundances from sequence data. The simulated 787 

networks were based on a gLV, while the real network was based on data from the BBMO. 788 

For the methods II and DPI we also included the corresponding abundance tables, and 789 

environmental factors. EnDED was run with the OL threshold of 60%. We set the 790 

significance threshold for the II score to 0.05 and used 1000 iterations. 791 

 792 

Evaluation of EnDED’s performance 793 

Simulated network 794 

We evaluated EnDED with the simulated interaction matrices, which revealed the number of 795 

true positives (TP), true negatives (TN), false negatives (FN), and false positives (FP) before 796 

and after removing associations that were classified as environmentally-driven. We assumed 797 
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that associations not present in the interaction matrices, are environmentally-driven. We 798 

consider P as the number of all false associations, both true positive and false negative 799 

detected environmentally-driven edges: P = TP + FN, and N as the number of all true 800 

interactions, i.e., all true negative and false positive detected environmentally-driven edges: 801 N = TN + FP. Then, we calculated the true positive rate (sensitivity), by dividing the number 802 

of true positives by the number of all real positives: TPR = (TP)/(P). Equivalently, we can 803 

also calculate the true negative rate (specificity) by dividing the number of true negatives by 804 

the number of all real negatives, TNR = (TN)/(N). The false positive rate (fall out) is the 805 

complementary to TNR, i.e. FPR = 1 − TNR. The positive predictive value (precision) can 806 

be calculated by dividing the number of true positives by the sum of all predicted positives, 807 PPV = (TP)/(TP + FP). The accuracy is calculated by dividing the sum of true positives 808 

and true negatives by the sum of all real positives and real negatives, ACC = (TP +809 TN)/(P + N). 810 

 811 

Real Dataset 812 

Literature based database 813 

The real network evaluation is limited since the true interactions and the microorganisms that 814 

do not interact with each other are poorly known. We assessed true interactions known in the 815 

literature based on the genus, which are compiled within the Protist Interaction Database, 816 

PIDA (Bjorbækmo et al., 2019). On October 15th 2019, PIDA contained 2448 interactions. 817 

Although our dataset contains protists as well as bacteria, we were unable to evaluate 818 

interactions between bacteria through PIDA. 819 

 820 

Jaccard index 821 

In ecology, the Jaccard index (Jaccard similarity coefficient) is normally used for 822 

communities. Here, for each pair of microorganisms in the BBMO network, we computed 823 

the Jaccard index as the number of samples in which both microorganisms occur, divided by 824 

the number of samples in which at least one of the two microorganisms are present. 825 
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Figures 1182 

Figure 1: Evaluation of EnDED: intersection combination and individual methods on simulated networks. Using 1183 
1000 simulated networks, and 1000 simulated networks incorporating noise, we evaluated EnDED’s performance. Plot A) 1184 
displays the evaluation measurements true positive rate (TRP), true negative rate (TNR), accuracy (ACC), and positive 1185 
predictive value (PPV) for each individual method, i.e., Sign Pattern (SP), Overlap (OL), Interaction Information (II), and 1186 
Data Processing Inequality (DPI), as well as the intersection combination (Combi). SP and OL perform best according to 1187 
TRP and ACC, while the intersection combination performs best according to TNR. All methods performed well according 1188 
to PPV. The intersection combination, DPI and II performed better on noisy data according to TNR because less edges 1189 
were removed along with less true interactions. Plot B) displays the ROC curve for each environmentally-driven edge 1190 
detection method as well as their intersection combination. 1191 
 1192 
Figure 2: Quantification of environmentally-driven associations in the BBMO network. For A) the first column shows 1193 
the number and fraction of microbial associations divided by domain: Bacteria-Bacteria associations (B), Bacteria-Eukaryote 1194 
associations (BE), and Eukaryote-Eukaryote associations (E). The second column shows the number and fraction of 1195 
associations divided by size-fractions: association within the nano size fraction (n), within the pico size fraction (p), and 1196 
between these two size fractions (np). The third column shows all microbial edges connected to an environmental 1197 
parameter: Temperature (Tem), Day length (Day), Chlorophyll (Chl), inorganic nutrients NO3- (NO3), SiO2 (Si), and NO2- 1198 
(NO2). The last column shows the number and fraction of edges divided in how many triplets they have been found ranging 1199 
from no triplets (0) to six triplets. The first two rows display the number and fraction of microbial associations of the BBMO 1200 
network before applying EnDED. Positive associations are indicated with black, negative associations with red. The last 1201 
two rows indicate in blue the fraction of environmentally-driven edges among the positive (third row) and negative (fourth 1202 
row) microbial associations. B) The left network shows in black the positive and in red the negative associations. The right 1203 
network shows the number of triplets a microbial edge is in ranging from one (green) to six (orange), and no triplet (black). 1204 
The middle network shows in blue the environmentally-driven associations that were detected by the intersection 1205 
combination of the four methods Sign Pattern, Overlap, Interaction Information, and Data Processing Inequality. 1206 
 1207 
Figure 3: EnDED Methods Overview. EnDED is an implementation of four methods aiming to determine whether an edge 1208 
between two microorganisms is indirect through the action of an environmental factor. The four methods are: Sign Pattern, 1209 
Overlap, Interaction Information, and Data Processing Inequality (see Methods). Each method can be used individually or 1210 
in combination. Here, we show the intersection combination approach, i.e., only if all methods classify an edge as indirect, 1211 
it is removed from the network. Otherwise, the edge is classified as not indirect and kept in the network.  1212 
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Tables 1213 

