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Abstract

Background: The ocean microbiota modulates global biogeochemical cycles and changes in its configuration may
have large-scale consequences. Yet, the underlying ecological mechanisms structuring it are unclear. Here, we
investigate how fundamental ecological mechanisms (selection, dispersal and ecological drift) shape the smallest
members of the tropical and subtropical surface-ocean microbiota: prokaryotes and minute eukaryotes
(picoeukaryotes). Furthermore, we investigate the agents exerting abiotic selection on this assemblage as well as
the spatial patterns emerging from the action of ecological mechanisms. To explore this, we analysed the
composition of surface-ocean prokaryotic and picoeukaryotic communities using DNA-sequence data (16S- and
18S-rRNA genes) collected during the circumglobal expeditions Malaspina-2010 and TARA-Oceans.

Results: We found that the two main components of the tropical and subtropical surface-ocean microbiota,
prokaryotes and picoeukaryotes, appear to be structured by different ecological mechanisms. Picoeukaryotic
communities were predominantly structured by dispersal-limitation, while prokaryotic counterparts appeared to be
shaped by the combined action of dispersal-limitation, selection and drift. Temperature-driven selection appeared
as a major factor, out of a few selected factors, influencing species co-occurrence networks in prokaryotes but not
in picoeukaryotes, indicating that association patterns may contribute to understand ocean microbiota structure
and response to selection. Other measured abiotic variables seemed to have limited selective effects on community
structure in the tropical and subtropical ocean. Picoeukaryotes displayed a higher spatial differentiation between
communities and a higher distance decay when compared to prokaryotes, consistent with a scenario of higher
dispersal limitation in the former after considering environmental heterogeneity. Lastly, random dynamics or drift
seemed to have a more important role in structuring prokaryotic communities than picoeukaryotic counterparts.
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Conclusions: The differential action of ecological mechanisms seems to cause contrasting biogeography, in the
tropical and subtropical ocean, among the smallest surface plankton, prokaryotes and picoeukaryotes. This suggests
that the idiosyncrasy of the main constituents of the ocean microbiota should be considered in order to
understand its current and future configuration, which is especially relevant in a context of global change, where
the reaction of surface ocean plankton to temperature increase is still unclear.

Keywords: Ocean, Plankton, Microbiota, Picoeukaryotes, Prokaryotes, Community structure, Ecological processes,
Selection, Dispersal, Drift

Background
The surface ocean microbiota is a pivotal underpinning of

global biogeochemical cycles [1, 2]. The smallest ocean

microbes, the picoplankton, have a key role in the global

carbon cycle, being responsible for an important fraction

of the total atmospheric carbon and nitrogen fixation in

the ocean [3–5], which supports ≈ 46% of the global pri-

mary productivity [6]. Oceanic picoplankton plays a fun-

damental role in processing organic matter by recycling

nutrients and carbon to support additional production as

well as by channelling organic carbon to upper trophic

levels through food webs [5, 7, 8]. The ocean picoplankton

includes prokaryotes (both bacteria and archaea) and tiny

unicellular eukaryotes (hereafter picoeukaryotes), which

feature fundamental differences in terms of cellular struc-

ture, feeding habits, metabolic diversity, growth rates and

behaviour [9]. Even though marine picoeukaryotes and

prokaryotes are usually investigated separately, they are in-

timately connected through biogeochemical and food web

networks [10–12].

The underlying ecological mechanisms determining

the biogeography of prokaryotes and picoeukaryotes in

the global ocean are unclear [13, 14]. In particular, we

do not know whether these crucial components of the

ocean microbiota are structured by the action of the

same or different ecological processes. Comprehending

such processes is fundamental, as their differential action

can produce changes in the ocean microbiota compos-

ition that could impact global ecosystem function [15–

17]. A recent ecological synthesis explains the structure

of communities and the emergence of biogeography as a

consequence of the action of four main processes: selec-

tion, dispersal, ecological drift and speciation [18]. Selec-

tion involves deterministic reproductive differences

among individuals from different or the same species as

a response to biotic or abiotic conditions. Selection can

act in two opposite directions; it can constrain (homoge-

neous selection) or promote (heterogeneous selection) the

divergence of communities [19]. Dispersal is the move-

ment of organisms across space, and rates can be high

(homogenising dispersal), moderate, or low (dispersal

limitation) [19]. Dispersal limitation occurs when species

are absent from suitable habitats because potential

colonizers are too far away [20], and the significance of

dispersal limitation increases as geographic scale in-

creases [21]. Ecological drift (hereafter drift) in a local

community refers to random changes in species’ relative

abundances derived from stochastic birth, death, off-

spring production, immigration and emigration [18].

The action of drift in a metacommunity, that is, local

communities that are connected via dispersal of multiple

species [22], may lead to neutral dynamics [21], where

random dispersal is the main mechanism of community

assembly. Finally, speciation is the evolution of new spe-

cies [18], and it will not be considered hereafter as it is

expected to have a small impact in the turnover of com-

munities that are connected via dispersal [23], being also

difficult to measure this ecological process in the wild.

The action of the previous ecological processes is typ-

ically manifested as different taxonomic or phylogenetic

patterns of community turnover, that is, β-diversity. At

the moment, there are several estimators of β-diversity

which capture different aspects of community turnover

[24]. Most of these indices consider taxonomic or phylo-

genetic aspects of communities, but not species-

association patterns, which can also manifest the action

of ecological processes. For example, selection exerted

by an environmental variable can drive species co-

occurrences generating groups of highly associated spe-

cies or modules in association networks that correspond

with specific environmental conditions [25]. Different

members of these modules may be more abundant in

specific regions of the ocean, contributing to increase β-

diversity estimates between these regions when based on

standard compositional or phylogenetic β-diversity met-

rics. Yet, β-diversity estimates based on association-

aware metrics may point to higher similarity between

these regions, as taxa belong to the same modules. Fur-

thermore, modules may display correlations with envir-

onmental heterogeneity. Thus, association aware metrics

of β-diversity may allow unveiling community patterns

and their relationships with environmental variables (i.e.

selection), which would be missed by standard ap-

proaches [26]. So far, most studies investigating the

structure of the ocean microbiota have not considered

species associations in their analyses of β-diversity.
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The differential action of selection, dispersal and drift

may generate different microbial assemblages that could

feature diverse metabolisms and ecologies [16, 17]. Mod-

erate or high selection together with moderate dispersal

rates may couple environmental heterogeneity with

combinations of species, leading to a spatial pattern

known as species sorting [27]. In contrast, high or low

levels of dispersal may decouple environmental hetero-

geneity (i.e. selection) from the composition of species

assemblages. High dispersal rates may maintain popula-

tions in habitats to which they are maladapted [16, 22].

Inversely, low dispersal rates may promote microbial as-

semblages that become more different as the geographic

distance between them increases (distance decay). If en-

vironmental heterogeneity and geographic distance co-

vary, then distance decay could reflect both selection

and dispersal limitation [28]. Drift is expected to cause

important random effects in local community compos-

ition in cases where selection is weak and populations

are small [15, 29].

Here, we investigate the mechanisms that shape the

smallest members of the surface-ocean microbiota by

using DNA-sequence data collected in two of the largest

circumglobal oceanographic expeditions to date, Mala-

spina 2010 [30] and TARA Oceans [31]. Specifically, we

ask: What is the relative importance of selection, disper-

sal and drift in structuring the sunlit ocean microbiota?

