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Abstract 1 

Most large-scale multi-species studies of tree growth have been conducted in tropical and 2 

cool temperate forests, whereas Mediterranean water-limited ecosystems have received much 3 

less attention. This limits our understanding of how growth of coexisting tree species varies 4 

along environmental gradients in these forests, and the implications for species interactions 5 

and community assembly under current and future climatic conditions. Here, we quantify the 6 

absolute effect and relative importance of climate, tree size and competition as determinants 7 

of tree growth patterns in Iberian forests, and explore inter-specific differences in the two 8 

components of competitive ability (competitive response and effect) along climatic and size 9 

gradients. Spatially-explicit neighborhood models were developed to predict tree growth for 10 

the 15 most abundant Iberian tree species using permanent-plot data from the Spanish Second 11 

and Third National Forest Inventory (IFN). Our neighborhood analyses showed a climatic 12 

and size effect on tree growth, but also revealed that competition from neighbors has a 13 

comparatively much larger impact on growth in Iberian forests. Moreover, the sensitivity to 14 

competition (i.e. competitive response) of target trees varied markedly along climatic 15 

gradients causing significant rank reversals in species performance, particularly under xeric 16 

conditions. We also found compelling evidence for strong species-specific competitive 17 

effects in these forests. Altogether, these results constitute critical new information which not 18 

only furthers our understanding of important theoretical questions about the assembly of 19 

Mediterranean forests, but will also be of help in developing new guidelines for adapting 20 

forests in this climatic boundary to global change. If we consider the climatic gradients of this 21 

study as a surrogate for future climatic conditions, then we should expect absolute growth 22 

rates to decrease and sensitivity to competition to increase in most forests of the Iberian 23 

Peninsula (in all but the northern Atlantic forests), making these management considerations 24 

even more important in the future.  25 
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Introduction 1 

Regeneration, growth and mortality are the main processes driving plant community 2 

dynamics (Shugart 1984; Kohyama 1992; Oliver & Larson 1996). In plants, birth and death 3 

are mediated by growth, since growth is usually negatively related to survival and positively 4 

related to reproduction (Nakashizuka 2001; Wyckoff & Clark 2002; Pérez-Ramos et al. 5 

2010). This renders understanding growth variation within and among populations a central 6 

aspect of plant population and community ecology (Hara 1984; Stoll et al. 1994; Zavala et al. 7 

2007; Coomes et al. 2009). Although the study of growth variation in multispecific forest 8 

communities is not new, important advances have recently been made, as accessibility to 9 

long-term forest inventories has facilitated the formulation of individual tree-based models at 10 

large spatial scales and for many co-existing species (Uriarte et al. 2004; Canham et al. 2006; 11 

Sánchez-Gómez et al. 2008; Purves 2009).  12 

 Most studies of growth variation have been conducted in tropical and cool temperate 13 

forests, usually with the aim of understanding patterns and mechanisms of species 14 

coexistence and biodiversity maintenance in the context of the neutral theory debate (e.g. 15 

interspecific variation; Hubbell 2001; Uriarte et al. 2004; Coates et al. 2009), the mechanistic 16 

plant competition theory (e.g. assembly trade-offs; Pacala et al. 1994; Lin et al. 2002) or the 17 

metabolic theory (i.e. scaling of growth with other processes; Muller-Landau et al. 2006; 18 

Russo et al. 2007). Mediterranean water-limited forests, however, have received much less 19 

attention, resulting in a poor understanding of how different tree species respond along 20 

environmental gradients in these forests and the implications for community assembly. 21 

Moreover, understanding interspecific tree growth variation in Mediterranean ecosystems 22 

may be crucial in a global change context, since these systems are among those most 23 

threatened by global warming and land-use changes, and are therefore highly susceptible to 24 
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suffer dramatic changes in species range and abundance (Bakkenes et al. 2002; Schröter et al. 1 

2005; Benito-Garzón et al. 2008). 2 

 As a result of climate change, temperature in the Mediterranean basin is expected to 3 

increase while precipitation may decrease (Christensen et al. 2007). These changes could 4 

have important direct effects on tree growth due to abiotic constraints (e.g. hydric stress) and 5 

indirect effects due to increases in resource competition, as shown in a number of single-6 

species studies (Jump et al. 2006; Martín-Benito et al. 2008; Martinez-Vilalta et al. 2008; 7 

Gea-Izquierdo et al. 2009; Linares et al. 2009; Vicente-Serrano et al. 2010). Multi-species 8 

studies are, however, extremely rare, and tend to focus on a limited subset of species or a 9 

given region (Sabaté et al. 2002; Andreu et al. 2007; Sánchez-Gómez et al. 2008). This 10 

hampers our understanding of the likely effects of climate change not only on tree growth, 11 

but also on plant-plant interactions, including competitive reciprocal effects and shifts in rank 12 

hierarchies. 13 

 In recent decades, Mediterranean countries have also suffered large land use shifts 14 

including agricultural land abandonment, reforestation of extensive areas with high tree 15 

densities, and strict protection of many natural areas (Zavala & Oria 1995; Gómez-Aparicio 16 

et al. 2009). All these practices have favored forest expansion and stand densification, and 17 

have had a striking effect on tree growth patterns. For example, Linares et al. (2010) showed 18 

that excessive protection of the endangered species Abies pinsapo in southern Spain increased 19 

tree-to-tree competition and reduced the adaptive capacity of the species to drier climatic 20 

conditions. All this suggests the need to explore competitive and tree growth responses along 21 

tree density gradients, so that proper adaptation measures to cope with climatic changes can 22 

be undertaken. 23 

In this study, we used forest inventory data for continental Spain to analyze the effect 24 

of climate, size and competition on tree growth of the 15 most abundant Iberian canopy 25 
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species using a spatially-explicit neighborhood scale approach. The main advantage of the 1 

neighborhood approach is that it captures the local nature of plant interactions and 2 

acknowledges that the frequency with which individuals interact with other conspecific or 3 

heterospecific neighbors may depend less on their relative abundance than on their particular 4 

spatial pattern (Silander & Pacala 1985; Wagner & Radosevich 1998; Stoll & Newbery 2005). 5 

Specifically, we aimed to: 1) quantify the absolute effect and relative importance of climate, 6 

size and competition on tree growth patterns in Iberian forests; 2) analyze how the sensitivity 7 

to competition (i.e. competitive response or ability to withstand growth suppression by 8 

neighbors, sensu Goldberg 1990) of the different species varied along climatic and size 9 

gradients with potential consequences for the ranking of species performance; and 3) explore 10 

whether different species of neighboring trees were functionally equivalent competitors (i.e. 11 

have similar competitive effects or abilities to suppress neighbor growth, sensu Goldberg 12 

1990) using inter-specific competition coefficients (i.e. the per capita effect of one species on 13 

another, Freckleton & Watkinson 2001). By combining in the same analysis the three main 14 

drivers of tree growth for the 15 most important tree species of the Iberian Peninsula, we 15 

aimed to provide detailed quantitative information about how these factors interact to 16 

determine growth of coexisting species at large spatial scales. This information will, in turn, 17 

be crucial for predicting potential community-level consequences (e.g. rank reversals in 18 

species performance) of growth alterations due to climate warming and human land use 19 

change.  20 
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Material and Methods 1 

Data set 2 

Our analyses of tree growth were based on the Spanish Second and Third National Forest 3 

Inventories (IFN2 and IFN3) conducted between 1986-1996 and 1997-2007, respectively 4 

