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Abstract. Growth curve models (GCMs), with their ability to directly
investigate within-subject change over time and between-subject differ-
ences in change for longitudinal data, are widely used in social and be-
havioral sciences. While GCMs are typically studied with the normal
distribution assumption, empirical data often violate the normality as-
sumption in applications. Failure to account for the deviation from nor-
mality in data distribution may lead to unreliable model estimation and
misleading statistical inferences. A robust GCM based on conditional me-
dians was recently proposed and outperformed traditional growth curve
modeling when outliers were present resulting in nonnormality. How-
ever, this robust approach was shown to perform less satisfactorily when
leverage observations existed. In this work, we propose a robust dou-
ble medians growth curve modeling approach (DOME GCM) to thor-
oughly disentangle the influence of data contamination on model estima-
tion and inferences, where two conditional medians are employed for the
distributions of the within-subject measurement errors and of random ef-
fects, respectively. Model estimation and inferences are conducted in the
Bayesian framework, and Laplace distributions are used to convert the
optimization problem of median estimation into a problem of obtaining
the maximum likelihood estimator for a transformed model. A Monte
Carlo simulation study has been conducted to evaluate the numerical
performance of the proposed approach, and showed that the proposed
approach yields more accurate and efficient parameter estimates when
data contain outliers or leverage observations. The application of the
developed robust approach is illustrated using a real dataset from the
Virginia Cognitive Aging Project to study the change of memory ability.

Keywords: Robust methods · Growth curve modeling · Conditional me-
dians · Laplace distribution
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1 Introduction

Longitudinal data track the same subjects across different time points. In con-
trast to cross-sectional data, longitudinal data allow for measuring the within-
subject change over time, capturing the duration of events, and recording the
timing of various events. Growth curve modeling is one of the most frequently
used analytical techniques for longitudinal data analysis (e.g., McArdle & Nes-
selroade, 2014), due to its abilities to examine within-subject change over time,
and to investigate into differences of the change patterns among individuals.

In growth curve modeling, estimation methods that are based on the normal-
ity assumption in data distribution are widely accepted, and have been incorpo-
rated in many statistical software packages. When data all come from a normal
population, those methods are able to provide consistent and efficient param-
eter estimators. However, practical data are often contaminated with outlying
observations in social and behavioral sciences, so that the normality assumption
is violated in real data analysis. For example, Micceri (1989) investigated 440
large-scale data sets in psychology and found that almost all of them were signif-
icantly nonnormal. When the normality assumption does not hold, traditional
growth curve modeling which focuses on conditional means of the outcome vari-
ables may lead to inefficient and even biased model estimation (e.g., Yuan &
Bentler, 2001).

To disentangle the influence of data contamination, the cause of the con-
tamination needs to be understood. Reflected in growth curve modeling, data
contamination may be caused by extreme scores in either random effects or
within-subject measurement errors. The former is referred to as leverage obser-
vations and the latter is called outliers (Tong & Zhang, 2017). It is necessary to
distinguish these two types of outlying observations since their influences on the
estimation of growth curve models (GCMs) are different. Although techniques
to detect leverage observations and outliers have been developed (e.g., Tong &
Zhang, 2017), it has been shown that outlying observation detection in longitu-
dinal data is a challenging problem whose sensitivity and specificity are difficult
to guarantee. Even if the leverage observations and outliers are correctly identi-
fied, simply deleting them could result in decreased statistical efficiency (Lange,
Little, & Taylor, 1989).

To address the issue of data contamination, various robust estimation meth-
ods have been proposed to produce reliable analysis in the presence of data
nonnormality. Some of them rely on making distributional assumptions that are
more reasonable to the dataset, such as using Student’s t distributions or mix-
ture of normal distributions (Lu & Zhang, 2014; Reich, Bondell, & J., 2010;
Tong & Zhang, 2012). However, those methods are sensitive to the choice of the
assumed distribution, which is difficult to specifiy a priori and verify afterwards,
especially for small sized data. Another genre of robust methods assign weights
to observations according to their distances from the center of the majority of
data so that extreme cases are downweighted (e.g., Pendergast & Broffitt, 1985;
Singer & Sen, 1986; Yuan & Bentler, 1998a; Zhong & Yuan, 2010). Those weight-
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ing methods may have limitations under certain conditions, e.g., in general, they
do not take the leverage observations into consideration (Zhong & Yuan, 2011).

Median-based regression and its generalization, quantile regression (Koenker,
2004), have emerged as another genre of robust methods. Such methods are dis-
tribution free, and have been extended to many topics such as penalized regres-
sion and time series models. Although the median-based methods are still not
widely applied to longitudinal research (Geraci, 2014), they are getting more and
more attention (e.g., Cho, Hong, & Kim, 2016; Galvao & Poirier, 2019; Huang,
2016; Smith, Fuentes, Gordon-Larsen, & Reich, 2015; Zhang, Huang, Wang,
Chen, & Langland-Orban, 2019). Recently a robust growth curve modeling ap-
proach using conditional medians was proposed (Tong, Zhang, & Zhou, 2021).
Although this robust approach outperformed traditional conditional mean-based
growth curve modeling in the presence of outliers, it still yielded biased param-
eter estimates when leverage observations exist.

It is crucial to have a robust estimator for growth curve models when data are
contaminated with both outliers and leverage observations in longitudinal stud-
ies. To obtain such an estimator, we develop a DOuble MEdian-based structure
(DOME) to mitigate potential distortion in both distributions of random effects
and of within-subject measurement errors in growth curve modeling. When ran-
dom effects and measurement errors are symmetrically distributed, the estimates
based on the developed method will be very close to the ones obtained by tra-
ditional growth curve modeling estimation method. It is expected that DOME
growth curve modeling is more robust against nonnormal data than traditional
conditional mean-based method, and also outperforms the median-based growth
curve modeling in Tong et al. (2021). Bayesian methods are used for DOME
GCM estimation because they can conveniently infer parameters that do not
have symmetric distributions (e.g., variance parameters), incorporate prior in-
formation to make parameter estimates more efficient, naturally accommodate
missing data without requiring new techniques, and are powerful to deal with
complex model structures.

