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Disentangling molecular alterations from water-
content changes in the aging human brain using
quantitative MRI
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Aviv A. Mezer 1

It is an open question whether aging-related changes throughout the brain are driven by a

common factor or result from several distinct molecular mechanisms. Quantitative magnetic

resonance imaging (qMRI) provides biophysical parametric measurements allowing for non-

invasive mapping of the aging human brain. However, qMRI measurements change in

response to both molecular composition and water content. Here, we present a tissue

relaxivity approach that disentangles these two tissue components and decodes molecular

information from the MRI signal. Our approach enables us to reveal the molecular compo-

sition of lipid samples and predict lipidomics measurements of the brain. It produces unique

molecular signatures across the brain, which are correlated with specific gene-expression

profiles. We uncover region-specific molecular changes associated with brain aging. These

changes are independent from other MRI aging markers. Our approach opens the door to a

quantitative characterization of the biological sources for aging, that until now was possible

only post-mortem.
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T
he biology of the aging process is complex, and involves
various physiological changes throughout cells and tis-
sues1. One of the major changes is atrophy, which can be

monitored by measuring macroscale brain volume reduction1,2.
In some cases, atrophy can also be detected as localized micro-
scale tissue loss reflected by increased water content3. This pro-
cess is selective for specific brain regions and is thought to be
correlated with cognitive decline in Alzheimer’s disease2,4,5. In
addition to atrophy, there are molecular changes associated with
the aging of both the normal and pathological brain5,6. Specifi-
cally, lipidome changes are observed with age, and are associated
with several neurological diseases7–11.

It is an open question as to whether there are general principles
that govern the aging process, or whether each system, tissue, or
cell deteriorates with age for different reasons12,13. On one hand,
the common-cause hypothesis proposes that different biological
aging-related changes are the result of a single underlying
factor14,15. This implies that various biomarkers of aging will be
highly correlated16. On the other hand, the mosaic theory of
aging suggests that there are several distinct aging mechanisms
that have a heterogenous effect throughout the brain12,13.
According to this latter view, combining different measurements
of brain tissue is crucial in order to fully describe the state of the
aging brain. To test these two competing hypotheses in the
context of volumetric and molecular aging-related changes, it is
essential to measure different biological aspects of brain tissue.
Unfortunately, the molecular correlates of aging are not readily
accessible by current in vivo imaging methods.

The main technique used for non-invasive mapping of the
aging process in the human brain is magnetic resonance imaging
(MRI)2,17–19. Advances in the field have led to the development
of quantitative MRI (qMRI). This technique provides biophysical
parametric measurements that are useful in the investigation and
diagnosis of normal and abnormal aging20–27. qMRI parameters
have been shown to be sensitive to the microenvironment of
brain tissue and are therefore named in vivo histology28–30.
Nevertheless, an important challenge in applying qMRI mea-
surements is increasing their biological interpretability. It is
common to assume that qMRI parameters are sensitive to the
myelin fraction20,23,30–33, yet any brain tissue including myelin is
a mixture of multiple lipids and proteins. Moreover, since water
protons serve as the source of the MRI signal, the sensitivity of
qMRI parameters to different molecular microenvironments may
be confounded by their sensitivity to the water content of the
tissue34,35. We hypothesized that the changes observed with aging
in MRI measurements20,23,30–33,36 such as R1, R2, mean diffu-
sivity (MD), and magnetization transfer saturation (MTsat)37,
could be due to a combination of an increase in water content at
the expense of tissue loss, and molecular alterations in the tissue.

Here, we present a qMRI analysis that separately addresses the
contribution of changes in molecular composition and water
content to brain aging. Disentangling these two factors goes
beyond the widely accepted “myelin hypothesis” by increasing the
biological specificity of qMRI measurements to the molecular
composition of the brain. For this purpose, we generalize the
concept of relaxivity, which is defined as the dependency of MR
relaxation parameters on the concentration of a contrast agent38.
Instead of a contrast agent, our approach exploits the qMRI
measurement of the local non-water fraction39 to assess the
relaxivity of the brain tissue itself. This approach allows us to
decode the molecular composition from the MRI signal. In
samples of known composition, our approach provides unique
signatures for different brain lipids. In the live human brain, it
produces unique molecular signatures for different brain regions.
Moreover, these MRI signatures agree with post-mortem mea-
surements of the brain lipid and macromolecular composition, as

well as with specific gene-expression profiles. To further validate
the sensitivity of the relaxivity signatures to molecular composi-
tion, we perform direct comparison of MRI and lipidomics on
post-mortem brains. We exploit our approach for multi-
dimensional characterization of aging-related changes that are
associated with alterations in the molecular composition of the
brain. Finally, we evaluate the spatial pattern of these changes
throughout the brain, in order to compare the common-cause
and the mosaic theories of aging in vivo.

Results
Different brain lipids have unique relaxivity signatures. The
aging process in the brain is accompanied by changes in the
chemophysical composition, as well as by regional alterations in
water content. In order to examine the separate pattern of these
changes, we developed a model system. This system was based on
lipid samples comprising common brain lipids (phosphati-
dylcholine, sphingomyelin, phosphatidylserine, phosphatidylcho-
line-cholesterol, and phosphatidylinositol-phosphatidylcholine)7.
Using the model system, we tested whether accounting for the
effect of the water content on qMRI parameters provides sensi-
tivity to fine molecular details such as the head groups that dis-
tinguish different membrane phospholipids. The non-water
fraction of the lipid samples can be estimated by the qMRI
measurement of lipid and macromolecular tissue volume (MTV,
for full glossary of terms see Supplementary Table 1)39. By varying
the concentration of the lipid samples, we could alter their MTV
and then examine the effect of this manipulation on qMRI
parameters. The parameters we estimated for the lipid samples
were R1, R2, and MTsat. The potential ambiguity in the biological
interpretation of qMRI parameters is demonstrated in Fig. 1a. On
one hand, samples with similar lipid composition can present
different R1 measurements (Fig. 1a, points 1 & 2). On the other
hand, scanning samples with different lipid compositions may
result in similar R1 measurements (Fig. 1a, points 2 & 3). This
ambiguity stems from the confounding effect of the water content
on the MR relaxation properties.

We evaluated the dependency of different qMRI parameters on
the non-water fraction estimated by MTV. This analysis revealed
strong linear dependencies (median R2= 0.74, Fig. 1a, b and
Supplementary Fig. 1a, b). These linear MTV dependencies
change as a function of the lipid composition, reflecting the
inherent relaxivity of the different lipids. We could therefore use

the MTV derivatives of qMRI parameters (dqMRI
dMTV

, i.e., the slope of
the linear relationship between each qMRI parameter and MTV)
as a measure that is sensitive to molecular composition. By
accounting for the Multidimensional Dependency on MTV
(“MDM”) of several qMRI parameters, a unique MRI relaxivity
signature was revealed for each lipid (Fig. 1c). This implies that
the water-related ambiguity demonstrated in the inset of Fig. 1a
can be removed by measuring the MTV dependencies (Fig. 1c).
Creating mixtures of several lipids provided supportive evidence
for the generality of our framework. Figure 1d and Supplemen-
tary Fig. 1c show that the qMRI measurements of a mixture can
be predicted by summing the MTV dependencies of pure lipids
(for further details see Supplementary Note 1 and Supplementary
Fig. 2). Furthermore, we used this biophysical model to predict
the lipid composition of a mixture from its MDM measurements
(Fig. 1e). This model provided a good estimation of the
sphingomyelin (Spg) and phosphatidylserine (PS) content (R2 >
0.64) but failed to predict phosphatidylcholine (PtdCho) content
(for further details see Supplementary Note 2). While lipids
are considered to be a major source of the MRI signal in the
brain40–45, our approach can be applied to other compounds to
reveal differences in the MRI signal between different proteins,
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sugars, and ions (Supplementary Fig. 1d). Hence, the relation-
ships between qMRI parameters and MTV account for the effect
of water on MRI measurements and could be of use in
quantifying the biological and molecular contributions to the
MRI signal of water protons.