(Villaescusa & Díaz 1998; Villanueva 2004). The IFNs are extensive datasets consisting of 5 

circular sample plots distributed across the forested surface of Spain, with an approximate 6 

density of 1 plot Km-2 across a large altitudinal gradient (sea level to 2330 m). Plots are of 7 

various concentric radii (i.e. the minimum tree diameter measured varied with the radius of 8 

the plot): all trees with diameter at breast height (d.b.h.) > 7.5 cm are measured within a 5-m 9 

radius plot, trees with d.b.h. > 12.5 cm within a 10-m radius plot, trees with d.b.h. > 22.5 cm 10 

within a 15-m radius plot, and trees with d.b.h. > 42.5 cm within a 25-m radius plot. We 11 

limited our growth analyses to target trees within the smallest 5-m radius plot, considering as 12 

neighbors those trees located within the 10-m radius plots. To compensate for the fact that 13 

small trees (7.5 cm < d.b.h. < 12.5 cm) were measured only in the smallest 5-m radius plots, 14 

we assumed that their density and size structure in these plots could be extrapolated to the 15 

whole 10-m radius plot, and therefore generated “artificial” neighbor trees that were assigned 16 

random positions within the outer 5 m of the 10-m radius plots. Thus, we obtained a full 17 

census of all neighbors > 7.5 cm d.b.h. present at the beginning of the census interval (IFN2) 18 

in a minimum radius of 5 m around each target tree. This radius size was consistent with that 19 

used in other tree competition studies (Stoll et al. 1994; He & Duncan 2000; Boyden et al. 20 

2005). Diameter growth of each target tree (in millimeters per year) between the two 21 

censuses was calculated by dividing the total increase in d.b.h. (in millimeters) by the number 22 

of years between the two census dates. 23 

Each of the plots was characterized with 12 topographic and climatic variables. The 24 

Iberian Peninsula is an area of transition between the Euro-Siberian, or temperate, and the 25 
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Saharo-Sindic climatic regions, and therefore contains a mosaic of different climates, from 1 

humid Atlantic in the north to Mediterranean and semiarid in the center and south. 2 

Topographic variables were calculated from a digital elevation model (COP 1998), and 3 

climatic variables obtained through ordinary co-kriging from 5426 weather stations (series 4 

1951-1999; Gonzalo 2008). Raster maps and plot locations (UTM coordinates) were 5 

combined to determine the values of each abiotic variable in each plot using ArcView Gis 9.2 6 

(ESRI Inc., Redlands, USA, 2000). The 12 abiotic variables were: altitude; slope; annual and 7 

seasonal (i.e., spring, summer, fall, and winter) precipitation; mean annual temperature, 8 

mean temperature of the hottest month and mean temperature of the coldest month; drought 9 

length, taken as the number of months in which potential evapotranspiration exceeded 10 

precipitation; and drought intensity, calculated on the basis of the quotient Ad/Ah, where Ad is 11 

the dry area of the climodiagram (precipitation curve below the temperature curve) and Ah is 12 

the humid area of the climodiagram (precipitation curve above the temperature curve, Allué-13 

Andrade 1990). The relationships between the 12 abiotic variables were explored with 14 

Principal Component Analyses (PCA) based on correlations with varimax rotation. The first 15 

axis of the PCA (explaining 36.1% of the variance) was strongly correlated (r > 0.9) with 16 

mean annual temperature and mean temperature of the coldest month. The second axis 17 

(explaining 36.0% of the variance) was strongly correlated with annual, spring and fall 18 

precipitation. Therefore, for our modeling analyses we chose the two variables most 19 

representative of each of the two axes: mean annual temperature and annual precipitation. 20 

 21 

A maximum-likelihood analysis of tree growth 22 

We used likelihood methods and model selection as an alternative to traditional hypothesis 23 

testing for analysis of our data (Johnson & Omland 2004; Canham & Uriarte 2006). 24 

Following the principles of likelihood estimation, we estimated model parameters that 25 
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maximized the likelihood of observing the growth data measured in the field given a suite of 1 

alternative models.  2 

We conducted separate analyses for the 15 most common canopy tree species. These 3 

species present a wide range of functional traits, from deciduous temperate species typical of 4 

northern cool Atlantic forests to evergreen Mediterranean oak and pine species from central 5 

and southern Iberia (Table 1). We focused on abundant species (> 1000 individuals) because 6 

small sample sizes can make it difficult to obtain competition coefficients for all neighbor 7 

species (Coates et al. 2009). Our analyses of diameter growth of target trees estimated four 8 

terms: 1) average potential diameter growth (PDG, in mm/year), and three sets of scalar 9 

modifiers ranging from 0 to 1 that quantified the effects on average potential growth of 2) 10 

local climatic conditions (expressed in terms of mean annual temperature and annual 11 

precipitation), 3) initial target tree size (d.b.h., in cm), and 4) the characteristics of the 12 

neighborhood. Our full model had the following form: 13 

                  Growth = PDG x Climatic effect x Size effect x Neighborhood effect                 (1) 14 

Potential diameter growth (PDG) represents the expected target growth when the 15 

other factors are at optimal values. The climatic effect was modeled using a bivariate 16 

Gaussian function: 17 

                      Climatic effect = exp 
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where X10 and X20 are the mean annual temperature (T) and annual precipitation (P) values, 19 

respectively, at which maximum potential growth occurs; and X1b and X2b are estimated 20 

parameters that control the breadth of the function (i.e. the variance of the normal 21 

distribution). Equation 2 produces the classic Gaussian distribution of species performance 22 

along an environmental axis usually assumed to describe vegetation-environment 23 
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relationships (e.g. Curtis 1959; Whittaker 1975; Gauch 1982), but can also produce sigmoidal, 1 

monotonic curves within restricted ranges of either axis. We also tested univariate functions 2 

in which terms for one of the two axes were dropped from the analysis.  3 

 Following recent studies (Uriarte et al. 2004; Canham et al. 2006; Coates et al. 2009), 4 

the size effect was modeled using a lognormal function: 5 

                                        Size effect = exp 
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where X30 represents the target d.b.h. (cm) at which maximum growth occurs, and X3b 7 

controls the breadth of the function. Depending on the value of X30, this functional form can 8 

be hump-shaped or monotonically increasing/decreasing.  9 

The neighborhood effect was modeled as a function of a neighborhood competition 10 

index (NCI) using a Weibull function:  11 

                                Neighborhood effect = exp   



 bNCIa                                         (4) 12 

The Weibull function assumes that the neighborhood effect (and therefore target tree 13 

growth) declines monotonically as a function of NCI. A positive neighborhood effect was not 14 

considered in our models because an initial exploration of the data revealed that target growth 15 

always declined with increasing number or basal area of neighbors. The absence of a positive 16 

neighbor effect on target growth might be due to the fact that our analyses focused on adult 17 

trees and large saplings (d.b.h. > 7.5 cm), whereas facilitation decreases with ontogeny and it 18 

is mostly found for seedlings and small saplings (Miriti 2006; Quero et al. 2008). The NCI 19 

quantifies the net effect of j=1,..., n neighboring trees of i=1,...,s species on the growth of a 20 

target tree z. Following the long tradition of distance-dependence analysis of competition (e.g. 21 

Bella 1971; Daniels 1976), NCI was assumed to vary as a direct function of the size (d.b.h.) 22 

and an inverse function of the distance to neighbors following the form: 23 
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                                           NCI =    ij
1 1

distanceexp 
 

s

i

n

j
ijiz dbh                                      (5) 1 

where α, β and γ are parameters estimated by the analyses and determine the shape of the 2 

effect of the d.b.h. and the distance to the neighbor on NCI. In order to facilitate comparisons 3 

of neighborhood effects across target species, NCI values for each species were scaled 4 

relative to the maximum NCI found for that given species. This created a 0 to 1 index where 5 

0 and 1 represented the minimum and maximum neighborhood interactions observed for any 6 

target species. 7 

 We were particularly interested in exploring whether neighbor effects on a target 8 

species z varied between species or groups of neighbors. In order to do this, we multiplied the 9 

net effect of an individual neighbor by a per-capita competition coefficient (λ) that ranged 10 

from 0 to 1 and allowed for differences between species in their competitive effect on a target 11 

tree. Competition coefficients were only estimated for those species of competitors for which 12 

there were at least 100 neighbors. All remaining species of neighbors for that target species 13 

were then grouped into a "rare species" group. We tested four different groupings of 14 

neighboring species in Eqn. 5: 1) a model that calculated a different λi,z value for each 15 

neighbor species, 2) a model that calculated two separate λ, one for conspecifics and another 16 

for heterospecifics, 3) a model that calculated two separate λ, one for conifers and one for 17 

angiosperms, and 4) a model in which all species were considered equivalent (i.e. fixing λ = 18 