In sum, the purpose of this work is to develop a robust Bayesian growth
curve modeling approach that is effective to analyze longitudinal data that are
contaminated with both outliers and leverage observations in general. In the fol-
lowing sections, the idea of the proposed robust approach, DOME GCM, will be
introduced, Monte Carlo simulation studies are conducted to evaluate the nu-
merical performance of the developed method and compare its performance with
those of traditional growth curve modeling and the median-based method devel-
oped by Tong et al. (2021), and an empirical example is provided to illustrate
the application of DOME GCM to study the change of memory scores using a
real dataset from the Virginia Cognitive Aging Project (Salthouse, 2014, 2018).
We conclude this article with discussions and suggestions on future research
directions.
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2 DOME Growth Curve Modeling

In longitudinal studies, the same subjects are measured repeatedly over time.
Suppose that a longitudinal study is conducted on a cohort of individuals, in-
dexed by i = 1, ..., N . Let yi = (yi1, ..., yiTi

)⊺ be a Ti × 1 vector, where yit is the
observation on individual i at time t for t = 1, ..., Ti with Ti being the maximum
follow-up time for this individual. A typical form of the unconditional GCMs
can be formulated as

yi = Xibi + ϵi,

bi = β + ui,
(1)

where Xi is a Ti × q factor loading matrix recording the time of measurements.
It can be different across individuals when they are not measured at a common
set of time. The vector bi is a q×1 vector of random effects, and ϵi is a vector of
within-subject measurement errors. The vector of random effects bi varies across
individuals, and β represents the fixed effects for the population. The residual
vector ui represents the random component of bi. Without loss of generality, we
assume the number of measurement occasions to be the same for all individuals,
i.e., Ti ≡ T .

Traditional GCMs typically assume that both ϵi and ui follow multivariate
normal (MN) distributions,

ϵi ∼ MNT (0,Φ),

ui ∼ MNq(0,Σ),

where the subscripts of MN distributions imply the dimensionalities of the
random vectors. The covariance matrix Φ is usually assumed to be diagonal
Φ = σ2

ϵI, indicating that measurement errors have equal variance and are inde-
pendent across different time points.

Traditional GCMs focus on modeling the conditional means of the outcome
variables, E(yi|bi) = Xibi, and estimating the common growth parameters,
E(bi) = β.

However, it is well known that mean is sensitive to outlying observations.
Tong et al. (2021) proposed a median-based GCM where the conditional medi-
ans of the outcome variables Q0.5(yi|bi), are examined instead of the conditional
means E(yi|bi). Their numerical results showed that this approach is only robust
against outliers, but not against leverage observations. This is as expected be-
cause an outlier is caused by an extreme score in ϵi and a leverage observation is
caused by an extreme score in ui. The robust approach in Tong et al. (2021) only
models the conditional medians of the outcome variables at the level-one model.
Although it seems to be a natural extension to model conditional medians of
the level-two model as well to address the influence of leverage observations, the
extension is not straightforward because within-subject measurement errors ϵi
were assumed to be independent across different time points and can be modeled
as univariate random variables, whereas ui has to be specified as a multivariate
variable with dependent components.
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In this paper, we tackle the complicated multivariate problem and propose
a robust method by adopting two median structures as alternatives, Q0.5(yi|bi)
replacing E(yi|bi) and Q0.5(bi) replacing E(bi). We call this new model a double
medians growth curve model (DOME GCM).

2.1 DOME GCM specification

As discussed previously, outlying observations in longitudinal data can be either
outliers as a result of extreme measurement errors, or leverage observations due
to extreme scores in random effects (Tong & Zhang, 2017). The proposed DOME
GCM aims to handle the presence of data nonnormality due to both types of
outlying observations.

DOME growth curve modeling is an extension of traditional mean-based
method,

yi = Xibi + ϵi,

bi = β + ui,

Q0.5(ϵi|ui) = 0,

Q0.5(ui) = 0,

(2)

where medians for vector are taken entry-wise. In this multilevel modeling frame-
work, at the first level, the relationship between Xi and the outcome variable yi

is based on the conditional median function Q0.5(ϵi|ui) = 0. At the second level,
random effect bi varies around the median β, the fixed effects for the population.
The random residuals ui = [ui1, ui2, . . . , uiq]

⊺ are the random components of bi.
Since no distributional assumption is imposed on ϵi or ui, the proposed DOME
growth curve model is distribution-free.

The multilevel structure in Equation (2) can be expressed compactly as

yit = x⊺
itβ + x⊺

itui + ϵit, (3)

where Q0.5(ϵit|ui) = 0 and Q0.5(ui) = 0. Here xit is the transpose of the tth row
of Xi. The population regression coefficient β is the main parameter of interest
in the DOME GCM model.

2.2 Estimation of the DOME GCM

Recall that in traditional regression based on conditional means, we minimize the
sum of squared residuals to estimate model parameters. Similarly, in a median-
based regression,

yi = x⊺
i β + ϵi, Q0.5(ϵ) = 0,

estimation is carried out by minimizing the sum of absolute residuals,

β̂0.5 = argmin
β

N∑
i=1

|yi − x⊺
i β|. (4)
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However, this minimization involves the sum of absolute values, which is not dif-
ferentiable at zero, meaning that explicit solutions to the minimization problem
are unavailable. Moreover, when more than one median constraints are intro-
duced, as in the case of the DOME GCM model in Equations (2), defining
an objective function similar to Equation (4) becomes difficult, for the reason
that the objective function should be marginalized and involves integration. The
computational challenge can be overcome by introducing Laplace distributions
to make a connection between the estimation of DOME GCM in Equations (2)
and the maximum likelihood principle (Geraci, 2014).

