
Under review as a conference paper at ICLR 2020

DISENTANGLING TRAINABILITY AND

GENERALIZATION IN DEEP LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

A fundamental goal in deep learning is the characterization of trainability and
generalization of neural networks as a function of their architecture and hyper-
parameters. In this paper, we discuss these challenging issues in the context of
wide neural networks at large depths where we will see that the situation simpli-
fies considerably. To do this, we leverage recent advances that have separately
shown: (1) that in the wide network limit, random networks before training are
Gaussian Processes governed by a kernel known as the Neural Network Gaussian
Process (NNGP) kernel, (2) that at large depths the spectrum of the NNGP kernel
simplifies considerably and becomes “weakly data-dependent”, and (3) that gra-
dient descent training of wide neural networks is described by a kernel called the
Neural Tangent Kernel (NTK) that is related to the NNGP. Here we show that in
the large depth limit the spectrum of the NTK simplifies in much the same way
as that of the NNGP kernel. By analyzing this spectrum, we arrive at a precise
characterization of trainability and a necessary condition for generalization across
a range of architectures including Fully Connected Networks (FCNs) and Con-
volutional Neural Networks (CNNs). In particular, we find that there are large
regions of hyperparameter space where networks can only memorize the training
set in the sense they reach perfect training accuracy but completely fail to gener-
alize outside the training set, in contrast with several recent results. By comparing
CNNs with- and without-global average pooling, we show that CNNs without av-
erage pooling have very nearly identical learning dynamics to FCNs while CNNs
with pooling contain a correction that alters its generalization performance. We
perform a thorough empirical investigation of these theoretical results and finding
excellent agreement on real datasets.

1 INTRODUCTION

Machine learning models based on deep neural networks have attained state-of-the-art performance
across a dizzying array of tasks including vision (Cubuk et al., 2019), speech recognition (Park
et al., 2019), machine translation (Bahdanau et al., 2014), chemical property prediction Gilmer et al.
(2017), diagnosing medical conditions Raghu et al. (2019), and playing games Silver et al. (2018).
Historically, the rampant success of deep learning models has lacked a sturdy theoretical foundation;
architectures, hyperparameters, and learning algorithms are more often than not selected by brute
force search Bergstra & Bengio (2012) and heuristics Glorot & Bengio (2010). Recently, signifi-
cant theoretical progress has been made on several fronts that have shown promise in making neural
network design more systematic. In particular, in the infinite width (or channel) limit, the distribu-
tion of functions induced by neural networks with random weights and biases has been precisely
characterized before, during, and after training.

The study of infinite networks dates back to seminal work by Neal (1994) who showed that the
distribution of functions given by single hidden-layer networks with random weights and biases in
the infinite-width limit are Gaussian Processes (GPs). Recently, there has been renewed interest in
studying random, infinite, networks starting with concurrent work on “conjugate kernels” (Daniely
et al., 2016; Daniely, 2017) and “mean-field theory” (Poole et al., 2016; Schoenholz et al., 2017).
The former set of papers argued that the empirical covariance matrix of pre-activations became
deterministic in the infinite-width limit and called this the conjugate kernel of the network while
the latter papers studied the properties of these limiting kernels along with the kernel describing
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distribution of gradients. In particular, it was shown that the spectrum of the conjugate kernel of
wide fully-connected networks approached a well-defined, data-independent, limit when the depth
exceeds a certain scale, ξ. Networks with tanh-nonlinearities (among other bounded activations)
exhibit a phase transition between two limiting spectral distributions of the conjugate kernel as a
function of their hyperparameters with ξ diverging at the transition. It was additionally hypothesized
that networks were un-trainable when the conjugate kernel was sufficiently close to its limit.

Since then this analysis has been pushed to a wide range for architectures such as convolutions (Xiao
et al., 2018), recurrent networks (Chen et al., 2018; Gilboa et al., 2019), networks with residual
connections (Yang & Schoenholz, 2017), networks with quantized activations (Blumenfeld et al.,
2019), the spectrum of the fisher (Karakida et al., 2018), a range of activation functions Hayou et al.
(2018), and batch normalization (Yang et al., 2019). In each case, it was observed that the spectra
of the kernels correlated strongly with whether or not the architectures were trainable. While these
papers studied the properties of the conjugate kernels, especially the spectrum in the large-depth
limit, a branch of concurrent work made a stronger statement: that many networks converge to
Gaussian Processes as their width becomes large (Lee et al., 2018; Matthews et al., 2018; Novak
et al., 2019b; Yang, 2019). In this case, the Conjugate Kernel was referred to as the Neural Network
Gaussian Process (NNGP) kernel.

Together this work offered a significant advance to our understanding of wide neural networks;
however, this theoretical progress was limited to networks at initialization or after Bayesian posterior
estimation and provided no link to gradient descent. Moreover, there was some preliminary evidence
that suggested the situation might be more nuanced than the qualitative link between the NNGP
spectrum and trainability might suggest. For example, Philipp et al. (2017) showed that deep fully-
connected tanh-networks could be trained after the kernel reached its large-depth, data-independent,
limit but that these networks did not generalize to unseen data.

In the last year, significant theoretical clarity has been reached regarding the relationship between the
GP prior and the distribution following gradient descent. In particular, Jacot et al. (2018) along with
followup work (Lee et al., 2019; Chizat et al., 2019) showed that the distribution of functions induced
by gradient descent for infinite-width networks is a Gaussian Process with a particular compositional
kernel known as the Neural Tangent Kernel (NTK). In addition to characterizing the distribution over
functions following gradient descent in the wide network limit, the learning dynamics can be solved
analytically throughout optimization.

In this paper, we leverage these developments and revisit the relationship between architecture,
hyperparameters, trainability, and generalization in the large-depth limit for a variety of neural net-
works. In particular, we make the following contributions:

1. We compute the large-depth asymptotics of several quantities related to trainability, includ-
ing the largest eigenvalue of the NTK, λmax, and the condition number κ = λmax/λmin,
where λmin is the smallest eigenvalue; see Table 1.

2. We introduce the residual predictor ∆(l), namely the difference between the finite depth
and infinite depth NTK predictions, which is related to the model’s ability to generalize:

the network fails to generalize if ∆(l) is too small.

3. We show that the ordered and chaotic phases identified in Poole et al. (2016) lead to
markedly different limiting spectra of the NTK, which further indicates that, as a func-
tion of depth, the optimal learning rates ought to decay exponentially, linearly and remain
roughly a constant in the chaotic, order-to-chaos and ordered phases, respectively.

4. We examine the differences in the above quantities for fully-connected networks (FCNs)
and convolutional networks (CNNs) with and without pooling and precisely characterize
the effect of pooling to these quantities.

5. We provide substantial experimental evidence supporting these claims, includes experi-
ments that densely vary the hyperparameters of FCNs and CNNs with and without pooling.

Together these results provide a complete, analytically tractable, and dataset-independent theory
for learning in very deep and wide networks. In addition to being interesting in its own right our
theory provides a strong test of the NTK theory. Finally, our results provides clarity regarding the
observation that for linear networks the learning rate must be decreased linearly in the depth of the
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FC/CNN-F, CNN-P
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Table 1: Evolution of the NTK spectra and ∆(l). The NTKs of FCN and CNN-F are essentially the

same and the scaling of λ
(l)
max, λ

(l)
rest, κ

(l), and ∆(l) for these networks is written in black. Corrections
to these quantities due to the addition of an average pooling layer with window size d is written in
blue.

network Saxe et al. (2013). Here, we note that this is true only for networks that are initialized
critically, i.e. on the order-to-chaos phase boundary.