The tissue relaxivity of the human brain is region-specific. In
order to target age-related changes in molecular composition, we
applied the same approach for the human brain (Fig. 2a). We
found that the linear dependency of qMRI parameters on MTV is
not limited to in vitro samples and a similar relationship was also
evident in the human brain (Fig. 2b and Supplementary
Figs. 3–5). Importantly, different brain regions displayed a dis-
tinct dependency on MTV. Therefore, the relaxivity of brain
tissue is region-specific. Figure 2b provides an example for the
regional linear trends of R1 and MTsat in a single subject.

Remarkably, while the thalamus and the pallidum presented
relatively similar R1 dependencies on MTV, their MTsat depen-
dencies were different (p < 0.001, two-sample t-test). Compared
to these two brain regions, frontal white-matter demonstrated
different dependencies on MTV (p < 0.001, two-sample t-test). A
better separation between brain regions can therefore be achieved
by combining the MTV dependencies of several qMRI parameters
(MTsat, MD, R1 and R2). The MTV derivatives of qMRI para-
meters are consistent across subjects (Fig. 2c and Supplementary
Fig. 6), with good agreement between hemispheres (Supplemen-
tary Fig. 5). Moreover, they provide a novel pattern of differ-
entiation between brain regions, which is not captured by
conventional qMRI methods (Supplementary Fig. 7). In our lipid
sample experiments, the MDM approach revealed unique relax-
ivity signatures of different lipids (Fig. 1c). Therefore, we attribute
the observed diversity in the MTV derivatives of qMRI para-
meters across brain regions to the intrinsic heterogeneity in the
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Fig. 1 The dependency of qMRI parameters on the molecular composition in lipid samples. a The dependency of R1 on the lipid concentration (MTV) is

shown for phosphatidylcholine (PtdCho) and sphingomyelin (Spg). The inset shows the ambiguity in the biological interpretation of R1. Bars represent R1

and MTV values of the three circled lipid samples; The same lipid at different concentrations can lead to different R1 (points 1 & 2), and two different lipids

at different concentrations can have similar R1 (points 2 & 3). The main figure shows that the MTV derivative of R1 is specific for the lipid type; data points

represent the median of lipids samples with varying concentrations. The linear relationships between R1 and MTV are marked by lines. Shaded areas

represent the 95% confidence bounds. The slopes (MTV derivatives of R1) are different for each lipid. b The dependency of MTsat on the lipid

concentration is shown for phosphatidylserine (PS) and phosphatidylcholine-cholesterol (PtdCho-Chol). c Unique MDM signatures of brain lipids. Each

axis represents the MTV derivative of a different qMRI parameter (R1, MTsat, and R2). Colored traces extend between the MDM measurements of each

lipid. Upper panels show individual lipids and an overlay of five lipids is in the lower panel (Spg, PtdCho, PS, PtdCho-Chol, and phosphatidylinositol-

phosphatidylcholine (PI-PthCho)). d Predicting the MRI signal of lipid mixtures from the signal of pure lipids. MTsat measurements of PtdChol-PS mixtures

(x-axis) can be predicted from a linear sum of the MTV dependencies of the pure lipids (y-axis). Different colors represent mixtures with different PtdCh-

PS ratios. For each mixture we scanned samples with varying water concentrations. Dashed line is the identity line. e Predicting the lipid composition of 12

mixtures using the MDM method. The mixtures were composed of different PtdCho:PS:Spg ratios. MDM-based predictions were computed according to a

biophysical model as a linear combination of the MDM measurements of the mixtures and the pure lipids. Predicted fractions of the three lipids (y-axes)

are compared to their true fraction (x-axes). Dashed lines mark the identity line. p-values are for the F-test, n.s.= not significant
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chemophysical microenvironment of these regions. The multi-
dimensional dependency of various qMRI parameters on MTV
can be represented by the space of MTV derivatives to reveal a
unique chemophysical MDM signature for different brain regions
(Fig. 2d, see explanatory scheme of the MDM method in Sup-
plementary Fig. 8).

The in vivo MDM approach captures ex vivo molecular pro-
files. To validate that the MDM signatures relate to the chemo-
physical composition of brain tissue, we compared them to a
previous study that reported the phospholipid composition of the
human brain7. First, we established the comparability between the
in vivo MRI measurements and the reported post-mortem data.
MTV measures the non-water fraction of the tissue, a quantity
that is directly related to the total phospholipid content. Indeed,
we found good agreement between the in vivo measurement of

MTV and the total phospholipid content across brain regions
(R2= 0.95, Fig. 3a). Söderberg et al.7 identified a unique phos-
pholipid composition for different brain regions along with
diverse ratios of phospholipids to proteins and cholesterol. We
compared this regional molecular variability to the regional
variability in the MDM signatures. To capture the main axes of
variation, we performed principal component analysis (PCA) on
both the molecular composition of the different brain regions and
on their MDM signatures. For each of these two analyses, the first
principal component (PC) explained >45% of the variance. The
regional projection on the first PC of ex vivo molecular compo-
sition was highly correlated (R2= 0.84, Fig. 3b) with the regional
projection on the first PC of in vivo MDM signatures. This
confirms that brain regions with a similar molecular composition
have similar MDM. Supplementary Fig. 9a provides the correla-
tions of individual lipids with MDM. Importantly, neither MTV
nor the first PC of standard qMRI parameters was as strongly
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correlated with the ex vivo molecular composition as the MDM
(Supplementary Fig. 9b, c). We next used the MDM measure-
ments as predictors for molecular properties of different brain
regions. Following our content predictions for lipids samples
(Fig. 1e), we constructed a weighted linear model for human data
(for further details see Supplementary Note 3). To avoid over
fitting, we reduced the number of fitted parameters by including
only the MDM and the molecular features that accounted for
most of the regional variability. The MTV derivatives of R1 and
MTsat accounted for most of the variance in MDM. Thus, we
used these parameters as inputs to the linear model, while
adjusting their weights through cross validation. We tested the
performance of this model in predicting the three molecular
features that account for most of the variance in the ex vivo
molecular composition. Remarkably, MRI-driven MDM mea-
surements provided good predictions for the regional

sphingomyelin composition (R2= 0.56, p < 0.05 for the F-test,
Fig. 3c) and the regional ratio of phospholipids to proteins (R2=
0.56, p < 0.05 for the F-test, Fig. 3c).

Last, we compared the cortical MDM signatures to a gene co-
expression network based on a widespread survey of gene
expression in the human brain46. Nineteen modules were derived
from the gene network, each comprised of a group of genes that
co-varies in space. Six out of the nineteen gene modules were
significantly correlated with the first PC of MDM. Interestingly,
the first PC of MDM across the cortex was correlated most
strongly with the two gene modules associated with membranes
and synapses (Fig. 4, for further details see Supplementary Note 4
and Supplementary Figs. 10 and 11).