1). 19 

 We also tested variants of Eqn. 4, in which sensitivity to competition varied as a 20 

function of climatic conditions (temperature and precipitation) and target tree size. For this, 21 

the exponential decay term (a) was allowed to vary as a function of mean annual temperature, 22 

annual rainfall and target d.b.h.: 23 

                                    a = a' * Temperatureδ  * Precipitationσ  * dbhφ                                       (6)                       24 
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If either δ, σ, or φ are = 0, then sensitivity to competition does not vary as a function of 1 

temperature, precipitation or d.b.h. (respectively). If either δ, σ or φ are < 0, then sensitivity to 2 

competition declines with temperature, precipitation or d.b.h. (i.e. at a given level of 3 

competition, trees at lower temperatures and precipitation levels and with smaller d.b.h. will 4 

suffer greater reductions in growth than trees at higher temperatures and precipitation levels 5 

and with larger d.b.h.), and if either δ, σ, or φ are > 0 then sensitivity to competition increases 6 

with climatic conditions and d.b.h.. These effects were assumed to be independent of the 7 

underlying effect of climate or target tree size on potential growth (i.e. climatic effect or size 8 

effect, in the absence of a neighborhood effect). 9 

 10 

Parameter estimation and model selection 11 

We used information theoretics (the Akaike Information Criterion, AIC) to select the best 12 

growth model. Following the principle of parsimony, we employed the strategy of 13 

systematically reducing the number of different parameters to the simplest model that was not 14 

a significantly worse fit than any more complicated model. Thus, the full model was 15 

compared to models that ignored the effect of climate, size, competition, or the three of them 16 

(i.e. null, or intercept-only model), with lower AIC values indicating stronger empirical 17 

support for a model (Burnham & Anderson 2002). Growth values were modeled using a 18 

gamma error distribution defined by a shape parameter n, which varies from exponential-like 19 

to bellshaped but left-skewed forms. We used simulated annealing, a global optimization 20 

procedure, to determine the most likely parameters (i.e., the parameters that maximize the 21 

log-likelihood) given our observed data (Goffe et al. 1994). The slope of the regression (with 22 

a zero intercept) of observed radial growth on predicted radial growth was used to measure 23 

bias (with an unbiased model having a slope of 1) and the R2 of the regression was used as a 24 

measure of goodness-of-fit. We used asymptotic two-unit support intervals to assess the 25 
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strength of evidence for individual maximum likelihood parameter estimates (Edwards 1992). 1 

A support interval is defined as the range of the parameter value that results in less than a 2 

two-unit difference in AIC. It is roughly equivalent to a 95% support limit defined using a 3 

likelihood ratio test (Hilborn & Mangel 1997). All analyses were performed using software 4 

written specifically for this study using Java (Java SE Runtime Environment v6, Sun 5 

Microsystems Inc., California, USA, 2010).  6 
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Results 1 

Effects of climate, size and competition on potential tree growth 2 

A full model that included the effect on growth of all the factors explored (climate, size and 3 

competition) was the best model for the 15 species analyzed (Table 2). However, the 4 

competitive effect was always much stronger than the climatic or size effect, as indicated by 5 

the larger increase in AIC when the competition term was dropped from the full models 6 

(Table 2). All of the models produced unbiased estimates of growth (i.e. slopes of predicted 7 

versus observed growth were all close to 1) and explained a percentage of variance in the data 8 

(R2) that ranged from 13% for Quercus suber to 34% for Pinus nigra (Table 2).  9 

 The effect of mean annual temperature on growth (Eqn. 2, see parameter values in 10 

Appendix S1 of Supporting Information) varied widely among species, having a positive 11 

effect on the 8 broadleaved species (particularly F. sylvatica), a negative effect on 5 conifers 12 

(particularly P. sylvestris), and a neutral effect on 2 pine species (P. pinea and P. uncinata; 13 

Fig. 1a). The effect of annual precipitation on growth (Eqn. 2, Appendix S1) was positive for 14 

all species except F. sylvatica, presenting increased growth with precipitation either through 15 

the entire precipitation range or reaching a peak at a lower precipitation level (Fig. 1b).  16 

 The 15 species showed 3 different patterns of variation in potential growth as a 17 

function of target tree size (Eqn. 3, Appendix S1). Most pines showed a growth peak in the 18 

15-25 cm size class range and a sharp decline in larger size classes (Fig. 1c). Juniperus 19 

thurifera and broadleaved species reached a maximum growth peak at larger sizes than pines 20 

(30-50 cm) and then showed moderate or slight declines in growth in larger size classes. 21 

Finally, Pinus pinea was the only species for which size had virtually no effect on growth.  22 

 The magnitude of the negative effect of competition (calculated for a tree of mean size 23 

under mean climatic conditions; Eqn. 4) was largest for conifers, with reductions close to 24 

100% of potential growth under the maximum observed relative competition (i.e. NCI = 1; 25 
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Fig. 1d). Mediterranean evergreen broadleaves were the least sensitive to competition, with 1 

reductions of 40-60% in potential growth at maximum competition levels.  The α parameter 2 

(Eqn. 5), which controls the effect of neighboring tree size on NCI, had values close to 2 for 3 

conifers (range 1.76-1.96) and close to 1 for the rest of the species (range 0.76-1.40; 4 

Appendix S1). These results indicate that competitive effects scale approximately linearly 5 

with biomass (i.e. DBH2) for conifers and with DBH for broadleaved species in Iberian 6 

forests. The exponents β and γ (Eqn. 5) control the shape and the steepness (respectively) of 7 

the effect of neighbor distance on NCI, and therefore on target tree growth. Conifers showed 8 

faster declines in neighbor effects with distance than broadleaved species (Fig. 2). 9 

 10 

Variation in the competitive response of target species along climatic and size gradients 11 

Our analyses indicate that, for all species, sensitivity to competition varied markedly along 12 

one or two of the climatic gradients explored (i.e. δ and/or σ ≠ 0; Eqn. 6, Table 1). Atlantic 13 

deciduous broadleaves had a lower competitive response ability at lower temperatures (δ < 0; 14 

Appendix S1), whereas the remaining species showed the opposite pattern (δ > 0; Appendix 15 

S1). For all species, trees at lower precipitation levels were more sensitive to competition 16 

than trees located at wetter sites (-0.22 < σ < -1.13; Appendix S1). In all cases, smaller trees 17 

were much more sensitive to competition than larger trees (-0.35 < φ < -1.50; Appendix S1).  18 

 In order to explore the community-level consequences of the variation in sensitivity to 19 

competition with climate and size, we analyzed shifts in growth hierarchies along the 20 

competition gradient under two contrasting climatic scenarios, xeric (T = 14ºC, PP = 600 mm) 21 

vs. mesic (T = 8ºC, PP = 1500 mm), and for two different size classes, small trees (d.b.h. = 10 22 

cm) vs. large trees (d.b.h. = 40 cm). We found that larger shifts occurred in xeric rather than 23 

in mesic habitats, and for small trees than for larger ones (Fig. 3). Thus, for 10-cm d.b.h. trees 24 

in xeric habitats, conifers had the largest growth rates without competition, but were 25 
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displaced to the last positions of the ranking by broadleaved species at high competition 1 

levels (Fig. 3a). Within each functional group (conifers vs. broadleaved), Mediterranean 2 

species occupied the first positions of the ranking. On the other hand, basically no shifts 3 

occurred for large trees in mesic habitats, with conifers (and particularly Mediterranean pines) 4 

occupying the first places of the growth ranking along the whole competition gradient (Fig. 5 

3d). 6 

 7 

Comparison of species competitive effects on tree growth 8 

For 11 of the 15 target tree species, the model that considered species-specific effects was the 9 

most parsimonious of the four alternative models that differed in the grouping of neighbor 10 

species (Table 2). For the remaining 4 species, the best model was the one that discriminated 11 

between intra- and inter-specific competitors.  12 

  The competition indices (λ) estimated in the species-specific full models were used to 13 

assemble a matrix of pairwise competition coefficients for the 15 tree species studied (Table 14 

