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Abstract A key challenge in climate science is to separate observed temperature changes into

components due to internal variability and responses to external forcing. Extended integrations of forced

and unforced climate models are often used for this purpose. Here we demonstrate a novel method to

separate modes of internal variability from global warming based on differences in time scale and

spatial pattern, without relying on climate models. We identify uncorrelated components of Pacific sea

surface temperature variability due to global warming, the Pacific Decadal Oscillation (PDO), and the

El Niño–Southern Oscillation (ENSO). Our results give statistical representations of PDO and ENSO that

are consistent with their being separate processes, operating on different time scales, but are otherwise

consistent with canonical definitions. We isolate the multidecadal variability of the PDO and find

that it is confined to midlatitudes; tropical sea surface temperatures and their teleconnections mix in

higher-frequency variability. This implies that midlatitude PDO anomalies are more persistent than

previously thought.

1. Introduction

Internal variability of Pacific sea surface temperatures (SSTs) and ocean heat content has been implicated in

the decadalmodulation of globalmean surface temperature, in particular during the global warming “hiatus”

between 1998 and 2013 (England et al., 2014; Kosaka & Xie, 2013; Meehl et al., 2011; Trenberth & Fasullo,

2013). However, long-term predictions of Pacific SSTs are limited by our understanding of the interactions

between El Niño–SouthernOscillation (ENSO) and the PacificDecadalOscillation (PDO) and the role bothplay

in the decadal modulation of global warming. ENSO and the PDO, as traditionally defined, have similar spatial

patterns despite differences in time scale (Mantua et al., 1997; Zhang et al., 1997), complicating diagnosis of

their mechanisms and interactions.

The PDO is the dominant mode of SST variability in the North Pacific, traditionally defined as the first princi-

pal component of Pacific SST north of 20∘N (Mantua et al., 1997). Its positive phase exhibits warm anomalies

that extend along the west coast of North America and into the tropical Pacific, concurrent with cold anoma-

lies extending from the coast of Japanwithin the Kuroshio-Oyashio extension. The PDO exhibits variability on

interannual tomultidecadal time scales and is characterizedby rapidphase shifts (Mantua et al., 1997;Minobe,

1997). It has been suggested that PDOmodulates the atmospheric response to El Niño (Gershunov & Barnett,

1998; McCabe & Dettinger, 1999; Wang et al., 2008), influencing the variability of precipitation in East Asia

and western North America. However, because PDO as traditionally defined is strongly correlated with ENSO,

some studies have suggested that it is primarily a high-latitude response to El Niño (Newman et al., 2003) or

an average over ENSO precursors and postcursors (Vimont, 2005). Climate models show a more limited con-

nection between PDO and tropical Pacific SSTs (Newman et al., 2016), instead emphasizing midlatitude gyre

dynamics (Latif & Barnett, 1994; Schneider et al., 2002; Zhang & Delworth, 2015). The emerging picture is that

PDO is not one process but many, with each process having distinct mechanisms and time scales (Newman

et al., 2003, 2016; Schneider et al., 2002). To study the links between PDO, ENSO, and global warming, it is

useful to define PDO in a way that does not mix it with other modes of climate variability.

More generally, studies of climate variability and change rely on reducing the dimensionality of spatially and

temporally varying fields. The dimension reduction often takes one of two approaches: reducing the tem-

poral complexity by linear trend analysis or reducing the spatial complexity by analyzing the time evolution
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of large-scale averages, such as a global average. The former presupposes a response that varies linearly

in time; the latter loses valuable information about the spatial structure of changes. Principal component anal-

ysis (PCA) takes advantage of the spatial structure of covariation in climate data to find a basis of Empirical

Orthogonal Functions (EOFs) that are ordered by the fraction of total variance they capture. The associated

principal components give the evolution of each EOF in time, such that PCA includes information about both

spatial and temporal variations. However, because PCAmaximizes the variance capturedby the first EOF, it can

group together multiple processes and suggest spurious connections that are not rooted in shared physical

mechanisms (Deser, 2000), as is apparent in themixture of global warming and ENSO found in the first EOF of

monthly Pacific SST anomalies (Figure S1 in the supporting information). Pairwise rotationof principal compo-

nents is effective at eliminatingmodemixing in some cases and has been used to define uncorrelated indices

of PDO, ENSO, andglobalwarming (Chen&Wallace, 2016; Chen et al., 2017). In thiswork, wepresent amethod

that transforms any number of principal components at once, based on minimization of their low-frequency

covariance, in order to eliminate mode mixing and isolate modes of low-frequency variability.

