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Abstract
According to the predictive coding (PC) theory, the brain is constantly engaged in predicting its upcoming
states and re�ning these predictions through error signal. Despite extensive research has investigated the
neural bases of this theory, to date no previous study has systematically attempted to de�ne the neural
mechanisms of predictive coding across studies and sensory channels, focussing on functional
connectivity. In this study, we employ a coordinate-based meta-analytical approach to address this issue.
We �rst use the Activation Likelihood Estimation (ALE) algorithm to detect spatial convergence across
studies, related to prediction error and encoding. Overall, our ALE results suggest the ultimate role of the
left inferior frontal gyrus and left insula in both processes. Moreover, we employ a task-based meta-
analytic connectivity method (Seed-Voxel Correlations Consensus). This technique reveals a large,
bilateral predictive network, which resembles large-scale networks involved in task-driven attention and
execution. In sum, we �nd that: i) predictive processing seems to occur more in certain brain regions than
others, when considering different sensory modalities at a time; ii) there is no evidence, at the network
level, for a distinction between error and prediction processing.

1. Introduction
Both when we are resting and when we are involved in tasks, our brain attempts to “�gure out”, at many
levels, what the immediate as well as the subsequent future events are going to look like. This is the main
assumption of the predictive coding (PC) theory 1–5. PC theory received extensive support recently from a
vast range of theoretical and experimental studies, regarding primary sensory processes 6, language 7

and higher level cognitive processes, such as decision making and naturalistic speech comprehension 8,9.
Moreover, evidences have been obtained with a variety of methods, mostly by functional magnetic
resonance imaging (fMRI), but also by electroencephalography 10,11, computational simulations 12,
physiological recordings of single neurons (for a review, see 13, as well as transcranial magnetic
stimulation 14.

According to this theory, the brain is a hierarchically organized system where, at each level of processing,
higher layers try to “predict” the latent causes of the sensory inputs coming from lower layers. In fact, top
down-modulation of prior expectations has been documented in both low-level 5,15 and high-level
processing 16,17. A key element of the theory is the possibility for the brain to learn, i.e. to correctly update
its internal models of the world - through prediction error signals 18–20. Prediction errors emerge when
there is a discrepancy between what is expected at a certain level and the actual sensory information
coming from the lower processing stages. Since 1999, when Rao and Ballard published their seminal
simulation work, the number of attempts to implement PC in the human brain have increased sharply. It
has been argued that predictive processing occurs at a cellular level 21, where the activity of neural
populations is modulated by higher-order predictions and units signalling precision of these predictions.
According to 22Bastos and colleagues, PC is a typical property of the human cerebral neocortex because
its layered structure would suit a hierarchical signal exchange between cortical layers. In particular, error
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signals seem to be computed in the granular layers (especially layer IV), while predictions would be
encoded in layers II and III. Friston and colleagues hypothesized a large set of brain areas with predictive
processing mechanisms, including the primary sensory and motor cortices, motor association cortices,
dorsal and ventral prefrontal cortices, parietal cortex, anterior cingulate cortex, insula, hippocampus,
amygdala, basal ganglia, thalamus, hypothalamus, cerebellum and the superior colliculus 23,24. In a
recent review Keller and Mrsic-Flogel pointed out the necessity of the functional separation between
neuronal units computing predictions and the ones involved in the generation of the error signals 25. This
separation has been found empirically in a mathematical modelling of the auditory cortex, where neurons
encoding predictions were located in cortical layers II/III and prediction error neurons in layer IV 12. The
hypothesized distinction led to the idea of separating cortical functions related to a violation of
predictions from those that create, maintain and update them.

Moreover, the identi�cation of a brain network, specialized in the encoding of predictions and
transmission of error signal across sensory modalities at a large-scale level is a rather open and
unexplored �eld. In fact, while earlier formulations of PC theory ground such mechanisms in different
layers of the human cortex, more recent models of PC attribute functions of error computation and
prediction encoding to discrete brain regions and their interconnections 26–28. In line with a network-like
view of brain function 29, the present research work aims at investigating the potential presence of a
speci�c, predictive network. To our knowledge, no previous study has approached the de�nition of such a
network, adopting meta-analytic functional connectivity methods. To do so, we employed a coordinate-
based meta-analytic approach, utilising the Activation Likelihood Estimation (ALE) technique, and
adopting functional connectivity methods previously used in clinical neuroimaging 30. We expected the
following results:

a) In general, at least some of the regions found in the literature to be involved in predictive activity might
be found to be functionally connected, revealing a spatially de�ned network.

 

b) For the brain areas generally involved in predictive processing, we might only partially replicate the
results from a recent meta-analysis 31, principally due to the diversity of data collection and organization
criteria. Moreover, given the dense interchange of prediction and error signals in the human cortex 22,25,
and the heterogeneous nature of the experimental tasks included in our datasets, we also hypothesized
that mostly higher order regions shall be found as the common neural correlates of PC.

