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The Jordan frame action for general disformal theories is presented and studied for the first

time, motivated by several unresolved mysteries that arise when working in the Einstein frame. We

present the Friedmann equations and, specializing to exponential functions, study the late-time

cosmology using both dynamical systems methods and by finding approximate solutions. Our

analysis reveals that either the disformal effects are irrelevant or the Universe evolves towards a

phantom phase where the equation of state of dark energy is −3. There is a marginal case where the

asymptotic state of the Universe depends on the model parameters and de Sitter solutions can be

obtained. Our findings indicate that the metric singularity found using the Einstein frame construction

corresponds to phantom behavior in the Jordan frame and we argue that this is the case for general

disformal theories.

DOI: 10.1103/PhysRevD.92.123005 PACS numbers: 95.36.+x, 04.50.Kd, 98.80.-k

I. INTRODUCTION

The elusive nature of dark energy has prompted theo-

retical interest in the cosmological dynamics of scalar fields

(see [1] for a review) as a mechanism for driving the

acceleration of the cosmic expansion. With the exception of

the simplest models such as quintessence [2,3] and k-
essence [4], theories that include an additional scalar are

alternative theories of gravity [5] (see [6] for a recent

compendium of cosmologically relevant theories); they

include additional degrees of freedom that couple to matter,

resulting in additional gravitational strength (or larger)

interactions.

Many (but not all) modified gravity models can be

written in the schematic form

S¼
Z

d4x
ffiffiffiffiffiffi

−g
p ½LgðgμνÞþLϕðϕÞ�þSm½~gμνðgμν;ϕÞ�; ð1Þ

where the scalar field ϕ is taken to be dimensionless.

This action describes a theory of gravity in the so-called

Einstein frame. Lg contains tensor self-interactions of gμν
through curvature tensors such as the Ricci scalar and Lϕ

contains scalar self-interactions. No direct couplings

of the scalar to curvature tensors are present and the

modifications of general relativity (GR) are encoded in

the coupling to matter. In particular, test bodies do not

move on geodesics of ~gμν, the Einstein frame metric, but

instead respond to the composite metric ~gμνðgμν;ϕÞ—the

Jordan framemetric. It was shown by Bekenstein [7,8] that

the most general theory of a scalar coupled to matter that

preserves causality is

~gμν ¼ Cðϕ; XÞgμν þDðϕ; XÞ∂μϕ∂νϕ;

X ≡ −
1

2
gμν∂μϕ∂νϕ: ð2Þ

Indeed, it has been shown that theories where matter is

coupled to metrics of this form are free of the Ostrogradski

ghost instability [9–19]. Cðϕ; XÞ is known as the conformal

factor, and its consequences have been well studied, at least

when it depends on ϕ only. Consequently, Dðϕ; XÞ has

become known as the disformal factor and the termDϕμϕν,

the disformal coupling to matter, or simply the disformal

part of the metric. Any theory whereDðϕ; XÞ ≠ 0 falls into

the class of disformal gravity theories.

Disformal couplings are ubiquitous in fundamental

physics. They arise in the low energy effective action of

string theory [20] and are linked to Galileons through probe

branes moving in higher dimensional space-times [21,22].

They also arise in the decoupling limit of massive gravity

[23]. In the context of Horndeski theories [13,24], the most

general scalar-tensor theories with second-order equations

of motion, they are the most general transformation that

preserve the form of the scalar-tensor sector when C and D
depend on ϕ only [14]. These are the motivation behind a

recent phenomenological study of disformal theories in

several different contexts [20,25–42], with most attention

focusing on the case where C and D depend on ϕ only.

The parametrized post-Newtonian (PPN) parameters for

this class of disformal theories were calculated in [33,42],

where it was shown that they are completely determined by

the cosmological scalar ϕ0. For this reason, knowledge of

the cosmology of these theories is vital for determining

their viability. The first steps towards this were made by the

authors of [34], who used dynamical system techniques to

classify the cosmological solution space in the Einstein

frame with the goal of identifying models that passed solar

*
jeremy.sakstein@port.ac.uk

†
sn3g11@soton.ac.uk

PHYSICAL REVIEW D 92, 123005 (2015)

1550-7998=2015=92(12)=123005(17) 123005-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.92.123005
http://dx.doi.org/10.1103/PhysRevD.92.123005
http://dx.doi.org/10.1103/PhysRevD.92.123005
http://dx.doi.org/10.1103/PhysRevD.92.123005


system bounds. Several new fixed points were found but all

had one problem in common: the Jordan frame metric

becomes increasingly singular as the fixed point is

approached, corresponding to the lapse in the Jordan frame

approaching zero. This may represent several pathologies

with the theory including the lack of a nonrelativistic limit

and a freezing of the proper time for observers, all of which

we will discuss in more detail in the next section.

Currently, it is unclear whether the singularity is debili-

tating for the theory or if it is merely an artifact of working in

the Einstein frame. The two frames are equivalent for

calculational purposes provided that the solutions are inter-

preted appropriately when relating them to observations.

Furthermore, one cannot interpret observations until the

proper time for an observer is aligned with the coordinate

time and, since matter moves on geodesics of the Jordan

framemetric, this frame is singled out for observations
1
[42].