We identify modes of low-frequency variability by solving for linear combinations of EOFs that maximize

the ratio of low-frequency to total variance, using a method adapted from pattern recognition (Ripley, 1996;

Schneider & Held, 2001). We define low-frequency variance as the variance remaining after the pointwise

application of a Lanczos lowpass filter with a 10 year lowpass cutoff. By considering high-frequency as well as

low-frequency variance, thismethod takes advantage of the spatial structure of covariance in high-frequency

variability to optimally filter it out. Our method—low-frequency component analysis (LFCA)—identifies

low-frequency patterns (LFPs) and corresponding uncorrelated low-frequency components (LFCs) that are

ordered by their ratio of low-frequency to total variance, effectively sorting modes of variability based on

their dominant time scale (see Methods, Section 5). In this way, LFCA isolates modes of low-frequency vari-

ability without obscuring fast variability that may contribute to their evolution. We apply this method to

studymonthly Pacific SST anomalies between 45∘S and 70∘N over the period 1900–2016 using data from the

National Oceanic and Atmospheric Administration Extended Reconstructed Sea Surface Temperature data

set version 3b (Smith et al., 2008).

2. Disentangling Global Warming, PDO, and ENSO

Wefirst demonstrate LFCAon the simple casewhereonly three EOFs are included, before illustrating theutility

of retaining further EOFs in the next section. The first three EOFs of Pacific SST show a mixture of long-term

warming, PDO, and ENSO (Table S1 and Figure S1). LFCA finds a linear combination of these three EOFs that

eliminates their covariance on decadal time scales, helping to correct for this mode mixing. The resulting

three LFPs/LFCs show a clean separation of SST variability into components associated with long-term global

warming, PDO, and ENSO (Figure 1). Since only three EOFs are included, the third LFP/LFC shows the variability

that remains after the low-frequency variability is filtered out, illustrating that this method is filtering out

interannual ENSO variability.

The first LFP shows a nearly uniform warming pattern, corresponding to a 0.67∘C per century warming of

Pacific SSTs throughout the record (Figure 1a). Thewarming of tropical Pacific SSTs is notably uniform,without

a clear El-Niño-like or La-Niña-like warming trend. There is detailed temporal structure to the global tempera-

ture rise, with periods of reduced global warming between the mid-1940s and late 1980s and between 1998

and 2013. This analysis gives a clearer picture of the long-term increase in Pacific SSTs through the twentieth

century than could be obtained with linear trend analysis or regression against the basin-mean tempera-

ture change. In particular, the ratio r of low frequency (greater than 10 years) to total variance is 8% greater

than for a Pacific basin mean (Table S1), demonstrating that LFCA is a more effective temporal filter than a

large-scale average.

The second LFP represents the PDO (Figure 1b); its LFC is strongly correlated (94%) with the traditional def-

inition of PDO as the first principal component of North Pacific SST (Mantua et al., 1997), even though it is

obtained here from an analysis of SST anomalies over the full Pacific basin (45∘S to 70∘N). The associated SST

variability is strongest in the Northern Hemisphere midlatitudes and is weaker in the tropical Pacific and the

Southern Hemisphere. The third LFP represents ENSO, the dominant mode of SST variability left over after

global warming and PDO variability are removed (Figure 1c). It is highly correlated with traditional indices of

ENSO such as Niño3.4 (84% correlation), Niño3 (89% correlation), and the cold tongue index (Deser &Wallace,

1987) (86% correlation). The corresponding SST pattern is confined to the eastern equatorial Pacific to an even
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Figure 1. Low-frequency components (LFCs) of Pacific sea surface temperature anomalies. (a)–(c) Low-frequency

patterns (LFPs) and the corresponding LFCs, obtained from a linear transformation of the first three Empirical

Orthogonal Functions (EOFs) of Pacific sea surface temperature anomalies (45∘S–70∘N) that maximizes their ratio of

low-frequency (decadal) to total variance. They represent (a) global warming, (b) the Pacific Decadal Oscillation (PDO),

and (c) the El Niño–Southern Oscillation (ENSO). Throughout the rest of the text, LFCs 2 and 3 are referred to as the