Do these processes act similarly on main components of

this microbiota (prokaryotes and picoeukaryotes)? What

are the main agents that exert abiotic selection? Do spe-

cies association networks reflect the action of selection

in the upper ocean microbiota? What are the main

spatial-structure patterns that emerge due to the action

of selection, dispersal and drift?

Results
Quantifying the mechanisms that structure the surface

ocean picoplankton

We analysed 16S and 18S rRNA-genes from prokaryotes

and picoeukaryotes in 120 globally distributed tropical and

subtropical stations sampled during the Malaspina 2010

expedition [30] (Fig. 1a; Figure S1, Additional file 1). TARA

Oceans data were not included in these analyses as the type

of generated DNA fragments could not be used for phylo-

genetic reconstructions (see details in ‘Methods’ section).

Operational taxonomic units were delineated at 99% simi-

larity (OTUs-99%) and as unique sequence variants (OTU-

s-ASVs, the maximum resolution for the 18S and 16S rRNA-

gene). Analyses using both, OTUs-99% and OTUs-ASVs indi-

cated that dispersal limitation was the dominant factor

structuring picoeukaryotic communities, explaining ≈ 76–

67% of community turnover, while this process had a lower

importance in prokaryotes (≈ 35–25%; Fig. 1b). Note that

percentage refers to the percentage of pairs of communities

that appear to be driven by dispersal limitation. In contrast,

homogenising dispersal had a very limited role in the struc-

turing of the tropical and subtropical upper-ocean micro-

biota (< 3% for both picoeukaryotes and prokaryotes). Drift

had a limited role in the structuring of picoeukaryotic com-

munities as indicated by both OTUs-99% and OTUs-ASVs,

representing ≈ 21–6% of community turnover (Fig. 1b). In

contrast, drift appeared as a relevant factor structuring pro-

karyotic communities, explaining ≈ 44–31% of the commu-

nity turnover according to OTUs-99% and OTUs-ASVs (Fig.

1b). The role of selection was higher in prokaryotes com-

pared to picoeukaryotes according to both OTUs-99% and

OTUs-ASVs, explaining ≈ 34–27% of the turnover of pro-

karyotic communities, and ≈ 17–11% of that in picoeukar-

yotes (Fig. 1b). Heterogeneous selection had a relatively

higher importance in structuring picoeukaryotes as com-

pared to prokaryotes (≈ 16–7% vs. ≈ 9–4%, respectively). In-

stead, homogeneous selection appeared more important in

structuring prokaryotic (≈ 24–23%) than picoeukaryotic (≈

1–4%) communities (Fig. 1b).

Our quantifications indicated different roles of eco-

logical processes in structuring communities of marine

prokaryotes and picoeukaryotes populating the tropical

and subtropical surface-ocean (Fig. 1b). We then aimed

at confirming these results using other more traditional

approaches. In these analyses, considering Malaspina

data, we used OTUs-99%, given that these likely corres-

pond to well-defined lineages, while OTUs-ASVs may re-

flect, in some cases, intraspecific variation [32]. We

found moderate correlations between picoeukaryotic and

prokaryotic β-diversity (Bray-Curtis: ρ = 0.58, gUniFrac:

ρ = 0.61, p = 0.01, Mantel tests; Figure S2, Additional file

2). Given that rare species tend to occupy less sites than

more abundant ones [33], communities featuring differ-

ent proportions of abundant or rare species may display

different spatial turnover. We found that picoeukaryotes

had proportionally more regionally rare (i.e. mean abun-

dances across all samples < 0.001%) species than pro-

karyotes (71% vs. 48% respectively) (Table S1, Additional

file 3). This is consistent with the observation that

picoeukaryotes had more restricted species distributions

(i.e. occurring in < 20% of the stations) than prokaryotes

(95% vs. 88% of the species respectively) (Figure S3,

Additional file 4, Table S2, Additional file 5).

Selection acting on the microbiota

We investigated the agents exerting abiotic selection on

the tropical and subtropical surface-ocean microbiota by

analysing β-diversity together with the environmental

variables included in the Meta-119 Malaspina dataset

(temperature (°C), conductivity (S m−1), fluorescence,

salinity and dissolved oxygen (mL L−1)). We used differ-

ent indices that capture distinct facets of β-diversity

(Bray-Curtis, TINAw, PINAw, gUniFrac; see ‘Methods’
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section). Water temperature was the most important

driver of selection on prokaryotes (Fig. 2), ranging be-

tween 15.7 and 29.3 °C, with a mean of 24.5 °C and a

standard deviation of 3.2 °C across the whole Meta-119

Malaspina dataset (Fig. 1a). Furthermore, water

temperature appeared to affect prokaryotic association

networks, given that TINAw [26] explained ≈ 50% of

community variance (ADONIS R2) (Fig. 2), while other

used β-diversity indices that do not consider species as-

sociations explained considerably lower proportions (Fig.

2). In contrast, temperature had limited effects on picoeu-

karyotic community turnover (Fig. 2). Analyses using both

the Malaspina and TARA Oceans datasets indicated stron-

ger positive correlations between TINAw and water-

temperature differences in prokaryotes (Mantel r = 0.8–0.5,

p < 0.01) than in picoeukaryotes [Mantel r = 0.3, p < 0.05]

(Fig. 3). In particular, TARA Oceans samples displayed a

higher correlation with water temperature than Mala-

spina samples (Fig. 3). Overall, TINAw results indicate

that locations with similar temperatures include

Fig. 1 Ecological mechanisms shaping the tropical and subtropical surface-ocean picoplankton. a Position of the 120 stations included in this work
that were sampled as part of the Malaspina-2010 expedition (green dots) in the tropical and subtropical ocean. A snapshot of the global sea surface
temperature, a main environmental driver affecting microbial distributions, is shown as a general representation of the temperature gradients in the
surface ocean (as inferred using the ‘optimum interpolation sea surface temperature’ dataset from the NOAA corresponding to the 17 of March of
2018). Note that temperatures measured in situ were used in all analyses, not the ones displayed here. b Percentage of the community turnover
associated to different ecological processes in prokaryotes and picoeukaryotes in the tropical and subtropical upper ocean as calculated using
OTUs-99% and OTUs-ASVs. Note that percentage refers to the percentage of pairs of communities that appear to be driven by a given process
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prokaryotic species that tend to co-occur, with this pattern

disappearing as the temperature difference between sta-

tions increases. The previous pattern was either weak or

non-existent in microbial eukaryotes (Fig. 3).

We expanded the exploration of the role of abiotic selec-

tion on microbiota structuring by analysing a larger number

of environmental variables (total 17) that were available for

only 57 globally distributed Malaspina stations (see details in

Supplementary Methods, Additional file 6; Figure S4, Add-

itional file 7). Results supported the importance of

temperature-driven selection for prokaryotic community

structuring (Figure S5, Additional file 8) and indicated that

fluorescence (a proxy for Chlorophyll a concentration) ex-

plained 31% of PINAw-based prokaryotic community vari-

ance (ADONIS R2), being non-significant for picoeukaryotes

(Figure S5, Additional file 8). The remaining tested abiotic

variables explained a minor fraction of community variance,

suggesting that abiotic selection, at the whole ocean-

microbiota level, operates via few agents, mainly temperature,

although we cannot rule out that other unmeasured abiotic

variables may also be exerting selection.