3). The magnitude of the competition coefficients was very large (λ ≥ 0.75) in about 40% of 15 

the cases, medium (0.25 < λ < 0.75) in 30% of the cases, and low (λ ≤ 0.25) in the remaining 16 

30%. Competition among conspecifics was generally strong (diagonal of λ with high values, 17 

including maximum λ values [i.e. λ = 1] for more than half of the species). We explored the 18 

existence of asymmetric pairwise interactions in the matrix (i.e. effect of species i on j [λij] 19 

much smaller/larger than the effect of species j on i [λji]), but found no evidence for this 20 

(Spearman rank correlation = -0.24, p = 0.09, n = 48). 21 
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Discussion 1 

The use of nation-wide forest inventory data, spatially-explicit neighborhood models, and 2 

information theoretics allowed us to quantify the effect of climate, tree size and competition 3 

on the growth of the 15 most common tree species of the Iberian Peninsula. Our 4 

neighborhood analyses revealed that, in Iberian forests, competition from neighbors is an 5 

important driver of tree growth, causing much larger reductions in potential growth than 6 

climate or tree size. Moreover, the sensitivity to competition (i.e. competitive response) of 7 

target trees varied markedly along environmental gradients causing significant rank reversals 8 

in species performance, particularly under xeric conditions. We also found compelling 9 

evidence for strong species-specific competitive effects in these forests. Altogether, these 10 

results constitute critical new information which not only furthers our understanding of the 11 

assembly of Mediterranean forests, but will also be of help in developing new guidelines for 12 

adapting forests in this climatic boundary to global change. 13 

 14 

Effects of climate and size on tree growth 15 

The response of growth to climate varied widely among species, particularly the response to 16 

mean annual temperature. We found that rising temperatures generally had a positive effect 17 

on growth of broadleaved species, particularly deciduous Atlantic species, but neutral or 18 

negative effects on conifers, particularly on mountain pines (Fig. 1a). The positive effects of 19 

temperature on broadleaved species' growth might arise from the fact that higher 20 

temperatures may indicate longer growing seasons (Menzel & Fabian 1999; Peñuelas et al. 21 

2002; Gordo & Sanz 2009). This would be especially true in cold sites such as those occupied 22 

by Atlantic deciduous species, where the absence of frosts could favor early and late season 23 

photosynthesis, increasing carbohydrate storage for future growth (Miyazawa & Kikuzawa 24 

2005; Seynave et al. 2008; Vitasse et al. 2009). On the other hand, the negative effect of 25 
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increasing temperatures on conifer growth could be related to an increase in the atmospheric 1 

water demand, causing greater drought stress at the sites occupied by these water-demanding 2 

species (Barberó et al. 1998; Ferrio et al. 2003; Bogino & Bravo 2008). This indirect effect 3 

of higher temperatures would be particularly apparent for pines typical of northern wetter 4 

climates such as P. sylvestris, which persists at its southernmost distribution limit often at 5 

high-altitude refuges (Castro et al. 2004).  6 

 The effect of precipitation on growth was much more uniform across tree species than 7 

that of temperature. With the unexpected exception of F. sylvatica, all species showed higher 8 

growth with increasing annual precipitation. This generalized positive effect of precipitation 9 

is consistent with the limiting role that water plays in Mediterranean systems (e.g. Pigott & 10 

Pigott, 1993), and with the recent evidence showing that Iberian tree species are becoming 11 

increasingly water-stressed in summer (Andreu et al. 2007; Gea-Izquierdo et al. 2009). 12 

Moreover, for several of the tree species analyzed here (e.g. P. sylvestris, P. uncinata, F. 13 

sylvatica, Q. robur, Q. petraea) the Iberian Peninsula represents the edge of their southern 14 

range, and thus they are already living at the limit of their physiological tolerances (Jump et 15 

al. 2006; Reich & Oleksyn 2008; Martínez-Vilalta et al. 2010). An interesting prediction that 16 

arises when putting together the species' responses to temperature and precipitation is that 17 

alterations in temperature regimes due to climate change would be more likely to modify 18 

inter-specific growth differences in forest communities than changes in precipitation. Thus, 19 

whereas a reduction in precipitation could translate into a generalized decrease in growth, an 20 

increase in temperature might cause a performance disadvantage of conifers compared to 21 

broadleaves, particularly in northern Atlantic and montane sites where low temperatures are a 22 

limiting factor for hardwoods expansion (Prentice et al. 1992; Terradas & Savé 1992; 23 

Seynave et al. 2008). 24 

 The effect of target tree size on growth was quite variable among species. This result 25 
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agrees with previous studies for tropical and temperate forests, which have shown that the 1 

size-growth relationship does not seem to follow a single rule (Muller-Landau et al. 2006; 2 

Russo et al. 2007). The most common pattern found in Iberian tree species was a peak of 3 

maximum growth at some intermediate DBH and subsequent decrease with size. This is also 4 

probably the pattern of tree growth most frequently reported in other forest communities 5 

(Ryan et al. 2004; Coates et al. 2009). However, this peak was generally reached at lower 6 

sizes in conifers, which also showed a much steeper decrease with size than broadleaved 7 

species (Fig. 1c). Therefore, despite the high variability found, we could conclude that the 8 

magnitude of the size effect on growth in Iberian forests was larger for conifers than for 9 

broadleaved species. 10 

  11 

Effect of competition on tree growth: variation in the competitive response of target species 12 

along climatic and size gradients 13 

Although our results support a climate and size effect on tree growth in Iberian forests, 14 

competition from neighbors had a comparatively much larger impact on growth for the 15 15 

species analyzed (Fig. 1). Interesting differences emerged in the competitive response of the 16 

studied species. Conifers in general, and mountain pines in particular, were the most sensitive 17 

tree species to competition, with reductions close to 100% of potential growth under the 18 

maximum observed relative competition. The high sensitivity of conifers to competition was 19 

also reflected in the form of the competition kernel, which scaled faster with size (larger α 20 

parameter) and decreased more steeply with distance (larger γ parameter; Fig. 2) than in 21 

broadleaved species. At the other extreme, Mediterranean evergreen oaks were the most 22 

resistant to competition, probably favored by their strategy of resource storage and 23 

conservative use, which allows them to maintain very low growth rates (see low PDG values 24 

in Appendix S1; Zavala et al. 2000; Ogaya et al. 2003). These results coincide with previous 25 
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studies conducted in Mediterranean forests which have suggested that pines are in general 1 

less shade-tolerant than oaks and consequently more sensitive to competition from neighbors 2 

(Zavala & Zea 2004; Sánchez-Gómez et al. 2006). In general, shade-intolerant species have 3 

been found to require more "growing space" than shade-tolerant species (Burton 1993; 4 

Simard & Sachs 2004). 5 

 Our results indicate that species' competitive responses are not constant, but vary 6 

along climatic and size gradients. We found a more homogeneous interspecific response 7 

along the precipitation gradient than along the temperature gradient. Thus, sensitivity to 8 

competition increased with decreasing precipitation for all species, especially in the smallest 9 

size classes. This result agrees with the idea that competition increases when resources are 10 

more limiting (Tilman 1988), and specifically with the prediction that climate warming 11 

would increase competition for water in Mediterranean forests (Cotillas et al. 2009; Linares 12 

et al. 2010). Also, and in accordance with this prediction, sensitivity to competition increased 13 

with increasing temperature for Mediterranean and sub-Mediterranean broadleaved species, 14 

which could be linked to a higher transpirational demand and a decrease in water supply. 15 

Atlantic deciduous broadleaved were once more the exception to the rule, their sensitivity to 16 

competition increasing with decreasing temperature. This indicates that warmer temperatures 17 

due to climate change could benefit these species not only by the direct climatic effect on 18 

growth already discussed, but also indirectly by causing a release from competition. 19 