PDO* and ENSO* indices, respectively.

greater extent than SST regressions on traditional ENSO indices. The PDO and ENSO indices obtained from

LFCA are uncorrelated by construction, in contrast to the 50% correlation between the traditional PDO index

(Mantua et al., 1997) and Niño3.4. Despite this construction, our indices are largely consistent with the canon-

ical definitions in terms of spatial pattern and time evolution, providing a new framework for understanding

the relationship between PDO and ENSO. We refer to these LFCA-based PDO and ENSO indices as PDO* and

ENSO* throughout the rest of the text.

The power spectra of PDO* and ENSO* aremarginallymore separated fromeachother than the power spectra

of the traditional PDOandNiño3.4 (Figure2a). PDO*has10%morepower atperiodsgreater than10years than

the traditional PDO. ENSO* hasmore power at periods of 3–4 years than Niño3.4, and less at periods between

8 and 30 years, suggesting that some of themultidecadal variability of ENSO has been filtered out and is actu-

ally associatedwith PDO.Whilemost of these power spectra differences are not statistically significant, due to

the short length of the record, these results suggest that the PDO* and ENSO* indices are as good as or bet-

ter than the traditional indices (i.e., they are more representative of the time scales typically associated with

PDO and ENSO). Time-lagged correlations between PDO* and ENSO* differ substantially from time-lagged

correlations between the traditional PDO index and Niño3.4, with a weaker correlation when ENSO leads and

a stronger correlation when PDO leads bymore than 1 year (Figure 2b). By removing the correlation between

PDO and ENSO and finding that the resulting PDO* and ENSO* indices are broadly consistent with canon-

ical definitions, LFCA suggests that the mechanistic connection between PDO and ENSO may be weaker
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Figure 2. Power spectra and lead-lag correlations. (a) A comparison of the power spectra of PDO* and ENSO* with the

power spectra of the traditional PDO index (Mantua et al., 1997) and the Niño3.4 index. Power spectra are computed

with multitaper spectral analysis. Time series have been normalized such that the area under the curve is the same for

all spectra. (b) Cross correlation between Niño3.4 and the traditional PDO index and between ENSO* and PDO-like

modes obtained from low-frequency component analysis (LFCA). In all cases, positive lag means that ENSO leads the

PDO. (c) Autocorrelation of PDO-like modes: The traditional PDO index, the PDO* index, and LFC 4 of Pacific sea surface

temperature anomalies with 30 Empirical Orthogonal Functions retained (shown in Figure 4d). PDO = Pacific Decadal

Oscillation; ENSO = El Niño–Southern Oscillation; LFC = low-frequency component.

than previously thought. Moreover, ENSO* exhibits a much weaker relationship than Niño3.4 with the atmo-

spheric circulation over theNorth Pacific, as characterized by the strength of the Aleutian low in the Twentieth

Century Reanalysis (Figure S2) (Compo et al., 2011). This factor of 3 reduction in the ENSO teleconnection to

theAleutian lowmayhelpbringobservational estimates in linewithmodel-based estimates (Sterl et al., 2007).

3. Isolating Multidecadal Variability

By increasing the number of EOFs retained in the analysis, we include variability at smaller spatial scales that

contains significant low-frequency power, further isolating patterns of multidecadal variability and filtering

out variability that acts at shorter time scales. The key difference between our method and that of Chen et al.

(2017) is that it allows for the case where small-scale processes captured by higher-order EOFs (such as the

dynamics of ocean frontal zones) are important for low-frequency variability.

The pattern of long-term warming (LFP 1) is nearly unchanged across a wide range of EOF truncations, sug-

gesting that we have converged on a good approximation of the true greenhouse gas forced temperature

response. As more EOFs are retained, high-frequency contributions to PDO* are filtered out of the most

PDO-like mode (determined based on its temporal correlation with PDO*), leading to an increase in its ratio

of low-frequency to total variance (Figure 3a) and a decrease in the fraction of the total variance associated

with this mode (Figure 3b). Note, however, that because the spatial patterns (LFPs) are not orthogonal, the

fraction of variance in the modes need not add to the total explained variance. The PDO-like mode main-

tains a high temporal correlationwith PDO* across a range of LFCA parameters (Figure 3c) and remains nearly

independent of ENSO* as long as the lowpass cutoff is greater than 6 years (Figure 3d).