 

c) A recent meta-analysis 18 highlighted the contribution of striatum, insula, thalamus and fronto-medial
structures to prediction error signal in a recent meta-analysis, while others 32 reported other regions (the
bilateral ventral striatum, the thalamus, the left frontal operculum, the left caudate and the left IFG). We
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therefore aimed at verifying if, with different selection and categorization criteria, these results on
prediction error computation could be replicated.

2. Results

2.1 Selection of studies
By following the criteria (a-f) described in Sect. 5.1, 106 articles were collected (see Fig. 1). Data from
these articles were classi�ed in a table specifying an identi�cation code, year of publication, �rst author’s
family name, title, scienti�c journal, number of experimental subjects, experimental task, sensory
modality investigated, experimental contrast, type of stimuli. A further selection based on criteria g) and
h) led to 70 articles. Those works which were discarded at this point were included in a separate list,
along with the reason for their exclusion. All the peak coordinates listed for the experimental contrast,
which were classi�ed as Prediction Encoding or Prediction Violation, were listed in a separate table. The
classi�cation of each reported contrast can be found in the Supplementary Tables S1 and S2. When
necessary, we converted the peak coordinates to the Montreal Neurological Institute (MNI) space, using
the icbm_spm2tal transform on GingerALE 37,42, see http://www.brainmap.org/icbm2tal/. 

2.2 Activation Likelihood Estimation
As a �rst step, we conducted a general ALE analysis across contrasts on the results from all the selected
articles (70 experiments, 930 foci of activation and 1419 participants). We refer to these analyses as
General Prediction. Afterwards, the general dataset was further divided into two conditions: Prediction
Violation (45 experiments, 511 foci and 939 subjects) and Prediction Encoding (39 experiments, 444 foci,
750 subjects). We performed ALE meta-analyses singularly on these two conditions as well. Figure 2
shows the results of the ALE analyses at FWE, p < 0.05. Further details of the ALE results are reported in
Table 1.
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Table 1
Activation likelihood estimation (ALE) results. Convergent �ndings of brain activity related to predictive

coding conditions. 
Condition MNI

coordinates

(x,y,z)

Volume

(mm฀)

Maximum

ALE value

Z
score

P

value

Anatomical location

(Brodmann area)

General Prediction*

  -46, 10, 24 1088 0.049 6.78 6.11e-
12

Left inferior frontal gyrus (BA
9)

  -30, 24, 2 608 0.043 6.10 5.23e-
10

Left insula (BA 13)

  4, 14, 50 224 0.037 5.39 3.59e-8 Right superior frontal gyrus
(BA 6)

  34, 24, 2 200 0.034 5.09 1.83e-7 Right insula (BA 13)

  -28, -64, 46 200 0.034 5.13 1.44e-7 Left precuneus (BA 19)

Prediction Encoding**

  36, -60, 50 832 0.021 4.47 3.96e-6 Right superior parietal lobule
(BA 7)

  -50, -44, 52 608 0.021 4.38 5.82e-6 Left inferior parietal lobule
(BA 40)

  4, 12, 50 584 0.026 4.98 3.19e-7 Right Superior frontal gyrus
(BA 6)

  -38, -80, -14 528 0.023 4.67 1.49e-6 Left fusiform gyrus (BA 19)

  48, -64, -8 464 0.018 3.98 3.44e-5 Right fusiform gyrus (BA 19)

  -46, 8, 26 440 0.023 4.61 2.03e-6 Left inferior frontal gyrus (BA
9)

  48, -44, 46 328 0.020 4.19 1.41e-5 Right inferior parietal lobule
(BA 40)

  28, -6, -20 312 0.021 4.35 6.70e-6 Right amygdala

  42, 22, 32 288 0.019 4.14 1.76e-5 Right middle frontal gyrus
(BA 9)

  -28, -6, -20 224 0.020 4.25 1.05e-5 Left amygdala

  -26, -64, 46 224 0.019 3.98 3.40e-5 Left precuneus (BA 7)

  46, 18, 6 192 0.021 4.29 8.81e-6 Right insula (BA 13)

  20, -100, 6 136 0.018 3.82 6.80e-5 Right cuneus (BA 17)
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Condition MNI

coordinates

(x,y,z)

Volume

(mm฀)

Maximum

ALE value

Z
score

P

value

Anatomical location

(Brodmann area)

  66, -22, 6 120 0.017 3.79 7.41e-5 Right superior temporal
gyrus (BA 42)

Prediction Violation*

  -46, 10, 24 616 0.033 5.59 1.12e-8 Left inferior frontal gyrus (BA
9)

  -30, 24, 0 608 0.038 6.19 2.94Ee-
10

Left insula (BA 13)

* Signi�cant activations are set at voxel-level p < 0.05 with the Family-wise error (FWE) correction. **
Signi�cant activations are set at p < 0.0005 uncorrected for multiple comparisons.