The different correlations between temperature and β-

diversity as measured by TINAw in prokaryotes and

picoeukaryotes suggest that they may feature different

species association networks. We found that prokaryotes

sampled in both Malaspina and TARA Oceans were more

associated between themselves than protists (Figure S6,

Additional file 9; Table S3, Additional file 10; Table S4,

Additional file 11; Table S5, Additional file 12). Further-

more, the prokaryotic networks were more modular (in

terms of cliques) than the picoeukaryotic counterparts

(Table S3, Additional file 10), which may reflect to certain

extent, temperature-driven selection [25].

Given that selection exerted by variables that lack

phylogenetic signal, typically biotic variables, could in-

flate estimates of dispersal limitation, we have checked

whether the high dispersal limitation we estimated for

picoeukaryotes could reflect zooplankton grazing. For

that, we have analysed globally distributed surface TARA

Oceans stations for which we could estimate both the

community composition of picoeukaryotes (here defined

as the 0.8–5 μm size-fraction; 36 or 38 stations) as well

as that of microzooplankton (20–180 μm size-fraction;

36 stations) or mesozooplankton (180–2,000 μm size-

fraction; 38 stations) based on 18S-rRNA genes [34].

Analyses considering abiotic (total 6, see Supplementary

Methods, Additional file 6) and biotic (estimated zoo-

plankton abundance) variables indicated that micro- and

mesozooplankton had a minor influence on picoeukar-

yotic community structure (≈ 5% of the variance ex-

plained, ADONIS R2). In addition, the correlation

between picoeukaryotic and zooplankton β-diversity was

either weak (microzooplankton, ρ = 0.34) or absent

(mesozooplankton) [p < 0.01, Mantel tests]. Thus, zoo-

plankton grazing does not appear to influence β-

diversity in picoeukaryotes.

Fig. 2 Main variables influencing the structure of the surface-ocean microbiota as captured by different β-diversity metrics. Percentage of
variance in picoeukaryotic and prokaryotic community composition (ADONIS R2) explained by water temperature and Longhurst Provinces when
using different β-diversity metrics. Figure based on the Malaspina Meta-119 dataset (see ‘Methods’ section). TINAw TINA weighted, gUniFrac
generalized Unifrac, PINAw PINA weighted, N.S. non-significant. Note that TINAw, which considers species association networks, captures a
significantly higher proportion of community variance associated to temperature than Bray-Curtis, a compositional index, in prokaryotes
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Selection acting on single species

The previous analyses investigated how selection may oper-

ate on the entire assemblage of species, without considering

the different responses to selection that are expected in in-

dividual species. We therefore evaluated the potential ac-

tion of selection on single species by determining their

individual correlations with multiple abiotic environmental

variables using the maximal information coefficient (MIC).

In the Malaspina dataset (Fig. 1a), temperature was the

variable with the highest number of associated prokaryotic

species (1.7%), representing ≈ 17% of the 16S rRNA gene-

sequence abundance, while picoeukaryotic species displayed

limited associations with temperature (≈ 0.3% of the species

representing ≈ 5% of the 18S rRNA gene-sequence

Fig. 3 Temperature-driven selection seems to affect species association networks in prokaryotes but not in pico-/nano-eukaryotes. Differences in
community composition (as 1-[TINA-weighted] = TINAw dissimilarities) vs. temperature differences (as Euclidean distances based on dimensionless
z-scores) for both small unicellular eukaryotes and prokaryotes sampled during the Malaspina and TARA Oceans expeditions. Note that, in contrast
to other indices, TINAw considers species-association patterns (i.e. co-occurrences and co-exclusions ) when estimating β-diversity [26]. NB: While
only picoeukaryotes were included in Malaspina (cell sizes < 3 μm), TARA Oceans data included pico- and nano-eukaryotes (cell sizes < 5 μm).
Pico- and nanoeukaryotes from both expeditions (left panels) displayed low or no correlations between TINAw distances and temperature
differences (Mantel test results included in the panels). On the contrary, prokaryotes (right panels) displayed high to moderate correlations
between TINAw distances and temperature differences. These differences in the correlations are likely due to the wider temperature ranges
covered by TARA Oceans compared to Malaspina (see Discussion). The regression line is shown in red (Malaspina microbial eukaryotes N.S.,
Malaspina Prokaryotes R2 = 0.3, TARA Oceans microbial eukaryotes R2 = 0.1, TARA Oceans Prokaryotes R2 = 0.7; p < 0.05). The maps at the bottom
indicate the surface stations from the expeditions Malaspina (119 stations for both prokaryotes and picoeukaryotes) and TARA Oceans (63 stations
for prokaryotes and 40 stations for small unicellular eukaryotes) that were used to calculate TINAw
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abundance) (Figure S7, Additional file 13). Picoeukaryotic

and prokaryotic species were also associated with oxygen,

conductivity and salinity (Figure S7, Additional file 13),

which covary with temperature. The remaining variables

displayed limited associations with individual prokaryotic

or picoeukaryotic species (Figure S7, Additional file 13),

thus agreeing with our previous results suggesting that abi-

otic selection on the tropical and subtropical surface-ocean

microbiota operates via few variables, with a dominant role

for temperature among prokaryotes. Overall, prokaryotes

featured proportionally more individual-species associations

with environmental parameters than picoeukaryotes (Figure

S7, Additional file 13), suggesting that environmental het-

erogeneity in the tropical and subtropical surface-ocean has

a stronger effect on prokaryotic assemblages than on

picoeukaryotic counterparts. Analyses of TARA Oceans

data supported this by indicating that prokaryotic species

were associated predominantly with temperature and oxy-

gen in the upper global ocean, while unicellular eukaryotes

had weak associations to multiple variables (Table S6, Add-

itional file 14).

Dispersal

Abiotic environmental conditions in adjacent stations

over the trajectory of the Malaspina cruise, typically

separated by 250–500 km, in the tropical and sub-

tropical ocean (Fig. 1a) are generally comparable [35].

Therefore, compositional differences between pairs of

neighbouring communities could manifest the differen-

tial capability of distinct microbial assemblages to dis-

perse. Following these premises, we analysed the change

in picoeukaryotic and prokaryotic community compos-

ition along the trajectory of the Malaspina cruise by

comparing each community to the one sampled immedi-

ately before in a sequential manner (i.e. sequential β-

diversity) (Fig. 4a–c). Both picoeukaryotic and prokaryotic

communities displayed variable amounts of sequential β-

diversity (Fig. 4a, b), although picoeukaryotes featured, on

average, a higher sequential β-diversity than prokaryotes

(Fig. 4c). This agrees with the overall mean β-diversity,

which was significantly higher for picoeukaryotes than for

prokaryotes (Figure S8, Additional file 15). Tests by sub-

sampling the number of picoeukaryotic OTUs-99% to the

Fig. 4 Picoeukaryotic communities display a higher spatial differentiation than prokaryotic counterparts in the tropical-subtropical surface-ocean.
a–c Sequential change in community composition across space (sequential β-diversity). Communities were sampled along the Malaspina

expedition (a, b black arrows), and the composition of each community was compared against its immediate predecessor. In panels a, b, the size
of each bubble represents the Bray-Curtis dissimilarity between a given community and the community sampled previously. Blue squares in
panels a, b represent the stations where β-diversity displayed abrupt changes (Bray-Curtis values > 0.8 for picoeukaryotes and > 0.7 for
prokaryotes). Abrupt changes coincided in a total of 11 out of 14 stations for both picoeukaryotes and prokaryotes, while one station displayed
marked changes only for picoeukaryotes and two only for prokaryotes. Panel c summarizes the sequential Bray-Curtis values for prokaryotes and
picoeukaryotes (Means were significantly different between domains [Wilcoxon text, p < 0.05]). Panel d indicates the differences in distance-decay
between prokaryotes and picoeukaryotes in the tropical and subtropical surface-ocean. Mantel correlograms between geographic distance and β-
diversity featuring distance classes of 1000 km for both picoeukaryotes and prokaryotes are shown. Coloured squares indicate statistically
significant correlations (p < 0.05). Note that β-diversity in picoeukaryotes displayed positive correlations with increasing distances up to ≈ 3000
km, while prokaryotes had positive correlations with distances up to ≈ 2000 km. Correlations tended to be smaller in prokaryotes than in
picoeukaryotes, indicating smaller distance decay in the former compared to the latter
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same number of prokaryotic ones (7025) indicated that

different numbers of OTUs-99% in these groups did not

affect mean Bray-Curtis estimates of β-diversity displayed

in Figure S8, Additional file 15 [36].