Post-mortem validation for the lipidomic sensitivity of MDM.
The aforementioned analyses demonstrate strong agreement
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Fig. 3 The biological interpretation of the MDM signatures based on comparison between in vivo and post-mortem data. Comparison of the in vivo MDM

signatures of different brain regions to the molecular composition of these regions as reported in the literature for eight post-mortem human brains7.

a Establishing the agreement between the post-mortem dataset and the in vivo MRI measurements. Comparison of the total phospholipid content derived

from the literature (N= 8, y-axis) and the average MTV measurement across the young subjects (N= 19, x-axis) in seven different brain regions (colored

data points). Adjusted R2 values are presented for the entire figure. p-values are for the F-test in the entire figure. Error bars represent the standard

deviation. b The similarity between the ex vivo molecular variability and the in vivo MDM variability across brain regions. The projection of different brain

regions (colored data points, see legend on the right) on the 1st principal component (PC) of ex vivo molecular variability (y-axis, derived from the

literature, N= 8) vs. their projection on the 1st principal component (PC) of in vivo MDM (x-axis, averaged over the young subjects, N= 19). PCs were

computed across seven brain regions. The correlation between the two principal components indicates the similarity between the molecular and the MDM

signatures. Error bars represent the standard deviation. c Predicting molecular composition with MRI. MDM-based prediction of different molecular

features (y-axes, averaged over the young subjects, N= 19) compared to their true value (x-axes, N= 8) in different brain regions (colored data points, see

legend on the right). The molecular features (PE/PtdCho ratio, Spg fraction, and ratio of phospholipids to proteins) were chosen as they account for most

of the molecular variability across brain regions (as found in a PCA analysis). MDM-based predictions were computed from a weighted linear sum of the

MTV derivatives of R1 and MTsat (as PCA indicates that they account for most of the variability in MDM across the brain). This linear model was fitted

using leave-one-out cross validation
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between in vivo MDM measurements and ex vivo molecular
composition based on a group-level comparison of two different
datasets. Strikingly, we were able to replicate this result at the
level of the single brain. To achieve this we performed MRI scans
(R1, MTsat, R2, MD, and MTV mapping) followed by histology
of two fresh post-mortem porcine brains (Fig. 5a, b). First, we
validated the qMRI estimation of MTV using dehydration tech-
niques. MTV values estimated using MRI were in agreement with
the non-water fraction found histologically (adjusted R2= 0.64, p
< 0.001 for the F-test, Fig. 5c).

Next, we estimated the lipid composition of different brain
regions. Thin-layer chromatography (TLC) was employed to
quantify seven neutral and polar lipids (Supplementary Table 2
and Supplementary Fig. 12a). In accordance with the analysis in
Fig. 3, we performed PCA to capture the main axes of variation in
lipidomics, standard qMRI parameters, and MDM. Figure 5d
shows that MTV did not correlate with the molecular variability
across the brain, estimated by the 1st PC of lipidomics. Likewise,
the molecular variability did not agree with the 1st PC of standard
qMRI parameters (Fig. 5e).

Last, we applied the MDM approach to the post-mortem
porcine brain. Similar to the human brain, different porcine brain
regions have unique MDM signatures (Fig. 5f, g and Supple-
mentary Fig. 12b). Remarkably, we found that agreement between
lipid composition and MRI measurements emerges at the level of
the MDM signatures. The molecular variability across brain
regions significantly correlated with the regional variability in the
MDM signatures (adjusted R2= 0.3, p < 0.01 for the F-test,
Fig. 5h). Excluding from the linear regression five outlier brain
regions where the histological lipidomics results were 1.5 standard
deviations away from the center yielded an even stronger
correlation between MDM signatures and lipid composition
(adjusted R2= 0.55, p < 0.001 for the F-test, Supplementary
Fig. 12c). This post-mortem analysis validates that the MDM
approach allows us to capture molecular information using MRI
at the level of the individual brain.

Disentangling water and molecular aging-related changes.
After establishing the sensitivity of the MDM signatures to the
molecular composition of the brain, we used them to evaluate the
chemophysical changes of the aging process. To assess aging-
related changes across the brain, we scanned younger and older
subjects (18 older adults aged 67 ± 6 years and 23 younger adults
aged 27 ± 2 years). First, we identified significant molecular aging-
related changes in the MDM signatures of different brain regions
(Figs. 6 and 7, right column; Supplementary Fig. 13). Next, we
tested whether the changes in MRI measurements, observed with
aging, result from a combination of changes in the molecular
composition of the tissue and its water content. We found that
although it is common to attribute age-related changes in R1 and
MTsat to myelin28,30,36, these qMRI parameters combine several
physiological aging aspects. For example, using R1 and MTsat we
identified significant aging-related changes in the parietal cortex,
the thalamus, the parietal white-matter and the temporal white-
matter (Figs. 6 and 7, left column). However, the MDM approach
revealed that these changes have different biological sources
(Figs. 6 and 7, middle columns; see Supplementary Figs. 14–17 for
more brain regions).

We discovered that the decrease in R1 values in the thalamus
and parietal white-matter can be separated to an aging-related
decrease in tissue volume (increase in water fraction), as estimated
by MTV, and a strong chemophysical aging effect in the MTV
derivative of R1 (Fig. 6a, b). In other brain regions there is a single
biological source that generates most of the aging affect. For
example, in the parietal cortex MTV values remained stable with
age while the MTV derivative of R1 changed significantly (Fig. 6c).
These findings suggest that the aging-related changes in R1 values
in the parietal cortex result mainly from chemophysical altera-
tions. On the other hand, in the temporal white-matter we did not
find a significant aging-related change in the MTV derivative of
MTsat (Fig. 7c). Therefore, the decrease in MTsat values with age
in the temporal white-matter can be attributed mostly to a
decrease in tissue volume, estimated by MTV (Fig. 7c).

a b

0.03 R2 = 0.24

p < 0.001

R2 = 0.26

p < 0.001

0.02

0.01

–0.01

–0.02

–0.03

S
y
n

a
p

s
e

 m
o

d
u

le

M
e

m
b

ra
n

e
 m

o
d

u
le

0

0.02

0.04

0

–0.02

–0.04

–0.06

–3.5–3.5

–2 2

1st PC MDM1st PC MDM

1st PC in-vivo MDM

0 –2 20

Fig. 4 MDM correlation with specific gene-expression patterns throughout the cortex. a The projection of cortical areas on the 1st principal component

(PC) of in vivo MDM is visualized on the cortical surface. MDM analysis was done on 64 cortical areas of the young subjects. In this case, the PCA is

calculated using the R1 and MTsat maps (without MD and R2 maps), to allow sufficient resolution for cortical parcellation. b The correlation of the 1st PC of

MDM with gene expression. Nineteen modules were derived from a gene co-expression network, each comprised of a group of genes that co-varies in

space. The projection of different cortical areas on the first PC of each module captures the “eigengene” of the module. The two gene modules most

correlated with MDM measurements are presented. The projection of 64 cortical areas on the eigengenes of the two gene modules (y-axes) is plotted

against their projection on the 1st PC of in vivo MDM (x-axes, see a). The eigengenes represent the variability in the gene expression through the cortex.

This variability correlates with the variability in MDM signatures. Shaded areas represent the 95% confidence bounds. Adjusted R2 values presented.

p-values are for the F-test and were corrected for multiple (57) comparisons. The analysis was done on the young subjects. The synapse module is termed

“salmon” in Ben-David and Shifman46, while the membrane module is termed “grey60”

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11319-1

6 NATURE COMMUNICATIONS |         (2019) 10:3403 | https://doi.org/10.1038/s41467-019-11319-1 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Remarkably, in other brain regions the MDM approach
revealed aging effects that are not captured by conventional
qMRI methods. For example, MTsat measurements in the frontal
cortex showed no significant differences between young and older
individuals (Fig. 7a). However, by separating the water and
chemophysical related effects of MTsat, as measured by MTV and
MDM, respectively, we were able to identify significant changes
between the age groups (Fig. 7a). In Fig. 3b we showed that the

1st PC of MDM increases the sensitivity of MRI to molecular
composition relative to the 1st PC of standard qMRI parameters
(Supplementary Fig. 9b, c). Interestingly, the 1st PC of MDM also
reveals aging-related changes not captured by the 1st PC of
standard qMRI parameters and MTV (Supplementary Fig. 18).