Table 1: Jaccard index of edges. The BBMO network before applying EnDED contained 29820 edges of which 2488 1214 
(8.3%) were environmentally-driven (indirect). Considering the Jaccard index for these indirect edges, 688 (27.7% of indirect 1215 
edges) score above 50%, and 1800 (72.3%) score below or equal to 50%. In contrast, 61.1% of edges not considered as 1216 
indirect have a Jaccard index above 50%, and 38.9% of all not indirect edges have a Jaccard index equal or below 50%. 1217 
 1218 

 1219 

Table 2: Interactions found in the BBMO network that have been reported in the literature. The table mentions whether 1220 
or not the associations were removed or kept by EnDED via the combination interaction approach. For example, the 1221 
association between the ASVs classified as Dia. Thalassiosira and ASVs classified as F. unknown Flavobacteriia has been 1222 
found 17 times in the network: 4 were removed and 13 were kept. 1223 
 1224 

  1225 

 All edges Jaccard index>50 Jaccard index≤50 

BBMO network 29 820 (100%) 17 383 (58.3%) 12 437 (41.7%) 

positive edges 24 458 (82.0%) 17 212 (70.4%) 7 246 (29.6%) 
negative edges 5 362 (18.0%) 171 (3.2%) 5 191 (96.8%) 

indirect (intersection) 2 488 (8.3%) 688 (27.7%) 1 800 (72.3%) 
positive + indirect (intersection) 934 (3.1%) 670 (71.7%) 264 (28.3%) 
negative + indirect (intersection) 1 554 (5.2%) 18 (1.2%) 1 536 (98.8%) 

not indirect (all) 27 332 (91.7%) 16 695 (61.1%) 10 637 (38.9%) 
not indirect (min 1 triplet) 22 742 (76.3%) 14 242 (62.6%) 8 500 (37.4%) 
not indirect (no triplet) 4 590 (15.4%) 2 453 (53.4%) 2 137 (46.6%) 

Sign Pattern 25 230 (84.6%) 14 930 (59.2%) 10 300 (40.8%) 
Overlap 25 230 (84.6%) 14 930 (59.2%) 10 300 (40.8%) 
Interaction Information 7 672 (25.7%) 4 962 (64.7%) 2 710 (35.3%) 
Data Processing Inequality 7 394 (24.8%) 1 862 (25.2%) 5 532 (74.8%) 

Microorganisms EnDED ID in PIDA 

Included in 1, 2, 3, or 4 triplets   
Dia. Thalassiosira - Dino. Heterocapsa 1 removed 1665 
Dia. Thalassiosira - F. unknown Flavobacteriia 4 removed 2199 
 13 kept  

Not included in a triplet   
Dino. Heterocapsa - Dino. Prorocentrum 1 kept 1501, 1511 
Dino. Gyrodinium - Dino. Heterocapsa 1 kept 1313, 1314, 1780, 1783 
Dino. Prorocentrum - Dino. Gymnodinium 2 kept 1499 
Dino. Prorocentrum - Dino. Prorocentrum 4 kept 1509, 1510 
Dino. Prorocentrum - Dino. Scrippsiella 2 kept 1513 
F. unknown Flavobacteriia - Dia. Pseudo-nitzschia 1 kept 2196 
Abbreviations indicate Dia - Diatomea; Dino - Dinoflagellata; C - Ciliophora; F - Flavobacteriia; ID in PIDA refers to the number PIDA gave to an interaction 
described in the literature. 
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Supplementary Material 1226 

Supplementary Table S1: Comparison between methods on correctly detecting false associations. We 1227 
computed the fraction (in percentage) of correctly detected false associations for each of the 1000 simulated 1228 
datasets. There are only few edges that are detected by only one approach (first four rows). The most prominent 1229 
groupings are highlighted in gray, e.g., SP, OL, and II agree on average on a third of edges. Combi refers to 1230 
intersection combination of all four methods, SP to Sign Pattern, OL to Overlap, II to Interaction Information, and 1231 
DPI to Data Processing Inequality. Less prominent groupings are aggregated with others. 1232 