When geographic distance covaries with environmen-

tal heterogeneity, spatial community variance may be

the manifestation of both selection and/or dispersal limi-

tation. β-diversity in picoeukaryotes and prokaryotes dis-

played positive correlations with geographic distance (i.e.

distance decay) predominantly within 1000 km (Fig. 4d).

Yet, correlations were weaker in prokaryotes than in

picoeukaryotes, pointing to stronger dispersal limitation

or selection in the latter. Variance partitioning analyses

considering both environmental [temperature (°C), con-

ductivity (S m−1), fluorescence, salinity and dissolved

oxygen (mL L−1)] and geographic variables (ocean basin

and subdivisions, as well as Longhurst biogeographic

provinces [37], Figure S1, Additional file 1) indicated

that in prokaryotes, geographic variables explained most

of the variance (24%), while environmental variables ex-

plained 10%, and 13% was explained by both variables;

53% of the variance remained unexplained. In contrast,

picoeukaryotes displayed non-significant results in the

same analyses. Still, after controlling for the effects of

the most important environmental variables, Longhurst

provinces (but not ocean basins nor subdivisions)

accounted for ≈ 20–25% of community variance in both

picoeukaryotes and prokaryotes (ADONIS R2) (Fig. 2).

All in all, the previous analyses seem coherent with our

quantifications of ecological processes (Fig. 1b), in the

sense that they indicate that both selection and dispersal

limitation (represented by geographic variables such as

distance or ocean provinces), do seem to have a role in

the structuring of the surface ocean picoplankton.

Selection and dispersal limitation may operate more

strongly in geographic areas that constitute ecological

boundaries, leading to abrupt changes in microbiota

composition. We identified 14 communities where se-

quential β-diversity displayed abrupt changes, with 11 of

them coinciding for both picoeukaryotes and prokary-

otes (Fig. 4a, b). The Local Contributions to Beta Diver-

sity (LCBD) index [38] (Figure S9, Additional file 16)

indicated that ≈ 22% of both picoeukaryotic and prokary-

otic communities (26 stations each, totaling 36 different

stations) contributed the most to the β-diversity, with 16

communities coinciding for both prokaryotes and

picoeukaryotes (Figure S9, Additional file 16; Table S7,

Additional file 17). In addition, eight of the 36 stations

featuring a significant LCBD were also identified as

zones of abrupt community change in sequential β-

diversity analyses (Table S7, Additional file 17). These

zones point to selection or dispersal operating simultan-

eously and strongly upon both prokaryotic and picoeu-

karyotic communities in the surface ocean.

Discussion
Applying an innovative ecological framework [23]

allowed us to quantify the mechanisms that shape the

tropical and subtropical upper-ocean microbiota. Yet,

this approach has limitations (summarised by Zhou and

Ning [19]) that need to be considered in the context of

our results. First, our results represent the overall action

of ecological processes at the whole microbiota level,

and not their operation on every taxonomic group or

lineage (for example, different taxonomic classes may be

structured by different processes). In addition, our re-

sults reflect the action of ecological mechanisms at the

global ocean level, and we expect that other spatial

scales (ocean basin for example) may lead to other re-

sults. Furthermore, our results provide a snapshot of the

importance of ecological processes at the global-ocean

scale, and future studies should investigate how the rela-

tive importance of these mechanisms change over time

[39]. Second, the measured ecological mechanisms are

associated with the evolutionary diversification that is

reflected by the variation in the chosen molecular

markers. OTUs-99% and OTUs-ASVs based on the 16S

and 18S rRNA genes likely reflect defined species (or

gene flow units [40]) or in some cases population vari-

ation [32], and therefore, the measured ecological mech-

anisms in the tropical and subtropical ocean apply to

those evolutionary levels. Hence, our results do not re-

flect the mechanisms shaping intra-population variation

or those shaping taxonomic ranks above the species

level. Furthermore, our results indicate that delineating

OTUs based on sequence clustering (OTUs-99%) or se-

quence variants (OTUs-ASVs) can affect measurements of

ecological mechanisms, although in our study, main

trends were maintained. It could be hypothesized that

OTUs-99% and OTUs-ASVs may represent different taxo-

nomic units in prokaryotes or picoeukaryotes, especially

if one group was evolving faster than the other. Yet, both

prokaryotes and picoeukaryotes show a wide range of

evolutionary rates [41, 42], including lineages evolving

slow or fast, therefore potential differences in unit defi-

nitions associated to different evolutionary rates will

likely compensate when analysing complex assemblages

of species. Third, failure to detect selection could inflate

estimates of dispersal limitation. We consider that our

estimates indicating substantial dispersal limitation in

picoeukaryotes were not inflated, as picoeukaryotes dis-

played more restricted spatial distributions than prokary-

otes and important biotic variables, such as potential

zooplankton grazing, did not seem to affect the structure

of picoeukaryotic assemblages. Furthermore, another

study also suggests that dispersal limitation influences

protist distributions in the global ocean [34]. Altogether,

the used framework [23] can be considered as a guide

that can provide important insights on the ecological
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mechanisms structuring the global ocean microbiota,

while more data (e.g. single nucleotide variants in genes

or genomes) and experiments are necessary to under-

stand such mechanisms in further detail.

Our results indicated that the differential action of

ecological processes may promote different biogeo-

graphic patterns in prokaryotic and picoeukaryotic as-

semblages in the upper global-ocean. This is consistent

with other works using similar approaches to ours indi-

cating that protistan and bacterial assemblages are

shaped by different ecological processes [39, 43–45]. In

particular, selection, which is known to have an import-

ant role in structuring prokaryotic communities [27, 28],

explained a higher proportion of community turnover in

surface-ocean prokaryotes (≈ 34–27% of the turnover)

than in picoeukaryotes (≈ 17–11%). This modest role of

selection in structuring the tropical and subtropical

sunlit-ocean microbiota is consistent with the moderate

environmental gradients characterizing this habitat. In

other habitats featuring a higher selective pressure, the

role of selection in structuring microbiotas was, as ex-

pected, higher [43]. The quantifications of the import-

ance of selection are also associated to the global scale

of our survey. Thus, for example, at smaller geographic

scales, where dispersal limitation is expected to have a

lower impact than at global scales [20], the relative im-

portance of selection could increase. Congruently, in

surface waters of the East China Sea, it was found that

selection was ~ 40% more important than dispersal limi-

tation in structuring bacterial communities [44], while in

our global study, selection and dispersal limitation had a

similar importance in structuring prokaryotes. Further-

more, the previous study [44] found that selection was

considerably more important than dispersal limitation in

structuring communities of microbial eukaryotes. In

contrast, our global assessment yields dispersal limita-

tion to be ≈ 5 times more important than selection in

structuring picoeukaryotic communities.