Iron is known to accumulate in different brain regions during
aging, and in a variety of CNS disorders47. We investigated the
contribution of iron to our findings using the estimation of R2*48
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(see Supplementary Note 5–6 and Supplementary Figs. 19–27).
While we could detect R2*-related changes with age, we found
that in most cases they could not explain the differences revealed
by MDM measurements. Instead, the estimation of iron-related
changes with age provides complementary information regarding
the physiological modifications the brain tissue undergoes during
aging. In addition, a biophysical model for the linear relationship
between R1 and R2 to the inverse of the water content was
suggested previously43. For alternative analysis of the qMRI

dependencies on to the inverse of the water content see
Supplementary Fig. 28.

Supporting evidence for the mosaic nature of brain aging.
Finally, we tested the common-cause and mosaic theories of
aging in vivo. For this aim we compared the spatial patterns of
different microscale and macroscale aging-related changes
(Fig. 8a). Utilizing the MDM approach, we were able to portray
the chemophysical aging trajectory throughout the brain
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(represented in Fig. 8a by the MTV derivative of MTsat, for
other MDM dimensions see Supplementary Fig. 29). MTV was
used to quantify the water-related trajectory39, and R2* was
employed to delineate the spatial pattern of aging-related
changes in the iron concentration48. These trajectories reveal
microscale aging-related pathways, yet macroscale alterations
also occur with age. A widely studied macroscale characteristic
of brain aging is atrophy, which can be estimated using MRI by
measuring the total volume of different brain regions1,2. We
compared the spatial trajectory of this macroscale property to

our microscale measurements of the human brain aging process
(Fig. 8a). This analysis revealed that the aging of different brain
regions is driven by different biological sources. Water-related
changes are more substantial in white-matter regions, while
changes in the iron content and volume with age are more
pronounced in cortical regions. The chemophysical changes
vary in space in a unique pattern compared to the other mar-
kers. They characterize the aging of cortical and white-matter
regions, along with several sub-cortical structures, with a very
large effect in the thalamus (d > 2).

3
MTsat [p.u.]

MTsat [p.u.]

MTsat [p.u.]

dMTsat/dMTV [p.u.]

dMTsat/dMTV [p.u.]

dMTsat/dMTV [p.u.]

MTV [fraction]

dMD/dMTV

MDMqMRI parameters 

C
T

X
-f

ro
n

ta
l

H
ip

p
o
c
a

m
p

u
s

W
M

-t
e
m

p
o
ra

l

dMD/dMTV

dMD/dMTV

dR2/dMTV

dR2/dMTV

dR2/dMTV

Younger

Older

Younger

Older

Younger

Older

dR1/dMTV

a

b

c

dR1/dMTV

dR1/dMTV

dMTsat/dMTV

dMTsat/dMTV

dMTsat/dMTV

MTV [fraction]

MTV [fraction]

12 0.21

0.18

0.15

3.1 10 0.22

0.19

0.16

6

2

2.75

2.4

5.6

4.9 13

0.27

0.3

0.3320

64.2

8

4

2.5

2

Fig. 7 Region-specific aging-related molecular changes revealed by the MTsat dependency on MTV. Comparison of MRI-driven measurements of 18 older

adults (aged 67 ± 6 years, marked in gray) and 23 younger adults (aged 27 ± 2 years, marked with different colors) in the frontal cortex (a), the

hippocampus (b), and the temporal white-matter (c). Aging-related changes revealed by MTsat are presented in the left column. The separate

chemophysical and water-related contributions estimated by the MTV derivative of MTsat and MTV, respectively, are shown in the middle columns. For

each box, the central mark is the median, the box extends vertically between the 25th and 75th percentiles, the whiskers extend to the most extreme data

points. Multidimensional aging-related changes revealed by the MDM approach are presented in the right column. Each axis represents the MTV derivative

of a different qMRI parameter. Axes limits were set to the 5 and 95 percentiles. Traces extends between these derivatives, shaded areas represent the

variation across subjects. The statistical significance of the differences between the groups was estimated using a two-sample t-test and was corrected for

multiple comparisons using the FDR method. *p < 0.05; **p < 0.01; ***p < 0.001

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11319-1 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:3403 | https://doi.org/10.1038/s41467-019-11319-1 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


In agreement with the mosaic hypothesis, we identified distinct
aging patterns for different brain regions. For example, in the
hippocampus we found a change in R2* values related to a higher
iron concentration with age, along with significant reduction in
the total hippocampal volume (Fig. 8a). This age-related
shrinkage was not accompanied by lower MTV values, indicating
conserved tissue density (Fig. 7b). In addition, there was no
significant difference in the hippocampal MDM signature with
age (Fig. 7b). Cortical gray-matter areas also exhibited similar
trends of volume reduction without major loss in tissue density
(Fig. 8a). Unlike the gray matter, in the white matter we did not

find volume reduction or large iron accumulation with age
(Fig. 8a). However, we did find microscale changes with age in
tissue composition, as captured by the MDM signature (Figs. 6a
and 7c, and Supplementary Fig. 13), accompanied by a
significant density-related decline in MTV (Fig. 8a). These
findings are consistent with previous histological studies49–51

(see Discussion), and provide the ability to monitor in vivo the
different components of the aging mosaic.

Last, to test whether the different biological aging trajectories
presented in Fig. 8a share a common cause, we evaluated the
correlations between them (Fig. 8b). Importantly, the
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chemophysical trajectory did not correlate significantly with the
iron or volume aging patterns. The spatial distribution of water-
related changes was found to correlate with iron content
alterations (R2= 0.27) and chemophysical alterations (R2=
0.25). However, the strongest correlation between aging-related
changes was found in volume and iron content (R2= 0.77). As
shown previously, this correlation may be explained to some
extent by a systematic bias in automated tissue classification23.
Additional analysis revealed that the different dimensions of the
MDM signature capture distinct patterns of aging-related changes
(Supplementary Fig. 30). Hence, complementary information
regarding the various chemophysical mechanisms underlying
brain aging could be gained by combining them.

Discussion
Normal brain aging involves multiple changes, at both the
microscale and macroscale level. MRI is the main tool for in vivo
evaluation of such age-related changes in the human brain. Here,
we propose to improve the interpretation of MRI findings
by accounting for the fundamental effect of the water content
on the imaging parameters. This approach allows for non-
invasive mapping of the molecular composition in the aging
human brain.

Our work is part of a major paradigm shift in the field of MRI
toward in vivo histology30,36,52. The MDM approach contributes
to this important change by providing a hypothesis-driven bio-
physical framework that was rigorously developed. We demon-
strated the power of our framework, starting from simple pure
lipid phantoms to more complicated lipid mixtures, and from
there, to the full complexity of the brain. In the brain, we show
both in vivo and post-mortem validations for the molecular
sensitivity of the MDM signatures. Early observations relate dif-
ferent qMRI parameters to changes in the fraction of
myelin20,23,30–33,36. The current approach enriches this view and
provides better sensitivity to the molecular composition and
fraction of myelin and other cellular tissues.

We developed a unique phantom system of lipid samples to
validate our method. While the phantom system is clearly far
from the complexity of brain tissue, its simplicity allowed us to
verify the specificity of our method to the chemophysical envir-
onment. Remarkably, our approach revealed unique signatures
for different lipids, and is therefore sensitive even to relatively
subtle details that distinguish one lipid from another. We chose to
validate our approach using membrane lipids based on previous
experiments40–45. Nevertheless, we do acknowledge the fact that
brain tissue comprises many other compounds beside lipids, such
as proteins, sugars, and ions. As we have shown, these other
compounds also exhibit unique dependency on MTV. The effect
of such compounds, along with other factors such as micro-
structure, and multi-compartment organization28 is probably
captured when we apply the MDM approach to the in vivo
human brain. Therefore, the phantoms were made to examine the
MRI sensitivity for the chemophysical environment, and the
human brain data was used to measure the true biological effects
in a complex in vivo environment.