The Laplace distribution has a relationship with the l1-norm loss function
described in Koenker and Bassett (1978). This relationship is best demonstrated
by the probability density function for a unidimensional Laplace distribution
X ∼ Laplace(µ, σ),

p(x|µ, σ) = 1

2σ
exp

{
− 1

σ
|x− µ|

}
,

where µ ∈ R is the location parameter and σ ∈ R+ is the scale parameter. The
mean and variance of the distribution are given by

E(X) = µ,

V ar(X) = 2σ2,

respectively. Laplace distribution is also known as the standard double exponen-
tial distribution.

The univariate Laplace distribution can be extended to the multivariate
Laplace distribution (Kozubowski & Podgorski, 2000). The marginal distribu-
tions of a multivariate Laplace distribution variable are unidimensional Laplace
distributions. A multivariate Laplace distribution is parameterized by location µ
and covariance matrix Σ, denoted as Y ∼ Laplace(µ,Σ). For a n-dimensional
Laplace distribution, if µ = 0, the probability density function of the multivari-
ate Laplace distribution is given by

p(y|µ,Σ) =
2

(2π)n/2|Σ|0.5

(
y⊺Σ−1y

2

)v/2

Kv(2

√
y⊺Σ−1y),

where v = 2−n
2 and Kv is the modified Bessel function of the second kind.

We employ Laplace distributions to convert the problem of estimating DOME
GCM into a problem of obtaining the maximum likelihood estimator (MLE) for
a transformed model. For the purpose of demonstration, we focus on a linear
GCM in this paper, so that the random effect is two-dimensional

bi =

[
Li

Si

]
,

where Li is the initial level and Si is the rate of change over time for the ith indi-
vidual, respectively. The transformed model for the DOME GCM in Equations
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(2) is

yit = x⊺
itbi + ϵit,

bi = β + ui,

ϵit ∼ Laplace(0, σϵ),

ui ∼ Laplace(0,Σ).

(5)

Note that the median structures are applied for the measurement errors using
a univariate Laplace distribution, and for the random effects using a bivariate
Laplace distribution. Since the median of a Laplace distribution is the location
parameter µ, it can be verified that

Q0.5(ϵit|ui) = 0 and Q0.5(ui) = 0,

so that parameter estimation of DOME GCM in Equations (2) can be obtained
by estimating the transformed model in Equations (5), for which the likelihood
function for T observations across N subjects is

L(β, σ;y) =

∫
. . .

∫ ( N∏
i=1

p(yi|bi,β, σϵ)× p(bi|β, Σ)

)
db1 . . . dbN

∝
∫

. . .

∫ ( N∏
i=1

exp

{
− 1

σ2
ϵ

T∑
t=1

|yit − x⊺
i bi|

}
p(bi|β, Σ)

)
db1 . . . dbN ,

(6)

where p(yi|bi,β, σϵ) is the conditional probability density function of yi and
p(bi|β, Σ) is the probability density function for multivariate Laplace distribu-
tion.

The solution of the maximum likelihood problem is difficult to derive an-
alytically, or numerically under the frequentist framework, as bi’s need to be
integrated out. Alternatively, the estimation can be carried out naturally under
the Bayesian framework, as Bayesian methods with data augmentation tech-
niques are flexible and computationally more powerful in such settings. Monte
Carlo Markov Chain (MCMC) algorithms can be applied here, using empirical
integration to approximate the exact integration. The basic idea of Bayesian
methods is to obtain the posterior distributions of model parameters based on
the likelihood function and the priors. Since the Laplace distribution can be con-
structed using a normal distribution and an exponential distribution, the data
augmentation technique is used here to simplify the procedure to obtain poste-
rior distributions. Specifically, to simulate a Laplace distribution with location
µ and covariance matrix Σ, we can generate, independently, two augmented
variables W ∼ exp(1) and X ∼ N(0,Σ). As a result, the variable

y =
√
WX +Wµ

follows the Laplace(µ,Σ) distribution. The augmented representation provides
an efficient method to draw MCMC from the posterior distribution. Particularly,
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if conjugate priors are used, we can derive conditional posterior distribution for
the model parameters. Gibbs sampling then can be utilized, where samples of pa-
rameters are drawn iteratively from the conditional posterior distribution. This
way we obtain the empirical marginal distribution of model parameters, with
which model estimation and statistical inference can be performed. Noninforma-
tive conjugate priors are used in our study because of their advantage in easy
Gibbs sampling derivation. Other priors, especially informative priors when pre-
vious information is available, can also be used and may be more advantageous,
on potentially reducing convergence issue or decreasing computation time (e.g.,
Depaoli, Liu, & Marvin, 2021).

3 Performance Evaluation of DOME GCM through a
Simulation Study

In this section, a simulation study is conducted to evaluate the numerical per-
formance of the robust Bayesian DOME growth curve modeling in analyzing
contaminated data with outliers and/or leverage observations, which correspond
to extreme scores in measurement errors and random effects, respectively. Com-
parisons are drawn among the developed DOME GCM, traditional growth curve
modeling based on conditional means, as well as the robust Bayesian method in
Tong et al. (2021) where the median structure is only applied in the first level
of GCM, referred to as the median-based method hereafter.

To directly compare with the study in Tong et al. (2021), we follow their sim-
ulation design and focus on the linear GCM as discussed in the previous section.
The number of measurement occasions is set at 5, the population parameter
values for the fixed effects are set as β = (βL, βS)

⊺ = (6.2, 1.5)⊺, the variance of
latent intercept σ2

L = 0.5, the variance of latent slope σ2
S = 0.1, the covariance

between intercept and slope is 0, and the measurement error variance σ2
ϵ = 0.1.