Finally,Wetterich [43] has shown that frame transformations

may introduce spurious solutions that solve the field equa-

tions in one frame but not the other. Given this, a study of the

Jordan frame cosmology with a view to addressing these

outstanding issues is certainly merited.

This is the purpose of this paper. In the next section, we

introduce disformal gravity theories in theEinstein frame and

discuss the nature of the singularity, including the associated

pathologies, in more detail. The applicability of the Einstein

frame dynamical system to fundamental observers is also

discussed. We next move on to study the Jordan frame

cosmology. In Sec. III we present the Jordan frame

Friedmann and Klein-Gordon equations and use them to

develop a dynamical systems approach to classifying the

solutions for exponential scalar potentials and disformal

factors. We find that theories where the disformal factor is

small (in a manner to be made precise below) behave in a

similar manner to quintessence but theories where the

disformal factor is large are not well described by a

dynamical systems analysis in the sense that the fixed points

reveal little about the late-time cosmology. Instead, we focus

on finding exact solutions at late times in Sec. V. Here, we

show that the theory exhibits phantom behavior at late times

with an effective dark energy equation of state w ¼ −3.

Models that exhibit phantom behavior are precisely

those that suffer from singularities in the Einstein frame

and thus we conclude that the singularity is indeed a

physical pathology, the Jordan frame manifestation being

phantom behavior. There is a marginal case that corre-

sponds to a specific tuning in the parameter space of the

theory. In this case, the asymptotic state of the Universe is a

function of the model parameters and we show that it is

possible to achieve asymptotically de Sitter solutions using

a suitable tuning. We discuss our findings and conclude in

Sec. VI. In particular, we argue that the qualitative features

we observer here—quintessence fixed points and phantom

behavior—are features of general disformal models.

For the reader interested purely in the cosmology of

disformal models and not the singular nature of the

disformal transformation, the Jordan frame cosmology is

presented here for the first time and can be found in Sec. III

onwards. The Friedmann equations here can be used

directly for computing quantities such as the luminosity

distance-redshift relation, which requires a transformation

to coordinates appropriate for comoving observers if one

uses the Einstein frame. Furthermore, the nonphantom

regions of the parameter space of exponential models are

presented in the conclusions (Sec. VI) where we also

discuss the application to more general models.

II. THE EINSTEIN FRAME

In this section we present the Einstein frame action we

will consider and use it to describe the singularity in the

Jordan frame as well as the potential pathologies it presents.

The action we will consider is

S ¼
Z

d4x
ffiffiffiffiffiffi

−g
p

Mpl
2

�

RðgÞ
2

−
1

2
∇μϕ∇

μϕ − VðϕÞ
�

þ Sm½~gμν�: ð3Þ

The Jordan frame metric is

~gμν ¼ gμν þ
B2ðϕÞ
Λ2

∂μϕ∂νϕ: ð4Þ

Specializing to the case of a flat Friedmann-Robertson-

Walker (FRW) space-time,

ds2E ¼ −dt2E þ a2Edx
2
E; ð5Þ

where we use the subscripts E and J to represent Einstein

and Jordan frame quantities respectively, the Jordan

frame singularity can be seen by computing the metric

determinants [44]:

ffiffiffiffiffiffi

−~g
p
ffiffiffiffiffiffi

−g
p ¼

ffiffiffiffiffiffiffiffiffiffiffi

1 − Σ

p
; Σ≡

B2ðϕÞ
Λ2

�

dϕ

dtE

�

2

: ð6Þ

When Σ ¼ 1 the Jordan frame metric is singular. Using (4),

the lapse in the Jordan frame is

N2 ¼ 1 − Σ ð7Þ

so that

dtJ ¼ NdtE: ð8Þ

1
Note that we do not claim that one frame is any more physical

than the other, only that the Jordan frame is the frame where the
coordinate time is aligned with the proper time for an observer,
thus making any calculations simple to compare with other
alternate gravity theories.
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One can see that, cosmologically, the metric singularity

corresponds to this becoming zero.

There are several physical issues with the approach to the

singularity. First, the Jordan frame space-time is

d~s2 ¼ −N2dt2E þ aðtÞ2dx2 ð9Þ

and so the proper time τ for physical observers is [42]

dτ

dtJ
¼ N; ð10Þ

and so an observer’s proper time is frozen at the singularity.

Furthermore, since ~gμνu
μuν ¼ −1, the Lorentz factor is [42]

γ ¼ 1

N

�

1 −
v2

c2

�

; ð11Þ

where vi ¼ dxi=dtJ. Typically, one derives the Newtonian

behavior of the theory by looking at the limitv=c ≪ 1. In this

case however, this is not sufficient. As demonstrated in [42],

one also requires Σ ≪ 1 in order to have a sensible post-

Newtonian expansion. Since the singularity corresponds

precisely to Σ → 1, this behavior is lost as the singularity

is approached and there is no sensible Newtonian limit. The

lack of such a limit was also noted in [33,34] using Einstein

frame coordinates. In this case, Newtonian quantities such as

the total force diverge as Σ → 1. Since N is also the ratio of

the speed of light to that of tensors, the Einstein frame

interpretation of this is that there are no particles that move

with nonrelativistic velocities in this limit.