Our relaxivity approach captures the molecular signatures of
the tissue, but is limited in its abilities to describe the full com-
plexity of the chemophysical environment of the human brain.
For example, R1 and R2, which are used to generate the MDM
signatures, are also sensitive to the iron content23,48,52. However,
we found that most of our findings cannot be attributed to
alterations in iron content as measured with R2* (for more details
see Supplementary Note 5). While there is great importance in
further isolating different molecular components, we argue that
accounting for the major effect of water on qMRI parameters (for

R2 distributions see Supplementary Fig. 5) is a crucial step
towards more specific qMRI interpretation.

We provide evidence from lipids samples and post-mortem
data for the sensitivity of the MDM signatures to the molecular
environment (Figs. 1e, 3b, and 5h). The variability of MDM
values between human brain regions also correlated with specific
gene-expression profiles (Fig. 4). While the comparison of in vivo
human brain measurements to previously published ex vivo
findings is based on two different datasets, these measurements
are highly stable across normal subjects and the intersubject
variabilities are much smaller than the regional variability. The
agreement between the modalities provides strong evidence for
the ability of our method to capture molecular information.

Remarkably, we were able to demonstrate the sensitivity of
MDM signatures to lipid composition using direct comparison on
post-mortem porcine brains. Even though there are many chal-
lenges in scanning post-mortem tissue, segmenting it, and com-
paring it to anatomically relevant histological results, we were
able to replicate our in vivo findings. We provide histological
validation for the MRI estimation of MTV. Moreover, we find
that while standard qMRI parameters and MTV do not explain
the lipidomic variability across the brain, the MDM signatures are
in agreement with histological results. Lipids constitute the
majority of the brain’s dry weight and are known to be important
for maintaining neural conduction and chemical balance53,54.
The brain lipidome was shown to have a great deal of structural
and functional diversity and was found to vary according to age,
gender, brain region, and cell type55. Disruptions of the brain
lipid metabolism have been linked to different disorders,
including Alzheimer’s disease, Parkinson’s disease, depression,
and anxiety7,8,11,54–57. Our results indicate that the MDM
approach enhances the consistency between MRI-driven mea-
surements and lipidomics, compared with standard qMRI
parameters.

The simplicity of our model, which is based on a first-order
approximation of qMRI dependencies, has great advantages in
the modeling of complex environments. Importantly, we used
lipids samples to show that the contributions of different mixture-
components can be summed linearly (Fig. 1d). For contrast
agents, the relaxivity is used to characterize the efficiency of
different agents. Here, we treated the tissue itself, rather than a
contrast material, as an agent to compute the relaxivity of the
tissue. While relaxivity is usually calculated for R1 and R2, we
extended this concept to other qMRI parameters. Our results
showed that the tissue relaxivity changes as a function of the
molecular composition. This suggests that the relaxivity of the
tissue relates to the surface interaction between the water and the
chemophysical environment. A theoretical formulation for the
effect of the surface interaction on proton relaxation has been
proposed before58,59. Specifically, a biophysical model for the
linear relationship between R1 and R2 to the inverse of the water
content (1/WC= 1/(1 –MTV)) was suggested by Fullerton
et al.43. Interestingly, 1/WC varies almost linearly with MTV in
the physiological range of MTV values. Applying our approach
with 1/WC instead of MTV produces relatively similar results
(Supplementary Fig. 28). However, using MTV as a measure of
tissue relaxivity allowed us to generalize the linear model to
multiple qMRI parameters, thus producing multidimensional
MDM signatures.

We show that the MDM signatures allow for better under-
standing of the biological sources for the aging-related changes
observe with MRI. Normal brain aging involves multiple changes,
at both the microscale and macroscale levels. Measurements of
macroscale brain volume have been widely used to characterize
aging-associated atrophy. Our method of analysis can comple-
ment such findings and provide a deeper understanding of
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microscale processes co-occurring with atrophy. Moreover, it
allows us to test whether these various microscale and macroscale
processes are caused by a common factor or represent the aging
mosaic. Notably, we discovered that different brain regions
undergo different biological aging processes. Therefore, combin-
ing several measurements of brain tissue is crucial in order to
fully describe the state of the aged brain. For example, the mac-
roscale aging-related volume reduction in cortical gray areas was
accompanied by conserved tissue density, as estimated by MTV,
and region-specific chemophysical changes, as estimated by the
MDM. In contrast, in white-matter areas both MDM and MTV
changed with age. These microscale alterations were not accom-
panied by macroscale volume reduction. Our in vivo results were
validated by previous histological studies, which reported that the
cortex shrinks with age, while the neural density remains rela-
tively constant49,50. In contrast, white matter was found to
undergo significant loss of myelinated nerve fibers during aging51.
In addition, we found that the shrinkage of the hippocampus with
age is accompanied with conserved tissue density and chemo-
physical composition. This is in agreement with histological
findings, which predict drastic changes in hippocampal tissue
composition in neurological diseases such as Alzheimer, but not
in normal aging49,50,60,61. In contrast, hippocampal macroscale
volume reduction was observed in both normal and pathological
aging2.

It should be noted that most of the human subjects recruited
for this study were from the academic community. However, the
different age groups were not matched for variables such as IQ
and socioeconomic status. In addition, the sample size in our
study was quite small. Therefore, the comparison we made
between the two age groups may be affected by variables other
than age. Our approach may benefit from validation based on
larger quantitative MRI datasets27,62. Yet, we believe we have
demonstrated the potential of our method to reveal molecular
alterations in the brain. Moreover, the agreement of our findings
with previous histological aging studies supports the association
between the group differences we measured and brain aging. Our
results suggest that the MDM approach may be very useful in
differentiating the effects of normal aging from those of neuro-
degenerative diseases. There is also great potential for applica-
tions in other brain research fields besides aging. For example,
our approach may be used to advance the study and diagnosis of
brain cancer, in which the lipidomic environment undergoes
considerable changes63–65.

To conclude, we have presented here a quantitative MRI
approach that decodes the molecular composition of the aging
brain. While common MRI measurements are primarily affected
by the water content of the tissue, our method employed the
tissue relaxivity to expose the sensitivity of MRI to the molecular
microenvironment. We presented evidence from lipid samples,
post-mortem porcine brains and in vivo human brains for the
sensitivity of the tissue relaxivity to molecular composition.
Results obtained by this method in vivo disentangled different
biological processes occurring in the human brain during aging.
We identified region-specific patterns of microscale aging-related
changes that are associated with the molecular composition of the
human brain. Moreover, we showed that, in agreement with the
mosaic theory of aging, different biological age-related processes
measured in vivo have unique spatial patterns throughout the
brain. The ability to identify and localize different age-derived
processes in vivo may further advance human brain research.

Methods
Phantom construction. The full protocol of lipids phantom preparation is
described in Shtangel et al.66.

In short, we prepared liposomes from one of the following lipids:
phosphatidylserine (PS), phosphatidylcholine (PtdCho), phosphatidylcholine-
cholesterol (PtdCho-Chol), Phosphatidylinositol-phosphatidylcholine (PI-
PtdCho), or sphingomyelin (Spg). These phantoms were designed to model
biological membranes and were prepared from lipids by the
hydration–dehydration dry film technique67. The lipids were dissolved over a hot
plate and vortexed. Next, the solvent was removed to create a dry film by vacuum-
rotational evaporation. The samples were then stirred on a hot plate at 65 °C for
2.5 h to allow the lipids to achieve their final conformation as liposomes.
Liposomes were diluted with Dulbecco’s phosphate buffered saline (PBS), without
calcium and magnesium (Biological Industries), to maintain physiological
conditions in terms of osmolarity, ion concentrations and pH. To change the MTV
of the liposome samples we varied the PBS to lipid volume ratios66. Samples were
then transferred to the phantom box for scanning in a 4 mL squared polystyrene
cuvettes glued to a polystyrene box, which was then filled with ~1% SeaKem
Agarose (Ornat Biochemical) and ~0.0005 M Gd (Gadotetrate Melumine,
(Dotarem, Guerbet)) dissolved in double distilled water (ddw). The purpose of the
agar with Gd (Agar-Gd) was to stabilize the cuvettes, and to create a smooth area in
the space surrounding the cuvettes that minimalized air–cuvette interfaces. In some
of our experiments we used lipid mixtures composed of several lipids. We prepared
nine mixtures containing different combinations of two out of three lipids
(PtdChol, Spg and PS) in varying volume ratios (1:1,1:2,2:1). For each mixture, we
prepared samples in which the ratio between the different lipid components
remained constant while the water-to-lipid volume fraction varied.