In the simulation, we vary the sample size (N = 200, 500), the percentage of
outlying observations (10%, 25%), and the types of outlying observations (out-
liers and leverage observations). Given a specific sample size and the percentage
of outlying observations r%, we first generate normally distributed measure-
ment errors ϵi ∼ MN5(0, σ

2
ϵI) and random effects ui ∼ MN2(0, Φ). Then r%

of subjects are randomly selected to be contaminated by outlying observations
in three scenarios; all selected subjects are contaminated by outliers, all selected
subjects are contaminated by leverage observations, and the selected subjects
are randomly contaminated with outliers or leverage observations with equal
probabilities.

To generate outliers, we randomly select 2 out of the 5 observations for one
subject, and replace them by data generated fromN(0, 0.1). To generate leverage
observations, the random slopes of the contaminated subjects are set to follow
the distribution N(−3, 0.1), instead of N(1.5, 0.1) for the population.

For each data condition, a total of 500 datasets are generated. Each dataset
is analyzed using the three methods. Traditional growth curve modeling with
normality assumptions is conducted under the structural equation modeling
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framework, using the ”lavaan” package in R (Rosseel, 2012). The median-based
method and the proposed DOME growth curve modeling are implemented with
the ”rstan” package (Stan Development Team, 2019). The Markov chain length
is set to be 15,000, and the burn-in period is 7,500. A set of commonly used
priors are specified for model parameters. A multivariate normal distribution
prior is assumed for β. The measurement error variance σ2

ϵ is given an inverse
gamma prior, and inverse Wishart distribution is assumed for the covariance of
random effect Σ. More details can be found in the R code for implementation
in the appendix.

3.1 Evaluation criteria

We obtain parameter estimation based on the three methods. Estimation bias,
empirical standard error (ESE), average standard error (ASE), and mean squared
error (MSE) for each parameter are calculated and used to evaluate the numerical
performances of those methods. Let θ denote a parameter and also its population
value, and let θ̂k and SEk denote its estimate and the corresponding estimated
standard error in the kth replication. Then the parameter estimate of θ, θ̂, is
calculated as the average of parameter estimates of 500 simulation replications

θ̂ =
1

500

500∑
k=1

θ̂k.

The bias of θ̂ is bias(θ̂) = θ̂ − θ. The empirical standard error is defined by

ESE(θ̂) =

√√√√ 1

499

500∑
k=1

(θ̂k − θ̂)2.

The average standard error is

ASE(θ̂) =
1

500

500∑
k=1

SEk.

When standard errors are estimated accurately in model estimation by the de-
veloped method, ASE should be very close to ESE. The mean squared error
is calculated by MSE(θ̂) = bias2 + ESE2. A smaller MSE indicates a more
accurate and precise estimator.

When Bayesian methods are applied, Geweke tests (Geweke, 1992) are used
to assess the convergence of Markov chains for all simulation replications. After
the burn-in period, if sample parameter values are drawn from the stationary
distribution of the chain, the means of the first and last parts of the Markov
chain (by convention the first 10% and the last 50 %) should be equal, and
the Geweke statistic asymptotically follows a standard normal distribution. We
report the convergence percentage of the 500 replications by Geweke test, and the
summarized model estimation results are based only on converged replications.
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In practice, if the MCMC procedure does not converge, we may adopt longer
Markov chains, or choose different starting values or prior distributions to yield
convergent Markov chains.

The model estimation time, in the number of seconds, is reported for the
two Bayesian methods. The median estimation time (MET) is the median of the
estimation time for the converged replications.

3.2 Results

When there are no outlying observations, traditional mean-based growth curve
modeling and the two robust median based growth curve modeling approaches
perform equally well.

Tables 1 - 2 summarize the parameter estimation results for the overall la-
tent slopes (βS) and the variance of latent slopes (σ2

S), respectively, with the
sample size N = 200. The overall latent slope and variance of latent slopes are
chosen as the parameters of interest, based on the presumption that substan-
tive researchers using growth curve models are most often interested in assessing
changes over time. Results for other model parameters and for N = 500 have
similar patterns and are given in the supplementary file: https://github.com/
CynthiaXinTong/DOME. When the sample size is 200, Geweke tests suggest that
at least 91% replications converged. We summarize the estimation results based
on those converged Markov chains.

When data contain outliers but no leverage observation exists, our proposed
DOME growth curve modeling yields parameter estimates that are very similar
to those from the conditional median-based method, and are less biased than
those from traditional mean-based method. Both MSEs and standard errors from
the two robust Bayesian methods are smaller than those from the traditional
mean growth curve model, indicating that the proposed method is on par with
conditional median-based method, and is more efficient than traditional growth
curve modeling. This pattern is more salient when the proportion of outliers
increases. Note that for DOME growth curve modeling, standard errors of σ2

S

are underestimated, as ASEs are smaller than ESEs. This may be due to the
autocorrelations of the Markov chains, and could potentially be overcome by
thinning the Markov chains. In sum, the DOME growth curve modeling is more
robust against outliers than traditional mean-based growth curve modeling. It
provides less biased and more efficient parameter estimators. The conditional
median-based method performs similarly as the DOME growth curve modeling
on handling outliers.

When data contain leverage observations but no outliers, the advantage of
the DOME GCM becomes apparent. In this situation, both traditional mean-
based method and the conditional median-based growth curve modeling break
down, yielding similar parameter estimates. But the estimates by DOME GCM
are much less biased. For example, as shown in Table 1, when the proportion of
leverage observations is 10%, the estimation bias for βS is -0.45 for both tradi-
tional mean-based method and the robust median-based method. DOME growth
curve modeling can substantially reduce the bias to -0.06. This is mainly because

https://github.com/CynthiaXinTong/DOME
https://github.com/CynthiaXinTong/DOME
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Table 1. Estimation results for βS under different types of data contamination when
N = 200

Type r% Method Est Bias MSE ASE ESE CR MET

Outlier

10%
Mean 1.33 -0.17 29.5 4.62 3.07 NA
Median 1.48 -0.02 1.21 2.50 2.42 94.2 1149
DOME 1.48 -0.02 1.28 2.77 2.65 96 1551