One obvious question is then, why not use FRW coor-

dinates with unit lapse from the outset in the Jordan fame? In

this case there is no apparent singularity at the level of the

metric and any potential pathology must appear through the

solution of the Friedmann equations. Indeed, our choice of

coordinates such that gμν is FRWis not a choice of space-time

since no particles follow geodesics of gμν. Applying the

change of time coordinate (8) to (9) one has

d~s2 ¼ −dt2J þ aðtJÞ2dx2; ð12Þ

where aðtJÞ ¼ aðtJðtEÞÞ. This is a FRW space-time and so

one can see that the singularity found taking gμν to be FRWis

simply a coordinate singularity.
2
The one remaining question

is that of aðtJÞ. Currently, it is not known whether or not the
transformation (8) introduces any singularities into the

spatial part of the metric. Said another way, is there some

finite time t̄J such thataðt̄JÞ ¼ 0?This is a difficult question if

one begins in the Einstein frame. Equation (8) is highly

nonlinear, and one requires an exact solution to provide an

answer. Conversely, the Jordan frame is a perfect tool

because one can classify the entire cosmological solution

space using dynamical systems or other techniques. One then

has the cosmological information that can be compared to

data, as well as knowledge of any pathologies. One can

identify the Jordan frame coordinates corresponding to the

singularity found using the coordinates (5) because applying

the transformation (8) one finds

N2 ¼
�

1þ B2

Λ2

�

dϕ

dtJ

�

2
�

−1

ð13Þ

and so in these coordinates the singularity corresponds to

Bdϕ=dtJ=Λ → ∞. Another advantage of working in the

Jordan frame exclusively is the following.Wetterich [43] has

pointed out that spurious solutions can exist whereby a

specific solution may be a solution of the Einstein frame

equations of motion but not the Jordan frame equations. This

potential problem is mitigated by working in the Jordan

frame from the outset.

All of the potential problems discussed above clearly

motivate our study of the Jordan frame cosmology of

disformal theories. Ultimately, we will see that when

dϕ=dtJ → ∞ i.e. in the limit where the singularity is

present in Einstein frame time, the Universe undergoes

strong phantom behavior (w ¼ −3 for exponential models)

and therefore the pathologies associated with the singu-

larity are physical, the Jordan frame manifestation being

precisely said phantom behavior. In terms of the Einstein

frame coordinates (5) one can see that as the singularity is

approached, the Jordan frame lapse tends increasingly

towards zero and therefore, for comoving observers, a

large number of e-folds can pass in a small amount of

proper time. When viewed in this manner, the phantom

behavior is hardly surprising.

Before moving on to study the Jordan frame, we end this

section by discussing the use of dynamical systems in both

frames. The Einstein frame dynamical system for expo-

nential models was studied in [27,34]. In order to achieve

an autonomous system of equations, one uses the variable

NE ¼ ln aE as a time variable and chooses appropriate

variables xi that span the phase space of the system. Fixed

points correspond to points in the phase space where

dxi
dNE

¼ 0 ∀ i: ð14Þ

It is assumed that tE is a monotonic function of NE and that

NE → ∞⇒ tE → ∞, both of which are necessary for

2
The reader should note that this is strictly true in the context of

an isotropic and homogeneous cosmology. Whether or not there
are other physical scenarios where a nonremovable Jordan frame
singularity is present is unknown, although we note that, to date,
none has been observed. All of the pathologies that arise due to
the singularity discussed in this section are the result of the
cosmological singularity and the aim of this work is to understand
the physical implications of this. For this reason, we focus
entirely on the cosmological singularity and will not attempt to
address the more general question of potential singularities
elsewhere.
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global attractors of the dynamical system to correspond to

the asymptotic state of the system (see [45,46] for the more

technical aspects of dynamical systems theory). Note

however that tE → ∞ does not necessarily imply that

tJ →∞. This depends on being able to integrate (8) exactly

and so fixed points in the Einstein frame do not necessarily

correspond to the asymptotic future in the Jordan frame.

One case where this can be achieved trivially is the case

where N ¼ 1 at the fixed point. In this case, disformal

effects are absent and the theory behaves in an identical

manner to quintessence. Away from this limit, there are

some important and physically relevant quantities that

cannot be calculated using the Einstein frame. One perti-

nent example of this is the Hubble constant

HJ ¼
HE

N
: ð15Þ

In the Einstein frame, HE → 0 at the fixed points and there

are also fixed points where N → 0 in the same limit. These

are fixed points corresponding to the singularity. This

means that the behavior of HJ is undetermined. If the

phase space were one dimensional, one could simply use

l’Hôpital’s rule to find the asymptotic value but there is no

higher dimensional analogue of this theorem. For this

reason, the asymptotic value depends on the phase space

trajectory of the specific solution as it approaches the fixed

point. In this case, the Einstein frame dynamical system

fails to achieve its goal of predicting the universal late-time

behavior since knowledge of the fixed points alone is not

sufficient to know the asymptotic state of the Universe.