With 30 EOFs retained, the most PDO-like mode (LFC 4, based on its temporal correlation with PDO*: 68%)

is contained within the midlatitude North Pacific (Figure 4d). It has more than four times the persistence of

the traditional PDO (assessed at an autocorrelation of 0.2, Figure 2c). It shows 0.4∘C warming per standard
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Figure 3. (a)–(d) Properties of the low-frequency component most correlated with the PDO* index across a range of

Empirical Orthogonal Function (EOF) truncation numbers N and lowpass filter cutoffs T : (a) Low-frequency to total

variance ratio r (for simplicity of comparison, this is calculated using a 10 year lowpass cutoff irregardless of the lowpass

cutoff used in the low-frequency component analysis (LFCA), which is shown on the x axis). (b) Percentage of the total

Pacific sea surface temperature variance contained in the PDO-like mode. (c and d) Percent correlation of the PDO-like

mode with (c) PDO* and (d) ENSO*. A black triangle indicates the case shown in Figure 1, black dots indicate cases

shown in Figure S4, and a black star indicates the case shown in Figures 4 and S3. A black line shows where the

dimensionless number (number of years of observations∕T) is equal to N∕2, at which point the fraction of variance in

the PDO-like mode starts to decrease substantially.

deviation along the west coast of North America, where PDO was first identified (Mantua et al., 1997).

This is comparable to the 0.5∘C warming associated with the traditional PDO index in the same region

(see side-by-side comparison in Figure S3). Its spatial pattern differs from the traditional PDO definition pri-

marily in the Kuroshio extension and the equatorial Pacific. Notably, the PDO-like mode (LFC 4) captures

the major PDO phase shifts in 1924/1925, 1947/1948, 1976/1977, and 1998/1999, and 2013/2014 (Figure 4d).

This mode resembles the response of the North Pacific subpolar and subtropical gyres to wind stress forcing,

which has been discussed in the context of the 1976/77 PDO shift (Seager et al., 2001) and the PDO in coupled

climatemodels (Schneider et al., 2002; Zhang&Delworth, 2015). Its time-lagged correlationwith ENSO* is less

than 0.1 at all lags except at a lead time of 2.5 years (Figure 2b), implying that thismode ismostly independent

of ENSO, with possibly some (weak) ability to influence ENSO at 2.5 year lead times.

The other leading LFCs in the 30 EOF analysis describe global warming, coherent multidecadal variations of

SST in the Kuroshio extension and eastern equatorial Pacific, anddecadal variability linked to the central equa-

torial Pacific (Figure 4). The long-termwarmingmode (LFC 1, Figure 4a) is almost identical to that obtained in

Figure 1 (temporal correlation of 97%), suggesting that our analysis robustly identifies the influence of global

warming on the Pacific. Themultidecadal mode (LFC 2, Figure 4b) shows a pronounced La-Niña-like warming

trend since 1977, as has been observed (Hansen et al., 2006; Karnauskas et al., 2009; Kohyama et al., 2017).

It may in part be the result of forcing from anthropogenic aerosols (Takahashi & Watanabe, 2016). Interest-

ingly, this mode explains much of the multidecadal variability of ENSO; large El Niño events (greater than 2�

anomaly in ENSO* for three consecutive months) did not occur during the period from 1920 to 1970, when

LFC 2 was in a strong positive phase. It does not contribute substantially to PDO* variability (correlation of

−7%). The central equatorial Pacific mode (LFC 3, Figure 4c) shows variability on 10–20 year time scales.
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Figure 4. First four low-frequency patterns (LFPs) and low-frequency components (LFCs) of Pacific sea surface

temperature anomalies, based on low-frequency component analysis (LFCA) with N = 30 Empirical Orthogonal

Functions (EOFs) retained and a T = 10 year lowpass cutoff. Solid black lines show the LFCs filtered with a 6 year

running average. Vertical dashed lines indicate years with major Pacific Decadal Oscillation (PDO) transitions. Triangles

on the x axis of LFC 2 indicate anomalies of greater than 2� in the ENSO* index (defined in Figure 1) for three

consecutive months. LFC 1 shows the impact of global warming on Pacific sea surface temperatures. LFC 2 shows

La-Niña-like variability on multidecadal time scales and modulates the strength of El Niño–Southern Oscillation (ENSO).