25%
Mean 1.06 -0.44 194.6 6.30 3.62 NA
Median 1.44 -0.06 4.73 3.19 2.78 94.4 740
DOME 1.43 -0.07 5.17 3.35 3.05 95.8 1362

Leverage

10%
Mean 1.05 -0.45 202 9.82 2.26 NA
Median 1.05 -0.45 204 8.39 2.64 94.6 2583
DOME 1.44 -0.06 5.32 4.21 3.17 93.4 2412

25%
Mean 0.37 -1.13 1269 14.0 2.35 NA
Median 0.37 -1.13 1270 10.8 3.02 95.6 2963
DOME 1.29 -0.21 47.1 7.35 4.09 94.6 2674

50-50 Mix

10%
Mean 1.19 -0.31 98.0 7.80 4.27 NA
Median 1.21 -0.29 86.2 7.05 5.40 95.0 2200
DOME 1.45 -0.05 3.00 3.65 2.92 97.0 2072

25%
Mean 0.72 -0.78 611 11.1 5.67 NA
Median 0.77 -0.73 545 9.69 7.56 94.6 1819
DOME 1.36 -0.14 21.3 2.31 3.37 93.6 1936

Note. Est = Estimate; CR = convergence rate; MET = median estimation time in
seconds; 50-50 Mix: data contain outliers and leverage observations with equal proba-
bilities. MSE was multiplied by 1000 and ASE and ESE were multiplied by 100.

Table 2. Estimation results for σ2
S under different types of data contamination when

N = 200

Type r% Method Est Bias MSE ASE ESE CR MET

Outlier

10%
Mean 0.25 0.15 26.36 4.71 5.60 NA
Median 0.07 -0.03 1.02 1.31 1.26 93.8 982
DOME 0.16 0.06 8.98 3.21 6.92 95.4 1263

25%
Mean 0.39 0.29 88.57 8.74 7.04 NA
Median 0.06 -0.04 1.66 1.53 1.07 94.8 619.28
DOME 0.13 0.03 1.51 4.68 11.97 93.6 1154

Leverage

10%
Mean 1.92 1.82 3326 19.32 6.33 NA
Median 1.93 1.83 3350 19.27 6.68 94.6 2253
DOME 0.96 0.86 750 13.78 4.43 94.0 2087

25%
Mean 3.90 3.80 14440 39.08 9.90 NA
Median 3.91 3.81 14503 38.74 11.46 94.8 2792
DOME 3.64 3.55 12592 51.48 13.78 96.0 2279

50-50 Mix

10%
Mean 1.13 1.13 1098.89 12.30 20.06 NA
Median 0.11 0.01 10.32 34.41 10.13 91.0 2196
DOME 0.18 0.08 41.08 57.74 18.41 93.0 2071

25%
Mean 2.26 2.16 4737.37 216.05 26.35 NA
Median 0.11 0.01 15.65 1.05 12.47 92.6 1819
DOME 0.51 0.41 277.74 41.60 32.35 94.4 1968

Note. Same as Table 1
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the conditional median-based method only applies medians in the first level of
the growth curve model, whereas leverage observations are extreme values in the
second level. Note that standard errors in the DOME growth curve modeling is
overestimated as ASEs are larger than ESEs. However, ASEs estimated by the
DOME GCM method are still closer to their corresponding ESEs than the ASEs
estimated by the other two methods.

When data contain both outliers and leverage observations, DOME growth
curve modeling still performs much better than the mean-based method and
the median-based method in terms of estimation bias and efficiency. In general,
when data are suspected to be contaminated, DOME GCM should be a preferred
method than the traditional GCM and conditional median-based GCM.

It is probably counter-intuitive that the MET is shorter when the proportion
of outliers is higher. This is consistent with the findings in Tong et al. (2021).
In MCMC sampling, Markov chains typically have trouble exploring high curva-
ture regions. A small proportion of outliers (e.g., 10%) creates a steep and high
curvature region for the chain to enter, and thus the computing time tends to
be longer. As the proportion increases, the curvature becomes smoother and the
MCMC procedure is faster.

4 A Real Data Application

To demonstrate its application, we apply the proposed DOME GCM to a sub-
set of data from the Virginia Cognitive Aging Project (VCAP; Salthouse 2014,
2018). VCAP, starting in 2001, is currently one of the largest active longitu-
dinal studies of aging involving comprehensive cognitive assessments in adults
ranging from 18 to 99 years of age. Over 5,000 adults have participated in the
three-session (6-8 hours) assessment at least once, with about 2,500 partici-
pating at least twice, and about 1300 participating three or more times. The
subset we used contains observations on 338 participants, who made 5 visits to
the assessment sessions. The change of memory scores over time is studied in
this illustrative example. Traditional mean-based method and the conditional
median-based method in Tong et al. (2021) are also applied to fit the dataset
for comparison.

The trajectory plot for the memory scores (Figure 1) suggests a linear growth
curve structure for the development of memory abilities. In the Bayesian esti-
mation of DOME GCM, we assign a normal prior for the location vector β,
an inverse-gamma distribution for the measurement error variance σ2

ϵ , and an
inverse-Wishart for the random effect covariance Σ. For both the conditional
median-based GCM and DOME GCM estimation, the total length of Markov
chains is set as 15,000, with the first 7,500 draws being the burn-in period.
Geweke statistics suggest that the Markov chains are stable after the burn-in
period. The trace plots (Figures 2- 3) also suggest the convergence of the Markov
chains.