This is an artifact of working in a coordinate system where

the asymptotic state of the dynamical system does not

correspond to the limit of infinite proper time as seen by

comoving observers.
3

Conversely, the Jordan frame

dynamical system is perfectly able to predict all of the

physically relevant quantities precisely because the coor-

dinates are FRW with unit lapse from the outset.

III. THE JORDAN FRAME

From here on we work exclusively in the Jordan frame.

For this reason, we will drop all unnecessary subscripts and

tildes; it is to be understood that all quantities are Jordan

frame quantities. The Jordan frame action is complicated

compared with the simplicity of its Einstein frame counter-

part, as is the derivation of the field equations. For this

reason, we give the calculation of the Jordan frame action

and the field equations in Appendix A and present the final

results here.

We begin by defining the disformal coupling,

β ¼ d lnBðϕÞ
dϕ

: ð16Þ

In general, β can be an arbitrary function of ϕ but, in what

follows, we set β to be constant so that

BðϕÞ ¼ eβϕ: ð17Þ

Second, the scalar potential is

VðϕÞ ¼ m2
0e

−λϕ; ð18Þ

where λ is a constant and m0 is an a priori arbitrary, mass

scale. These choices are made so that the equations exhibit

a scaling symmetry that allows for the existence of scaling

solutions and hence the dimension of the phase space is

minimal [34]. With these newly defined constants, one can

start building the disformal model. First, we need the

Friedmann equations:

3H2 ¼
_ϕ2

2
þ Vuþ 8πGρmu

3=2 ð19Þ

_H ¼ −
_ϕ2

2
− 4πGρmu

3=2 þ B2H

uΛ2
ðβ _ϕ3 þ _ϕ ϕ̈Þ; ð20Þ

which are derived in Appendix A 2. The variable u is

defined for notational convenience and is given by

u ¼ 1þ B2 _ϕ2

Λ2
: ð21Þ

One can already see the advantage of working in the Jordan

frame; the Friedmann constraint contains the disformal

scale Λ and so it is possible to compactify the phase space

without using unphysical variables. This is in stark contrast

to the Einstein frame, where the Friedmann constraint is

identical to that of the equivalent quintessence theory and it

is necessary to use advanced techniques relating to fixed

points at infinity to determine the late-time dynamics [34].

Next, we need the scalar equation of motion, which can be

expressed as

ϕ̈þ
�

8πGρmB
2

Λ2
ðϕ̈þ β _ϕ2Þ

�

u3=2 þ Vϕu
2 þ 3H _ϕu

¼ βB2 _ϕ4

Λ2
: ð22Þ

Because we are working in the Jordan frame, the scalar is

minimally coupled to matter and one has the usual

continuity equation:

_ρm þ 3Hρm ¼ 0: ð23Þ

3
One may wonder whether it is possible to choose Einstein

frame coordinates to avoid this problem. Such a choice of
coordinates would require working in a coordinate system where
ϕðtÞ is part of the Einstein frame metric and would ultimately
require one to mix frame variables in the equations of motion.
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Equations (19)–(23) contain all the necessary information

about the dynamics of the system. The complexity of these

equations makes it impossible to find exact analytic

solutions and one method to analyze their late-time

behavior is to use a dynamical systems analysis. These

methods are not new in cosmology. Indeed, they were

applied previously to study quintessence [47] and disformal

theories in the Einstein frame [34]. Moreover, a dynamical

systems analysis is a powerful tool to calculate the late-time

cosmological observables. The unfamiliar reader can find

an introduction to dynamical systems and their use in

cosmology in [1,34,45,46,48–50].

Before proceeding to formulate the equations as a

dynamical system, we pause to discuss the physical observ-

ables we wish to calculate using our subsequent analysis.

Typically one is interested in the dark energy density

parameterΩDE and the equation of statew. These are difficult
to define and several inequivalent effectivevariables are often

found in the literature.
4
Instead of defining effective quan-

tities, we will look for quantities whose definition and

interpretation are insensitive to the theory of gravity.
5
One

suitable quantity is the deceleration parameter

q ¼ −
äa

_a2
; ð24Þ

which implies that

_H

H2
¼ −ð1þ qÞ ð25Þ

independent of the theory of gravity. In the case of wCDM,

one has

q ¼ 1

2
ð1þ 3weffÞ; ð26Þ

whereweff
6
depends on bothwm andwDE. This motivates the

definition

weff ¼ −1 −
2

3

_H

H2
: ð27Þ

q < 0, or equivalently, weff < 1=3 indicates that the cosmic

expansion is accelerating and sowewill use these to classify

the nature of the solutions. Formally, one may define

ΩDE ≡ 1 −Ωm; ð28Þ

and we will often refer to this quantity but the reader should

be aware that this is not the samequantity that is inferred from

cosmic microwave background or luminosity distance mea-

surements
7
; it is merely an indication of what is driving the

evolution of the Universe.

IV. FORMULATION AS A DYNAMICAL SYSTEM

In this section, we formulate the Friedmann–Klein-

Gordon equations as a dynamical system and classify

the fixed points.