For the bovine serum albumin (BSA) phantoms, samples were prepared by
dissolving lyophilized BSA powder (Sigma Aldrich) in PBS. To change the MTV of
these phantoms, we changed the BSA concentration. For the BSA+ Iron
phantoms, BSA was additionally mixed with a fixed concentration of 50 µg/mL
ferrous sulfate heptahydrate (FeSO4*7H2O). Samples were prepared in their
designated concentrations at room temperature. Prepared samples were allowed to
sit overnight at 4℃ to ensure BSA had fully dissolved, without the need for
significant agitation, which is known to cause protein cross-linking. Samples were
then transferred to the phantom box for scanning.

For Glucose and Sucrose phantoms, different concentrations of D-(+ )-Sucrose
(Bio-Lab) and D-(+ )-Glucose (Sigma) were dissolved in PBS at 40℃. Samples
were allowed to reach room temperature before the scan.

MRI acquisition for phantoms. Data was collected on a 3 T Siemens MAGNE-
TOM Skyra scanner equipped with a 32-channel head receive-only coil at the ELSC
neuroimaging unit at the Hebrew University.

For quantitative R1 & MTV mapping, three-dimensional (3D) Spoiled gradient
(SPGR) echo images were acquired with different flip angles (α= 4°, 8°, 16°, and
30°). The TE/TR was 3.91/18 ms. The scan resolution was 1.1 × 1.1 × 0.9 mm. The
same sequence was repeated with a higher resolution of 0.6 × 0.6 × 0.5 mm. The
TE/TR was 4.45/18 ms. For calibration, we acquired an additional spin-echo
inversion recovery (SEIR) scan. This scan was done on a single slice, with adiabatic
inversion pulse and inversion times of TI= 2000, 1200, 800, 400, and 50. The TE/
TR was 73/2540 ms. The scan resolution was 1.2 mm isotropic.

For quantitative T2 mapping, images were acquired with a multi spin-echo
sequence with 15 equally spaced spin echoes between 10.5 ms and 157.5 ms. The
TR was 4.94 s. The scan resolution was 1.2 mm isotropic. For quantitative MTsat
mapping, images were acquired with the FLASH Siemens WIP 805 sequence. The
TR was 23 ms for all samples except PI:PtdCho for which the TR was 72 ms. Six
echoes were equally spaced between 1.93 ms to 14.58 ms. The on-resonance flip
angle was 6°, the MT flip angle was 220°, and the RF offset was 700. We used 1.1-
mm in-plane resolution with a slice thickness of 0.9 mm. For samples of sucrose
and glucose, MTsat mapping was done similar to the human subjects, based on 3D
Spoiled gradient (SPGR) echo image with an additional MT pulse. The flip angle
was 10°, the TE/TR was 3.91/28 ms. The scan resolution was 1 mm isotropic.

Estimation of qMRI parameters for phantoms. MTV and R1 estimations for the
lipids samples were computed based on a the mrQ39 (https://github.com/mezera/mrQ)
and Vista Lab (https://github.com/vistalab/vistasoft/wiki) software. The mrQ software
was modified to suit the phantom system66. The modification utilizes the fact that the
Agar-Gd filling the box around the samples is homogeneous and can, therefore, be
assumed to have a constant T1 value. We used this gold standard T1 value generated
from the SEIR scan to correct for the excite bias in the spoiled gradient echo scans.
While the data was acquired in two different resolutions (see “MRI acquisition”), in
our analysis we use the median R1 and MTV of each lipid sample and these are
invariant to the resolution of acquisition (Supplementary Fig. 1e). Thus, we were able
to use scans with different resolutions without damaging our results. T2 maps were
computed by implementing the echo‐modulation curve (EMC) algorithm68.

For quantitative MTsat mapping see the “MTsat estimation” section for human
subjects.

MDM computation for phantoms. We computed the dependency of each qMRI
parameter (R1, MTsat, and R2) on MTV in different lipids samples. This process
was implemented in MATLAB (MathWorks, Natwick, MI, USA). To manipulate
the MTV values, we scanned samples of the same lipid in varying concentrations.
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We computed the median MTV of each sample, along with the median of qMRI
parameters. We used these data points to fit a linear model across all samples of the
same lipid. The slope of this linear model represents the MTV derivative of the
linear equation. We used this derivative estimate of three qMRI parameters (R1,
R2, and MTsat) to compute the MDM signatures. The same procedure was used
for the MDM computation of lipid mixtures.

MDM modeling of lipid mixtures. We tested the ability of MDM to predict the
composition of lipid mixtures. For this analysis we used nine mixture phantoms
(see “Phantom construction”), along with the three phantoms of the pure lipid
constituents of the mixtures (PS, Spg, and Ptd-Cho).

In order to predict the qMRI parameters of a lipid mixture (Fig. 1d) we used
Supplementary Eq. 1 (Supplementary Note 1). To further predict the composition
of the mixtures (Fig. 1e) we used Supplementary Eq. 5 (Supplementary Note 2). We
solved this equation using the QR factorization algorithm.

Ethics. Human experiments complied with all relevant ethical regations. The
Helsinki Ethics Committee of Hadassah Hospital, Jerusalem, Israel approved the
experimental procedure. Written informed consent was obtained from each par-
ticipant prior to the procedure.

Human subjects. Human measurements were performed on 23 young adults (aged
27 ± 2 years, 11 females), and 18 older adults (aged 67 ± 6 years, five females).
Healthy volunteers were recruited from the community surrounding the Hebrew
University of Jerusalem.

MRI acquisition for human subjects. Data was collected on a 3 T Siemens
MAGNETOM Skyra scanner equipped with a 32-channel head receive-only coil at
the ELSC neuroimaging unit at the Hebrew University.

For quantitative R1, R2*, & MTV mapping, 3D Spoiled gradient (SPGR) echo
images were acquired with different flip angles (α= 4°, 10°, 20°, and 30°). Each
image included five equally spaced echoes (TE= 3.34–14.02 ms) and the TR was
19 ms (except for six young subjects for which the scan included only one TE=
3.34 ms). The scan resolution was 1 mm isotropic. For calibration, we acquired
additional spin-echo inversion recovery scan with an echo-planar imaging (EPI)
read-out (SEIR-epi). This scan was done with a slab-inversion pulse and spatial-
spectral fat suppression. For SEIR-epi, the TE/TR was 49/2920 ms. TI were 200,
400, 1,200, and 2400 ms. We used 2-mm in-plane resolution with a slice thickness
of 3 mm. The EPI read-out was performed using 2 × acceleration.

For quantitative T2 mapping, multi‐SE images were acquired with ten equally
spaced spin echoes between 12 ms and 120ms. The TR was 4.21 s. The scan
resolution was 2 mm isotropic. T2 scans of four subjects (one young, three old)
were excluded from the analysis due to motion.

For quantitative MTsat mapping, 3D Spoiled gradient (SPGR) echo image were
acquired with an additional MT pulse. The flip angle was 10°, the TE/TR was 3.34/
27 ms. The scan resolution was 1 mm isotropic.