The parameter estimates using the three methods are summarized in Table
3, and they differ a lot. The estimated rate of change β̂S is 0.021 based on the
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Figure 1. The trajectory plot for memory scores. Each lines is formed by connecting
the consecutive measurements on the same individual.

traditional mean-based method. The estimates coming from the robust meth-
ods are much smaller, 0.003 from the conditional median-based approach, and
0.005 from the DOME growth curve modeling. Also, the 95% credible interval
of β̂S from traditional mean-based method is [0.001, 0.042], suggesting the mem-
ory ability for the investigated population (median age of the group is 55) has
a significant increasing trend. In contrast, the intervals produced by the two
robust methods all cover zero, which is more reasonable and interpretable as
most participants in the dataset are elderly. The parameter estimates from the
two robust methods are similar. Based on our simulation results, when there is
no leverage observation in the dataset, conditional median-based method and
DOME growth curve modeling are expected to give similar results. That is most
likely the case in this illustrative example. The difference between traditional
method and the robust methods is the result of the presence of outliers in the
dataset. As suggested in our simulation study, we should generally trust the re-
sults from DOME. The results from DOME show that the initial median memory
ability is about 0.203. The credible intervals indicate that there are significant
between-subject differences in both initial ability and the change over time. The
covariance between the two random effects is -0.009, and is significantly differ-
ent from 0, meaning that a higher initial level is associated with a slower rate of
change in general.
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Figure 2. MCMC trace plot for the DOME growth curve modeling. Each line is formed
by connecting consecutive draws of the same parameter. Only the draws after burn-in
period of MCMC is used.
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Figure 3. MCMC trace plot for the conditional median-based method. Each line is
formed by connecting consecutive draws of the same parameter. Only the draws after
burn-in period of MCMC is used.
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Table 3. The estimates of memory ability real data application.

Estimate SE CI Geweke Statistic

Mean GCM

βL 0.186 0.037 [0.114, 0.258]
βS 0.021 0.011 [0.001, 0.042]
σ2
L 0.374 0.036 [0.304, 0.444]

σLS -0.014 0.008 [-0.031, 0.002]
σ2
S 0.016 0.004 [0.001, 0.023]

Median GCM

βL 0.217 0.039 [0.139, 0.289] -0.337
βS 0.003 0.007 [-0.010, 0.017] 0.709
σ2
L 0.089 0.023 [0.052, 0.140] -0.707

σLS -0.009 0.003 [-0.016, -0.003] 1.001
σ2
S 0.003 0.001 [0.002, 0.005] -0.603

Double Median GCM

βL 0.203 0.038 [0.127, 0.278] 0.108
βS 0.005 0.007 [-0.008, 0.018] 0.465
σ2
L 0.093 0.028 [0.050, 0.158] -0.790

σLS -0.009 0.004 [-0.019, -0.003] 0.287
σ2
S 0.004 0.001 [0.002, 0.006] -0.573

5 Discussion

Growth curve modeling based on conditional medians has been developed to
disentangle the influence of data contamination. In this paper, we developed
a DOME GCM, a double medians based structure, to handle both outliers
and leverage observations in longitudinal data. A simulation study was con-
ducted to compare the numerical performances of traditional mean-based growth
curve modeling, a median-based growth curve modeling, as well as the proposed
DOME growth curve modeling. Results showed that when data were normally
distributed, the three methods performed equally well. When data contain out-
liers but not leverage observations, the median-based method and DOME growth
curve modeling yielded similar parameter estimates, which were less biased and
more efficient than those from traditional growth curve modeling. When lever-
age observations existed, DOME growth curve modeling outperformed the other
two approaches, providing much less biased parameter estimates. We therefore
recommend to use DOME growth curve modeling in general as it can effectively
handle both leverage observations and outliers.

As pointed out in Tong and Zhang (2017), outliers and leverage observations
are equally likely to exist in samples in practice, but they affect model estimation
differently. Although various methods have been developed to identify outliers
and leverage observations separately, the accuracy and effectiveness of those
methods were not guaranteed, especially in longitudinal studies. Tong and Zhang
(2017) suggested that a final detection decision should rely on a combination
of multiple methods. Our work in this paper indirectly provided an approach
to imply whether data contain leverage observations or not, by comparing the
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estimation results from the median-based growth curve modeling and the DOME
growth curve modeling. If their results greatly deviate from each other, we can
conclude that leverage observations exist.

Note that estimations of the random effects parameters (e.g., σ2
S) are not as

good as those for the fixed effects (e.g., βS) in general. This is consistent with the
literature; namely, although the median has a higher breakdown point of 50%,
it can be less efficient than the mean under some conditions. Thus, we need to
carefully examine the estimated random effects parameters to determine whether
there are significant between-subject variations in the within-subject change.
One alternative approach is to extend the current approach based on conditional
medians to approaches based on conditional quantiles. Such extension is natural
with the assistance of asymmetric Laplace distributions, and we would be able
to investigate the change pattern at different quantile levels inferring between-
subject differences without investigating the random effects parameters.

In this study, we evaluated the performance of DOME growth curve modeling
when data were contaminated. We want to point out that the data distribution
nonnormality may be due to data contamination or nonnormal population dis-
tributions. Although we expect that the developed DOME GCM should still
perform well when population distributions are nonnormal, it worths systemat-
ically assessing the effectiveness of DOME GCM and compare it with existing
robust methods in future research.

Missing data in longitudinal data are inevitable, yet the conditional median
based approaches have not been applied to analyze data with missing values.
Since Bayesian methods were used for the DOME GCM estimation, multiple
imputations can be automatically implemented and missing values can be ac-
commodated relatively easily. We will extend the developed method to handle
ignorable and non-ignorable missing data in future research.

Acknowledgment

This paper is based upon work supported by the National Science Foundation
under grant no. SES-1951038.