A. Construction of the phase space

In order to make contact with the quintessence literature,

we begin by introducing the new variables

x≡
ϕ0
ffiffiffi

6
p ; and y≡

ffiffiffiffi

V
p
ffiffiffi

3
p

H
; ð29Þ

where instead of differentiating with respect to coordinate

time t, we differentiate with respect to N ≡ ln aðtÞ. We

denote derivatives with respect to N using a prime. This

coordinate choice allows us to reduce the dimension of the

phase space by 1. Using these variables, we can rewrite the

Friedmann constraint as

1 ¼ x2 þ y2uþ Ωmu
3=2: ð30Þ

As noted in [34], the disformal phase space is three-

dimensional and so we require one more variable to close

the system. The authors of [34] chose the variable z ¼
BH=Λ but this results in a phase space that is noncompact.

In particular, note that u ¼ 1þ 6x2z2 in this system so that

neither the x- nor the z-directions are compact owing to the

fact that Ωm can be arbitrarily small. Instead, one can work

in a compact phase space by introducing the following

variables:

X ≡ xu−
3
4; Y ≡ yu−

1
4 Z≡ u−

3
4: ð31Þ

When written in terms of these new variables, the

Friedmann constraint becomes

Z2 ¼ X2 þ Y2 þΩm: ð32Þ

This implies that −1 ≤ X ≤ 1, 0 ≤ Y ≤ 1 and 0 ≤ Z ≤ 1;

therefore the phase space is compact. When written in

terms of these variables, the phase space is a half-cone with

the vertex located at (0,0,0). This is shown in Fig. 1. Its base

is the semicircle x2 þ y2 þΩm ¼ 1 located in the plane

Z ¼ 1. This is precisely the phase space of quintessence

4
See [37,51–55] for discussions relating to effective quantities

in scalar-tensor theories.
5
By which we mean they describe properties of the FRW

metric and are not found by comparing the Friedmann equations
to those resulting from the Einstein-Hilbert action.

6
We use the notation eff to denote a single composite quantity

that describes the evolution of the Universe and not an effective
equation of state for dark energy.

7
By this, we mean that the values of w and ΩDE are found by

fitting the data to functional forms where w is constant, which is
not necessarily the case for disformal models.
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and hence corresponds to the subset of the theory where

disformal effects are absent. Any fixed points that lie on the

base of the cone therefore have late-time cosmologies that are

identical to those found for pure quintessence theories with

an exponential potential [48]. Note, however, that their

stability may be altered since the three-dimensional phase

space implies the existence of a third eigenvalue, and that the

other two eigenvalues may assume different values from

those found in a purely two-dimensional phase space. Setting

Ωm ¼ 0, one can see that the sides of the cone correspond to

dark energy dominated solutions whereas setting

X ¼ Y ¼ 0, one has Ωm ¼ Z ¼ 1, and so the point (0,0,1)

corresponds to a matter dominated solution. We therefore

expect all physical trajectories to originate from its vicinity.

Special attention must be paid to the tip of the cone

X ¼ Y ¼ Z ¼ 0, which corresponds to what would be the

metric singularity had we worked in the Einstein frame.

This is a peculiar point because a fixed point here tells us

absolutely nothing about the late-time cosmology.

Typically, fixed points such as these indicate that the

effective dimension of the phase space is reduced and

one typically requires center manifold methods to find the

reduced phase space. Indeed, these methods are necessary

for analyzing the cosmology in the Einstein frame [34]. The

reduced phase space is often unphysical,
8
and an alternate

approach is to look for approximate late-time solutions

given that one has some idea of which terms in the

equations can be ignored at late times. This is the approach

that we will adopt in Sec. V.

The case β ¼ λ=2 was identified in [34] as a special

parameter tuning in the Einstein frame where the dimension

of the phase space is reduced to 2. This remains the case in

the Jordan frame, where one has

VðϕÞB2ðϕÞ ¼ m2
0; ð33Þ

which implies a relation between X, Y, and Z:

Y2 ¼ 2
m2

0

Λ2

X2

1 − Z
4
3

: ð34Þ

This relation is an additional constraint that must be

satisfied and hence only two of the variables are indepen-

dent. In terms of the three-dimensional phase space,

the dynamics of the system are restricted to the two-

dimensional surface where (34) is satisfied and hence the

phase space is two dimensional. For this reason the

dynamics of this case must be treated separately.

Using Eq. (32) to eliminate Ωm, Eqs. (19)–(22) can be

expressed as a system of three autonomous first-order

differential equations:

dX

dN
¼ X½X4ð3 − 9Z

4
3Þ þ 6X2Z

4
3ðY2 − 3Z

2
3 þ 4Z2Þ þ 3ðZ4

3 − 1ÞðY2 − Z2Þ2
2Z2ðX2ð3Z4

3 − 1Þ þ ðZ4
3 − 1ÞðZ2 − Y2ÞÞ

þ
ffiffiffi

6
p

XZðλY2ð3 − 5Z
4
3Þ þ 2βðZ4

3 − 1ÞðY − ZÞðY þ ZÞÞ − 4
ffiffiffi

6
p

βX3ZðZ4
3 − 1Þ�

2Z2ðX2ð3Z4
3 − 1Þ þ ðZ4

3 − 1ÞðZ2 − Y2ÞÞ
ð35Þ

dY

dN
¼ Y½X4ð3 − 9Z

4
3Þ þ 6X2Z

4
3ðY2 − 3Z

2
3 þ 2Z2Þ þ 3ðZ4

3 − 1ÞðY2 − Z2Þ2Þ
2Z2ðX2ð3Z4

3 − 1Þ þ ðZ4
3 − 1ÞðZ2 − Y2ÞÞ

−

ffiffiffi

6
p

X3Zðλþ 6βðZ4
3 − 1Þ − 3λZ

4
3Þ −

ffiffiffi

6
p

λXðZ4
3 − 1ÞZð2Y2 þ Z2Þ�

2Z2ðX2ð3Z4
3 − 1Þ þ ðZ4

3 − 1ÞðZ2 − Y2ÞÞ
ð36Þ

FIG. 1 (color online). The phase space of the system. The point

(0,0,1) corresponds to matter dominated solutions and the edges

of the cone correspond to dark energy dominated solutions. The

phase space of quintessence coincides with the base of the cone

located in the Z ¼ 1 plane.

8
In the sense that the variables are far removed from the underlying dynamical quantities such as H and _ϕ. The phase space still

contains all of the late-time trajectories.
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dZ

dN
¼ −

3XðZ4
3 − 1Þð

ffiffiffi

6
p

ð2βX2 þ λY2Þ − 6XZÞ
2Z4ðX2ð1 − 3Z

4
3Þ þ ðZ4

3 − 1ÞðZ2 − Y2ÞÞ
: ð37Þ

Using Eq. (20), one finds

H0

H
¼ X4ð9Z4

3 − 3Þ þ 4
ffiffiffi

6
p

βX3ðZ4
3 − 1ÞZ − 6X2Z

4
3ðY2 − 2Z

2
3 þ Z2Þ þ 2

ffiffiffi

6
p

λXY2ðZ4
3 − 1ÞZ − 3ðZ4

3 − 1ÞðY2 − Z2Þ2
2Z2ðX2ð1 − 3Z

4
3Þ þ ðZ4

3 − 1ÞðZ2 − Y2ÞÞ
; ð38Þ

which can be used to calculate weff and q. One also has ΩDE ¼ 1 − Z2 þ X2 þ Y2 in these variables.

B. Fixed points when β ≠ λ=2

There are a total of five fixed points of Eqs. (35)–(37)

that we list in Table I. Table II lists the interesting

cosmological quantities at each point. The corresponding

eigenvalues are listed below; only points (4) and (5) can be

late-time attractors:

(1) e1 ¼ 3
2
, e2 ¼ 3

2
, e3 ¼ 0

(2) e1 ¼ 3, e2 ¼ −2
ffiffiffi

6
p

β − 6, e3 ¼ 3þ
ffiffi

3
2

q

λ

(3) e1 ¼ 3, e2 ¼ 2
ffiffiffi

6
p

β − 6, e3 ¼ 3 −

ffiffi

3
2

q

λ

(4) e1 ¼ λð2β − λÞ, e2 ¼ 1
2
ðλ2 − 6Þ, e3 ¼ λ2 − 3

(5) e1¼6β

λ
−3, e2¼−3

4
ð1þ

ffiffiffiffiffiffiffiffiffiffiffi

24−7λ2
p

λ
Þ, e3¼−3

4
ð1−

ffiffiffiffiffiffiffiffiffiffiffi

24−7λ2
p

λ
Þ.

Interestingly, not all solutions are fixed points. Point (1)

is actually a fixed line, hence the zero eigenvalue. As

discussed above, we will deal with this point using

late-time solutions rather than dynamical systems. We note

that X ¼ Y ¼ Z ¼ 0 is an independent fixed point

not shown in the table. It corresponds to a matter

dominated solution
9
and so cosmologically viable trajec-

tories should begin near this point. One can see that

it is a saddle point and so trajectories will eventually

leave its vicinity, signaling the onset of dark energy

domination.

Points (2) and (3) are unstable nodes or saddle points that

correspond to nonaccelerating phases and so we will pay no

further attention to them. Points (4) and (5) are both located

in the plane Z ¼ 1, which, as discussed above, corresponds

to a quintessence subset. These fixed points are hence

identical to the points found if one considers quintessence

with an exponential potential in GR. In particular, point (4)

is the dark energy dominated point that exists when λ<
ffiffiffi

6
p

.

Point (5) exists when λ >
ffiffiffi

6
p

and exhibits a matterlike

behavior with weff ¼ 0. Unlike the case of GR, these points

are not always stable when they exist. Indeed, one can see

that both are unstable when 2β > λ. When this is the case,

the only stable fixed point is at the tip of the cone and the

dynamical systems analysis does not reveal anything

interesting about the late-time dynamics. Examples of this

are shown below in Figs. 2 and 3. If the theory was GR and

quintessence, the models with λ ¼ 1 and λ ¼ 4 should

approach fixed points (4) and (5) independently of the other

parameters. These models are plotted in Fig. 2 with m0 ¼
Λ ¼ H0 and β < λ=2 (the model parameters are indicated

in the captions). One can see that these points are eventually

reached after a brief excursion into the domain Z < 1. In

Fig. 3 we plot the same models but instead choose β > λ=2.
Once can see that, in this case, both models now evolve

towards the tip of the cone.