We found that heterogeneous selection was more im-

portant in structuring picoeukaryotic than prokaryotic

communities, while homogeneous selection was more

important in structuring prokaryotic than picoeukaryo-

tic communities. This suggests that prokaryotes and

picoeukaryotes respond differently to the same environ-

mental heterogeneity, which in the tropical and sub-

tropical surface-ocean would be preventing community

divergence in prokaryotes while promoting it in picoeu-

karyotes. Different adaptations in prokaryotes and

picoeukaryotes [9] may determine such contrasting re-

sponses to the same environmental heterogeneity. For

example, a given environmental heterogeneity could

select for a few species featuring wide environmental

tolerance or several species that are adapted to narrow

environmental conditions.

Several studies have indicated that water temperature is

one of the main abiotic variables affecting the structure and

diversity of the ocean microbiota [46–52]. Furthermore,

temperature is known to structure microbial assemblages

in seasonal time-series, pointing also to the importance of

this variable at local scales over yearly cycles [53–55]. In

our study, the higher correlation between TARA Oceans

communities with temperature as compared to Malaspina

(Fig. 3) is coherent with the importance of this variable, as

TARA Oceans sampled a wider temperature range (range ≈

0–30 °C, mean ≈ 21 °C, SD ≈ 7 °C) than Malaspina (range

≈ 15–30 °C, mean ≈ 24 °C, SD ≈ 3 °C). Furthermore, and

consistent with our results, recent global-scale studies re-

ported strong correlations between ocean-microbiota com-

position (predominantly prokaryotic) and temperature, and

weak correlations with nutrients [56, 57]. In sum, the previ-

ous agrees with our results indicating that temperature is

one of the most important agents exerting abiotic selection

on the surface-ocean microbiota, although we cannot rule

out the selective action of other unmeasured abiotic factors.

Our analyses also unveiled an additional layer of infor-

mation by indicating that temperature-driven selection

affects prokaryotic taxa co-occurrences, a pattern not

observed in picoeukaryotes. Such β-diversity related to

species associations is typically not captured by classic

compositional indices like Bray-Curtis, possibly due to

variations in the relative abundance of the co-occurring

species [58]. In contrast to prokaryotes, less is known

about the effects of temperature on the community

structure of ocean picoeukaryotes, which according to

our results are modest. Yet, specific picoeukaryotic line-

ages, such as MAST-4, do seem to be affected by

temperature [59], pointing to taxonomic-group specific

responses to selection. One of the possible reasons why

picoeukaryotes do not show co-occurrence patterns

comparable to those observed in prokaryotes is dispersal

limitation, which precludes picoeukaryotic species with

similar niches to share the same geographic zone. Over-

all, our work indicates that species association patterns

are informative on the β-diversity of marine prokaryotes,

therefore taxa association networks should be contem-

plated in future analyses of the ocean microbiota.

To what extent dispersal limitation affects the distribu-

tion of ocean microbes is a matter of debate. The impact

of dispersal limitation is expected to increase with in-

creasing body size [60]; therefore, larger protists are ex-

pected to be more limited by dispersal than smaller

prokaryotes. Ocean protists seem to follow the previous

tenet, as it has been observed that dispersal limitation

appears to increase with increasing cell size [34]. Fur-

thermore, in surface open-ocean waters, prokaryotes

typically display abundances of 106 cells/mL, while

picoeukaryotes normally have abundances of 103 cells/

mL [61]. Due to random dispersal alone, the more
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abundant prokaryotes are expected to be distributed

more thoroughly than the less abundant picoeukaryotes

[33]. Thus, both cell size and abundance could partially

explain our results indicating a higher dispersal limita-

tion in picoeukaryotes than in prokaryotes. Yet, multiple

studies of aquatic unicellular eukaryotes point to re-

stricted dispersal [34, 62, 63], while other studies indi-

cate the opposite [59, 64, 65]. This could reflect different

dispersal capabilities among unicellular eukaryotes [62,

66] and the generation of dormant cysts in some species

[67, 68], which may increase dispersal. Yet, cyst forma-

tion has not been reported for picoeukaryotes [9] and

this may partially explain their limited dispersal. Regard-

ing prokaryotes, previous studies indicate that dispersal

limitation has a modest influence in the structure of

marine communities [56, 69, 70], which is coherent with

our results. In particular, Louca et al. [71] indicate that

there is virtually no dispersal limitation in surface ocean

prokaryotes within specific ocean regions, suggesting

that the importance of dispersal limitation may increase

across large oceanic regions or basins. Nevertheless, dor-

mancy in prokaryotes seems to be more common than

in picoeukaryotes [9, 72], and this may allow the former

to disperse more thoroughly by reducing their metabo-

lisms when moving through unfavorable habitats [73].

The importance of drift in structuring microbial com-

munities is unclear [27, 74]. Our results, considering

both OTUs-99% and OTUs-ASVs indicated that drift has a

modest role in structuring picoeukaryotic communities

in the tropical and subtropical surface ocean, but a more

significant role in structuring prokaryotic counterparts.

Another study also found a larger importance of drift in

determining the community structure of bacteria when

compared with phytoplankton populating freshwater and

brackish habitats [75]. In contrast, drift was the preva-

lent community-structuring mechanism in unicellular

eukaryotes populating lakes that feature a strong salinity

gradient, having a low importance for the structuring of

prokaryotic counterparts [43]; differential adaptations to

salinity in protists and prokaryotes may explain these dif-

ferences [43]. Drift tends to be more important in small

populations, which is normally not the case in global

ocean microbes. Yet, other random processes could re-

semble drift in large microbial populations. For example,

the arrival of a new bacteriophage may attack abundant

bacteria, randomly reshuffling local species abundances.

A decrease in community similarity with increasing

geographic distance (distance decay) can be the mani-

festation of selection and/or dispersal limitation [28].

Distance decay has been evidenced in surface and deep

ocean microbiotas [69, 76, 77]. In our study, variance

partitioning suggested that both geography (i.e. dispersal

limitation) and environmental variation (selection) likely

explain distance decay in prokaryotes, with geography

having potentially a more important role, which agrees

with our ADONIS analyses based on Bray-Curtis and

gUnifrac distances (Fig. 2). Interestingly, variance parti-

tioning was not significant in picoeukaryotes, although

ADONIS analyses based on Bray-Curtis and gUnifrac

distances indicated that geography, and to a lesser extent

temperature, would partially explain picoeukaryotic dis-

tance decay (Fig. 2).

Overall, provincialism, as measured by Longhurst

provinces (Figure S1, Additional file 1), was the most

relevant spatial feature for the community structuring of

both prokaryotes and picoeukaryotes (Fig. 2). Possibly,

this reflects dispersal limitation, as the selective effects

of main environmental variables that covary with these

provinces were considered in ADONIS analyses. Long-

hurst provinces may also reflect different water masses

or currents that restrict dispersal. Interestingly, a study

investigating surface marine bacteria along ≈ 12,000 km

in the Atlantic Ocean found that provincialism explained

an amount of community variance comparable to our

results [69]. Yet, in picoeukaryotes, dispersal limitation

may only be partially reflected by provincialism, thus

explaining the lack of significance in variance partitioning

analyses as well as the differences between the dispersal

limitation estimated by provincialism (Fig. 2) and that esti-

mated by ecological processes (Fig. 1b). Alternatively, dis-

persal limitation in picoeukaryotes may be better reflected

by geographic distances between communities, as suggested

by sequential Bray-Curtis analyses (Fig. 4c) as well as their

stronger distance decay when compared to prokaryotes

(Fig. 4d). Furthermore, and consistent with our results, a

study of the sunlit global-ocean eukaryotic microbiota indi-

cated that basin, which may be associated to provincialism

and dispersal limitation, was one of the most important var-

iables explaining community turnover [34].