References

Cho, H., Hong, H. G., & Kim, M.-O. (2016). Efficient quantile marginal regres-
sion for longitudinal data with dropouts. Biostatistics, 17 , 561–575. doi:
https://doi.org/10.1093/biostatistics/kxw007

Depaoli, S., Liu, H., & Marvin, L. (2021). Parameter specification in bayesian
cfa: An exploration of multivariate and separation strategy priors. Struc-
tural Equation Modeling: A Multidisciplinary Journal , 0 (0), 1-17. doi:
https://doi.org/10.1080/10705511.2021.1894154

Galvao, A. F., & Poirier, A. (2019). Quantile regression ran-
dom effects. Annals of Econometrics and Statistics, 134 ,

https://doi.org/10.1093/biostatistics/kxw007
https://doi.org/10.1080/10705511.2021.1894154


18 T. Zhang et al.

109–148. (DOI: 10.15609/annaeconstat2009.134.0109) doi:
https://doi.org/10.15609/annaeconstat2009.134.0109

Geraci, M. (2014). Linear quantile mixed models: the lqmm package for
laplace quantile regression. Journal of Statistical Software, 57 , DOI:
10.18637/jss.v057.i13. doi: https://doi.org/10.18637/jss.v057.i13

Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to cal-
culating posterior moments. In J. M. Bernado, J. O. Berger, A. P. Dawid,
& A. F. M. Smith (Eds.), Bayesian statistics 4 (pp. 169–193). Oxford,
UK: Clarendon Press.

Huang, Y. (2016). Quantile regression-based Bayesian semiparametric
mixed-effects modelsfor longitudinal data with non-normal, missing and
mismeasured covariate. Journal ofStatistical Computation and Simu-
lation, 86 , 1183–1202. (DOI: 10.1080/00949655.2015.1057732) doi:
https://doi.org/10.1080/00949655.2015.1057732

Koenker, R. (2004). Quantile regression for longitudinal data.
Journal of Multivariate Data Analysis, 91 , 74–89. doi:
https://doi.org/10.1016/j.jmva.2004.05.006

Koenker, R., & Bassett, G. (1978). Regression quantiles. Econometrica, 46 ,
33–50. doi: https://doi.org/10.2307/1913643

Kozubowski, T. J., & Podgorski, K. (2000). A multivariate and asymmetric gen-
eralization of laplace distribution. Computational Statistics, 15 , 531–540.
(DOI: 10.1007/PL00022717) doi: https://doi.org/10.1007/pl00022717

Lange, K. L., Little, R. J. A., & Taylor, J. M. G. (1989). Robust statisti-
cal modeling uisng the t distribution. Journal of the Americal Statistical
Association, 84 (408), 881–896. doi: https://doi.org/10.2307/2290063

Lu, Z., & Zhang, Z. (2014). Robust growth mixture models with non-ignorable
missingness: Models, estimation, selection, and application. computational
statistics and data analysis. Computational Statistics and Data Analysis,
71 , 220–240. doi: https://doi.org/10.1016/j.csda.2013.07.036

McArdle, J. J., & Nesselroade, J. R. (2014). Longitudinal data analysis us-
ing structural equation models. American Psychological Association. doi:
https://doi.org/10.1037/14440-000

Micceri, T. (1989). The unicorn, the normal curve, and other im-
probable creatures. Psychological Bulletin, 105 (1), 156–166. doi:
https://doi.org/10.1037/0033-2909.105.1.156

Pendergast, J. F., & Broffitt, J. D. (1985). Robust estimation in growth curve
models. Communications in Statistics: Theory and Methods, 14 , 1919–
1939. doi: https://doi.org/10.1080/03610928508829021

Reich, B. J., Bondell, H. D., & J., W. H. (2010). Flexible bayesian quantile
regression for independent and clustered data. Biostatistics, 11 , 337–352.
doi: https://doi.org/10.1093/biostatistics/kxp049

Rosseel, Y. (2012). lavaan: An R package for structural equation model-
ing. Journal of Statistical Software, 48 , 1–36. Retrieved from http://

www.jstatsoft.org/v48/i02/

Salthouse, T. A. (2014). Correlates of cognitive change. Jour-

https://doi.org/10.15609/annaeconstat2009.134.0109
https://doi.org/10.18637/jss.v057.i13
https://doi.org/10.1080/00949655.2015.1057732
https://doi.org/10.1016/j.jmva.2004.05.006
https://doi.org/10.2307/1913643
https://doi.org/10.1007/pl00022717
https://doi.org/10.2307/2290063
https://doi.org/10.1016/j.csda.2013.07.036
https://doi.org/10.1037/14440-000
https://doi.org/10.1037/0033-2909.105.1.156
https://doi.org/10.1080/03610928508829021
https://doi.org/10.1093/biostatistics/kxp049
http://www.jstatsoft.org/v48/i02/
http://www.jstatsoft.org/v48/i02/


Bayesian DOME GCM 19

nal of Experimental Psychology: General , 143 , 1026–1048. doi:
https://doi.org/10.1037/a0034847

Salthouse, T. A. (2018). Why is cognitive change more nega-
tive with increased age? Neuropsychology , 32 , 110–120. doi:
https://doi.org/10.1037/neu0000397

Singer, J. M., & Sen, P. K. (1986). M-methods in growth curve analy-
sis. Journal of Statistical Planning and Inference, 13 , 251–261. doi:
https://doi.org/10.1016/0378-3758(86)90137-0

Smith, L. B., Fuentes, M., Gordon-Larsen, P., & Reich, B. J. (2015). Quantile
regression for mixed models with an application to examine blood pressure
trends in china. The Annals of Applied Statistics, 9 , 1226–1246. doi:
https://doi.org/10.1214/15-aoas841

Stan Development Team. (2019). RStan: the R interface to Stan. Retrieved
from http://mc-stan.org/ (R package version 2.19.2)

Tong, X., Zhang, T., & Zhou, J. (2021). Robust bayesian growth curve modelling
using conditional medians. British Journal of Mathematical and Statistical
Psychology , 74 (2), 286-312. doi: https://doi.org/10.1111/bmsp.12216

Tong, X., & Zhang, Z. (2012). Diagnostics of robust growth curve modeling using
student’s t distribution. Multivariate Behavioral Research, 47 , 493–518.
doi: https://doi.org/10.1080/00273171.2012.692614