One can then conclude that models with β < λ=2 have

late-time cosmologies that are identical to quintessence

whereas those with β > λ=2 exhibit drastically different

behavior. We will calculate this below in Sec. V but we

note here for completeness that points (2)–(5) are identical to

those found in [34].
10
The reason for this is that, as discussed

in Sec. II, these points all have Z ¼ 1, which corresponds to

B _ϕ=Λ ¼ 0 i.e. no disformal coupling. In this limit, the

TABLE II. The cosmological variables at the fixed points of the

system (35)–(37) when β ≠ λ=2.

Name H0=H q weff ΩDE

(1) − 3
2

1
2

0 1

(2) −3 2 1 1

(3) −3 2 1 1

(4) − λ2

2

1
2
ðλ2 − 2Þ 1

3
ðλ2 − 3Þ 1

(5) − 3
2

1
2

0 3=λ2

TABLE I. The fixed points of the system (35)–(37) when

β ≠ λ=2.

Name X Y Z Existence

(1) 0 0 0 < Z ≤ 1 All

(2) −1 0 1 All

(3) 1 0 1 All

(4) λ
ffiffi

6
p

ffiffiffiffiffiffiffiffiffiffiffi

1 − λ2

6

q

1 λ <
ffiffiffi

6
p

(5)
ffiffi

3
2

p
λ

ffiffi

3
2

p
λ

1 Any

9
This is point (1) Table I in [34] and the first bullet

point Appendix C in [27], when the conformal parameter α ¼ 0

(in both cases).
10
These are points (2)–(5) in that reference, Table I.
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Einstein and Jordan frames are equivalent, and so are the

coordinates used to parametrize the phase spaces.

C. Fixed points when β ¼ λ=2

As remarked above, the phase space is two dimensional

when β ¼ λ=2. To see this, we can use Eq. (33) in the

Friedmann constraint (19) to find

1 ¼ ð1þ 2μ2Þx2 þ y2 þ Ωm

�

1þ 2μ2
x2

y2

�3
2

; ð39Þ

with μ ¼ m0=Λ. In this case, the phase space is elliptical.

There are two routes by which one can proceed to analyze

the fixed points of the system. The first is to reformulate the

equations in terms of x and y and use the Friedmann

equation to eliminate Ωm. One can then find the fixed

points of the two-dimensional system and proceed in the

usual manner. The second is to continue to work in the

three-dimensional framework and apply the constraint,

which in our variables is [see Eq. (34)]

Y2 ¼ 2μ2X2

1 − Z
4
3

: ð40Þ

Here, we adopt the second approach in order to make

contact with the previous analysis. Substituting the con-

straint (40) into Eqs. (35)–(37) in order to eliminate Y, one
finds the equations in the reduced phase space, which are

given in Appendix B due to their length.

The resulting fixed points are given in Table III with the

corresponding cosmological parameters given in Table IV.

The eigenvalues are

FIG. 2 (color online). The phase space trajectories for models

with λ ¼ 1 (red) and λ ¼ 4 (blue). In each case β ¼ 0.3, m0 ¼
Λ ¼ H0 and the initial conditions are ϕðNiÞ ¼ 1, ϕ0ðNiÞ ¼ 0.

The initial values of Ni ¼ ln ai and HðNiÞ were chosen such that

the Universe begins in a matter dominated phase at redshift 10

with Ωm ¼ 0.99999.

FIG. 3 (color online). The phase space trajectories for

models with λ ¼ 1 (red) and λ ¼ 4 (blue). In each case β ¼ 3,

m0 ¼ Λ ¼ H0 and the initial conditions are those indicated

in Fig. 2.

TABLE III. The fixed points and lines when β ¼ λ=2.

Name X Y Z Existence

(1) 0 0 0 < Z ≤ 1 All

(2) 0 0 0 All

(3) 0 0 1 All

(4)
ffiffiffiffiffi

3

2λ2

q

ð1−2μ2Þ3=4
ffiffiffiffiffi

3

2λ2

q

ð1−2μ2Þ3=4 ð1−2μ2Þ3=4 μ< 1
ffiffi

2
p ,

λ≥
ffiffiffi

3
p

(5) λ
ffiffi

6
p ð2λ2μ2

λ2−6
þ1Þ3=4

ffiffiffiffiffiffiffiffiffi

1−λ2

6

q

ð2λ2μ2
λ2−6

þ1Þ3=4 ð2λ
2μ2

λ2−6
þ1Þ3=4 λ2< 6

1þ2μ2

TABLE IV. The cosmological variables at the fixed points

when β ¼ λ=2.