2 BACKGROUND

We summarize recent developments in the study of wide random networks. We will keep our dis-
cussion relatively informal; see (Lee et al., 2018; Matthews et al., 2018; Novak et al., 2019b) for a
more rigorous version of these arguments. To simplify this discussion and as a warmup for the main
text, we will consider the case of FCNs. Consider a fully-connected network of depth L where each

layer has a width N (l) and an activation function φ : R → R. In this work we will take φ = erf
however, most of the results will hold for a wide range of non-linearities though specifics - such
as the phase diagram - can vary substantially. For simplicity, we will take the width of the hidden

layers to infinity sequentially: N (1) → ∞, . . . , N (L−1) → ∞. The network is parameterized by

weights and biases that we take to be randomly initialized with W
(l)
ij , b

(l)
i ∼ N (0, 1) along with

hyperparameters, σw and σb that set the scale of the weights and biases. Letting the pre-activations

in layer l due to an input x be given by z
(l)
i (x), the network is then described by the recursion,

z
(l+1)
i (x) =

σw√
N (l)

∑

j

W
(l+1)
ij φ(z

(l)
j (x)) + σbb

(l+1)
i 0 ≤ l ≤ L− 1. (1)

Notice that as N (l) → ∞, the sum ends up being over a large number of random variables

and we can invoke the central limit theorem to conclude that the {z(l+1)
i }i∈[N ] are i.i.d. Gaus-

sian with zero mean. Given a dataset of m points, the distribution over pre-activations can
therefore be described completely by the covariance matrix between neurons in different inputs

K(l)(x, x′) = E[z
(l)
i (x)z

(l)
i (x′)]. Inspecting Equation 75, we see that K(l+1)(x, x′) can be com-

puted in terms of K(l)(x, x′) as

K(l+1)(x, x′) = σ2
wE(z,z′)∼N (0,K(l)(x,x′))[φ(z)φ(z

′)] + σ2
b ≡ σ2

wT (K(l)(x, x′)) + σ2
b . (2)

for T , an appropriately defined operator from the space of positive semi-definite matrices to itself.

Equation 2 describes a dynamical system on positive semi-definite matrices K(x, x′). It was
shown in Poole et al. (2016) that fixed points, K∗(x, x′), of these dynamics exist such that

liml→∞ K(l)(x, x′) = K∗(x, x′) with K∗(x, x′) = q∗[δx,x′ + c∗(1 − δx,x′)] independent of the
inputs x and x′. The values of q∗ and c∗ are determined by the hyperparameters, σw and σb. How-
ever Equation 2 admits multiple fixed points (e.g. c∗ = 0, 1) and the stability of these fixed points
plays a significant role in determining the properties of the network. Generically, there are large
regions of the (σw, σb) plane in which the fixed-point structure is constant punctuated by curves,
called phase transitions, where the structure changes.
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The rate at which K(x, x′) approaches or departs K∗(x, x′) can be determined by expanding Equa-
tion 2 about its fixed point, δK(x, x′) = K(x, x′)−K∗(x, x′) to find1

δK(l+1)(x, x′) ≈ σ2
wṪ (K∗(x, x′))δK(l)(x, x′) (3)

which exhibits exponential convergence to - or divergence from - the fixed-point as δK(l)(x, x′) ∼
χ(x, x′)l where χ(x, x′) = σ2

wṪ (K∗(x, x′)). Since K∗(x, x′) does not depend on x or x′ it follows
that χ(x, x′) will take on a single value, χc∗ , whenever x 6= x′. If χc∗ > 1 then the fixed point is
unstable and, as discussed above, there will be another fixed point that becomes stable, if χc∗ < 1
then the fixed point is stable, and if χc∗ = 1 then the hyperparameters lie at a phase transition.
As was shown in Poole et al. (2016), there is always a fixed-point at c∗ = 1 whose stability is
determined by χ1. This defines the order-to-chaos transition. Note, that χc∗ can be used to define

a depth-scale, ξc∗ = −1/ log(χc∗) that describes the number of layers over which K(l) approaches
K∗.

This provides a precise characterization of the NNGP kernel at large depths. As discussed above, re-
cent work (Jacot et al., 2018; Lee et al., 2019; Chizat et al., 2019) has connected the prior described
by the NNGP with the result of gradient descent training using a quantity called the NTK. To con-
struct the NTK, suppose we enumerate all the parameters in the fully-connected network described

above by θα. The finite width NTK is defined by Θ̂(x, x′) = J(x)J(x′)T where Jiα(x) = ∂θαz
L
i (x)

is the Jacobian evaluated at a point x. The main result in Jacot et al. (2018) was to show that in the
infinite-width limit, the NTK converges to a deterministic kernel Θ and remains constant over the
course of training. As such, at a time t during gradient descent training with an MSE loss, the
expected outputs of an infinitely wide network, µt(x) = E[zLi (x)], evolve as

µt(Xtrain) = (Id − e−ηΘtrain, traint)Ytrain (4)

µt(Xtest) = Θtest, trainΘ
−1
train, train(Id − e−ηΘtrain, traint)Ytrain (5)

for train and test points respectively; see Section 2 in Lee et al. (2019). Here Θtest, train denotes
the NTK between the test inputs Xtest and training inputs Xtrain and Θtrain, train is defined similarly.

Since Θ̂ converges to Θ, the gradient flow dynamics of real network also converge to the dynamics
described by Equation 4 and Equation 5 (Jacot et al., 2018; Lee et al., 2019; Chizat et al., 2019; Yang,
2019; Arora et al., 2019; Huang & Yau, 2019). As the training time, t tends to infinity we note that
these equations reduce to µ(Xtrain) = Ytrain and µ(Xtest) = Θtest, trainΘ

−1
train, trainYtrain. Consequently

we call the linear operator

P (Θ) ≡ Θtest, trainΘ
−1
train, train (6)

the “mean predictor” or “predictor” for short. In addition to showing that the NTK describes net-
works during gradient descent, Jacot et al. (2018) showed that the NTK could be computed in closed

form in terms of T , Ṫ , and the NNGP as,

Θ(l+1)(x, x′) = K(l+1)(x, x′) + σ2
wṪ (K(l))(x, x′)Θ(l)(x, x′) . (7)

where Θ(l) is the NTK for the pre-activations at layer-l.

3 METRICS FOR TRAINABILITY AND GENERALIZATION AT LARGE DEPTH

We begin by discussing the interplay between the conditioning of Θtrain,train and the trainability of
wide networks. We can write Equation 4 in terms of the spectrum of Θtrain,train letting Θtrain,train =
UTDU as,

µ̃t(Xtrain)i = (Id − e−ηλit)Ỹtrain,i (8)

where λi are the eigenvalues of Θtrain,train and µ̃t(Xtrain) = Uµt(Xtrain), Ỹtrain = UYtrain are the
mean prediction and the labels respectively written in the eigenbasis of Θtrain,train. If we order the
eigenvalues such that λ0 ≥ · · · ≥ λM then it has been hypothesized in e.g. Lee et al. (2019) that the
maximum feasible learning rate scales as η ∼ 2/λ0 as we verify empirically in section 4. Plugging

1More precisely, one needs to consider the Jacobian of T as an operator from positive semi-definite matrices
to positive semi-definite matrices. We refer the readers to Section B of Xiao et al. (2018) for more details.
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this scaling for η into Equation 8 we see that the smallest eigenvalue will converge exponentially at
a rate given by κ = λM/λ0 the conditioning number. It follows that if the conditioning number of
the NTK associated with a neural network diverges then it will become untrainable and so we use
κ as a metric for trainability. We will see that at large depths, the spectrum of Θtrain,train typically
features a single large eigenvalue, λmax, and then a gap that is large compared with the rest of the
spectrum. We therefore will often refer to a typical eigenvalue in the bulk as λrest and approximate
the condition number as κ = λmax/λrest.