 A profound community-level consequence of the variation in sensitivity to 20 

competition along climatic and size gradients was the occurrence of rank reversals in species 21 

performance along the competition gradient under different environmental conditions. The 22 

most abundant and clearest rank reversals occurred for early ontogenetic stages under xeric 23 

conditions, with pines showing the highest growth under low competition intensity but the 24 

lowest growth under high competition intensity (Fig. 3). In mesic environments, however, the 25 
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much higher absolute growth rates of pines than of broadleaved species compensated for their 1 

higher sensitivity to competition, so they occupied the first places of the growth ranking at all 2 

competition levels. Based on these results, an aridification of the Mediterranean climate due 3 

to climate warming could cause rank reversals in multispecific forests, with conifers being at 4 

a clear disadvantage due to their poorer ability to deal with resource shortages both above and 5 

belowground in a warmer and more competitive environment.  6 

 7 

Inter-specific differences in competitive effects of neighbors on tree growth  8 

Our results offer strong support not only for a high variability of competitive responses 9 

among coexisting tree species in Iberian forests, but also for species-specific competitive 10 

effects of neighbors on target trees. Thus, on a per unit size basis, tree species cannot be 11 

considered equivalent in Iberian forests, neither from a response nor an effect perspective. 12 

The question of whether response and effect competitive abilities are linked in plant species 13 

has received much attention due to its relevance for understanding the structure of plant 14 

interactions (see Wang et al. 2010 and references therein). In this study, we did not find a 15 

clear correlation between the competitive response and effect of tree species (Goldberg & 16 

Landa 1991; Cahill et al. 2005; Fraser & Miletti 2008). For example, P. halepensis and F. 17 

sylvatica had by far the largest competitive effects (λ~0.90; Table 3), whereas they were not 18 

characterized by particularly high or low competitive responses (Fig. 1d). The target-19 

neighbor interactions in these forests might therefore be the result of different combinations 20 

of competitive abilities to tolerate and suppress neighbors. 21 

 We found that competitive interactions were in general of large magnitude, 22 

particularly among conspecifics. To explore whether this result could be affected by the 23 

spatial segregation of the species (i.e. that heterospecific neighbors were distinctively further 24 

away from targets than conspecific neighbors) we examined the mean distance to both groups 25 
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of neighbors for the different species. Mean distances happened to be remarkly similar (data 1 

not shown), so we did not find evidence for an influence of spatial segretation on the strong 2 

negative neighbor effects on conspecifics. An alternative and more plausible explanation for 3 

this result could lie in the resource partitioning hypothesis, which predicts more intense 4 

competition among closely related individuals due to a higher similarity in the use of 5 

resources (Tilman 1982; Argyres & Schmitt 1992; Uriarte et al. 2004). Previous studies have 6 

also found density-dependent effects where nearby conspecifics decrease individual 7 

performance to a much larger extent that heterospecifics (Stoll & Newbery, 2005; Zhao et al. 8 

2006). It has been suggested that these types of negative density-dependent effects constitute 9 

a mechanism for maintaining diversity in tropical forests (Janzen 1970; Wright 2002), and 10 

they could also be acting in the much less diverse Mediterranean forests to promote species 11 

coexistence at the neighborhood scale.  12 

 13 

Implications for management of Mediterranean forests under climate change 14 

Several of the key questions that scientists and managers currently face regarding the future 15 

of Mediterranean forests concern their response to predicted climate change and the 16 

mitigation tools available to increase their resilience to these changes. Our results clearly 17 

indicate that although climate exercises considerable direct control over tree species 18 

performance, its effect is modulated by biotic factors such as competition from neighbors. 19 

Because competitive effects in these forests can suppress growth by almost 100%, species 20 

can have a very limited capacity to respond to climate at high competition levels (Fig. 4). 21 

Three main corollaries arise directly from these results. First, studies of climate change 22 

effects on tree performance must necessarily consider stand structural characteristics, 23 

something that has seldom been done so far (but see Hurteau et al. 2007; Gea-Izquierdo et al. 24 

2009; Linares et al. 2009). Second, the reduction of competition by thinning should be 25 
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considered as an adaptation measure that could counteract the negative effects of climate 1 

warming on tree performance (Cescatti & Piutti 1998; Gracia et al. 1999; Martín-Benito et al. 2 

2010). Third, any management measure that promotes forest densification (e.g.  abandonment 3 

of thinning operations in reforestations, severe protection in natural areas) should be 4 

evaluated carefully, since it could cause an increase in competition for resources (particularly 5 

water) enhancing species vulnerability to a drier climate (Linares et al. 2010). If the climatic 6 

gradients of this study can be considered as a surrogate for future climatic conditions, then we 7 

should expect absolute growth rates to decrease and sensitivity to competition to increase in 8 

most forests of the Iberian Peninsula (in all but the northern Atlantic forests), making these 9 

management considerations even more important in the future.  10 

 Our neighborhood analyses also provide detailed recommendations to guide 11 

silvicultural activities aimed at reducing competition. These activities should focus on 12 

neighbors around small trees, which are by far the most sensitive to competition, and 13 

prioritize the removal of close conspecifics in order to decrease negative density-dependent 14 

effects. Neighborhoods of species (and particularly conifers) at their southern limit, such as P. 15 

sylvestris, should also be a priority, since these species are the most sensitive to both climate 16 

and competition. In summary, our results show that adapting forests to climate change can 17 

greatly benefit from spatially-explicit information that indicates how competitive effects vary 18 

with distance, size and identity of neighbors. Specifically, this knowledge will be essential to 19 

evaluate which species mixtures, tree densities and size structures will perform better under a 20 

given set of climatic conditions.  21 
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Table 1. Sample sizes and mean [minimum - maximum] annual temperature (ºC), annual rainfall (mm), target d.b.h. (cm) at the start 

of the growth period, number of neighbors in a 5-m radius plot, and basal area of neighbors (m2/ha) for the 15 study species.  

 
Species Acronym Functional group Nº target 

 trees 
Nº 

plots 
Mean annual 
temperature 

Annual 
rainfall  

d.b.h.  Nº  
Neighbors 

Basal  
area  

Juniperus 
thurifera 

JUTH Mediterranean conifer   2015   844 10.1 
[8.1 - 14.6] 

617 
[366 - 1347]

13.2 
[7.5 - 75.4] 

3 
[0 - 25] 

0.71 
[0 - 15.56] 

Pinus 
halepensis 

PIHA Mediterranean conifer 15403 5139 13.8 
[10.0 - 19.2] 

517 
[170 - 1484]

13.9 
[7.5 - 70.] 

4 
[0 - 27] 

0.99 
[0 - 7.50] 

Pinus 
pinea 

PIPINE Mediterranean conifer   3426 1435 14.9 
[10.9 - 18.5] 

642 
[304 - 1682]

18.0 
[7.5 - 96.1] 

4 
[0 - 46] 

1.13 
[0 - 9.48] 

Pinus 
pinaster 

PIPINA Mediterranean conifer 16730 4867 12.2 
[8.1 - 18.5] 

742 
[322 - 3058]

17.9 
[7.5 - 71.6] 

6 
[0 - 46] 

2.12 
[0 - 14.57] 

Pinus 
nigra 

PINI Mountain conifer 14409 3754 11.0 
[6.3 - 18.3] 

717 
[360 - 2240]

  13.4 
[7.5 - 95.5] 

7 
[0 - 47] 

1.70 
[0 - 15.56] 

Pinus 
sylvestris 

PISY Mountain conifer 22311 5063 9.2 
[3.2 - 14.6] 

920 
[428 - 1977]

15.1 
[7.5 - 128.3] 

8 
[0 - 45] 

2.26 
[0 - 17.96] 

Pinus 
uncinata 

PIUN Mountain conifer   2286   546 6.0 
[2.4 - 14.2] 

1191 
[667 - 1975]

16.0 
[7.5 - 78.0] 

7 
[0 - 32] 

2.55 
[0 - 14.99] 

Quercus 
ilex 

QUIL Mediterranean 
evergreen broadleaved 

21700 7075 12.1 
[6.6 - 18.6] 

723 
[268 - 1812]

10.5 
[7.5 - 152.2] 

7 
[0 - 53] 

1.13 
[0 - 24.19] 