2.2.1 Prediction Violation
Two signi�cant clusters were related to the violation of predictions (Fig. 2, red color). The larger cluster
included the left inferior frontal gyrus, while a smaller one was found over the left anterior insular cortex,
partially overlapping with the claustrum.

2.2.2 Prediction Encoding
No cluster was signi�cant for Prediction Encoding at the typically applied, conservative threshold of FWE
p < 0.05. Lowering the threshold to FDR p < 0.01 still did not produce any signi�cant clusters. However, at
an exploratory level, we report the results obtained at a more liberal threshold (Uncorrected, p < 0.0005). At
this threshold, fourteen clusters emerged. These included the right superior and left inferior parietal
lobules, the right superior, right middle and left inferior frontal gyri, the bilateral fusiform gyri and the right
amygdala, and a few clusters with a size inferior to 200 mm³ (including the left amygdala, the left
precuneus and the right cuneus, the right insula and the right superior temporal gyrus).

2.2.3 General Prediction
Overall, the ALE analysis of the whole dataset returned a set of cortical regions in the frontal and parietal
lobes (Fig. 2, green). These include the left inferior frontal gyrus, the insulae bilaterally, the right superior
frontal gyrus, the bilateral inferior parietal lobules, and the left precuneus. 

2.3 Seed-Voxel Correlations Consensus
This technique highlights the regions showing correlated activity with those that were active during the
tasks tapping into predictive processing (see Sect. 5.3). Overall, the results from all the three conditions
(Prediction Encoding, Violation and General Prediction) are remarkably similar, and they involve a bilateral
set of brain regions. Signi�cant peaks are located in the left inferior frontal gyrus, the superior temporal
gyrus bilaterally, the left thalamus, the left hippocampus and the left cerebellum, and signi�cant voxels
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are shown in warm colors. The network emerging from negative correlations is shown in cold colors, and
it includes the right cerebellum (uvula), the left precentral gyrus and the post-central gyri bilaterally, and
the right middle occipital gyrus (Fig. 3; see Table S2 for more details). Finally, the network relative to
Encoding is substantially overlapping with that of the other two conditions, although the map of positive
values appeared to be less extended (especially in the middle cingulate gyrus, the insula and the
cerebellum). This may indicate relatively lower interconnections to areas pertaining error detection and
salience.

Although the SVC Consensus maps indicate regions that are signi�cantly connected to the activation foci
reported in the literature, the relation between these foci and such maps needs to be clari�ed. In fact, on
one hand it is possible that only a few foci are responsible for the connectivity maps. On the other hand,
these maps might show areas that are not reported by the literature (thus are not primarily considered to
be involved in predictive processing), but are systematically connected to the predictive regions, possibly
providing input or output to them. To investigate the relation between the foci and their connectivity, we
overlapped the SVC consensus of the General Prediction condition to the corresponding unthresholded
ALE map. Here, the unthresholded map can be seen as an indicator of all the activated regions in the
literature. We found out that there is a substantial overlap between the two maps (Fig. 4), suggesting that
the activated areas tend to be interconnected and to form a coherent functional network (Cosine
Similarity Index = 0,56). Lastly, to exclude the possibility of bias due to local connectivity, the SVC
Consensus analysis was repeated excluding proximal connections between close areas from the SVC
maps (see Sect. 5.3). The resulting maps were extremely similar to the original SVC consensus maps,
suggesting that activation foci are connected not only to the spatially closer areas, but also to the more
distal ones (Figure S1).

 

2.4 Fail-safe technique
To test the impact of potentially missing data on our results, the fail-safe method 40 has been applied. In
the General Prediction condition, the analysis shows that at least one of the clusters remains signi�cant
up to the infusion of 250% random data (Fig. 5). The analysis of the Prediction Violation dataset
suggests the stability of the data as well (the clusters remain signi�cant up to the inclusion of 425%
random data). In general, both fail-safe tests suggest the robustness of the two clusters that are in
common for the two conditions, i.e. the left IFG/precentral gyrus and the left insula/claustrum. 

2.5 Leave-N-out
This analysis tests whether all the studies in a dataset contribute to the results similarly, or, in other
words, whether a dataset is homogeneous. Figure 6 shows the results from the Leave-n-out analysis. The
y axis indicates the number of papers, while the x axis the energy (1-quadratic error/total N experiments,
see Methods Sect. 5.4). The diagrams show the distribution of energy obtained by removing 3,5,7,9 and
11 articles at each run separately. When removing less than 7 random articles at a time, no important
changes are visible in the distribution. Since 7/39 (removed articles/total) equals to 18% of the included
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experiments, this suggests that the condition of Prediction Encoding is mostly homogeneous. Thus, the
absence of signi�cant convergence may be due to the heterogeneity of the activation coordinates, and is
unlikely to be due to the heterogeneity in the experiments per se. 