In the large-depth limit we will see that Θ(l) converges to Θ∗ independent of the data distribution.
In this case Θ∗

test,train will be a rank-1 constant matrix. As such, the mean prediction defined by
Equation 5 completely fails to generalize. We define the finite depth correction to the infinite depth
predictor2,

∆(l)YTrain ≡
(

P (Θ(l))− P (Θ∗)
)

YTrain. (9)

By the triangle inequality, the generalization error is lower bounded by

‖P (Θ(l))Ytrain − Ytest‖2 ≥ ‖P (Θ∗)Ytrain − Ytest‖2 − ‖∆(l)Ytrain‖2 . (10)

‖P (Θ∗)Ytrain − Ytest‖2 is a constant independent of the test inputs and Equation 10 is large if

‖∆(l)YTrain‖22 is too small. Therefore, a necessary condition for the network to generalize is that
there exists some ρ > 0 such that

‖∆(l)YTrain‖2 ≥ ρ‖P (Θ∗)Ytrain − Ytest‖2 . (11)

As such, we use ∆(l) as a metric for generalization in this paper.

Our goal is therefore to characterize the evolution of the two metrics κ(l) and ∆(l) in l. We follow
the methodology outlined in Schoenholz et al. (2017); Xiao et al. (2018) to explore the spectrum of
the NTK as a function of depth. We will use this to make precise predictions relating trainability and
generalization to the hyperparameters (σw, σb, l). Our main results are summarized in Table 1 which

describes the evolution of λ
(l)
max (the largest eigenvalue of Θ(l)), λ

(l)
rest (the remaining eigenvalues),

κ(l), and ∆(l) in three different phases (ordered, chaotic, and the phase transition) and their depen-
dence on m, the size of the training set, the choices of architectures: FCN, CNN-F (convolution with
flattening) and CNN-P (convolution with pooling), and size, d, of the window in the pooling layer
(which we always take to be the penultimate layer).

We give a brief derivation of these results in Section 4 followed by a more detailed discussion in
the appendix. However, it is useful to first give a qualitative overview of the phenomenology. In the

ordered phase, λ
(l)
max → m(q∗ − lχl

1) and λ
(l)
rest → lχl

1. At large depths since χ1 < 1 it follows that

κ(l) → mq∗/(lχl
1) and so the condition number diverges exponentially quickly. Thus, in the ordered

phase we expect networks not to be trainable (or, specifically, the rate at which they learn will grow
exponentially in their depth). The predictor scales as lχl

1 which goes to zero at the same rate as the

divergence of κ(l); thus, in the ordered phase networks fail to train and generalize simultaneously.

By contrast in the chaotic phase we see that there is no gap between λ
(l)
max and λ

(l)
rest and networks

become perfectly conditioned and are trainable everywhere. However, in this regime we see that
the predictor scales as l(χc∗/χ1)

l. Since, by definition, in the chaotic phase χc∗ < 1 and χ1 > 1
it follows that ∆(l) → 0 over a depth ξ = −1/ log(χc∗/χ1). In the chaotic phase networks fail to
generalize at a finite depth but remain trainable indefinitely. Finally, notice that introducing pooling
modestly augments the depth over which networks can generalize in the chaotic phase but reduces
the depth in the ordered phase. We will explore all of these predictions in detail in section 5.

4 LARGE-DEPTH ASYMPTOTICS OF THE NNGP AND NTK

We now give a brief derivation of the results in table 1. To simplify the notation we will discuss
fully-connected networks and then extend the results to CNNs with pooling (CNN-P) and without
pooling (CNN-F). Details of these two cases can be found in the appendix. We will focus on the

2If Θ(l) diverges to infinity, we define P (Θ∗) = liml→∞ P (Θ(l)). If Θ∗

train, train is singular, we will add a
diagonal regularizer σId into Θ∗

train, train.
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NTK here since Schoenholz et al. (2017); Xiao et al. (2018) contains a detailed description of the
NNGP in this case. As in sec. 2, we will be concerned with the fixed points of Θ as well as the
linearization of Equation 7 about its fixed point. Recall that the fixed point structure is invariant
within a phase so it suffices to consider the ordered phase, the chaotic phase, and the critical line
separately. In cases where a stable fixed point exists, we will describe how Θ converges to the fixed
point. We will see that in the chaotic phase and on the critical line, Θ has no stable fixed point and in
that case we will describe its divergence. As above, in each case the fixed points of Θ have a simple
structure with Θ∗ = p∗((1− ĉ∗)Id + ĉ∗11T ). To simplify the forthcoming analysis, without a loss
of generality, we assume the inputs are normalized to have variance q∗ 3. As such, we can treat T
and Ṫ , restricted on {K(l)}l, as a point-wise functions, since

T (K)(x, x′) = Eφ(u)φ(v), (u, v)T ∼ N
(

0,

[

q∗ K(x, x′)
K(x, x′) q∗

])

. (12)

Since the off-diagonal elements approach the same fixed point at the same rate, we use q
(l)
ab ≡

K(l)(x, x′) and p
(l)
ab ≡ Θ(l)(x, x′) to denote any off diagonal entry of K(l) and Θ(l) respectively. We

will similarly use q∗ab and p∗ab to denote the limits, liml→∞ q
(l)
ab = q∗ab = c∗q∗ and liml→∞ p

(l)
ab =

p∗ab = ĉ∗p∗. Using the above notation, Equation 7 and Equation 2 become

q
(l+1)
ab = σ2

wT (q
(l)
ab ) + σ2

b p
(l+1)
ab = q

(l+1)
ab + σ2

wṪ (q
(l)
ab ) p

(l)
ab (13)

q(l+1) = q∗ p(l+1) = q∗ + σ2
wṪ (q∗) p(l), (14)

where p(l) ≡ Θ(l)(x, x) and q(l) = K(l)(x, x). In what follows, we split the discussion into three

parts according to the values of χ1 ≡ σ2
ωṪ (q∗) recalling that in Poole et al. (2016); Schoenholz

et al. (2017) it was shown that χ1 controls the fixed point structure.

4.1 THE CHAOTIC PHASE χ1 > 1:

The chaotic phase is so-named because q∗ab/q
∗ < 1 so that similar inputs become more uncorrelated

as they pass through the network. In this phase, the diagonal entries of Θ(l) grow exponentially and
the off-diagonal entries converge to a fixed value. Indeed, Equation 14 implies,

p(l+1) = q∗ + χ1p
(l) =⇒ p(l) = q∗

χl+1
1 − 1

χ1 − 1
, (15)

which diverges exponentially. To find the limit of the off-diagonal terms, define χc = σ2
ωṪ (q∗ab)

which was shown to control convergence of the q
(l)
ab and is always less than 1 (Schoenholz et al.,

2017; Xiao et al., 2018). Let l → ∞ in Equation 13, we find that

p∗ab =
q∗ab

1− σ2
ωṪ (q∗ab)

=
q∗ab

1− χc
< ∞. (16)

The rate of convergence of p∗ab is O(lχl
c) (see Section A in the appendix). Since the diagonal terms

diverge and the off-diagonal terms are finite it follows that in very deep networks in the chaotic

phase, (p(l))−1Θ(l) → Id. Thus, in the chaotic phase, the spectrum of the NTK for very deep
networks approaches the diverging constant multiplying the identity. From Equation 4 this implies

that optimization in the chaotic phase should be easy since κ(l) → 1 (provided numerical precision
issues from the prefactor do not become problematic). However, computing the mean prediction on
test points and noticing that P (Θ∗)Ytrain = 0 we find (see Section B for the derivation),

∆(l)Ytrain = P (Θ(l))Ytrain ≈ (p(l))−1O(lχl
c)Ytrain → 0. (17)

It follows that in the chaotic phase the networks predictions on unseen data to converge to 0 expo-

nentially quickly in the depth. Since Equation 17 decays like O(l(p(l))−1χl
c), we expect the network

fails to generalize after O(ξ∗) layers, where ξ∗ = −1/(logχc − logχ1)
4.