In the surface ocean, drastic changes in microbial

species composition across space may point to strong

changes in abiotic selection (as expected to occur

across oceanographic fronts [78, 79]), or high immi-

gration. We identified 14 stations featuring abrupt

changes in prokaryotic or picoeukaryotic community

composition as well as 36 stations with a “unique”

species composition. Some of these areas correspond

to nutrient-rich (selection) coastal zones (the South

African Atlantic coast and the South Australia Bight)

or potential upwelling (dispersal) zones, such as the

Equatorial Pacific and Atlantic as well as the Costa

Rica Dome. These findings were coherent with spatial

abundance distributions (SpAD) of bacterioplankton

in the tropical and subtropical surface-ocean [35].

Altogether, the previous suggests strong selective

changes or immigration from deep water layers into

the surface associated to upwellings, affecting both

prokaryotic and picoeukaryotic community structure.
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Such immigration events into the surface, when ran-

dom, may partially explain the measured drift.

Conclusion
Our results indicate that selection, dispersal and drift have

different roles in shaping the main components of the

picoplankton (prokaryotes and picoeukaryotes) in the

tropical and subtropical surface ocean. This highlights the

importance of comprehending the characteristics of the

different constituents of microbiotas in order to under-

stand their structure. Our results also suggest that the sur-

face ocean picoplankton may not show a single response

to global change, and that perhaps prokaryotes will display

more pronounced changes in their community structure

as a response to temperature increase than picoeukar-

yotes, considering that temperature seems to affect more

prokaryotic than picoeukaryotic assemblages. Future stud-

ies on the ocean microbiota should investigate the change

in the role of selection, dispersal and drift with ocean scale

(from meters to kilometers), depth, latitude and longitude

as well as with time, taxonomic ranks (e.g. Class, Family,

etc.) and molecular markers that evolve at different rates.

Such studies will likely provide a more comprehensive un-

derstanding of the underlying mechanisms shaping the

ocean microbiota at different evolutionary levels (from lin-

eages to populations) and will also provide insights on the

environmental variables that could modify its current

configuration.

Methods
Sample collection

Surface waters (3 m depth) from a total of 120 globally

distributed stations located in the tropical and sub-

tropical ocean (Fig. 1a) were sampled as part of the Mala-

spina 2010 expedition [30]. Sampling took place between

December 2010 and July 2011 and the cruise was orga-

nized in a way so that most regions were sampled during

similar meteorological seasons. Samples were obtained

with a 20 L Niskin bottle deployed simultaneously to a

CTD profiler that measured conductivity, temperature,

oxygen, fluorescence and turbidity for each sample. About

12 L of seawater were sequentially filtered through a 20

μm nylon mesh, followed by a 3 μm and 0.2 μm polycar-

bonate filters of 47 mm diameter (Isopore, Millipore, Bur-

lington, MA, USA). Only the smallest size-fraction (0.2–3

μm, here called ‘picoplankton’ [8]) was used in down-

stream analyses. Samples for inorganic nutrients (NO3
−,

NO2
−, PO4

3−, SiO2) were collected from the Niskin bottles

and measured spectrophotometrically using an Alliance

Evolution II autoanalyzer (Frépillon, France) [80]. Chloro-

phyll measurements were obtained from Estrada et al.

[81]. In specific samples, nutrient concentrations were es-

timated using the World Ocean Database [82] due to is-

sues with the measurements. Since not all environmental

parameters were available for all stations, two contextual

datasets were generated: Meta-119, including 119 stations,

five environmental parameters and five spatial features (all

except one station in Fig. 1a) and Meta-57 (Figure S4,

Additional file 7), including 57 stations and 17 environ-

mental parameters (the five environmental parameters in-

cluded in Meta-119 were considered here as well). See

Supplementary Methods, Additional file 6.

DNA extraction, sequencing and bioinformatics

DNA was extracted using a standard phenol-chloroform

protocol [83]. Both the 18S and 16S rRNA-genes were

amplified from the same DNA extracts. The hypervari-

able V4 region of the 18S rRNA gene (≈ 380 bp) was

amplified with the primers TAReukFWD1 and TAReuk-

REV3 [84], while the hypervariable V4–V5 (≈ 400 bp) re-

gion of the 16S rRNA gene was amplified with the

primers 515F-Y-926R [85], which target both Bacteria

and Archaea. Amplifications were performed with a

QIAGEN HotStar Taq master mix (Qiagen Inc., Valen-

cia, CA, USA). Amplicon libraries were then paired-end

sequenced on an Illumina (San Diego, CA, USA) MiSeq

platform (2 × 250 bp) at the Research and Testing La-

boratory facility (http://www.researchandtesting.com/).

See additional details on gene amplification and sequen-

cing in Supplementary Methods, Additional file 6.

Reads were processed following and in-house protocol

[86]. Briefly, raw reads were corrected using BayesHam-

mer [87] following Schirmer et al. [88]. Corrected

paired-end reads were subsequently merged with PEAR

[89] and sequences longer than 200 bp were quality-

checked (maximum expected errors [maxEE] = 0.5) and

de-replicated using USEARCH V8.1.1756 [90]. Oper-

ational taxonomic units (OTUs) were delineated at 99%

similarity using UPARSE V8.1.1756 [91], producing 42,

505 picoeukaryotic and 10,158 prokaryotic OTUs-99%.

Taxonomic assignment of OTUs-99% was generated by

BLASTing OTU-representative sequences against differ-

ent reference databases. BLAST hits were filtered prior

to taxonomy assignment using an in-house python

script, considering a percentage of identity > 90%, a

coverage > 70%, a minimum alignment length of 200 bp

and an e-value < 0.00001. Metazoan, Streptophyta,

nucleomorphs, Chloroplast and mitochondrial OTUs

were removed from the OTUs-99% tables. See

Supplementary Methods, Additional file 6 and Table S8,

Additional file 18.

Additionally, to investigate the effects of clustering on

the estimation of ecological mechanisms (Fig. 1b), we

determined OTUs as amplicon sequence variants (ASVs)

using DADA2 [92]. For the 18S, we trimmed the for-

ward reads at 240 bp and the reverse reads at 180 bp,

while for the 16S, forward reads were trimmed at 220 bp

and reverse reads at 200 bp. Then, for the 18S, the
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maximum number of expected errors (maxEE) was set

to 7 and 8 for the forward and reverse reads respectively,

while for the 16S, the maxEE was set to 2 for the for-

ward reads and to 4 for the reverse reads. Error rates

were estimated with DADA2 for both the 18S and 16S

and used to delineate OTUs-ASVs (see additional details

in Supplementary Methods, Additional file 6). A total of

21,970 and 6196 OTUs-ASVs were delineated for the 18S

and 16S respectively.

OTUs-ASVs were assigned taxonomy using the naïve

Bayesian classifier method [93] together with the SILVA

version 132 [94] database as implemented in DADA2.