Quercus 
suber 

QUSU Mediterranean 
evergreen broadleaved 

   3352 1360 15.1 
[10.1 - 18.5] 

799 
[480 - 1862]

16.4 
[7.5 - 106.6] 

5 
[0 - 30] 

1.41 
[0 - 15.42] 

Quercus 
pyrenaica 

QUPY Sub-Mediterranean 
deciduous broadleaved 

  9004 2164 10.3 
[5.9 - 16.4] 

876 
[460 - 2304]

11.1 
[7.5 - 129.9] 

9 
[0 - 40] 

1.56 
[0 - 26.45] 

Quercus 
faginea 

QUFA Sub-Mediterranean 
deciduous broadleaved 

  6123 2009 11.1 
[5.8 - 18.3] 

735 
[409 - 1574]

10. 
[7.5 - 103.5] 

8 
[0 - 50] 

1.41 
[0 - 11.88] 
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Table 1. Extended 
 
 

Species Acronym Functional group Nº target 
 trees 

Nº 
plots 

Mean annual 
temperature 

Annual 
rainfall  

d.b.h.  Nº  
Neighbors

Basal  
area  

Quercus 
petraea 

QUPE Atlantic deciduous 
broadleaved 

  1614   513 10.3 
[4.0 - 16.2] 

991 
[540 - 2066]

12.4 
[7.5 - 146.5] 

8 
[0 - 33] 

1.70 
[0 - 24.33] 

Quercus 
robur 

QURO Atlantic deciduous 
broadleaved 

  1928   754 11.7 
[6.4 - 14.7] 

1273 
[461 - 2236]

15.0 
[7.5 - 127.3] 

5 
[0 - 30] 

1.70 
[0 - 17.82] 

Fagus 
sylvatica 

FASY Atlantic deciduous 
broadleaved 

  4391 1032 9.0 
[4.8 - 13.7] 

1128 
[587 - 2150]

14.4 
[7.5 - 112.0] 

8 
[0 - 43] 

2.40 
[0 - 27.02] 

Castanea 
sativa 

CASA Atlantic deciduous 
broadleaved 

  1138   436 12.3 
[8.3 - 16.2] 

1142 
[637 - 2275]

14.3 
[7.5 - 219.6] 

7 
[0 - 34] 

1.84 
[0 - 18.53] 

 
 
 



                                                                                                          
                                            Gómez-Aparicio et al. 36 
 

 

Table 2. Comparison of the alternative models for the 15 target tree species using AIC. The four full models varied in their treatment 

of competition, considering species-specific competition, intra- vs. inter-specific competition, conifer vs. angiosperm competition, and 

equivalent competition. The “No climate”, “No size”, and “No comp.” models ignore the effect of climate, size, and competition, 

respectively. The best fitting model is given a ΔAIC value of zero (in bold), and the difference in AIC between this model and all 

others is reported. 

 
Notes: Species are identified with acronyms; see Table 1 for full names. The  δ, σ and φ columns indicate whether (Y, yes; N, no) the best model included a term 
that allows sensitivity to competition to vary with mean annual temperature (δ), annual precipitation (σ) or target size (φ). NP is the total number of parameters in 
the best model. The slope and R2 for the relationship between predicted and observed growth are also given.  

 ΔAIC       
 Full           
Species Species 

specific 
Intra. vs 

inter. 
Conif.vs 

Ang. 
Equiv. 
comp. 

No 
climate 

No 
size 

No 
comp. 

Null δ σ φ NP Slope R2 

JUTH 5.2 0 12.8 1.9 7.4 8.9 137.1 149.9 Yes Yes Yes 15 1.01 0.14
PIHA 29.9 0 12.3 204.2 520.4 404.9 804.9 2481.6 Yes Yes Yes 13 1.00 0.26
PIPINE 0 23.8 33.9 50.8 52.3 2.2 410.5 580.8 Yes Yes Yes 19 0.99 0.25
PIPINA 0 82.0 49.6 85.2 335.1 4.9 1848.5 2805.7 Yes Yes Yes 25 1.00 0.29
PINI 0 66.2 78.1 155.2 197.7 65.2 2029.1 2959.2 Yes Yes Yes 30 0.99 0.34
PISY 0 245.4 287.3 254.5 159.3 115.4 2723.7 4034.4 Yes Yes Yes 30 1.00 0.30
PIUN 0 55.4 198.6 22.8 4.1 16.9 207.2 311.0 Yes No Yes 16 1.04 0.25
QUIL 0 40.0 396.4 44.3 2815.6 3021.6 2847.2 4056.4 Yes Yes Yes 30 0.99 0.14
QUSU 0 8.3 162.9 2.0 54.4 145.3 249.2 293.1 No Yes Yes 13 1.01 0.13
QUPY 8.2 0 4.7 2.5 208.1 382.9 889.9 1450.3 Yes Yes Yes 15 1.01 0.20
QUFA 0 20.5 76.7 75.1 185.5 299.1 489.1 1035.1 Yes Yes Yes 23 1.00 0.17
QUPE 0 16.9 39.5 40.6 32.3 100.7 106.6 264.9 Yes No Yes 20 1.01 0.21
QURO 0 19.8 7.4 23.6 41.7 46.6 105.5 204.7 Yes No Yes 19 1.00 0.16
FASY 3.3 0 147.6 193.2 221.9 225.3 363.3 1019.5 Yes Yes Yes 15 1.00 0.30
CASA 0 58.1 14.9 26.1 12.4 31.4 137.2 172.3 Yes Yes Yes 19 1.01 0.15
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Table 3.  Per capita competition coefficients (λi,z) with 2-unit support intervals for the effects of a neighbor of species i on a target 

species z for the 15 most common tree species of the Iberian Peninsula.  

 Effect of neighbor ... 

On target ... JUTH PIHA PIPINE PIPINA PINI PISY PIUN QUIL QUSU QUPY QUFA QUPE 

JUTH 1 
[0.75-1] 

---- ---- ---- 0.92 
[0.85-1] 

---- ---- 0.92 
[0.60-1] 

---- ---- 0.67 
[0.43-0.87] 

---- 

PIHA ---- 1 
[0.90-1] 

0.13 
[0-0.27] 

0.01 
[0-0.11] 

0.04 
[0-0.10] 

0.84 
[0.61-0.94] 

---- 0.04 
[0-0.15] 

0.01 
[0-0.12] 

---- 0.22 
[0-0.47] 

---- 

PIPINE ---- 1 
[0.85-1] 

0.67 
[0.56-0.71] 

0.17 
[0-0.34] 

---- ---- ---- 0.49 
[0.23-0.67] 

0.02 
[0-0.11] 

---- ---- ---- 

PIPINA ---- 1 
[0.75-1] 

0.69 
[0.54-1] 

0.40 
[0.38-0.45] 

0.48 
[0.32-0.58] 

0.36 
[0.20-0.48] 

---- 0.31 
[0.18-0.58] 

0 
[0-0.12] 

0.01 
[0-0.06] 

0.70 
[0.55-0.92] 

---- 

PINI 0.95 
[0.60-1] 

0.94 
[0.74-1] 

---- 0.47 
[0.32-0.62] 

1 
[0.89-1] 

0.86 
[0.61-1] 

---- 0.85 
[0.66-1] 

---- 0.01 
[0-0.20] 

0.00 
[0-0.35] 

0.06 
[0-0.19] 

PISY 0.80 
[0.50-1] 

0.38 
[0.10-0.50] 

---- 0.31 
[0.20-0.39] 

1 
[0.92-1] 

0.63 
[0.57-0.67] 

0.25 
[0-0.40] 

0.65 
[0.45-0.82] 

---- 0.00 
[0-0.05] 

0.39 
[0.24-0.46] 

0.01 
[0-0.15] 

PIUN ---- ---- ---- ---- ---- 1 
[0.91-1] 

0.61 
[0.55-0.68] 

---- ---- ---- ---- ---- 

QUIL 0 
[0-0.50] 

0.98 
[0.58-1] 

0.34 
[0.14-0.60] 

0.02 
[0-0.32] 

1 
[0.85-1] 