3It has been observed in previous works Poole et al. (2016); Schoenholz et al. (2017) that the diagonals
converge much faster than the off-diagonals for tanh- or erf- networks.

4For simplicity, we ignore the polynomial correction in l.
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In summary, for wide networks, in the chaotic phase as the depth increases optimization becomes
increasingly easy but the generalization performance degrades and eventually the network fails com-
pletely away from the training set after O(ξ∗) layers. Therefore, in the chaotic phase, deep network
memorizes the training data. We will confirm this prediction for both kernel prediction and neural
network training in the experimental results; see Fig 3.

4.2 THE ORDERED PHASE χ1 = σ2
ωṪ (q∗) < 1:

The ordered phase is defined by the stable fixed point with q∗ab/q
∗ = 1; in this case, disparate

inputs will end up converging to the same output at the end of the network. In the ordered phase,
Equation 14 implies that all the diagonal entries of Θ converge to the same value,

p(l) = q∗
χl+1
1 − 1

χ1 − 1

l→∞−−−→ p∗ = q∗
1

1− χ1
< ∞ (18)

However, as with the NNGP kernel, the off-diagonal terms of the NTK, p
(l)
ab , will also converge

to the value on the diagonal, p∗. It follows that the limiting kernels have the form Θ∗ = p∗11T

and K∗ = q∗11T. Thus, the limiting kernels are highly singular and feature only one non-zero
eigenvalue. Since the limit is singular, we must linearize the dynamics about the fixed point to gain
insight into the limiting behavior of the network. To compute the corrections, let

ǫ
(l)
ab = q

(l)
ab − q∗ab δ

(l)
ab = p

(l)
ab − p∗ab (19)

ǫ(l) = q(l) − q∗ δ(l) = p(l) − p∗ (20)

The diagonal correction can be obtained directly from Equation 18 and we find that ǫ(l) = 0 and

δ(l) =
χl+1
1

1−χ1
q∗. To compute correction of the off-diagonals, we linearize the equation around the

fixed point to find that asymptotically (see Section A),

ǫ
(l)
ab ≈ χl

1ǫ
(0)
ab δ

(l)
ab ≈ χl

1

[

δ
(0)
ab + l

(

1 +
χ2

χ1
p∗ab

)

ǫ
(0)
ab

]

(21)

where χ2 = σ2
ωT̈ (q∗). While the NNGP and NTK feature the same exponential rate of convergence

set by χ1, we see that terms in the off-diagonal terms of the NTK feature polynomial corrections.

Θ(l) has (approximately) two eigenspaces. The first eigenspace comes from the single non-zero
eigenvalue at the fixed point and it is very close to the DC mode (i.e. all entries of the eigenvector
are equal to 1) with eigenvalue

λ(l)
max ≈ (m− 1)(p∗ − δ

(l)
ab ) + (p∗ − δ(l)) → mp∗ =

mq∗

1− χ1
(22)

i.e. is the sum of one row, where m is the size of the dataset. The second eigenspace comes
from lifting the degenerate zero-modes when l < ∞ and it has dimension (m− 1) with eigenvalue

λ
(l)
rest ≈ −δ(l)+δ

(l)
ab = O(lχl

1) → 0, which goes to zero exponentially over depth l. The eigenvalues

of K(l) have a similar distribution with λ
(l)
max ≈ mq∗ − (m − 1)ǫ

(l)
ab and λ

(l)
rest = O(χl

1). Thus the

conditioning number, κ(l), of both Θ(l) and K(l) diverges exponentially as O(χ−l
1 l−1) and O(χ−l

1 )
respectively. As discussed above, there is a polynomial correction in the conditioning number of the
NTK that slightly improves its conditioning. Since Θ∗ is singular, we insert a diagonal regularization
term σId into Θtrain, train of the linear predictor Equation 6, where σ is a positive constant independent

from l and χ1. We find ∆(l) = Oσ(lχ
l
1); see Section B for the derivation. In summary, in the

ordered phase, ξ1 = −1/ logχ1 (for simplicity, we ignore the polynomial correction) governs both
trainability and generalizability of the predictor.

4.3 THE CRITICAL LINE χ1 = σ2
ωṪ (q∗) = 1

On the critical line both the diagonal and the off-diagonal terms of Θ(l) diverge linearly in the depth

while K(l) converges to q∗11T . From Equation 14 we see immediately that the diagonal terms are

given by q(l) = q∗ and p(l) = lq∗. To compute the correction of the off-diagonals, we keep the
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Figure 1: Condition numbers of NTKs and their rate of convergence. Different colors represent
images of different size. For example, in the yellow “12-6” , “12” represents the size of the dataset
and “6” represents the dimension number (6 ∗ 6 ∗ 3 for FCNand (6, 6, 3) for CNN) (a) In the chaotic

phase, κ(l) converges to 1 for all architectures. (b) We plot χl
1κ

(l), confirming κ explodes with rate

χl
1/l in the ordered phase. In (c) and (d), the dashed lines representing the condition number κ(l)

and solid lines the ratio between first and second eigenvalues. We see that, on the order-to-chaos
transition, these two numbers converge to m+2

2 and dm+2
2 (horizontal lines) for FC/CNN-F and

CNN-P respectively. In (e), we plot rates of convergence for CNN-P (solid) and CNN-F (dashed),

confirming that pooling slows down the convergence of κ(l) by a factor of d. (f) Adding dropout to

the penultimate layer prevents κ(l) from divergence in the ordered phase. The legends indicate the

rate of the mask with ρ = 1 meaning keeping all activations. Horizontal lines are the limit of κ(l)

computed in Equation 85 (here m = 20 for all curves.)
,

definition of ǫ
(l)
ab unchanged but define δ

(l)
ab slightly differently to the above as δ

(l)
ab = p

(l)
ab − lq∗ to

take into account the linear divergence at large depths. Taylor expanding to second order we find,

ǫ
(l)
ab = − 2

χ 2

1

l
+ o(

1

l
) , δ

(l)
ab = −2

3
lq∗ +O(1) (23)

Thus for large l, Θ(l) has the following form p(l) = lq∗ and p
(l)
ab = 1

3 lq
∗ +O(1). As in the ordered

phase, for large l it follows that Θ(l) essentially has two eigenspaces: one has dimension one and
the other has dimension (m− 1) with

λ(l)
max =

(m+ 2)q∗

3
l +mO(1), λ

(l)
rest =

2

3
q∗l +O(1) (24)

and the condition number κ(l) = m+2
2 + mO(l−1) → m+2

2 as l → ∞. Unlike the chaotic and

ordered phases, κ(l) converges with rate O(l−1). The K(l) has λ
(l)
max = mq∗+mO(l−1) and λ

(l)
rest ≈

2
χ2

l−1 and the condition number κ(l) diverges linearly with slope mχ2/2. A similar calculation

gives ∆(l) = O(l−1) on the critical line. In summary, κ(l) converges to a finite number and the

network ought to be trainable for arbitrary depth but the residual predictor ∆(l) decays polynomially,
explaining why critically initialized networks with thousands of layers could still generalize (Xiao
et al., 2018).
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Figure 2: Maximal learning rate can be calculated via the λmax. y-axis: accuracy and x-axis:
multiples of ηtheory. Each point on the solid (dashed) lines represents the best training (test) accuracy
throughout training of one configuration. From blue to purple to red, (σω, σb) is moving from the
order phase to the chaotic phase. ρ = 1 is the theoretical prediction.