Tong, X., & Zhang, Z. (2017). Outlying observation diagnostics in growth
curve modeling. Multivariate Behavioral Research, 52 , 768–788. doi:
https://doi.org/10.1080/00273171.2017.1374824

Yuan, K.-H., & Bentler, P. M. (1998a). Structural equation modeling
with robust covariances. Sociological Methodology , 28 , 363–396. doi:
https://doi.org/10.1111/0081-1750.00052

Yuan, K.-H., & Bentler, P. M. (2001). Effect of outliers on esti-
mators and tests in covariance structure analysis. British Jour-
nal of Mathematical and Statistical Psychology , 54 , 161–175. doi:
https://doi.org/10.1348/000711001159366

Zhang, H., Huang, Y., Wang, W., Chen, H., & Langland-Orban, B. (2019).
Bayesian quantile regression-based partially linear mixed-effects joint mod-
els for longitudinal data with multiple features. Statistical Methods in
Medical Research, 28 , 569–588. (DOI: 10.1177/0962280217730852) doi:
https://doi.org/10.1177/0962280217730852

Zhong, X., & Yuan, K.-H. (2010). Weights. In N. J. Salkind (Ed.), Encyclopedia
of research design (pp. 1617–1620). Thousand Oaks, CA: Sage.

Zhong, X., & Yuan, K.-H. (2011). Bias and efficiency in struc-
tural equation modeling: Maximum likelihood versus robust
methods. Multivariate Behavioral Research, 46 , 229–265. doi:
https://doi.org/10.1080/00273171.2011.558736

https://doi.org/10.1037/a0034847
https://doi.org/10.1037/neu0000397
https://doi.org/10.1016/0378-3758(86)90137-0
https://doi.org/10.1214/15-aoas841
http://mc-stan.org/
https://doi.org/10.1111/bmsp.12216
https://doi.org/10.1080/00273171.2012.692614
https://doi.org/10.1080/00273171.2017.1374824
https://doi.org/10.1111/0081-1750.00052
https://doi.org/10.1348/000711001159366
https://doi.org/10.1177/0962280217730852
https://doi.org/10.1080/00273171.2011.558736


20 T. Zhang et al.

Appendix: Implementation

The “rstan” package (Stan Development Team, 2019) is used in our study. Below
we provide the annotated R code for the real data analysis.

DOME<-"

data{

int<lower=0> N;

int<lower=0> T;

vector[N*T] X;

vector[N*T] y;

// fixed inv_gamma parameter, prior of epsilon variance

real shape;

real inv_scale;

// beta prior information, the global slope&intercept

vector[2] beta_0;

cov_matrix[2] Var_beta0;

// hyper parameter’s value for Var_b

cov_matrix[2] Var_b0;

}

transformed data{

int len;

len = N*T;

}

parameters{

real<lower=0> sigma; //epsilon variance

vector<lower=0>[len] v; // data augmentation, represent

// Laplace epsilon in expo

vector<lower=0>[N] vb; // data augmentation, MLD b

vector[2] beta;

vector[2] b_star[N];

cov_matrix[2] Var_b;

cov_matrix[2] Var_beta;

}

transformed parameters{

vector[len] mu;

vector[len] sigma_y;

vector[N] vb_root;
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vb_root = sqrt(vb);

for(i in 1:N){

for(j in 1:T){

mu[T*(i-1)+j] = beta[1] + b_star[i,1]*vb_root[i] +

(beta[2] + b_star[i, 2]*vb_root[i]) * X[T*(i-1)+j];

}

}

sigma_y = sqrt(sigma*v);

}

model{

// model

y ~ normal(mu, sigma_y);

// data augmentation

sigma ~ inv_gamma(shape, inv_scale);

v ~ exponential(1);

vb ~ exponential(1);

// priors

beta ~ multi_normal(beta_0, Var_beta);

// b_star * sqrt(vb) is b, written this way to vectorize

b_star ~ multi_normal([0, 0], Var_b);

Var_beta ~ inv_wishart(3, Var_beta0);

Var_b ~ inv_wishart(3, Var_b0);

}

"

#load VCAP data and prepare intial values for MCMC

y<-as.vector(y)

X<-as.vector(time)

N<-length(y)/5

lm_est<-lm(y~X)

beta_0<-c(lm_est$coefficients[1],lm_est$coefficients[2])

Var_beta0<-matrix(c(0.5,0,0,0.1),ncol = 2)

Var_b0<-matrix(c(0.5,0,0,0.1),ncol = 2)

dat<-list(N=N, T=T, y=y, X=X, beta_0=beta_0, shape=0.1,

inv_scale=0.1, Var_beta0=Var_beta0, Var_b0=Var_b0)

v_initial<-rep(1,N*T)

vb_initial<-rep(1,N)

b_initial<-matrix(rep(0, N*2), N, 2)

intial<-list(list(sigma=runif(1,0.5,2), beta=beta_0,

b=b_initial, v=v_initial, vb=vb_initial,
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Var_beta=Var_beta0, Var_b=Var_b0))

#fit the DOME model using rstan package

fit_DOME<-stan(model_code=double_quantile, model_name="DOME",

init=intial, pars=c("beta","Var_b"), data=dat, iter=15000,

chains=1)

summary(fit_DOME)$summary

//check convergence via geweke test

content<-extract(fit_double_median)

geweke.diag(content$beta[,1])$z

geweke.diag(content$beta[,2])$z

geweke.diag(content$Var_b[, 1, 1])$z

geweke.diag(content$Var_b[, 1, 2])$z

geweke.diag(content$Var_b[, 2, 2])$z

#draw traceplot for MCMC, serving as reference for convergence

color_scheme_set(’mix-blue-red’)

mcmc_trace(fit_DOME,

pars = c("beta[1]","beta[2]", "Var_b[1,1]", "Var_b[1,2]",

"Var_b[2,2]"), facet_args = list(ncol = 1,

strip.position = "left"), iter1 = 7500)
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