3. Discussion
The ALE results show convergence across tasks targeting predictive processing in a set of cortical
regions, both in the Violation and in the General condition. However, we were also unable to detect
convergence in the Encoding condition. This suggests that the encoding of predictions happens across
the brain in a spatially distributed fashion, without involving speci�c areas. As suggested by the results of
the Leave-N-Out procedure, this spatial heterogeneity seems not to be due to the disproportionate
contribution of few outlier studies, rather to the large variability of the localization of foci that
characterize the entire condition. The relatively homogeneous spatial distribution of prediction encoding
activity is not surprising. In fact, there would be no theoretical need for discrete brain regions dedicated to
this step, because expectations about the hidden causes of a sensory input are coded in units located
evenly in speci�c cortical layers 43. Further, this result �ts with the idea, pivotal in PC theorizations 17, that
perhaps the most important function of a perceptual system is producing an error signal when a
mismatch between current representations and sensory input occurs. In this sense, the only signal that
our convergence analysis could detect would thereby be the concerted activity of prediction error units 44.
Additionally, it should be noted that the current spatial resolution capacity of the typical fMRI scanner
does not allow the investigation of the different activity patterns across cortical layers, which would
indeed be more revealing in this context.

Instead, an expected location of convergence that we did not detect is the cerebellum, especially when
analysing the violations of predictions. In fact, this brain structure has been reported in previous works as
an important hub processing the comparison between an internal model and the current sensory input,
and as a region supporting procedural and perceptual learning mechanisms 45–47. However, according to
a recent study 48, there are two main reasons why not many neuroimaging meta-analyses are able to
detect convergence in the cerebellum. First, there would be technical di�culties related to MRI signal
detection from the cerebellum, principally dependent on experiments targeting climbing �bres, which are
poorly coupled to the BOLD signal 48. Second, some experimental paradigms tend to promote rapid
habituation within the area, again eliciting less BOLD signal 48.

Our analyses of the Prediction Violation condition con�rm previous �ndings (see 18,32) as regards the
insula and the IFG, while the involvement of others, such as the striatum and the thalamus, are not
con�rmed. Both the insula and the IFG have been related to the violation of predictions in previous works.
In particular, the role of insular regions in prediction error computation is well-known already, especially in
the interoceptive modality 28,49,50. Thus, it seems that, when considering error signals cross-modally,
these tend to converge in regions that process self-related information. Considering that only a small
number of included studies targeted bodily sensations explicitly, this �nding deserves special attention. A
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tentative interpretation is that, regardless of the nature of the speci�c expectations that are violated in
each task, these tend to produce an error broadly related to the self. The insular cluster also extends to
include the left claustrum, which produces prediction error signals in Pavlovian classical conditioning
paradigms 51. Notably, these involve a component of automatic learning, probably present in the majority
of the tasks included here to a certain extent. The second cluster was located in the IFG, which is involved
in risk aversion 52, and in detecting a mismatch between expectations and decisions 53. Interestingly,
results from a computational study found a correlation between both IFG and insula activity with a
prediction error model during bi-stable perception, which is a paradigm inducing strong violations of
visual expectations 54. Moreover, intrinsic connectivity between the IFG and the insula was predicted by
the degree of intolerance of uncertainty, which indicates their sensitivity to error signals 55. Together,
these �ndings and our results suggest that the insula and the IFG, and their connectivity during prediction
violation across modalities is a worthy avenue for further research.

The General Prediction condition was designed to tap into the general effects of predictive processing,
resulting from the mere fact of performing a task eliciting predictions or prediction errors, more or less
directly. Thus, we expected the brain regions emerging here to be related either to one or the other process,
or to both. First, convergence was found in two larger clusters, one in the inferior frontal gyrus/precentral
gyrus, and the other bilaterally in the insula. Strikingly, both regions also emerged in the analysis of the
general predictive condition in a similarly constructed recent meta-analysis 31, strengthening the
plausibility of this result. In further support of the double role of both the IFG and the insula in PC, activity
in these areas represents the building of an expectation, analysing the conjunction across
somatosensory, visual and auditory stimulus modality 56. However, evidence about the IFG in particular is
somewhat mixed. In fact, not always its activity seems to depend on the predictability of a situation 57.
Moreover, whereas some authors describe it as an area involved in the processing of “expectancy input”
58others report increased activity in the IFG activity when the stimulus probability is low, leading to larger
prediction error signal 59. As regards the anterior insulae, notably these are an important hub of the
salience network 60. This hub is plausibly more activated in surprising situations driving attention, which
also involve an increased gain in error signal computation. The relationship between predictive and
attentional processes is extensively discussed in the following Sect. (4.3). Lastly, the role of precuneus in
the General Prediction condition is more di�cult to relate to existing literature. In general, this structure is
involved in self-related cognition, episodic memory and mental imagery 61. Interestingly, this region was
responsive to deviant stimuli even during sleep 62, which may indicate a selective sensitivity to prediction
error during different states of consciousness. Overall, these studies support our �ndings, and suggest
that the IFG and the insula might be involved both in the encoding and in the violation of predictions.
More evidence on prediction violation than encoding exists in both cases, and the sensitivity of the IFG
(and the less discussed precuneus) to stimulus probability may more strongly depend on speci�c task
characteristics.