LFC 3 shows multidecadal variability of the central equatorial Pacific. LFC 4 is the most PDO-like mode, is concentrated

in the midlatitude North Pacific, and is compared side by side with the traditional definition of PDO in Figure S3.

It contributes to the variability of PDO* (correlation of 33%) but less than the North Pacific PDO-like mode

(LFC 4; correlation of 68%). ENSO is filtered out of the leading LFCs and is split across a few of the remain-

ing (higher frequency) LFCs. In this analysis, variability characterized by the traditional PDO is split across

multiple LFCs; however, the PDO itself is thought to be the superposition of several different physical mech-

anisms (Newman et al., 2016), and there is no physical motivation for it to be characterized by a single

statistical mode.

Across a range of LFCA parameters, the most PDO-like mode illustrates the properties that are essential to

the PDO: warm SST anomalies along the west coast of North America, cold anomalies extending from Japan

eastward within the Kuroshio-Oyashio extension, variability on 10–40 year time scales, and marked phase

transitions (Figures 4d and S4). The most tenuous feature of the PDO-like mode is its connection to tropical

Pacific SSTs, which is strongest when fewer EOFs are included in the analysis or when a shorter lowpass cutoff

time scale is used (6 years or less). Where there is a strong connection between the PDO and equatorial SSTs,

such as in the traditional PDO definition, this connection comes not from decadal variability but from averag-

ing in the effects of a few large El Niño years (Figure S5). Models that show a weaker connection between the

PDOand the tropics (Newmanet al., 2016) arenotnecessarilywrong, as the apparent connection to the tropics
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in observations comes mostly from a few large events. This does not preclude a causal relationship between

equatorial SSTs and the PDO, but it does suggest that the warm phase of the PDO can occur irregardless of

the state of the eastern equatorial Pacific.

4. Discussion and Conclusions

We have demonstrated a means of disentangling the influences of global warming, multidecadal internal

variability, and ENSO on Pacific SSTs, using a statistical methodology (LFCA) that separates modes of climate

variability and change based on time scale. Our work quantifies the long-term warming of the Pacific that is

independent of the dominantmodes of internal variability, without relying on climatemodels, strengthening

existing evidence for the role of global warming in shaping twentieth century temperatures. Furthermore,

we characterize the modes of internal variability that act on decadal time scales, recovering an index of PDO

variability from an analysis of SST anomalies in the full Pacific basin and showing that its evolution is largely

independent of ENSO.

The traditional definition of the PDO (Mantua et al., 1997) aimed to capture coherent decadal SST variability

along the west coast of North America, with impacts on salmon production. PDO-like modes based on LFCA

capture this SST variability, as shown by their similar spatial pattern in the North Pacific and their coherence

with the traditional PDO index at decadal time scales (Figure S6), yet they have a higher ratio of low-frequency

(decadal) to total variance, implying increased persistence (Figure 2c). The PDO* and ENSO* indices (Figure 1)

provide useful definitions of PDO and ENSO for impact studies, because they provide uncorrelated indices

of PDO, ENSO, and long-term Pacific warming. PDO* and ENSO* are similar to canonical definitions of PDO

and ENSO despite the fact that they are uncorrelated by construction. This suggests that PDO and ENSO

may not be as mechanistically linked as has been thought previously. By retaining more EOFs in the LFCA,

we isolate the decadal component of PDO variability and show that it is confined to midlatitudes. This sug-

gests a path forward for long lead-time predictions of Pacific temperature: future work should focus on

SST variability in midlatitudes and the impact of sharp SST fronts, such as the Kuroshio-Oyashio extension,

on atmospheric circulations.

The two main examples presented in this study represent opposite end-members of the LFCA. For a small

number of EOFs (as in Figure 1), LFCA rearranges the variability contained in the included EOFs based on the

ratio of low-frequency to total variance and is useful for fixing problems with modemixing. Whenmore EOFs

are included (as in Figure 4), LFCA converges on a few modes that describe the low-frequency variability in

a data set and are relatively insensitive to further parameter changes (Figure S7). Our LFCA method is more

straightforward and more powerful than existing approaches to filter climate variability based on time scale

and provides a framework for separating modes of climate variability in other contexts.