Statistic Minimum 1st Quartile Median Mean 2nd Quartile Maximum 

SP 0 0 0.2 0.3 0.5 3.7 
OL 0 0 0.1 0.2 0.3 2.0 
II 0 0.7   1.3 1.4 2.0   6.0 

DPI 0 0.1 0.3 0.4 0.6 2.6 
SP and OL 4.9 12.2 14.9 15.0 17.5 30.0 

SP, OL, and II 19.1 29.5 32.6 32.8 36.2 49.6 
SP, OL, and DPI 2.6 7.1 8.9 9.1 10.8 22.1 

SP, OL, II, DPI, and Combi 22.4 32.1 35.6 35.5 38.6 48.6 
other 0.4 3.3 4.9 5.1 6.6 15.4 

 1233 
Supplementary Table S2: Performance of environmentally-driven edge detection methods on simulated networks. 1234 
These include 50 microorganisms and 1225 possible associations. Values display median (standard deviation) for simulated 1235 
networks and simulated networks incorporating noise. Combi refers to intersection combination of all four methods, SP to 1236 
Sign Pattern, OL to Overlap, II to Interaction Information, and DPI to Data Processing Inequality. The methods with highest 1237 
(TP, TN, TPR, TNR, PPV, ACC) or lowest (FP, FN, FPR) median, respectively, are highlighted in gray. 1238 
Method Combi SP OL II DPI 

without noise 
number of nodes 

 
50 (0.045) 

 
47 (6.6) 

 
48 (5.6) 

 
50 (0.94) 

 
50 (0.1) 

number of edges 737 (50) 140 (52) 144 (58) 354 (67) 601 (60) 
TP 332 (47) 893 (64) 888 (69) 696 (72) 459 (53) 
TN 45 (5.1) 8 (4.3) 9 (4.7) 24 (5.8) 37 (5.5) 
FP 15 (4.6) 51 (5.8) 51 (6.2) 36 (6.4) 23 (5.2) 
FN 692 (48) 131 (49) 136 (54) 330 (63) 564 (56) 
TPR 0.32 (0.04) 0.87 (0.05) 0.87 (0.05) 0.68 (0.06) 0.45 (0.05) 
TNR 0.75 (0.07) 0.14 (0.07) 0.15 (0.08) 0.4 (0.10) 0.62 (0.08) 
FPR 0.25 (0.07) 0.86 (0.07) 0.85 (0.08) 0.6 (0.10) 0.38 (0.08) 
PPV 0.96 (0.011) 0.95 (0.005) 0.95 (0.005) 0.95 (0.007) 0.95 (0.009) 
ACC 0.35 (0.04) 0.83 (0.04) 0.83 (0.048) 0.66 (0.057) 0.46 (0.046) 

with noise 
number of nodes 

 
50 (0.08) 

 
47 (5.6) 

 
48 (4.9) 

 
50 (0.47) 

 
50 (0.12) 

number of edges 828 (56) 144 (53) 149 (59) 428 (79) 717 (73) 
TP 219 (48) 864 (69) 860 (72) 605 (81) 324 (64) 
TN 49 (5) 9 (4.6) 9 (4.9) 29 (6.3) 42 (5.8) 
FP 10 (3.9) 50 (6.1) 50 (6.4) 30 (6.6) 17 (5.1) 
FN 779 (53) 137 (50) 139 (55) 398 (75) 674 (69) 
TPR 0.22 (0.05) 0.86 (0.05) 0.86 (0.06) 0.6 (0.08) 0.32 (0.06) 
TNR 0.84 (0.07) 0.15 (0.08) 0.16 (0.08) 0.49 (0.1) 0.72 (0.09) 
FPR 0.16 (0.07) 0.85 (0.08) 0.84 (0.08) 0.51 (0.1) 0.28 (0.09) 
PPV 0.96 (0.014) 0.95 (0.005) 0.95 (0.005) 0.95 (0.007) 0.95 (0.012) 
ACC 0.25 (0.04) 0.82 (0.05) 0.82 (0.05) 0.6 (0.07) 0.34 (0.06) 
SP - Sign Pattern; OL - Overlap; II - Interaction Information; DPI - Data Processing Inequality; Combi-intersection combination 
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Supplementary Table S3: Number of triplets a microbial edge is part of in the BBMO network. SP and OL not listed 1240 
below because they remove 100% of microbial associations that are within at least one triplet. The total number of edges 1241 
(all) is given along the number of positive (pos) and negative (neg) edges. Combi refers to intersection combination of all 1242 
four methods, II to Interaction Information, and DPI to Data Processing Inequality. 1243 
 1244 