4.4 REMARKS

We end this section with a couple remarks. (1) The above theory holds for CNNs; see Section D.
In the large depth setting, the NTK of CNNs without pooling is essentially the same as the NTK
of FCNs. (2) In the ordered phase, Adding a dropout layer could significantly improve trainability

of a network. For example, adding dropout to the penultimate layer, the condition number κ(l) will
converge to a finite number rather than diverge exponentially; see (f) in Figure 1 and Equation 85 in
the appendix.

5 EXPERIMENTS

In this section, we provide empirical results to support the theoretical results in Section 4. Figure 1
is generated using synthetic data and all other plots are generated using CIFAR-10 with MSE as the
loss function.

Evolution of κ(l) (Figure 1). We randomly sample inputs with shapes (m, k2 × 3) for FCN and
(m, k, k, 3) for CNN-F/CNN-P, where m ∈ {12, 20} and k ∈ {6, 10}. We compute the exact
NTK with activation function Erf using the Neural Tangents library (Novak et al., 2019a). We see

excellent agreement between the theoretical calculation of κ(l) in Section 4 (summarized in Table 1)
and the experimental results Figure 1.

Maximum Learning Rates (Figure 2 top). In practice, given a set of hyper-parameters of a net-
work, knowing the range of feasible learning rates is extremely valuable. As discussed above,
in the infinite width setting, Equation 4 implies the maximal convergent learning rate is given by

ηtheory ≡ 2/λ
(l)
max. We argue that ηtheory is a good prediction for the maximal convergent learning

rate for wide network. To test this statement, we apply SGD to train a collection of fully-connected
networks on CIFAR-10 using 1k training samples with the following configurations: (1) width:
2048 (2) σb = 0.43 fixed, (3) depths: l = 5, 10, 20, 40, (4) 10 different values of σω moving from
the ordered phase (blue) to the chaotic phase (red) (5) 10 different learning rates η = ρηtheory, with

ρ ∈ [10−1, 101]. Overall, we see excellent agreement for depths less or equal to 20 and reasonable
good agreement for depth 40. We point out that the degradation of the agreement for larger depth
may due to the fact that the finite width NTK becomes more stochastic as the ratio between depth
and width increases (Hanin & Nica, 2019). Note that Table 1 tells that, as depth increases, ηtheory
should decays exponentially and linearly in the chaotic and critical phases resp. and remain roughly
a constant in the ordered phase.

Trainability vs Generalization (Figure 3 top). Our theoretical result suggests that in the deep
chaotic regime (χl

1 is large) training becomes easier but the network can not generalize. On the other
hand, the network can generalize but training becomes much more difficult as one moves towards

the deep ordered region because κ(l) blows up exponentially. To confirm this claim, we conduct an
experiment using 16k training samples from CIFAR-10 with 20×20 different (σω, l) configurations.
We train each network using SGD with batch size b = 1024 and learning rate η = 0.3ηtheory. Deep
in the chaotic phase we see that all configurations reach perfect training accuracy but the network
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Figure 3: Top: training (left) and test accuracy of FCN using SGD. Bottom: test accuracy of CNN-P,
CNN-F and the difference. In the blue strip, CNN-F significantly outperforms CNN-P, due to the
fact that pooling increases the spectra gap by a factor of d.

completely fails to generalize in the sense test accuracy approaches 10%. However, in the ordered
phase although the training accuracy degrades, generalization improves. The network eventually
becomes untrainable after O(ξ1) layers. In both phases we see that the depth scales, ξ1 and ξ∗
respectively, perfectly capture the transition from generalizing to overfitting.

CNN-P v.s. CNN-F: spatial correction (Figure 3 bottom). We compute the test accuracy using the
analytic NTK predictor Equation 5, which corresponds to the test accuracy of ensemble of gradient
descent trained neural networks taking the width to infinity. We choose 1k training points, fix σ2

b ,
and choose 20 × 20 different (σω, l) configurations. We plot the test performance of CNN-P and
CNN-F and the performance difference in Fig 3. Remarkably, the performance of both CNN-P and
CNN-F are captured by ξ1 = −1/ log(χ1) in the ordered phase and by ξ∗ = −1/(log ξc− log ξ1) in
the chaotic phase. We see that the test performance difference between CNN-P and CNN-F exhibits
a region in the ordered phase (a blue strip) where CNN-F outperforms CNN-P by a large margin.

This performance difference is due to the correction term d as predicted by the ∆(l)-row of Table 1.

6 CONCLUSION AND FUTURE WORK

In this work, we identify several quantities (λmax, λrest, κ, and ∆(l)) related to the spectrum of the
NTK that control trainability and generalization of deep networks. We offer a precise characteriza-
tion of these quantities and provide substantial experimental evidence supporting theoretical results.
In future work, we would like to extend our framework to other architectures, e.g., ResNet (with
batch-norm), attention model. Understanding the implication of the sub-Fourier modes in the NTK
to the test performance of CNN is also an important research direction.
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A SIGNAL PROPAGATION OF NNGP AND NTK

Recall that

q
(l+1)
ab = σ2

wT (q
(l)
ab ) + σ2

b p
(l+1)
ab = q

(l+1)
ab + σ2

wṪ (q
(l)
ab ) p

(l)
ab (25)

q(l+1) = q∗ p(l+1) = q∗ + σ2
wṪ (q∗) p(l), (26)

A.1 CORRECTION OF THE OFF-DIAGONALS IN THE CHAOTIC/ORDERED PHASE

Applying Taylor’s expansion to the first equation of 25 gives

q∗ab + ǫ
(l+1)
ab = σ2

ωT (q∗ab + ǫ
(l)
ab ) + σ2

b (27)

= σ2
ωT (q∗ab) + σ2

b + σ2
ωṪ (q

∗
ab)ǫ

(l)
ab +O(ǫ

(l)
ab

2) (28)

= q∗ab + σ2
ωṪ (q

∗
ab)ǫ

(l)
ab +O(ǫ

(l)
ab

2) (29)

With χc = σ2
ωṪ (q∗ab), we have

ǫ
(l+1)
ab ≈ χcǫ

(l)
ab (30)

Similarly, applying Taylor’s expansion to the second equation of 25 gives

δ
(l+1)
ab ≈ (1 + χc,2p

∗
ab)ǫ

(l+1)
ab + χcδ

(l)
ab (31)

where χc,2 = σ2
ωT̈ (q∗ab). This implies

ǫ
(l)
ab ≈ χl

c ǫ
(0)
ab (32)

δlab ≈ χl
c

[

δ
(0)
ab + l

(

1 +
χc,2

χc
p∗ab

)

ǫ
(0)
ab

]

. (33)

Note that δ
(l)
ab contains a polynomial correction term and decays like lχl

c. The correction to the fixed
points in the ordered phase could be obtained using the same calculation:

ǫ
(l)
ab ≈ χl

1 ǫ
(0)
ab (34)

δ
(l)
ab ≈ χl

1

[

δ
(0)
ab + l

(

1 +
χ2

χ1
p∗
)

ǫ
(0)
ab

]

. (35)

A.2 CORRECTION OF THE OFF-DIAGONALS ON THE CRITICAL LINE.