Eukaryotic OTUs-ASVs were also BLASTed [95] against

the Protist Ribosomal Reference database (PR2, version

4.11.1 [96];). Streptophyta, Metazoa, nucleomorphs, chlo-

roplasts and mitochondria were removed from OTUs-ASVs
tables. Tables of OTUs-ASVs were rarefied to 20,000 reads

per sample with the function rrarefy in Vegan. Only OTU-

s-ASVs with abundances > 100 reads were used for the

calculation of ecological mechanisms (Fig. 1b).

We tested the similarity of OTUs-99% and OTUs-ASVs
between themselves as well as against a reference data-

base (SILVA v132) in order to determine whether there

were differences in the OTUs delineated by UPARSE or

DADA2. Comparisons were run using BLAST, and only

best hits featuring a sequence similarity > 90%, e-value <

0.001, query coverage > 60% and alignment length > 200

bp were considered. For the 16S, OTUs-ASVs vs.

OTUs-99% displayed a 99.0% (SD = 2.0%) mean similar-

ity, while for the 18S, both types of OTUs had 99.3%

(SD = 1.4%) mean similarity. Furthermore, for the 16S,

the mean similarity to SILVA reference sequences was

98.8% (SD = 1.5%) for OTUs-99% and 98.5% (SD = 2.2%)

for OTUs-ASVs. In turn, for the 18S, the mean similarity

against SILVA v132 was 97.8% (SD = 2.0%) for

OTUs-99% and 97.2 % (SD = 2.5%) for OTUs-ASVs. In

sum, these analyses indicate a high similarity between

OTUs-ASVs and OTUs-99%, both having also comparable

levels of similarity to reference sequences, which indi-

cates that the two approaches to delineate OTUs (i.e.

UPARSE vs. DADA2) have similar error-rates.

We used publicly available data from the TARA

Oceans global expedition [31] in multiple analyses. This

expedition took place between September 2009 and

March 2012, and includes samples from the same hemi-

sphere during different meteorological seasons. Due to

the nature of the TARA Oceans dataset, we did not per-

form all the analyses that were run for the Malaspina

dataset. Specifically, short V9 18S rRNA-gene reads or

16S rRNA-gene miTags [97] from TARA Oceans pre-

cluded robust phylogenetic reconstructions, which in-

stead were possible with the longer reads produced for

Malaspina. We used data from TARA Oceans surface (≈

5 m depth) stations only, including 41 samples (40

stations) for pico-nano eukaryotes (0.22–3 μm [one sam-

ple] and 0.8–5 μm [40 samples]; 18S-V9 rRNA gene

amplicon data) [34] as well as 63 stations for prokaryotes

(picoplankton, 0.22–3 μm [45 samples] and 0.22–1.6 μm

[18 samples]; 16S rRNA genes, miTags) [56].

General analyses and phylogenetic inferences

Tables including OTUs-99% were sub-sampled to 4060

reads per sample using rrarefy in Vegan [98], resulting in

sub-sampled tables containing 18,775 picoeukaryotic

and 7025 prokaryotic OTUs. OTUs-99% with mean rela-

tive abundances > 0.1% or < 0.001% were defined as re-

gionally abundant or rare respectively [99]. Phylogenetic

trees were constructed by aligning 16S or 18S OTUs-99%
representative sequences or OTUs-ASVs against an

aligned SILVA [94] template using mothur [100]. After-

wards, poorly aligned regions or sequences were re-

moved using trimAl [101]. Phylogenetic trees were

inferred using FastTree v2.1.9 [102]. Most analyses were

performed in the R statistical environment [103] using

APE [104], ggplot2 [105], gUniFrac [106], Maps, Map-

plots, Picante [107] and Vegan. The Vegan function ado-

nis and adonis2 were used to investigate the amount of

variance in community composition explained by envir-

onmental or geographic variables. Variance partitioning

analyses were run with varpart in Vegan and tested for

significance with ANOVA. Distance decay, which refers

to the decrease in microbial community similarity as

geographic distance between communities increases, was

investigated in R using Mantel correlograms between

geographic distance and β-diversity, considering distance

classes of 1000 km. Local contributions to beta diversity

(LCBD) [38], which indicates the degree of uniqueness

of each community in terms of its species composition,

was measured with adespatial [108]. See Supplementary

Methods, Additional file 6.

Quantification of selection, dispersal and drift

These processes were quantified using an approach that

relies on null models, consisting of two main sequential

steps: the first uses OTU phylogenetic turnover to infer

the action of selection and the second uses OTU compos-

itional turnover to infer the action of dispersal and drift

[23]. The action of selection, dispersal and drift was quan-

tified using both OTUs-99% and OTUs-ASVs. In order to

determine the action of selection using phylogenetic turn-

over, we first checked whether habitat preferences of

phylogenetically closely related taxa (according to the 16S

and 18S rRNA-genes) were more similar to each other

than to those of more distantly related taxa, what is

known as phylogenetic signal [109, 110]. We tested for

phylogenetic signal using temperature and fluorescence,

which were the two variables that explained the highest

fraction of community variance. We detected phylogenetic
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signal at relatively short phylogenetic distances (Figure

S10, Additional file 19; Figure S11, Additional file 20),

which is coherent with previous work [23, 111, 112]. We

measured phylogenetic turnover using the abundance-

weighted β-mean nearest taxon distance (βMNTD) metric

[19, 23], which quantifies the mean phylogenetic distances

between the evolutionary-closest OTUs in two communi-

ties. βMNTD values can be larger, smaller or equal to the

values expected when selection is not affecting community

turnover (that is, expected by chance). βMNTD values

higher than expected by chance indicate that communities

experience heterogeneous selection [19]. In contrast,

βMNTD values which are lower than expected by chance

indicate that communities experience homogeneous selec-

tion. Null models included 999 randomizations [23]. Dif-

ferences between the observed βMNTD and the mean of

the null distribution are denoted as β-Nearest Taxon

Index (βNTI), with |βNTI| > 2 being considered as signifi-

cant departures from random phylogenetic turnover,

pointing to the action of selection.

The second step uses OTU turnover to calculate

whether the β-diversity of communities not structured by

selection could be generated by drift (i.e. chance) or disper-

sal. We calculated the Raup-Crick metric [113] using Bray-

Curtis dissimilarities (hereafter RCbray) [23]. RCbray com-

pares the measured β-diversity against the β-diversity that

would be obtained under random community assembly

(drift); randomizations were run 9999 times. RCbray values

between − 0.95 and + 0.95 point to a community assembly

governed by drift. On the contrary, RCbray values > + 0.95

or < − 0.95 indicate that community turnover is driven by

dispersal limitation or homogenising dispersal respectively

[113]. See Supplementary Methods, Additional file 6.

Estimation of interaction-adjusted indices

Taxa INteraction-Adjusted (TINA) and Phylogenetic INter-

action Adjusted (PINA) indices were estimated following

Schmidt et al. [26]. TINA is based on taxa co-occurrences

while PINA considers phylogenetic similarities. TINA quan-

tifies β-diversity as the average association strength between

all taxa in different samples. Thus, communities which are

identical or include taxa that are perfectly associated will

give a TINA value of 1. TINA values will approach 0.5 in

communities sharing no taxa or having neutral associations,

and approach 0 if taxa display high avoidance. Dissimilarity

matrices were generated as 1-TINA and used in down-

stream analyses (e.g. Fig. 3). Full picoeukaryotic and pro-

karyotic subsampled OTU-99% tables were used to calculate

the abundance-weighted TINAw and PINAw. TINAw was

calculated using picoeukaryotic and prokaryotic data from

119 Malaspina surface stations (most stations in Fig. 1a). In

addition, TINAw was calculated using data from TARA

Oceans, including 63 surface stations for prokaryotes and

40 surface station for small unicellular eukaryotes (Fig. 3).