The SVCs Consensus analysis was conducted to highlight a set of interconnected regions that tends to
co-activate with those involved in prediction violation and encoding. The resulting network is largely
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similar between conditions, thus here we will only focus on the General Prediction condition. First of all,
the wide overlap between this network and the unthresholded ALE maps indicates that the activated
regions, despite being spatially heterogeneous (as no ALE convergence was found), nevertheless tend to
be strongly interconnected during task execution.

Surprisingly, the maps relative to the Prediction Violation and Prediction Encoding conditions are almost
completely overlapping. This seems to contradict evidence that prediction violation and encoding are
functionally separated, as seen at a cellular 25 and at an infra-laminar level, between cortical layers 22,63.
Our ALE results further support this separation, since the two conditions generated different results.
However, such separation may not exist at the network level. Indeed, the similar spatial extent of the two
maps could simply mean that, during task execution, the regions that are involved in prediction cross-
modally tend to exchange information with the same, broad set of areas. Actually, the map related to
Prediction Encoding shows relatively lower spatial extension in some regions (Figure S2, insula,
cerebellum, and anterior cingulate cortex), all involved in error computation 64,65. Again, this difference in
the overall map extension is in line with the hypothesis of stronger brain activity for error signal
computation, rather than that of prediction encoding.

A core feature of this network is its remarkable similarity to the so-called task-positive network (TPN,
66)The TPN is a set of areas involved in task execution, and is usually divided into three large-scale brain
networks related to salience processing 60 and the dorsal and the ventral attentional networks 67,68.

The fact that the regions which are more involved in prediction are also part of attentional networks is of
key importance. In fact, an ever-increasing amount of evidences suggest that both attention and
prediction support perception. On one hand, attention enhances the processing of relevant information
and regulates the general cortical responsiveness 69–71. On the other hand, prediction allows the brain to
take prior information into account 72 and “anchors” attentional processing, meaning that computing
predictions is necessary to subsequent attention orientation 73. The overlap between our map and the
TPN could be interpreted in several ways. First, despite being distinct processes 74–77, they may share a
common neural territory. Since attention is a mechanism aiding error minimisation, by adjusting the
“volume” of prediction error units 78. Speci�cally, attention adjusts the precision of predictions via
synaptic gain enhancement 79,80, leading to increased error signals. Considering that this network relies
on the original coordinates of brain activations during task performance, and that the BOLD signal
reported therein likely measures prediction errors, it is well possible that both attention to the actual
stimuli and the prediction of future stimuli were just at work simultaneously. Second, although PC has
been extensively reported in sensory areas, the activity of prediction and error computation might
speci�cally involve attentional networks more than other brain regions, when multiple modalities are
considered together. This has never been observed before because, for obvious practical reasons, only a
limited set of modalities are investigated at a time, often in a rather constrained experimental
environment. Finally, a third possibility is that the TPN emerged from our analyses merely for the effect of
the engagement of participants in any attention-demanding task, and the selected contrasts do not re�ect
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predictive processing at all. It is di�cult to rule out this possibility completely, as we did not analyse an
arguably non-predictive control neutral condition (for the role of neutral conditions, see:
https://psyarxiv.com/y7639/). Still, our �ndings are the results of a careful selection of appropriate
neuroimaging contrasts from a large number of original studies, so the discussed overlap with the
canonical attentional networks might be taken as an evidence for some form of relationship between the
two processes. Moreover, this aligns with an increasing corpus of research considering prediction and
attention as dissociable, but strongly interdependent processes (for empirical evidences, see 73,81,82; for
further readings see 83–86).