5. Methods
5.1. Low-Frequency Component Analysis

Our method is based on linear discriminant analysis, a statistical method widely used in pattern recognition

andmachine learning to find linear combinations of properties that best separate groups of data bymaximiz-

ing the intergroup variance relative to the total variance (Ripley, 1996). Schneider and Held (2001) suggest

an application of linear discriminant analysis to spatiotemporal data that isolates modes of low-frequency

variability by identifying linear combinations of the first N EOFs that maximize the ratio of low-frequency

to total variance. While they focused on isolating externally forced climate change from internal variability,

their method also provides a framework for characterizing internal variability on different time scales, since

the resulting modes tend to be ordered by time scale. For example, their method has been used to charac-

terize the competing influences of the 11 year solar cycle, the Quasi-Biennial Oscillation, and ENSO on the

polar stratosphere (Camp & Tung, 2007a, 2007b) and the influence of the solar cycle on surface temperatures

(Tung & Camp, 2008), but it has not been widely used elsewhere. We simplify Schneider and Held’s (2001)

methodology by using a lowpass filter to define the low-frequency variance, in place of the decadal grouping

of data that they used. We call this method low-frequency component analysis (LFCA). In LFCA, the inter-

group variance to be maximized is generalized to the variance remaining after application of a lowpass filter.

This is related to a broader class of spectral discriminant or optimal filtering analyses, based on themaximiza-

tion of a particular type of variance representing a “signal” compared to “noise” that exists within internal
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variability or among realizations (Allen & Smith, 1997; Chang et al., 2000; Schneider & Griffies, 1999; Ting et al.,

2009; Venzke et al., 1999).

LFCA starts with a conventional PCA to identify a small number of spatial degrees of freedom that explain

much of the variance in the data. For an n × p spatiotemporal data matrix X with zero time mean (e.g., n

months of SST anomalies at p grid points), we compute the EOFs, which are the eigenvectors ak of the sample

covariance matrix

C =
1

n − 1
XTX, (1)

such that Cak = �2
k
ak . Note that for our analysis ofmonthly SST anomalies we have subtracted the climatolog-

ical seasonal cycle. The data matrix X is weighted by the square root of grid cell area such that the covariance

is area weighted. The EOFs ak are normalized such that ||ak|| = 1, which means the eigenvalue �2
k
gives the

variance associatedwith the kth EOF. The total variance of the data set isΣ
p

k=1
�2
k
. The projection of the kth EOF

onto the data matrix X defines the kth principal component, PCk(t) = �−1
k
Xak , where the factor �

−1
k

ensures

that the principal component has unit variance.

LFCA is based on the projection of filtered data onto a truncated basis of EOFs. Here we apply a linear

Lanczos lowpass filter L(T) with cutoff frequency T−1 and periodic boundary conditions to the data, obtain-

ing a lowpass filtered data matrix X̃ = L(T)X . The projection of the lowpass filtered data onto the kth EOF,

P̃Ck(t) = �−1
k
X̃ak , is equivalent to lowpass filtering the kth principal component because the filter is linear. We

look for linear combinations

uk =

[
a1

�1

a2

�2
…

aN

�N

]
ek (2)

of the first N EOFS such that the ratio rk of low-frequency to total variance is maximized when the data are

projected onto them:

rk =

(
X̃uk

)T
X̃uk

(
Xuk

)T
Xuk

=
uT
k
LTCLuk

uT
k
Cuk

. (3)

The coefficient vectors ek are normalized such that ||ek|| = 1. The normalization factors �−1
k

in (2) serve to give

the linear combinationsuk unit variance, such that the covariance in thedenominator of (3) is equal to 1. Using

(2), (3), and the definition of a principal component, we find that the coefficient vectors ek are eigenvectors

of the covariance (cov) matrix of the first N lowpass filtered principal components,

Rij = cov
(
P̃Ci, P̃Cj

)
for i, j ∈ [1,N]. (4)

The matrix R has N eigenvectors, Rek = rkek , which we sort by eigenvalue rk , the fraction of the total variance

in the kth mode that occurs at low frequencies (i.e., makes it through the lowpass filter). By projecting the

unfiltered data onto the linear combination vectors uk , we find the low-frequency components (LFCs):

LFCk = Xuk. (5)

The LFCs are dominated by low-frequency variability but can still exhibit rapid transitions. The regression of

the unfiltered data onto the kth LFC,

vk = XTLFCk =
[
�1a1 �2a2 … �NaN

]
ek, (6)

defines the spatial pattern of the kth mode of low-frequency variability, which we call the kth low-frequency

pattern (LFP).