We have χ1 = 1 on the critical line. We need to expand the first equation of 25 to the second order

ǫ
(l+1)
ab = ǫ

(l)
ab +

1

2
χ2ǫ

(l)
ab

2 +O(ǫ
(l)
ab

3) (36)

Here we assume T has a continuous third derivative. The above equation implies

ǫ
(l)
ab = − 2

χ2

1

l
+ o(

1

l
). (37)

Then

δ
(l+1)
ab = q

(l+1)
ab − q∗ + σ2

ωṪ (q∗ + ǫ
(l)
ab )p

(l)
ab − lq∗ (38)

≈ ǫ
(l+1)
ab + (χ1 + χ2ǫ

(l)
ab +

1

2
χ3(ǫ

(l)
ab )

2)(lq∗ + δ
(l)
ab )− lq∗ (39)

≈ ǫ
(l+1)
ab + (1 + χ2ǫ

(l)
ab )δ

(l)
ab + lq∗χ2ǫ

(l)
ab +

1

2
χ3(ǫ

(l)
ab )

2lq∗ (40)

Plugging Equation 37 into the above equation gives

δ
(l)
ab = −2

3
lq∗ +O(1) (41)
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A.3 RELU

We only consider the critical initialization σ2
ω = 2 and σ2

b = 0. Using the equations in Appendix C
of (Lee et al., 2019) gives

σ2
ωT (1− ǫ) = 1− ǫ+

2
√
2

3π
ǫ3/2 +O(ǫ5/2) (42)

and taking the derivative w.r.t. ǫ

σ2
ωṪ (1− ǫ) = 1−

√
2

π
ǫ1/2 +O(ǫ3/2) (43)

This is enough to conclude (similar to the above calculation)

ǫ
(l)
ab = (

3π√
2
)2l−2 + o(l−2) (44)

δ
(l)
ab = −3

4
l +O(1). (45)

Recall that q(l) = 1 and p(l) = l for Relu network with σ2
ω = 2. and σb = 0. Therefore

λ(l)
max =

m+ 3

4
l +mO(1), λ

(l)
rest =

3

4
l +O(1) κ(l) =

m+ 3

3
+mO(1/l). (46)

A.4 RESIDUAL RELU

We consider the following “continuum” residual network

x(t+dt) = x(t) + (dt)1/2(Wφ(x(t)) + b) (47)

where t denotes the number of layer and dt > 0 is sufficiently small and W and b are the weights
and biases. We also set σ2

ω = 2 (i.e. E[WWT ] = 2Id) and σ2
b = 0 (i.e. b = 0). The NNGP and

NTK have the following form

K(t+dt) = K(t) + 2dtT (K(t)) (48)

Θ(t+dt) = Θ(t) + dtK(t) + 2dtṪ (K(t))Θ(t) (49)

Taking the limit dt → 0 gives

K̇(t) = 2T (K(t)) (50)

Θ̇(t) = K(t) + 2Ṫ (K(t))Θ(t) (51)

Using the fact that q0 = 1 (i.e. the inputs have unit variance), we can compute the diagonal terms

q(t) = et and p(t) = tet. Let q
(t)
ab = etc

(t)
ab , applying the above fractional Taylor expansion to T and

Ṫ , we have

ċ
(t)
ab = −2

√
2

3π
(1− c

(t)
ab )

3
2 +O((1− c

(t)
ab )

5
2 ) (52)

Solving this gives

q
(t)
ab = (1− 9π2

2
t−2 + o(t−2))et (53)

p
(t)
ab = (

1

4
t+O(1))et . (54)

Thus the condition number is m/3 + 1. This is the same as the non-residual Relu case discussed
above.

B ASYMPTOTIC OF ∆
(l)

To keep the notation simple, we denote Xd = Xtrain, Yd = Ytrain, Θtd = Θtest, train, Θdd = Θtrain, train.
Recall that

∆(l)Yd =
(

P (Θ(l))− P (Θ∗)
)

Yd =

(

Θ
(l)
td

(

Θ
(l)
dd

)−1

−Θ∗
td (Θ

∗
dd)

−1

)

Yd (55)

We split our calculation into three parts.
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B.1 CHAOTIC PHASE

In this case the diagonal p(l) diverges exponentially and the off-diagonals p
(l)
ab converges to a

bounded constant p∗ab. Thus P (Θ∗)Yd = 0. We expand Θ(l) about its fixe point

∆(l)Yd = Θ
(l)
td

(

Θ
(l)
dd

)−1

Yd (56)

=
(

Θ∗
td +O(δ

(l)
ab )
)(

p(l)Id + p∗ab(11
T − Id) +O(δ

(l)
ab )
)−1

Yd (57)

= (p(l))−1
(

Θ∗
td +O(δ

(l)
ab )
)

(

Id− p∗ab
p(l)

(11T − Id) +O(δ
(l)
ab /p

(l))

)

Yd (58)

= (p(l))−1
(

Θ∗
td +O(δ

(l)
ab )
)

(

Id− p∗ab
p(l)

(11T − Id) +O(δ
(l)
ab /p

(l))

)

Yd (59)

= (p(l))−1
(

O(δ
(l)
ab ) +O(δ

(l)
ab /p

(l))
)

Yd (60)

In the last equation, we have used the fact 11TYd = 0 and Θ∗
tdYd = 0 since Yd is balanced (i.e.

containing the same number of positive (+1) and negative (-1) labels.) Therefore

∆(l)YdO((p(l))−1δ
(l)
ab ) = O(l(χc/χ1)

l) . (61)

B.2 ORDER-TO-CHAOS PHASE

Note that in this phase, both the diagonals and the off-diagonals diverge linearly. In this case

lim
l→∞

1

lq∗
Θ

(l)
td =

1

3
1t1

T
d lim

l→∞

1

lq∗
Θ

(l)
dd = B ≡ 2

3
Id +

1

3
1d1

T
d (62)

Here we use 1d to denote the all ‘1’ (column) vector with length equal to the number of training
points in Xd and 1t is defined similarly. Note that the constant matrix B is invertible. By Equation 41

P (Θ(l)) =
1

3

(

3

lq∗
Θ

(l)
td

)(

1

lq∗
Θ

(l)
dd

)−1

(63)

=
1

3

(

1t1
T
d +O(1/lq∗)

)

(B +O(1/lq∗))
−1

(64)

=
1

3

(

1t1
T
d +O(1/lq∗)

) (

B−1 +O(1/lq∗)
)

(65)

=
1

3
1t1

T
d B

−1 +O(1/lq∗) (66)

= lim
l→∞

P (Θ(l)) +O(1/lq∗) (67)

Thus

∆(l)Yd = O(1/lq∗) (68)

Ordered Phase In this case Θ∗ is a rank one matrix. We add a diagonal regularization term and
defined

Pσ(Θ) = Θtd (Θdd + σId)
−1

(69)

where σ > 0 is a positive constant independent of the hyper-parameters (σw, σb, l). Let Bσ =
Θ∗ + σId. Then

Pσ(Θ
(l)) =

(

Θ∗
td +O(δ

(l)
ab )
)(

Bσ +O(δ
(l)
ab )
)−1

(70)