Whole-brain DTI measurements were performed using a diffusion-weighted
spin-echo EPI sequence with isotropic 1.5-mm resolution. Diffusion weighting
gradients were applied at 64 directions and the strength of the diffusion weighting
was set to b= 2000 s/mm2 (TE/TR= 95.80/6000 ms, G= 45mT/m, δ= 32.25 ms,
Δ= 52.02 ms). The data includes eight non-diffusion-weighted images (b= 0). In
addition, we collected non-diffusion-weighted images with reversed phase-encode
blips. For five subjects (four young, one old) we failed to acquire this correction
data and they were excluded from the diffusion analysis.

Anatomical images were acquired with 3D magnetization prepared rapid
gradient echo (MP-RAGE) scans for 24 of the subjects (14 from the younger
subjects, 10 from the older subjects). The scan resolution was 1 mm isotropic, the
TE/TR was 2.98/2300 ms. Magnetization Prepared 2 Rapid Acquisition Gradient
Echoes (MP2RAGE) scans were acquired for the rest of the subjects. The scan
resolution was 1 mm isotropic, the TE/TR was 2.98/5000 ms.

Estimation of qMRI parameters for human subjects. Whole-brain MTV and R1
maps, together with bias correction maps of B1+ and B1-, were computed using
the mrQ software39,69 (https://github.com/mezera/mrQ). Voxels in which the B1
+ inhomogeneities were extrapolated and not interpolated were removed from the
MTV and R1 maps. While we did not correct our MTV estimates for R2*, we
showed that employing such a correction does not significantly change our results
(see Supplementary Note 6, Supplementary Figs. 20–27). MTV maps of four
subjects had bias in the lower part of the brain and they were therefore excluded
from the analysis presented in Fig. 3, which includes ROIs in the brainstem.

Whole-brain T2 maps were computed by implementing the echo‐modulation
curve (EMC) algorithm68. To combine the MTV and T2 we co-registered the
quantitative MTV map to the T2 map. We used the ANTS software package70 to
calculate the transformation and to warp the MTV map and the segmentation. The
registration was computed to match the T1 map to the T2 map. Next, we applied
the calculated transformation to MTV map (since MTV and T1 are in the same
imaging space) and resampled the MTV map to match the resolution of the T2
map. The same transformation was also applied to the segmentation. R2 maps were
calculated as 1/T2.

Whole-brain MTsat maps were computed as described in Helms et al.37. The
MTsat measurement was extracted from Eq. (1):

MTsat ¼ M0B1α
R1TR

SMT

�
B1αð Þ2

2
� R1TR ð1Þ

Where SMT is the signal of the SPGR scan with additional MT pulse, α is the flip
angle and TR is the repetition time. Mo (the equilibrium magnetization parameter),
B1 (the transmit inhomogeneity), and R1 estimations were computed from the
non-MT weighted SPGR scans, during the pipeline described under “MTV & R1
estimation”. Registration of the SMT image to the imaging space of the MTV map
was done using a rigid-body alignment (R1, B1, and MO are all in the same space
as MTV).

Diffusion analysis was done using the FDT toolbox in FSL71,72. Susceptibility
and eddy current induced distortions were corrected using the reverse phase-
encode data, with the eddy and topup commands73,74. MD maps were calculated
using vistasoft (https://github.com/vistalab/vistasoft/wiki). We used a rigid-body
alignment to register the corrected dMRI data to the imaging space of the MTV
map (Flirt, FSL). In order to calculate the MD-MTV derivatives, we resampled the
MTV map and the segmentation to match the dMRI resolution.

We used the SPGR scans with multiple echoes to estimate R2*. Fitting was done
through the MPM toolbox75. As we had four SPGR scans with variable flip angles,
we averaged the R2* maps acquired from each of these scans for increased SNR.

Human brain segmentation. Whole-brain segmentation was computed auto-
matically using the FreeSurfer segmentation algorithm76. For subjects who had an
MP-RAGE scan, we used it as a reference. For the other subjects the MP2RAGE
scan was used as a reference. These anatomical images were registered to the MTV
space prior to the segmentation process, using a rigid-body alignment. Sub-cortical
gray-matter structures were segmented with FSL’s FIRST tool77. To avoid partial
volume effects, we removed the outer shell of each ROI and left only the core.

MDM computation in the human brain. We computed the dependency of each
qMRI parameter (R1, MTsat, MD, and R2) on MTV in different brain areas. This
process was implemented in MATLAB (MathWorks, Natwick, MI, USA). For each
ROI, we extracted the MTV values from all voxels and pooled them into 36 bins
spaced equally between 0.05 and 0.40. This was done so that the linear fit would not
be heavily affected by the density of the voxels in different MTV values. We
removed any bins in which the number of voxels was smaller than 4% of the total
voxel count in the ROI. The median MTV of each bin was computed, along with
the median of the qMRI parameter. We used these data points to fit the linear
model across bins using Eq. (2):

qMRI parameters ¼ a � MTVþ b ð2Þ

The slope of this linear model (“a”) represents the MTV derivative of the linear
equation. We used this derivative estimate to compute the MDM signatures.

For each subject, ROIs in which the total voxel count was smaller than a set
threshold of 500 voxels for the MTsat and R1 maps, 150 voxels for the MD map,
and 50 voxels for the R2 map were excluded.

Principal component analysis (PCA) in the human brain. To estimate the
variability in the MDM signatures across the brain, we computed the first principal
component (PC) of MDM. For each MDM dimension (MTV derivatives of R1,
MTsat, MD, and R2), we evaluated the median of the different brain areas across
the young subjects. As each MDM dimension has different units, we then com-
puted the z-score of each dimension across the different brain area. Finally, we
performed PCA. The variables in this analysis were the different MDM dimensions,
and the observations were the different brain areas. From this analysis, we derived
the first PC that accounts for most of the variability in MDM signatures across the
brain. To estimate the median absolute deviations (MAD) across subjects of each
MDM measurement in the PC basis, we applied the z-score transformation to the
original MAD and then projected them onto the PC basis.

To compute the first PC of standard qMRI parameters we followed the same
procedure, but used R1, MTsat, MD, and R2 instead of their MTV derivatives.

For the first PC of molecular composition, we followed the same procedure, but
used the phospholipid composition and the ratio between phospholipids to
proteins and cholesterol as variables. The data was taken from eight post-mortem
human brains7. Brains were obtained from individuals between 54 and 57 years of
age, which were autopsied within 24 h after death.

Linear model for prediction of human molecular composition. We used MDM
measurements in order to predict the molecular composition of different brain
areas (Fig. 3c). For this analysis we used Supplementary Eq. 5 in the Supplementary
Note 2. We solved this equation using QR factorization algorithm (for more details
see Supplementary Note 3).

Gene-expression dataset. For the gene-expression analysis we followed the work of
Ben-David and Shifman46. Microarray data was acquired from the Allen Brain Atlas
(http://human.brain-map.org/well_data_files) and included a total of 1340 microarray
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profiles from donors H0351.2001 and H0351.2002, encompassing the different
regions of the human brain. The donors were 24 and 39 years old, respectively, at the
time of their death, with no known psychopathologies. We used the statistical analysis
described by Ben-David and Shifman46. They constructed a gene network using a
weighted gene co-expression network analysis. The gene network included 19 mod-
ules of varying sizes, from 38 to 7385 genes. The module eigengenes were derived by
taking the first PC of the expression values in each module. In addition, we used the
gene ontology enrichment analysis described by Ben-David and Shifman to define the
name of each module. The colors of the different modules in the Fig. 4 and Sup-
plementary Fig. 10 are the same as in the original paper.

Next, we matched between the gene-expression data and the MRI
measurements. This analysis was done on 35 cortical regions extracted from
FreeSurfer cortical parcellation. We downloaded the T1-weighted images of the two
donors provided by the Allen Brain Atlas (http://human.brain-map.org/
mri_viewers/data) and used them as a reference for FreeSurfer segmentation. We
then found the FreeSurfer label of each gene-expression sample using the sample’s
coordinates in brain space. We removed samples for which the FreeSurfer label and
the label provided in the microarray dataset did not agree (there were 72 such
samples out of 697 cortical samples). For each gene module, we averaged over the
eigengenes of all samples from the same cortical area across the two donors.