Another interesting consideration is that, as our predictive network overlapped with the TPN, it appeared
to be negatively correlated with the default mode network (DMN; for example, see Fig. 3, negative values).
In fact, the DMN and the TPN are also considered to be “anticorrelated” 87, and possibly involved in
different forms of cognition. In particular, the DMN typically results as more activated during rest and
mind-wandering 88. Considering recent work suggesting that the DMN creates and updates internal
predictive models about the self 89, and that it is engaged when stimuli are temporally predictable 90, the
striking absence of PC involvement in the DMN is rather unexpected, especially in the Encoding condition.
Moreover, since the DMN is located at the extreme in a continuum of integration and hetero-modal
functioning within the human connectome 91,92, it is even more surprising that it did not result from our
functionally heterogeneous PC-related dataset. A possible reason for its absence could be that, under the
hypothesis that the DMN is responsible for the integration of predictions in former internal models –
acting in a sort of “autopilot mode” 93,94, almost no experimental paradigm, included in the current
analysis, tested this kind of automatic activity. Indeed, given the functional nature of the DMN, the
speci�c impact of prediction on this network is di�cult to test experimentally. Techniques with high
temporal resolution, computational and meta-analytic approaches to functional neuroimaging data can
be valuable tools to investigate the role of the DMN in predictive processing in the future.

One �rst, potential limitation of the current work is that the selection, classi�cation and coding of the
articles was conducted manually by one author only. In order to reduce the risk of errors occurring in
these phases, the coded dataset was, however, cross-checked by another author, independently. Moreover,
a section of notes was included in the database with the aim to make the interpretation and selection
processes more transparent, as suggested by recent guidelines (Müller et al. 2016). Another potential �aw
in our database is caused by the heterogeneity of the de�nition of “prediction” across studies. In fact, the
concepts of prediction, anticipation and expectation are often used interchangeably 95 and how they are
operationalized in each study can potentially lead to confusion with other processes 72,96. Lastly, given
the strong presence of studies employing visual or audio-visual tasks could have also limit the validity of
the current results (see Table S4). However, the absence of early visual areas in both the ALE and the SVC
Consensus results may suggest that the impact of this imbalance is nonetheless limited.

4. Conclusions
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In sum, we brought evidence in favour of the existence of a predictive network, to our knowledge for the
�rst time. First, the ALE convergence analyses suggest that fMRI seems to be more suitable to the
detection of error signals in the investigation on predictive processing. Taken together, these results point
to the presence of a brain network as a possible candidate for the processing of predictions and error
signals across sensory modalities. Against the hypothesis that predictive coding occurs typically in
cortical tissues in the whole brain, it rather seems to be supported by a speci�c, spatially extended
bilateral network, mainly related to attentional processes. Finally, although the separation between error,
weighting and encoding unit is supported by or ALE results and previous works, it may vanish when large-
scale functional connectivity is examined.

5. Methods

5.1 Selection of studies
We searched for publications (Pubmed, https://www.ncbi.nlm.nih.gov/pubmed/) up to January 2019.
Articles were chosen using the keywords “predictive coding” AND “fMRI”, OR “functional magnetic
imaging” OR “functional brain imaging” in the title or in the abstract of the articles. The decision to
choose the only term “predictive coding” instead of a variety of related terms had two purposes: on one
hand, to select only articles explicitly explaining their results under this framework; on the other hand, we
did not include terms as “prediction error”, “expectation” or “Bayesian brain” so that articles describing the
role of expectancy in psychology without referring to PC could be excluded.

In the initial selection stage, the following primary inclusion criteria were applied. We included studies:

a) which employed fMRI; 

b) which provided the peak coordinates of signi�cant activation in stereotactic brain space (MNI, TAL); 

c) which were original experimental works. We excluded reviews or other meta-analytic studies; 

d) which reported whole-brain analysis for the contrasts of interest (i.e., articles which were only based on
a priori Regions of Interests –ROIs analyses were excluded); 

e) which were based on a healthy adult sample; 

f) which were written in English.

Additional, more speci�c criteria for inclusion were the following:

g) the articles had to explicitly support the PC theory, regardless of the sensory modality and the process
investigated (i.e., only studies bringing evidence in favour of the framework were considered); 

h) the articles had to include experimental contrasts which re�ect the violation of a prediction or the
creation, updating or maintenance of a predictive internal model. The �rst is often related to the
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generation of a prediction error signal, for example comparing a deviant event or condition with a regular
one, or �tting a statistical model designed to represent the same effect. The second case, in our study
operationalized in the category of Prediction Encoding, typically included fMRI contrasts between a
learned and an unfamiliar condition/event, or between an expected and an unexpected condition.
Figure 1 shows a �owchart representing the described steps of the selection process. For a detailed list of
the contrasts included in the study and the classi�cation of their re�ected effect, see Table S1 and S2;