= Θ∗
tdB

−1
σ +Oσ(δ

(l)
ab ) (71)

= Pσ(Θ
∗) +Oσ(δ

(l)
ab ) (72)
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C DROPOUT

In this section, we investigate the effect of adding a dropout layer to the penultimate layer. Let

0 < ρ ≤ 1 and γ
(L)
j (x) be iid random variables

γ
(L)
j (x) =

{

1, with probability ρ

0, with probability 1− ρ.
(73)

For 0 ≤ l ≤ L− 1,

z
(l+1)
i (x) =

σw√
N (l)

∑

j

W
(l+1)
ij φ(z

(l)
j (x)) + σbb

(l+1)
i (74)

and for the output layer,

z
(L+1)
i (x) =

σw

ρ
√
N (L)

N(L)
∑

j=1

W
(L+1)
ij φ(z

(L)
j (x))γ

(L)
j (x) + σbb

(L+1)
i (75)

where W
(l)
ij and b

(l)
i are iid Gaussians N (0, 1). Since no dropout is applied in the first L layers,

the NNGP kernel K(l) and Θ(l) can be computed using Equation 2 and Equation 7. Let K(L+1)
ρ and

Θ
(L+1)
ρ denote the NNGP and NTK of the (L+1)-th layer. Note that when ρ = 1, K(L+1)

1 = K(L+1)

and Θ
(L+1)
1 = Θ(L+1) . We will compute the correction induced by ρ < 1. The fact

E[γ
(L)
j (x)γ

(L)
i (x′)] =

{

ρ2, if (j, x) 6= (i, x′)

ρ, if (j, x) = (i, x′)
(76)

implies that the NNGP kernel K(L+1)
ρ (Schoenholz et al., 2017) is

K(L+1)
ρ (x, x′) ≡ E[z

(L+1)
i (x)z

(L+1)
i (x′)] =











σ2
wT (K(L)(x, x′)) + σ2

b , if x 6= x′

1
ρσ

2
wT (K(L)(x, x)) + σ2

b if x = x′ .

(77)

Now we compute the NTK Θ
(L+1)
ρ , which is a sum of two terms

Θ(L+1)
ρ (x, x′) = E





∂z
(L+1)
i (x)

∂θ(L+1)

(

∂z
(L+1)
i (x′)

∂θ(L+1)

)T


+ E





∂z
(L+1)
i (x)

∂θ(≤L)

(

∂z
(L+1)
i (x′)

∂θ(≤L)

)T


 .

(78)

Here θ(L+1) denote the parameters in the (L+ 1) layer, namely, W
(L+1)
ij and b

(L+1)
i and θ(≤L) the

remaining parameters. Note that the first term is in Equation 78 is equal to K(L+1)
ρ (x, x′). Using the

chain rule, the second term is equal to

σ2
ω

ρ2N (L)
E





N(L)
∑

j,k=1

W
(L+1)
ij W

(L+1)
ik φ̇(z

(L)
j (x))γ

(L)
j (x)φ̇(z

(L)
k (x′))γ

(L)
j (x′)

∂z
(L)
j (x)

∂θ(≤L)

(

∂z
(L)
k (x′)

∂θ(≤L)

)T




(79)

=
σ2
ω

ρ2N (L)
E





N(L)
∑

j

φ̇(z
(L)
j (x))γ

(L)
j (x)φ̇(z

(L)
j (x′))γ

(L)
j (x′)

∂z
(L)
j (x)

∂θ(≤L)

(

∂z
(L)
j (x′)

∂θ(≤L)

)T


 (80)

=
σ2
ω

ρ2
E

[

γ
(L)
j (x)γ

(L)
j (x′)

]

E[φ̇(z
(L)
j (x))φ̇(z

(L)
j (x′))]E





∂z
(L)
j (x)

∂θ(≤L)

(

∂z
(L)
j (x′)

∂θ(≤L)

)T


 (81)

=











σ2
ωṪ (K(L)(x, x′))Θ(L)(x, x′) if x 6= x′

1
ρσ

2
ωṪ (K(L)(x, x))Θ(L)(x, x) if x = x′ .

(82)
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In sum, we see that dropout only modifies the diagonal










Θ
(L+1)
ρ (x, x′) = Θ(L+1)(x, x′)

Θ
(L+1)
ρ (x, x) = 1

ρΘ
(L+1)(x, x) + (1− 1/ρ)σ2

b

(83)

In the ordered phase, we see

lim
L→∞

Θ(L)
ρ (x, x′) = p∗, lim

L→∞
Θ(L)

ρ (x, x) =
1

ρ
p∗ + (1− 1

ρ
)σ2

b (84)

and the condition number

lim
L→∞

κ(L)
ρ =

(m− 1)p∗ + 1
ρp

∗ + (1− 1
ρ )σ

2
b

( 1ρ − 1)(p∗ − σ2
b )

=
mp∗

( 1ρ − 1)(p∗ − σ2
b )

+ 1 (85)

D CONVOLUTIONS

General setup. For simplicity of presentation we consider 1D convolutional networks with circular
padding as in Xiao et al. (2018). We will see that this reduces to the fully-connected case introduced
above if the image size is set to one and as such we will see that many of the same concepts and
equations carry over schematically from the fully-connected case. The theory of two-dimensional
convolutions proceeds identically but with more indices.

Random weights and biases. The parameters of the network are the convolutional filters and biases,
ωl
ij,β and µl

i, respectively, with outgoing (incoming) channel index i (j) and filter relative spatial

location β ∈ [±k] ≡ {−k, . . . , 0, . . . , k}.5 As above, we will assume a Gaussian prior on both the
filter weights and biases,

W l
ij,β =

σω
√

(2k + 1)nl
ωl
ij,β bli = σbµ

l
i, ωl

ij,β , µl
i ∼ N (0, 1) (86)

As above, σ2
ω and σ2

b are hyperparameters that control the variance of the weights and biases respec-

tively. nl is the number of channels (filters) in layer l, 2k + 1 is the filter size.

Inputs, pre-activations, and activations. Let X denote a set of input images. The network has

activations yl(x) and pre-activations zl(x) for each input image x ∈ X ⊂ R
n0d, with input channel

count n0 ∈ N, number of pixels d ∈ N, where

yli,α(x) ≡
{

xi,α l = 0
φ
(

zl−1
i,α (x)

)

l > 0
, zli,α(x) ≡

nl

∑

j=1

k
∑

β=−k

W l
ij,βy

l
j,α+β(x) + bli. (87)

φ : R → R is a point-wise activation function. Since we assume circular padding for all the
convolutional layers, the spacial size d remains constant throughout the networks until the readout
layer.