Last, we compared the cortical eigengene of each module to the projection of
cortical areas on the first PC of MDM. In addition, we compared the modules’
eigengenes to the MTV values of the cortical areas and to the projection of cortical
areas on the first PC of standard qMRI parameters (Supplementary Fig. 10). These
57 correlations were corrected for multiple comparisons using the FDR method.

Brain region’s volume computation. To estimate the volume of different brain
regions, we calculated the number of voxels in the FreeSurfer segmentation of each
region (see “Brain segmentation”).

R2* correction for MTV. To correct the MTV estimates for R2* we used Eq. (3):

MTVC ¼ 1� ð1�MTVÞ � expðTE � R2�Þ ð3Þ

Where MTVC is the corrected MTV.

Statistical analysis. The statistical significance of the differences between the age
groups was computed using an independent-sample t-test (alpha= 0.05, both right
and left tail) and was corrected for multiple comparisons using the false-discovery
rate (FDR) method. For this analysis, MRI measurements of both hemispheres of
bilateral brain regions were joined together. R2 measurements were adjusted for the
number of data points. All statistical tests were two-sided.

Post-mortem tissue acquisition. Two post-mortem porcine brains were pur-
chased from BIOTECH FARM.

Post-mortem MRI acquisition. Brains were scanned fresh (without fixation) in
water within 6 h after death. Data was collected on a 3 T Siemens MAGNETOM
Skyra scanner equipped with a 32-channel head receive-only coil at the ELSC
neuroimaging unit at the Hebrew University.

For quantitative R1, R2*, & MTV mapping, 3D Spoiled gradient (SPGR) echo
images were acquired with different flip angles (α= 4°, 10°, 20°, and 30°). Each
image included five equally spaced echoes (TE= 4.01 – 16.51 ms) and the TR was
22 ms. The scan resolution was 0.8 mm isotropic. For calibration, we acquired
additional spin-echo inversion recovery scan with an echo-planar imaging (EPI)
read-out (SEIR-epi). This scan was done with a slab-inversion pulse and spatial-
spectral fat suppression. For SEIR-epi, the TE/TR was 49/2920 ms. TI were 50, 200,
400, 1200 ms. The scan resolution was 2 mm isotropic. The EPI read-out was
performed using 2 × acceleration.

For quantitative T2 mapping, multi‐SE images were acquired with ten equally
spaced spin echoes between 12 and 120 ms. The TR was 4.21 s. The scan resolution
was 2 mm isotropic.

For quantitative MTsat mapping, 3D Spoiled gradient (SPGR) echo image were
acquired with an additional MT pulse. The flip angle was 10°, the TE/TR was 4.01/
40 ms. The scan resolution was 0.8 mm isotropic.

Whole-brain DTI measurements were performed using a diffusion-weighted
spin-echo EPI sequence with isotropic 1.5-mm resolution. Diffusion weighting
gradients were applied at 64 directions and the strength of the diffusion weighting
was set to b= 2000 s/mm2 (TE/TR= 95.80/6000 ms, G= 45mT/m, δ= 32.25 ms,
Δ= 52.02 ms). The data includes eight non-diffusion-weighted images (b= 0).

For anatomical images, 3D magnetization prepared rapid gradient echo (MP-
RAGE) scans were acquired. The scan resolution was 1 mm isotropic, the TE/TR
was 2.98/2300 ms.

Histological analysis. Following the MRI scans the brains were dissected. Total of
42 brain regions were identified. Four samples were excluded as we were not able to
properly separate the WM from the GM. One sample was excluded as we could not
properly identify its anatomical origin. Additional two samples were too small for
TLC analysis.

The non-water fraction (MTV) was determined by desiccation, also known as
the dry-wet method. A small fraction of each brain sample (~0.25 g) was weighed.
In order to completely dehydrate the fresh tissues, they were left for several days in
a vacuum dessicator over silica gel at 4 °C. The experiment ended when no further
weight loss occurred. The MTV of each brain sample was calculated based on the
difference between the wet (Wwet) and dry (Wdry) weights of the tissue (Eq. 4):

MTV ¼
Wwet �Wdry

Wwet

ð4Þ

For lipid extraction and lipidomics analysis78, Brain samples were weighted
and homogenized with saline in plastic tubes on ice at concentration of 1 mg/
12.5 µL. Two-hundred fifty microliters from each homogenate were utilized for
lipid extraction and analysis with thin-layer chromatography (TLC). The lipid
species distribution was analyzed by TLC applying 150 µg aliquots. Samples were
reconstituted in 10 µL of Folch mixture and spotted on Silica-G TLC plates.
Standards for each fraction were purchased from Sigma Aldrich (Rehovot,
Israel) and were spotted in separate TLC lanes, i.e., 50 µg of triacylglycerides
(TG), cholesterol (Chol), cholesteryl esters (CE), free fatty acids (FFA),
lysophospholipids (Lyso), sphingomyelin (Spg), phosphatidylcholine (PtdCho),
phosphatidylinositol (PI), phosphatidylserine (PS), and
phosphatidylethanolamine (PE). Plates were then placed in a 20 × 20 cm TLC
chamber containing petroleum ether, ethyl ether, and acetic acid (80:20:1, v/v/v)
for quantification of neutral lipids or chloroform, methanol, acetic acid, and
water (65:25:4:2, v:v:v:v) for quantification of polar lipids and run for 45 min.
TG, Chol, CE, FFA, phospholipids (PL), Lyso, Spg, PtdCho, PI, PS, and PE bands
were visualized with Iodine, scanned and quantified by Optiquant after scanning
(Epson V700). Lyso, CE, TG, and PI were excluded from further analysis as their
quantification was noisy and demonstrated high variability across TLC plates.
This analysis was conducted under the guidance of Prof. Alicia Leikin-Frenkel in
the Bert Strassburger Lipid Center, Sheba, Tel Hashomer.

Estimation of qMRI parameters in the post-mortem brain. Similar to human
subjects.

Brain segmentation of post-mortem brain. Brain segmentation was done
manually. Five tissue samples were excluded as we could not identify their origin
location in the MRI scans.

MDM computation in the post-mortem brain. We computed the dependency of
each qMRI parameter (R1, MTsat, MD, and R2) on MTV in different brain areas
similarly to the analysis of the human subjects.

Principal component analysis (PCA) in the post-mortem brain. To estimate the
variability in the MDM signatures across the brain, we computed the first principal
component (PC) of MDM. PCA analysis was performed with four variables cor-
responding to the MDM dimensions (MTV derivatives of R1, MTsat, MD, and R2),
and 30 observations corresponding to the different brain regions. As each MDM
dimension has different units, we first computed the z-score of each dimension
across the different brain areas prior to the PCA. From this analysis we derived the
first PC that accounts for most of the variability in MDM signatures across
the brain.

To compute the first PC of standard qMRI parameters we followed the same
procedure, but used R1, MTsat, MD, and R2 instead of their MTV derivatives.

To estimate the variability in the lipid composition across the brain, we
computed the first principal component (PC) of lipidomics. PCA analysis was
performed with seven variables corresponding to the different polar and neutral
lipids (Chol, FFA, PL, Spg, PtdCho, PS, PE), and 30 observations corresponding to
the different brain regions. From this analysis, we derived the first PC that accounts
for most of the variability in lipid composition across the brain.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The datasets generated and/or analyzed during the current study are available from the

corresponding author on reasonable request.

Code availability
A toolbox for computing MDM signatures is available at [https://github.com/MezerLab/

MDM_toolbox].

The code generating the figures of in the paper is available at [https://github.com/

MezerLab/MDM_Gen_Figs].
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