This methodology is a transformation of the first N EOFs such that the resulting modes are ranked by the

fractionof their variance that occurs at low frequencies (basedon lowpass cutoff time scale T). The transforma-

tion relaxes the constraint on orthogonality of the LFPs vk but requires the LFCs to be uncorrelated, whereas

orthogonal EOF rotations, such as Varimax Rotation (Kaiser, 1958; Richman, 1986), maintain the orthogonality

of the EOFs but relax the orthogonality of the principal components. LFCA can be generalized to maximize

the variance in any range of frequencies. In the case of lowpass filtering used here, there are only two param-

eters: the lowpass cutoff T and the EOF truncation number N. We use a 10 year lowpass cutoff to discriminate

between modes of decadal variability and modes of interannual variability (such as ENSO). The sensitivity

of our results to lowpass cutoff T and EOF truncation number N is explored in Figures 3 and S4. In general,
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our method also exhibits some sensitivity to the choice of filter boundary conditions. Here we use periodic

boundary conditions for simplicity, but we can recover similar results by filtering only departures from the lin-

ear trend and using reflected boundary conditions. This latter method may be useful in data sets with strong

linear trends.

The three LFCs resulting from the transformation of the first three EOFs of Pacific SST describe SST variability

associatedwith globalwarming, PDO, and ENSO. All choices of lowpass cutoffgreater than 5 years give indices

that are greater than 99% correlatedwith the indices shown in Figure 1 (based on a 10 year cutoff). The order-

ing can be switched by replacing the lowpass filter with a highpass or bandpass filter. The high-frequency

components are indistinguishable from the low-frequency components (temporal correlations greater than

99.9% for the Lanczos filter used in this study), though the order is reversed. This suggests a broader class of

spectral discriminant analysis, where other types of filters are used in place of the lowpass filter used in LFCA.

This could be useful for characterizing higher-frequency modes of climate variability.

LFCA is closely related to optimally persistent pattern (OPP) analysis, another time series analysis method

based on linear discriminant analysis (DelSole, 2001, 2006; DelSole et al., 2011), which identifies modes of

variability with maximal decorrelation time. This is accomplished by using linear combination coefficients ek
that are eigenvectors of the matrix of principal component decorrelation times

Tij = ∫
∞

−∞

cov
(
PCi(t + s), PCj(t)

)
ds for i, j ∈ [1,N]. (7)

The main difference between OPP analysis and LFCA is the presence of a specified filter time scale T in LFCA,

compared to the integration over all time scales in OPP. We have repeated our analysis with the OPP method

and found that it primarily optimizes interannual persistence, resulting inmodesof variabilitywith lower ratios

of low frequency (decadal) to total variance than LFCA, especially whenmore EOFs are retained. This suggests

that LFCA is a better tool for filtering out ENSO and studying decadal variability, while OPP is useful in other

contexts. Both LFCA and OPP provide substantially more effective spatiotemporal filtering than the common

practice of applying PCA to filtered data.

5.2. Data Sets

We use the National Oceanic and Atmospheric Administration Extended Reconstructed Sea Surface

Temperature data set version 3b, which is completed by filling in missing data with expected values based

on a regression model using other, simultaneously available data as predictors (Smith et al., 2008). Because

any such imputation of missing values ignores their variation around the expected values, variance estimates

basedon such infilled data sets are biased low (Little & Rubin, 2002; Schneider, 2001).We repeated the analysis

with a version of the HadCRUT4 surface temperature data set (Morice et al., 2012) completedwith the regular-

ized expectation-maximization algorithm (Schneider & Held, 2001), which provides less biased (co-)variance

estimates. The primary conclusions of our work are unchanged: namely, that the first three EOFs of Pacific SST

can be separated into components due to global warming, the PDO, and ENSO, and that low-frequency vari-

ability of the PDO results primarily frommidlatitude SST variability. There are minor quantitative differences,

which can in part be attributed to the differing resolution and the inclusion of land surface temperatures in

HadCRUT4.
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