For each l > 0, as min{n1 . . . , nl−1} → ∞, for each i ∈ N, the pre-activation converges in distri-

bution to d-dimensional Gaussian with mean 0 and covariance matrix K(l), which can be computed
recursively (Novak et al., 2019b; Xiao et al., 2018)

K(l+1) = A ◦ T (K(l)) = (A ◦ T )l+1(K0) (88)

Here K(l) ≡ [K(l)
α,α′(x, x′)]α,α′∈[d],x,x′∈X , T is a non-linear transformation related to its fully-

connected counterpart, and A a convolution coupled with a shift term acting on Xd × Xd PSD
matrices

[T (K)]α,α′ (x, x
′) ≡ ❊u∼N (0,K) [φ (uα(x))φ (uα′(x′))] (89)

[A (K)]α,α′ (x, x
′) ≡ σ2

b + σ2
ω

∑

β

1

2k + 1
[K]α+β,α′+β (x, x

′) . (90)

5We will use Roman letters to index channels and Greek letters for spatial location. We use letters i, j, i′, j′,
etc to denote channel indices, α, α′, etc to denote spatial indices and β, β′, etc for filter indices.
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D.1 THE NEURAL TANGENT KERNEL

To understand how the neural tangent kernel evolves with depth, we define the NTK of the l-th

hidden layer to be Θ̂(l)

Θ̂
(l)
α,α′(x, x

′) = ∇θ≤lzli,α(x)∇θ≤lzli,α′(x′) (91)

where θ≤l denotes all of the parameters in layers at-or-above the l’th layer. It does not matter which
channel index i is used because as the number of channels approach infinity, this kernel will also

converge in distribution to a deterministic kernel Θ(l+1) (Yang, 2019), which can also be computed
recursively in a similar manner to the NTK for fully-connected networks as,

Θ(l+1) = K(l+1) +A ◦ (Ṫ (K(l))⊙Θ(l))− σ2
b , (92)

where Ṫ is given by Equation 89 with φ replaced by its derivative φ′. We will also normalize the

variance of the inputs to q∗ and hence treat T and Ṫ as pointwise functions. We will only present
the treatment in the chaotic phase to showcase how to deal with the operator A. The treatment of

other phases are similar. Note that the diagonal entries of K(l) and Θ(l) are exactly the same as
the fully-connected setting. We only need to consider the off-diagonal terms. Letting l → ∞ in
Equation 92 we see that all the off-diagonal terms also converge . Let Ā = σ−2

w (A − σ2
b ), be the

normalized convolution operator. Note that A does not mix terms from different diagonals and it

suffices to handle each off-diagonal separately. Let ǫ
(l)
ab and δ

(l)
ab denote the correction of the j-th

diagonal of K(l) and Θ(l) to the fixed points. Linearizing Equation 88 and Equation 92 gives

ǫ
(l+1)
ab ≈ χcĀǫ

(l)
ab (93)

δ
(l+1)
ab ≈ χcĀ(ǫ

(l+1)
ab +

χc,2

χc
p∗abǫ

(l)
ab + δ

(l)
ab ) . (94)

Next let {ρα}α be the eigenvalues of Ā and ǫ
(l)
ab,α and δ

(l+1)
ab,α be the projection of ǫ

(l+1)
ab and δ

(l)
ab onto

the α-th eigenvector of Ā. Then for each α,

ǫ
(l+1)
ab,α ≈ (ραχc)

(l+1)ǫ
(0)
ab,α (95)

δ
(l)
ab,α ≈ ραχc(ǫ

(l+1)
ab,α +

χc,2

χc
p∗abǫ

(l)
ab,α + δ

(l)
ab,α) (96)

which gives

δ
(l)
ab ≈ ραχ

l
cǫab,α, δ

(l)
ab,α ≈ ρlαχ

l
c

[

δ
(0)
ab,α + l

(

1 +
χc,2

χc
p∗ab

)

ǫ
(0)
ab,α

]

(97)

Therefore, the correction Θ(l) − Θ∗ propagates independently through different Fourier modes.
In each mode, up to a scaling factor ρα, the correction is the same as the correction of its FC
counterpart. Since the subdominant modes (with |ρα| < 1) decay exponentially faster than the
dominant mode (with ρα = 1), for large depth, the NTK of CNN is essentially the same as that of
its FC counterpart.

D.2 THE EFFECT OF POOLING AND FLATTENING OF CNNS

With the bulk of the theory in hand, we now turn our attention to CNNs. We show in the appendix
that the dominant mode in CNNs behaves exactly like the fully-connected case, however we will see
that the readout can significantly affect the spectrum. The NNGP and NTK of the l-th hidden layer

CNN are 4D tensors K(l)
α,α′(x, x′) and Θ

(l)
α,α′(x, x′), where α, α′ ∈ [d] ≡ [0, 1, . . . , d− 1] denote the

pixel locations. To perform tasks like image classification or regression, “flattening” and “pooling”
(more precisely, global average pooling) are two popular readout strategies that transform the last
convolution layer into the logit layer. The former strategy “flattens” an image of size (d,N) into a
vector in R

dN and stacks a fully-connected layer on top. The latter projects the (d,N) image into
a vector of dimension N via averaging out the spatial dimension and then stacks a fully-connected
layer on top. The actions of “flattening” and “pooling” on the image correspond to computing the
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mean of the trace and the mean of the pixel-to-pixel covariance on the NNGP/NTK, respectively,
i.e.,

Θ
(l)
flatten(x, x

′) =
1

d

∑

α∈[d]

Θ(l)
α,α(x, x

′), Θ
(l)
pool(x, x

′) =
1

d2

∑

α,α′∈[d]

Θ
(l)
α,α′(x, x

′) (98)

where Θ
(l)
flatten (Θ

(l)
pool) denotes the NTK right after flattening (pooling) the last convolution. We will

also use Θ
(l)
fc to denote the NTK of FC. K(l)

flatten and K(l)
pool are defined similarly.

As discussed above, in the large depth setting, all the diagonals Θ
(l)
α,α(x, x) = p(l) (since the in-

puts are normalized to have variance q∗ for each pixel) and similar to Θ
(l)
fc , all the off-diagonals

Θ
(l)
α′,α(x, x

′) are almost equal (in the sense they have the same order of correction to p∗ab if exists.)

Without loss of generality, we assume all off-diagonals are the same and equal to p
(l)
ab (the leading

correction of q
(l)
ab for CNN and FCN are of the same order.) Applying flattening and pooling, the

NTKs become

Θ
(l)
flatten(x, x

′) =
1

d

∑

α

Θ(l)
α,α(x, x

′) = 1x=x′p(l) + 1x 6=x′p
(l)
ab , (99)

Θ
(l)
pool(x, x

′) =
1

d2

∑

α,α′

Θ
(l)
α,α′(x, x

′) =
1

d
1x=x′(p(l) − p

(l)
ab ) + p

(l)
ab (100)

respectively. As we can see, Θ
(l)
ft is essentially the same as its FCN counterpart Θ

(l)
fc up to sub-

dominant Fourier modes which decay exponentially faster than the dominant Fourier modes. There-

fore the spectrum properties of Θ
(l)
ft and Θ

(l)
fc are essentially the same for large l.

However, pooling alters the NTK/NNGP spectrum in an interesting way. On the critical line, asymp-

totically, λ
(l)
max ≈ (md + 2)q∗l/(3d) and λ

(l)
rest ≈ 2q∗l/(3d), and κ(l) = md+2

2 +mdO(l−1). Here

we use blue color to indicate the changes of such quantities against their Θ
(l)
flatten counterpart. Thus

pooling decreases λ
(l)
rest roughly by a factor of d and increases the condition number by a factor of d

comparing to flattening. In the chaotic phase, pooling does not change the off-diagonals q
(l)
ab = O(1)

but does slow down the growth of the diagonals by a factor of d, i.e. p(l) = O(χl
1/d). This sug-

gests, in the chaotic phase, there exists a transient regime of depths, where CNN-F hardly perform

while CNN-P performs well. In the ordered phase, the pooling does not affect λ
(l)
max much but does

decrease λrest by a factor of d and the condition number grows approximately like dχ−l
1 , d times

bigger than its flattening and fully-connected network counterparts. This suggests the existence of a
transient regime of depths, in which CNN-F outperforms CNN-P. This might be surprising because
it is commonly believed CNN-P usually outperforms CNN-F.
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