Triplets all pos (%) neg (%) Combi (%) II (%) DPI (%) 

0 4 590 4 124 (89.8) 466 (10.2) NA NA NA 
1 16 193 13 369 (82.6) 2 824 (17.4) 1 276 (7.9) 3 851 (23.8) 4 560 (28.2) 
2 8 266 6 404 (77.5) 1 862 (22.5) 1 048 (12.7) 3 335 (40.3) 2 585 (31.3) 
3 667 484 (72.6) 183 (27.4) 140 (21.0) 388 (58.2) 222 (33.3) 
4 81 56 (69.1) 25 (30.9) 22 (27.2) 75 (92.6) 25 (30.9) 
5 22 20 (90.9) 2 (9.1) 2 (9.1) 22 (100) 2 (9.1) 
6 1 1 (100) NA NA 1 (100) NA 

 1245 
Supplementary Table S4: The BBMO network based on real data. The BBMO network contained bacteria (B) and 1246 
eukaryotes (E) from the picoplankton (p) and nanoplankton (n). This table summarizes the number and fraction of microbial 1247 
associations classified by EnDED as environmentally-driven. Combi refers to the intersection combination of all four 1248 
methods, II to Interaction Information, and DPI to Data Processing Inequality. Both methods, Sign Pattern and Overlap, are 1249 
not shown because both remove all microbial edges found in at least one triplet. For example (last row), 349 (14.9%) 1250 
associations between bacteria from the picoplankton with eukaryotes from the nanoplankton were classified by intersection 1251 
combination as environmentally-driven (indirect), II classified 30.6% and DPI 37.2% as environmentally-driven. 1252 
 1253 

Type edges positive negative triplets Combi II DPI 

nB 6 377 5 453 (85.5) 924 (14.5) 5 150 (80.8) 376 (5.9) 1 512 (23.7) 1 080 (16.9) 
n+pB 5 191 4 069 (78.4) 1 122 (21.6) 4 824 (92.9) 440 (8.5) 1 381 (26.6) 1 678 (32.3) 
pB 2 832 2 053 (72.5) 779 (27.5) 2 160 (76.3) 125 (4.4) 569 (20.1) 631 (22.3) 
nE 1 319 1 163 (88.2) 156 (11.8) 1 016 (77.0) 113 (8.6) 350 (26.5) 254 (19.3) 
n+pE 1 165 976 (83.8) 189 (16.2) 1 006 (86.4) 158 (13.6) 353 (30.3) 370 (31.8) 
pE 895 820 (91.6) 75 (8.4) 543 (60.7) 44 (4.9) 153 (17.1) 113 (12.6) 
nB+E 4 703 4 080 (86.8) 623 (13.2) 4 120 (87.6) 438 (9.3) 1 345 (28.6) 1 043 (22.2) 
pB+E 2 520 1 908 (75.7) 612 (24.3) 1 980 (78.6) 204 (8.1) 626 (24.8) 647 (25.7) 
nB+pE 2 483 2 100 (84.6) 383 (15.4) 2 222 (89.5) 241 (9.7) 668 (26.9) 709 (28.6) 
pB+nE 2 335 1 836 (78.6) 499 (21.4) 2 209 (94.6) 349 (14.9) 715 (30.6) 869 (37.2) 
B - Bacteria; E - Eukaryotes; n - nano fraction; p - pico fraction 
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Domain Sizefrac environmental factor number of triplets

A) Classification and quantification of edges in the BBMO network

nB 37.0% pB 22.4% nE 20.7% pE 19.9%754 nodes:

positive 82.0%

negative 18.0%

not e-d edges 91.7%

e-d edges 8.3%

number of triplets

0 1 62 3 4 5

29,820 edges:

B) Location of specific edges in the BBMO network

n - nanoB - BacteriaE - Eukaryota p - pico

positive edges

negative edges
e-d - (positive or negative) environmentally driven edges
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Interaction Information

II(v,w,f) = CMI(v;w|f) - MI(v;w)

Entropy

S(v) = 

Conditional Mutual Information

CMI(v;w|f) = S(v,f) + S(w,f) - S(v,w,f) - S(f)

Data Processing Inequality

MI(v;w) < MI(v;f) and 

MI(v;w) < MI(w;f)

MI(v;w) > MI(v;f) or

MI(v;w) > MI(w;f)

vs

Sign Pattern 

+++, +--, -+-, --+

---, -++, +-+, ++-

vs

Overlap in time

vs

Interaction Information

II(v,w,f) < 0

II(v,w,f) > 0

vs

microbe v

environment f

microbe w

+/- +/-

+/-

keep association remove association

Mutual Information

MI(v;w) = S(v) + S(w) - S(v,w).CC-BY-NC-ND 4.0 International licenseavailable under a
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