To classify the contrasts included in each experiment, we inspected both the nature of the task and the
interpretation of the effects that the authors themselves reported in the articles in the following way. If the
coordinates pertained to a condition where participants saw a deviant stimulus, leading to potential
surprise reaction in a stream of predicted (standard) stimuli and re�ecting prediction errors 18, the
selected coordinates were classi�ed as locations of “prediction violation”. If the coordinates represented a
condition where a repetitive stimulation was applied, leading to statistically-based predictions 33, they
were labelled as locations of “prediction encoding”. Since it is frequent that coordinates related to the
error or the encoding effect are reported in the same experiments from different contrasts, not the
experiments themselves but the single activation coordinates of the given contrast were classi�ed
according to these two categories. For a complete list of the different paradigms or tasks included in
each category see Table S1. Furthermore, this classi�cation not only took the performed task into
account, but it considered also the interpretation of the results that was provided by the authors. For
instance, interpreting a reduced response in some brain areas, related to the repetition of stimuli is often
interpreted as repetition suppression (RS), hence this effect would be included in our Prediction Encoding
category (for a review on how PC may explain RS see 26). Finally, although recently a point has been
made to distinguish the effects of repetition and expectation suppression 34, note that we consider both
of these effects under the category of Prediction Encoding.

5.2 Activation Likelihood Estimation
Activation Likelihood Estimation (ALE) is a meta-analytic technique, which detects areas of convergence
across peak coordinates of signi�cant activations from functional neuroimaging studies 35,36. In short,
the current version of this algorithm models a Gaussian kernel for each activation peak, considering these
as �xed-effects within each study. The width of the kernels accounts for between-subject and between-
lab variations, and it models on the number of participants in each study 35. Then, one spatial uncertainty
map is calculated for each study, unifying all the modelled peaks, where studies are treated as random
effects. Afterwards, in order to test for statistical signi�cance, the algorithm calculates an iterative
comparison between the modelled maps and a null distribution, re�ecting random spatial association of
peaks between studies. Speci�cally, this distribution re�ects the null hypothesis that the activation foci
are randomly distributed in the brain, leading to convergence only by pure chance. Lastly, a correction for
multiple comparisons is applied. We used GingerALE version 3.0 (http://www.brainmap.org/) to perform
the above meta-analysis. The threshold for detecting signi�cant activations was set at voxel-level p < 
0.05, with 1000 permutations with the family-wise error correction method (FWE), and the analyses were
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performed in the MNI152 coordinate space. Coordinates reported in TAL in the original study were
converted using the icbm2tal transform prior to the ALE analysis 37.

5.3 Seed-voxel correlations Consensus
To investigate the connectivity patterns of the areas involved in predictive processing, we performed a
Seed-Voxel Correlations (SVC) Consensus technique, adapted to functional data. This technique was
originally developed by Boes and colleagues 30 to map the connectivity of brain lesions and it consists of
overlapping several SVC maps, to verify if they tend to connect to a set of shared areas. The explicit aim
of this method was to test if the spatial heterogeneity of brain lesion of a given de�cit could be reduced
to a common functional network 38. Similarly, in the present work we aimed to evaluate the spatial
variability of regions associated with predictive processing. Speci�cally, we hypothesized that the diverse
activation foci which were reported in the literature might belong to a single brain network, and thus that
they tend to be connected to each other. To do so, each peak that entered the ALE meta-analysis was
searched in the Neurosynth resting-state database to obtain a functional connectivity map. Neurosynth
(http://www.neurosynth.org) is an online database of functional meta-data which allows to easily obtain
SVC maps calculated on the 1000 subjects of the Brain Genomics Superstruct Project
(https://dataverse.harvard.edu/dataverse/GSP). Each SVC map was then considered as an individual
subject in a second-level analysis. Then, the overlap of those maps was assessed by the means of a one-
sample T-test on SPM12, (http://www.�l.ion.ucl.ac.uk/spm/software/spm12/) with a FWE- corrected
threshold of P < 0.05. Both the positive and the negative contrasts were calculated, thus obtaining a map
related to the shared positive correlations and one related to the negative ones. This analysis was carried
out separately for the datasets of the three conditions (Violation, Encoding and General; for details see
below).

It should be noted that functional connectivity is partly in�uenced by physical closeness, so that spatially
closer voxels tend to be connected more strongly 39. As we worked with a large number of foci, it may be
argued that many of the seeds were close to each other, and thus their maps would display a high degree
of overlap. Therefore, the SVC Consensus results could be biased because of the mere spatial closeness
of a vast proportion of peaks. In other words, it could be that there was a signi�cant overlap not because
the regions are functionally connected, but simply because most of the seeds of connectivity maps were
close to each other. To test this hypothesis, we repeated the SVC Consensus analysis of the General
Prediction condition using only the distant connectivity of each seed, de�ned as all the voxels in each
SVC map that were at least 14 mm³ far from the seed 39. Hence, local connectivity of a seed is the
volume within the radius of 14 mm around it. For this test, all the voxels around the seed in each of the
SVC maps were set to 0, before recalculating the t-test.