Associations between taxa and environmental parameters

We analysed whether OTUs-99% displayed associations with

environmental variables and between themselves. Firstly,

we used the maximal information coefficient (MIC), which

captures diverse relationships between two pairs of vari-

ables [114]. The Malaspina dataset consisted of 119 sta-

tions and 17 environmental variables. In the TARA Oceans

dataset, prokaryotes were analysed across 63 surface sta-

tions (including eight environmental variables), while mi-

crobial eukaryotes were analysed across 40 surface stations

(including six environmental variables) (see Supplementary

Methods, Additional file 6). In both datasets, MIC analyses

were run using CV = 0.5, B = 0.6 and statistically significant

relationships with MIC ≥ 0.4 (Malaspina) or MIC ≥ 0.5

(TARA Oceans) were considered (MIC thresholds were ad-

justed to the characteristics of the datasets). MIC signifi-

cance was assessed using precomputed p values [114].

Secondly, we constructed association networks with the

Malaspina dataset considering OTUs-99% with > 100 reads

using SparCC [115] as implemented in FastSpar [116]. To

determine correlations, FastSpar was run with 1000 itera-

tions, including 1000 bootstraps to infer p values. We used

OTUs-99% associations with absolute correlation scores >

0.3 and p value < 0.01. Networks were visualized and ana-

lysed with Cytoscape [117] and igraph [118].
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Additional file 2: Figure S2. Bray Curtis and gUniFrac distances
between picoeukaryotes and prokaryotes from the Malaspina dataset.
Regression (blue) and 0:1 (red) lines are indicated.

Additional file 3: Table S1. Regionally abundant or rare prokaryotic
and picoeukaryotic OTUs-99% from the Malaspina dataset.

Additional file 4: Figure S3. OTUs-99% mean relative abundance (i.e.
regional abundance) vs. occurrence (i.e. number of samples in which each
OTUs-99% is present) for the Malaspina dataset. The red and black horizontal
lines indicate percentages of occurrences of 80% and 20% respectively.
Cosmopolitan OTUs were considered as those with a percentage of
occurrence >80%, while restricted OTUs were those with a percentage of
occurrence <20% (see Table S2, Additional file 5). Blue and green vertical
lines indicate regional abundances above and below which OTUs are
considered regionally abundant (>0.1%) or rare (<0.001%) respectively.

Additional file 5: Table S2. OTUs-99% displaying Cosmopolitan,
Intermediate and Restricted distributions in the Malaspina dataset.

Additional file 6: Supplementary Methods.

Additional file 7: Figure S4. The 57 Malaspina stations for which 17
environmental parameters were available (Meta-57 dataset).

Additional file 8: Figure S5. Percentage of variance in Picoeukaryotic
and Prokaryotic community composition (ADONIS R2) explained by water
temperature and fluorescence when using different β-diversity metrics.
Figure based on the Malaspina Meta-57 dataset.

Additional file 9: Figure S6. Species association networks for the
tropical and subtropical surface-ocean microbiota as inferred from the
Malaspina dataset. Left-hand side: Association networks of picoeukaryotes
and prokaryotes considering positive (red) and negative (blue)
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correlations in panels A) [Eukaryotic Network (+-e)] and B) [Prokaryotic
Network (+-e)], and only positive correlations in C) [Eukaryotic Network
(+e)] and D) [Prokaryotic Network (+e)]. On the right-hand side, we
present an alternative visualization of the network as well as the follow-
ing network characteristics: number of nodes (n), number of edges with
positive correlation (+e) and negative correlation (-e), average degree
(avg. d), average path length (avg. l), global transitivity (t), number of
modules with at least 3 nodes (m) and the number of nodes in each of
those modules (sizes: n). The smaller network visualization on the right-
hand side groups the nodes according to the modules. The colors of
nodes in Left- and Right-hand side networks indicate the modules to
which they belong (NB: colors in panels A, B, C & D are independent of
each other).

Additional file 10: Table S3. Summary of association networks from
the Malaspina dataset based on SparCC.

Additional file 11: Table S4. Summary of significant OTUs-99%
associations using MIC for the Malaspina dataset.

Additional file 12: Table S5. Summary of significant OTUs-99%
associations for the TARA Oceans dataset based on MIC.

Additional file 13: Figure S7. Percentage of OTUs-99% significantly
associated to different environmental variables (MIC > 0.4) [left] and their
corresponding contribution to total sequence abundance (i.e. percentage of
reads) [right] in the Malaspina dataset. NB: Temperature, Oxygen, Conductivity
and Salinity are correlated. OTUs can be associated to more than one variable.

Additional file 14: Table S6. Significant MIC associations (MIC > 0.5)
between OTUs and environmental parameters in the TARA Oceans dataset.

Additional file 15: Figure S8. Bray-Curtis dissimilarities and gUniFrac
distances in Prokaryotes and Picoeukaryotes from the Malaspina dataset.
In both cases, mean differences were significant (Wilcoxon text, p<0.05).
Prokaryotes (Bray Curtis mean=0.61, SD=0.19; gUniFrac mean=0.30, SD=
0.07); Picoeukaryotes (Bray Curtis mean=0.74, SD=0.08; gUniFrac mean=
0.50, SD=0.06).

Additional file 16: Figure S9. Stations (total 36) from the Malaspina

dataset featuring a comparatively large contribution to the overall β-
diversity (LCBD = Local Contributions to Beta Diversity [38]; p<0.05).

Additional file 17: Table S7. The 36 Malaspina stations (out of 120)
featuring significant (p < 0.05) Local Contributions to Beta Diversity
(LCBD) in prokaryotes and/or picoeukaryotes.

Additional file 18: Table S8. Malaspina eukaryotic and prokaryotic reads
and OTUs-99% analysed during different steps of our in-house workflow.

Additional file 19: Figure S10. Phylogenetic signal was detected
across short phylogenetic distances for both the 16S and 18S rRNA-gene
markers as indicated by phylogenetic mantel correlograms (Malaspina
dataset). Phylogenetic signal was tested using temperature and fluores-
cence, the two variables that explain the highest fraction of community
variance. Solid and open squares indicate significant and nonsignificant
(using p=0.05) correlations respectively between environmental similarity
(in terms of temperature and fluorescence) and phylogenetic relatedness.
Correlations that are significantly positive indicate that the phylogenetic
distance between OTUs-99% increases as environmental similarity de-
creases for the phylogenetic range being analysed. Phylogenetic dis-
tances were measured as abundance-weighted β-Mean Nearest Taxon
Distances (βMNTD).

Additional file 20: Figure S11. Same as Figure S10, Additional file 19
but using OTUs-ASVs. Solid and open squares indicate significant and
nonsignificant (using p=0.05) correlations respectively between
environmental similarity (in terms of temperature and fluorescence) and
phylogenetic relatedness. Correlations that are significantly positive
indicate that the phylogenetic distance between OTUs-ASVs increases as
environmental similarity decreases for the phylogenetic range being
analysed. Phylogenetic distances were measured as abundance-weighted
β-Mean Nearest Taxon Distances (βMNTD).
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