1 
[0.75-1] 

---- 0.75 
[0.65-0.90] 

0.06 
[0-0.26] 

0.23 
[0.09-0.32] 

0.31 
[0.12-0.56] 

0.95 
[0.80-1] 

QUSU ---- 1 
[0.70-1] 

0.84 
[0.55-1] 

0.11 
[0-0.37] 

---- ---- ---- 0.75 
[0.60-0.90] 

0.61 
[0.51-0.76] 

0.28 
[0.11-0.33] 

0.80 
[0.62-0.95] 

---- 

QUPY ---- ---- ---- 0.87 
[0.62-1] 

0.71 
[0.55-0.88] 

0.92 
[0.67-1] 

---- 1 
[0.68-1] 

0.80 
[0.70-1] 

1 
[0.90-1] 

1 
[0.80-1] 

0.98 
[0.73-1] 

QUFA 0.16 
[0-0.30] 

1 
[0.95-1] 

---- 0.39 
[0.12-0.61] 

0.26 
[0.11-0.32] 

0.80 
[0.55-1] 

---- 0.25 
[0.05-0.39] 

---- 0.11 
[0-0.23] 

 1 
[0.95-1] 

---- 

QUPE ---- ---- ---- ---- 0.52 
[0.31-0.70] 

0.96 
[0.56-1] 

---- 0.23 
[0-0.51] 

---- 0.29 
[0-0.35] 

---- 1 
[0.80-1] 

QURO ---- ---- ---- 0.26 
[0-0.39] 

---- ---- ---- 0.96 
[0.82-1] 

---- 0.33 
[0.22-0.48] 

---- ---- 

FASY ---- ---- ---- ---- ---- 0.06 
[0-0.11] 

---- 0.02 
[0-0.05] 

---- 0 
[0-0.05] 

0.76 
[0.67-1] 

0.01 
[0-0.05] 

CASA ---- ---- ---- 0.01 
[0-0.20] 

---- ---- ---- 0.55 
[0.20-0.65] 

---- 1 
[0.65-1] 

---- ---- 

Mean CE 0.58 0.91 0.53 0.27 0.66 0.74 0.43 0.56 0.25 0.30 0.59 0.50 
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Table 3. Extended 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: Species are identified with acronyms; see Table 1 for full names. Coefficients were estimated only when there were at least 100 neighbors of that species 
(dashed lines otherwise). The competition coefficients are scaled so that the strongest competitor for each target tree species has a value of 1. Conspecific 

 Effect of neighbor ... 

On target .... QURO FASY CASA 

JUTH ---- 
 

---- ---- 

PIHA ---- 
 

---- ---- 

PIPINE ---- 
 

---- ---- 

PIPINA 0 
[0-0.13] 

---- 0 
[0-0.36] 

PINI ---- 
 

---- ---- 

PISY 0.01 
[0-0.09] 

0.82 
[0.60-1] 

---- 

PIUN ---- 
 

---- ---- 

QUIL 0.05 
[0-0.19] 

1 
[0.80-1] 

0.83 
[0.72-1] 

QUSU ---- 
 

---- ---- 

QUPY 0.73 
[0.58-1] 

0.91 
[0.76-1] 

0.71 
[0.60-1] 

QUFA ---- 0.94 
[0.79-1] 

---- 

QUPE ---- 0.65  
[0.40-0.90] 

---- 

QURO 1 
[0.85-1] 

---- 0.03 
[0-0.25] 

FASY 0.53 
[0.37-0.72] 

1 
[0.94-1] 

---- 

CASA 0.84 
[0.54-1] 

---- 0.53 
[0.39-0.69] 

Mean CE 0.35 0.90 0.44 
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interactions are shown in bold. Also shown is the mean competitive effect (CE) of each neighbor species on all target species for which it was a common 
neighbor.  
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Figure legends 
 
 
Figure 1. Predicted effect of a) mean annual temperature, b) annual precipitation, c) target 

tree size, and d) NCI (neighborhood competition index) on growth for the 15 most common 

tree species of the Iberian Peninsula. The effects of climate and size are calculated in the 

absence of competition. The effect of competition is calculated for a tree of mean size at 

mean climatic conditions (see Table 1 for mean values). See Appendix 1 for the estimated 

parameters of the corresponding functions. See Table 1 for key to species abbreviations. 

 

Figure 2. Predicted variation of NCI (neighborhood competition index) with distance to 

neighbors for the 15 target tree species studied. To simplify presentation of results, the 

parameter α was set to zero in Eqn. 5. See Table 1 for key to species abbreviations. 

 

Figure 3. Predicted variation in potential growth along a competition gradient for four 

different combinations of climatic and tree size conditions: a) small trees (d.b.h. = 10 cm) in 

xeric sites (T = 14ºC, P = 600 mm); b) large trees (d.b.h. = 40 cm) in xeric sites; c) small 

trees (d.b.h. = 10 cm) in mesic sites (T = 8ºC, P = 1500 mm); and c) large trees (d.b.h. = 40 

cm) in mesic sites. See Appendix 1 for the estimated parameters of the corresponding 

functions. See Table 1 for key to species abbreviations. 

 
Figure 4. Predicted variation in potential growth of Pinus sylvestris along a temperature and 

competition gradient for two size classes: a) d.b.h. = 10 cm, and b) d.b.h. = 40 cm. Observe 

how the response to temperature is almost null at high competition levels (i.e. NCI = 1), 

particularly for small trees. 
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Appendix S1. Parameter estimates and 2-unit support intervals (in brackets) for the best model selected for each of the 15 target tree 

species. See text for a description of the parameters. 