5.4 Fail-safe technique
The fail-safe technique 40 allows the veri�cation of the extent to which neuroimaging results resist the
addition of noisy data and, generally, it is an indicator of potential selection bias in the dataset. To
perform this analysis, different ALE maps were computed with data of the General and Violation
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conditions, each time introducing an increasing percentage of randomly generated foci in the analyses, at
the same threshold. Since no signi�cant cluster emerged from the condition of Prediction Encoding at
voxel-level FWE p < 0.05, we did not perform the fail-safe analysis in this case. The results of this
procedure are generally considered robust if the clusters are still present after adding more than 200% of
random data.

5.5 Leave-N-out
The Leave-N-out method is a cross-validation method to test the heterogeneity of a set of data. In the
present study, it was employed on the dataset of the Prediction Encoding condition, to check if the reason
behind the absence of signi�cant clusters could be the particular impact of a study or group of studies in
the meta-analysis. This method gives us the possibility to weight the contribution of each experiment (or
group of experiments) and estimate the presence of “outliers”, i.e. studies which contribute to the result
disproportionately, driving the outcome to a certain direction 41. This analysis has been performed by
calculating the ALE results each time omitting a growing number of ‘N’ experiments with reinsertion after
each run. Each ‘leave N-out’ iteration has been repeated 10 times to calculate the standard error. The
calculation of 1 - quadratic error divided by the total number of experiments that are removed from the
analysis and reinserted at each step is a measure called “energy”. This value can be interpreted as a
measure of how much the ALE results are affected by the removal of the articles, indicating how much
the dataset is homogeneous. In our dataset, the level of energy that seemed to be associated with a
change in its distribution is 0.6, thus the procedure at each Leave-N stopped when this threshold was
reached.

5.6 Overlap between the unthresholded ALE map and the
SVC Consensus map
In order to test the overall robustness of the network, obtained with the SVC Consensus technique, we
created the overlap of the General Prediction Consensus and the unthresholded General ALE maps. An
overlap between these maps shows brain regions that are functionally connected to each other. We tested
the degree of overlap both by visually analysing the map and by calculating the Cosine Similarity Index
(SIM). This is a widely used metric to assess the similarity between two vectors, which is unsensitive to
their magnitude. It is calculated as the dot product of two vectors (in our case, the two maps) divided by
the product of the two vectors' magnitudes. Then, the similarity between the two maps was calculated
with the following formula:
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Where Ai and Bi represent the two maps vector, and n the number of voxels. This index ranges from 0 to 1,
where 1 indicates, in our case, a complete similarity.
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Figures

Figure 1

Flowchart representing the process of search and selection of the eligible articles for the meta-analysis
and the SVC Consensus.
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Figure 2

Activation Likelihood Estimation results at a FWE corrected voxel-level threshold (p<0.05). Green:
condition of General Prediction; Red: condition of Prediction Violation. Two clusters are in common
between the two conditions, one in the left anterior insula/claustrum and the other in the left inferior
frontal gyrus/precentral gyrus. The General Prediction condition also shows clusters in the right insula,
right and left inferior parietal lobule, one in the cuneus and one in the right middle frontal gyrus.
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Figure 3

Surface, medial and cerebellar mapping of the SVC consensus analysis revealing the “predictive network”
for the condition of General Prediction. Note that this and the Prediction Violation areas overlap entirely.
The network that shows the Prediction Encoding areas is presented in the Supplementary Materials
(Figure S2). Warm colors represent positive t-values (range: 4.37-14.17), cold colors are for negative t-
values (range: 4.37-19.61), shown in arbitrary units.
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Figure 4

Surface map showing the overlap between the results of the unthresholded ALE (blue) and the SVC
Consensus (red) analyses, for General Prediction. The overlapping regions are presented in purple
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Figure 5

Coronal sections showing the results of the fail-safe analysis. Upper row: General Prediction; lower row:
Prediction Violation. The color scales represent gradually increasing added random data in percentage.
The warmer the color of the pixels, the more random noise is tolerated by the voxels.
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Figure 6

Diagram relative to the results of the Leave-N-Out analysis on the articles included in the Prediction
Encoding condition. In each section, the y-axis shows the number of articles, and the x-axis shows the
energy (1-quadratic error/total N experiments). To calculate the standard error, each run with removal and
reinsertion of ‘N’ articles was repeated 10 times. Since removing up to 7 articles at a time (18% or the total
dataset) still did not introduce important changes in the distribution of energy, we conclude that the
dataset is homogeneous. See Section 5.6 for more details.

Supplementary Files

This is a list of supplementary �les associated with this preprint. Click to download.

FiccoPredictiveNetworkSupplementaryInformation.pdf

https://assets.researchsquare.com/files/rs-296410/v1/0655facecb4a4b48558f0df0.pdf