Species PDG X10 X1b X20 X2b X30 X3b 
Juniperus thurifera 4.44 

[4.39-4.49] 
2.35 

[2.34-2.36] 
18.98 

[18.97-18.99] 
1994.38 

[1994.37-1994.39] 
1537.90 

[1537.88-1537.92] 
49.47 

[49.46-49.48] 
2.95 

[2.90-3.00] 
Pinus halepensis 8.72 

[8.62-8.82] 
1.65 

[1.64-1.66] 
30.13 

[30.12-30.14] 
1002.05 

[1002.03-1002.06] 
729.77 

[727.87-730.97] 
24.88 

[24.33-25.68] 
1.33 

[1.28-1.38] 
Pinus pinaster 12.40 

[12.39-12.41] 
2.60 

 [2.59-2.61] 
18.20 

[18.19-18.21] 
1884.71 

[1884.70-1884.72] 
1577.19 

[1577.18-1577.20] 
23.30 

[23.29-23.31] 
1.45 

[1.44-1.46] 
Pinus pinea 8.25 

[8.20-8.30] 
20.61 

[20.60-20.62] 
260.32 

[260.31-260.33] 
1100.45 

[1100.44-1100.46] 
760.64 

[760.63-760.65] 
26.68 

[26.63-26.73] 
5.63 

[5.58-5.68] 
Pinus nigra 9.39 

[9.35-9.43] 
0.47 

[0.42-0.52] 
11.59 

[11.54-11.64] 
2569.75 

[2569.70-2569.80] 
2131.21 

[2131.16-2131.26] 
18.68 

[18.64-18.74] 
1.05 

[1.00-1.10] 
Pinus sylvestris 9.13 

[9.12-9.14] 
1.09 

[1.08-1.10] 
11.75 

[11.74-11.76] 
2386.82 

[2386.81-2386.83] 
2660.83 

[2660.82-2660.84] 
19.92 

[19.91-19.93] 
1.11 

[1.10-1.12] 
Pinus uncinata 6.52 

[6.47-6.65] 
71.59 

[71.58-71.60] 
230.38 

[230.37-230.39] 
1369.72 

[1369.71-1369.73] 
2999.98 

[2999.97-2999.99] 
15.57 

[13.86-17.17] 
1.44 

[1.29-1.96] 
Quercus ilex 3.96 

[3.91-4.01] 
25.81 

[25.80-25.82] 
24.52 

[24.51-24.53] 
1262.49 

[1262.48-1262.50] 
1031.06 

[1031.05-1031.07] 
25.97 

[25.92-26.02] 
1.75 

[1.70-1.80] 
Quercus suber 4.15  

[4.14-4.16] 
28.56 

[28.55-28.57] 
38.79 

[38.78-38.80] 
1614.59 

[1614.58-1614.60] 
1963.27 

[1963.26-1963.28] 
81.81 

[81.79-81.82] 
2.81 

[2.80-2.82] 
Quercus pyrenaica 5.24 

[5.19-5.36] 
18.10 

[18.09-18.11] 
12.16 

[12.15-12.17] 
1172.17 

[1172.16-1172.18] 
1642.55 

[1642.54-1642.56] 
43.07 

[43.02-43.12] 
1.68 

[1.63-1.73] 
Quercus faginea 5.27 

[5.22-5.32] 
37.21 

 [37.20-37.22] 
26.16 

[26.15-26.17] 
1297.80 

[1297.79-1297.81] 
1147.10 

[1147.09-1147.11] 
52.99 

[52.94-53.04] 
1.70 

[1.65-1.75] 
Quercus petraea 5.01 

[4.95-5.05] 
25.41 

[25.40-25.42] 
21.80 

[21.79-21.81] 
1021.65 

[1021.64-1021.66] 
2820.18 

[2820.17-2820.19] 
34.15 

[34.10-34.20] 
1.33 

[1.28-1.38] 
Quercus robur 9.60 

[9.55-9.65] 
27.76 

[27.75-27.77] 
14.68 

[14.67-14.69] 
1316.30 

[1316.29-1316.31] 
977.04 

[977.03-977.05] 
47.54 

[47.49-47.59] 
1.84 

[1.79-1.89] 
Fagus sylvatica 7.52 

[7.47-7.57] 
19.79 

[19.78-19.80] 
10.10 

[10.09-10.11] 
254.71 

[254.70-254.72] 
1670.40 

[1670.39-1670.41] 
43.41 

[43.36-43.46] 
1.38 

[1.33-1.43] 
Castanea sativa 8.15 

[8.10-8.20] 
22.52 

[22.51-22.53] 
15.55 

[15.54-15.56] 
1303.24 

[1303.23-1303.25] 
1263.07 

[1263.06-1263.08] 
26.75 

[26.70-26.80] 
1.67 

[1.62-1.72] 
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Appendix S1.  Extended 
 
 

Species a b α β γ δ  σ φ n 
Juniperus thurifera 195.23 

[195.20-195.26] 
1.00 

[1-1.05] 
1.76 

[1.72-1.82] 
1.13 

[1.11-1.14] 
0.18 

[0.17-0.19] 
0.10 

[0.09-0.11] 
-0.56 

[-0.57 to -0.55] 
-0.53 

[-0.54 to -0.52] 
1.58 

[1.53-1.63] 
Pinus halepensis 144.26 

[144.25-144.27] 
1.00 

[1-1.05] 
1.80 

[1.75-1.85] 
0.80 

[0.74-0.87] 
0.43 

[0.39-0.49] 
0.39 

[0.38-0.40] 
-0.23 

[-0.24 to -0.22] 
-1.53 

[-1.54 to -1.52] 
2.24 

[2.19-2.29] 
Pinus pinaster 282.43 

[282.31-282.56] 
1.00 

[1-1.01] 
1.96 

[1.94-2.00] 
0.50 

[0.47-0.54] 
0.63 

[0.56-0.71] 
0.54 

[0.53-0.55] 
-0.41 

[-0.42 to -0.40] 
-1.19 

[-1.20 to -1.18] 
2.19 

[2.14-2.20] 
Pinus pinea 25.88 

[24.78-26.66] 
1.00 

[1-1.05] 
1.82 

[1.77-1.86] 
0.91 

[0.79-1.16] 
0.13 

[0.08-0.25] 
0.19 

[0.18-0.20] 
-0.84 

[-0.85 to -0.83] 
-0.57 

[-0.58 to -0.56] 
2.25 

[2.24-2.26] 
Pinus nigra 186.39 

[184.42-188.01] 
1.00 

[1-1.05] 
1.92 

[1.90-1.94] 
0.75 

[0.74-0.76] 
0.58 

[0.56-0.61] 
0.11 

[0.10-0.12] 
-0.19 

[-0.20 to -0.18] 
-1.23 

[-1.24 to -1.22] 
1.97 

[1.92-2.02] 
Pinus sylvestris 78.56 

[78.55-78.57] 
1.00 

[1-1.01] 
1.79 

[1.76-1.80] 
0.61 

[0.60-0.62] 
0.81 

[0.79-0.83] 
0.32 

[0.31-0.33] 
-0.13 

[-0.14 to -0.12] 
-1.11 

[-1.12 to -1.10] 
2.24 

[2.22-2.26] 
Pinus uncinata 22.49 

[22.48-22.50] 
1.00 

[1-1.05] 
1.80 

[1.76-1.86] 
1.13 

[1.09-1.17] 
0.32 

[0.29-0.35] 
0.27 

[0.26-0.28] 
 -1.05 

[-1.03 to -1.06] 
1.79 

[1.78-1.80] 
Quercus ilex 0.52 

[0.49-0.61] 
1.00 

[1-1.01] 
0.98 

[0.89-1.08] 
7.47 

[7.01-8.03] 
0.00 

[0-0.20] 
0.71 

[0.70-0.72] 
-0.05 

[-0.06 to -0.04] 
-0.39 

[-0.40 to -0.38] 
1.65 

[1.64-1.66] 
Quercus suber 412.75 

[412.64-412.82] 
1.00 

[1-1.01] 
0.95 

[0.81-1.23] 
6.59 

[6.10-6.74] 
0.00 

[0-0.38] 
 -0.73 

[-0.75 to -0.70] 
-0.58 

[-0.59 to -0.56] 
1.53 

[1.52-1.54] 
Quercus pyrenaica 134.00 

[133.99-134.01] 
1.00 

[1-1.05] 
1.36 

[1.35-1.38] 
4.64 

[3.98-4.92] 
0.00 

[0-0.15] 
0.11 

[0.10-0.12] 
-0.12 

[-0.13 to -0.11] 
-1.57 

[-1.56 to -1.58] 
2.02 

[1.97-2.07] 
Quercus faginea 717.19 

[717.18-717.20] 
1.00 

[1-1.05] 
1.25 

[1.10-1.44] 
6.92 

[5.28-7.56] 
0.00 

[0-0.05] 
-0.50 

[-0.54 to -0.44] 
-0.26 

[-0.30 to -0.20] 
-1.41 

[-1.42 to -1.40] 
2.29 

[2.24-2.34] 
Quercus petraea 41.53 

[41.51-41.54] 
1.00 

[1-1.05] 
1.38 

[1.34-1.42] 
3.60 

[3.12-3.99] 
0.00 

[0-0.35] 
-0.25 

[-0.26 to -0.24] 
 -1.13 

[-1.14 to -1.12] 
1.92 

[1.87-1.97] 
Quercus robur 82.77 

[82.76-82.78] 
1.01 

[1-1.05] 
1.40 

[1.39-1.50] 
0.90 

[0.81-1.02] 
0.20 

[0.18-0.23] 
-0.95 

[-0.98 to -0.91] 
 -0.59 

[-0.63 to -0.54] 
1.57 

[1.47-1.61] 
Fagus sylvatica 1820.59 

[1820.58-1820.60] 
1.00 

[1-1.05] 
1.31 

[1.28-1.36] 
0.83 

[0.69-1.03] 
0.24 

[0.19-0.36] 
-0.90 

[-0.91 to -0.89] 
-0.29 

[-0.30 to -0.28] 
-1.07 

[-1.08 to -1.05] 
1.39 

[1.34-1.44] 
Castanea sativa 392.61 

[392.60-392.62] 
1.00 

[1-1.05] 
0.76 

[0.61-1.16] 
4.56 

[3.87-5.03] 
0.00 

[0-0.05] 
-0.32 

[-0.33 to -0.31] 
-0.33 

[-0.34 to -0.32] 
-0.95 

[-0.98 to -0.92] 
1.98 

[1.97-1.99] 