Name H0=H q weff ΩDE

(1) − 3
2

1
2

0 1 − Z2

(2) − 3
2

1
2

0 1

(3) − 3
2

1
2

0 0

(4) − 3
2

1
2

λ2

3
− 1 ð 3

λ2
− 1Þð1 − 2μ2Þ3=2 þ 1

(5) − λ2

2
λ2

2
− 1 0 1
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ð1Þ e1 ¼
3

2
; e2 ¼ 0; ð41Þ

ð2Þ e1 ¼
3

2
; e2 ¼ 0; ð42Þ

ð3Þ e1 ¼
3

2
; e2 ¼ 0; ð43Þ

ð4Þ e�¼−
3

4
�3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2ðλ4þ18λ2−72Þμ2þ72−21λ2Þ
p

4λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2ðλ2−6Þμ2þ3Þ
p ; ð44Þ

ð5Þ e1 ¼ λ2 − 3; e2 ¼ −3þ λ2

2
: ð45Þ

One can see that the first three points are unstable and so we

will ignore them from here on. The fourth point is a

deformation of the stable spiral found when β < λ=2 and

when λ >
ffiffiffi

6
p

. Its form is rather cumbersome but, by taking

the limit λ →∞, one can see that the largest eigenvalue

tends to zero from below and is therefore stable.
11
The fifth

point is a deformation of the stable attractor found when

β < λ=2 and when λ <
ffiffiffi

3
p

. One can see that when μ >
ffiffiffi

2
p

and λ >
ffiffiffi

3
p

the only stable point is the tip of the cone. Just

like the analysis of the case β ≠ λ=2, this implies that the

trajectories approach a center manifold at late times. Again,

we will analyze this case by looking for an approximate

late-time solution. The three possible types of solution are

shown in Fig. 4.

V. LATE-TIME SOLUTIONS

In this section we address models that evolve towards the

tip of the cone by looking for approximate late-time

solutions. These were the cases β > λ=2 and β ¼ λ=2.

A. Solution when β > λ=2

At late times, one expects that the field has rolled down

the potential sufficiently such that ϕ ≫ 1 and Ωm ≪ 1.

Writing the Friedmann constraint (19) as

3H2 ¼
_ϕ2

2

�

1þm2
0e

ð2β−λÞϕ

Λ2

�

þm2
0e

−λϕ þ 8πGρu
3
2; ð46Þ

one can see that the final two terms are negligible compared

with the term 3H2 and so we have

3H2 ≈
m2

0
_ϕ2eð2β−λÞϕ

Λ2
: ð47Þ

Changing from coordinate time to N ¼ ln a we have

m2
0ϕ

02eð2β−λÞϕ

Λ2
¼ 3; ð48Þ

which is solved by

ϕðNÞ ¼ 2

2β − λ
ln

�

ffiffiffi

3
p ð2β − λÞ

2

Λ

m0

N

�

: ð49Þ

This approximate solution is shown in Fig. 5 and one can

see that it matches very closely with the numerical solution.

Next, we can make the same approximations to Eq. (20) to

find

_H

H2
¼ −

3

2
Ωm

_ϕ3

Λ3
e3βϕ þ 1

H

�

β _ϕþ ϕ̈

_ϕ

�

; ð50Þ

which, when written using N as the time coordinate and

applying the solution (49), becomes

3

2
Ωmϕ

03H
3

λ3
e3βϕ ¼ 5β − 2

2N
: ð51Þ

Taking the logarithm of both sides, differentiating with

respect to N and using the relation

FIG. 4 (color online). The phase space trajectories for possible

solutions when β ¼ λ=2. The blue line tends to fixed point (4) and
corresponds to a model with μ ¼ 1, λ ¼ 1. The red line tends to

fixed point (5) and corresponds to a model with λ ¼ 1, μ ¼ 0.5.

The black line corresponds to a model with μ ¼ 1, λ ¼ 10 and

tends towards the tip of the cone. In each case Λ ¼ H0 and m0

was fixed using the value of μ. The initial conditions are those

indicated in Fig. 2.

11
Whether or not it is an attractor or a stable spiral depends on

the values of μ and λ.
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Ωm
0

Ωm

¼ −3 − 2
H0

H
ð52Þ

we find

H0

H
¼ 3 −

2ðβ þ λÞ
ð2β − λÞN : ð53Þ

This is plotted in Fig. 6 and one can again see that the

approximation works very well at late times.

We can see that when β > λ=2 the Universe will

ultimately enter a phantom phase where H0=H tends to

3, although many e-folds must elapse before the asymptotic

value is reached. That being said, it is not necessarily the

case that a large change in N implies a large amount of

coordinate time has elapsed. Indeed, recalling that

H ¼ dN=dt, the coordinate time is

tðNÞ ¼
Z

N

Ni

dN0

HðN0Þ : ð54Þ

Since the lapse is unity, this is the proper time for comoving

observers. For nonphantom solutions such as the quintes-

sencelike trajectories found in Sec. IV B, H is a decreasing

function of N and so tðNÞ is an exponentially increasing

function. The phantom solutions, on the other hand, have

HðNÞ increasing exponentially and so tðNÞ is a slowly

evolving function at large N. Physically, this means that

one expects a large number of e-folds in a short amount of

proper time, and so the asymptotic phantom state is reached

very quickly. This behaviour is plotted in Fig. 7 and can be

understood by considering the Einstein frame. As the

Universe expands, the field begins to roll and disformal

effects become increasingly important. If the field does not

begin to slow, the Jordan frame lapse approaches zero and

little coordinate time evolves, despite the fact that the scale

factor and field are evolving rapidly. When viewed in this

manner, phantom behavior is a natural consequence of the

disformal coupling.

We end this section by noting that the solution (53)

implies that q ≈ −4, or, equivalently, weff ≈ −3. An equa-

tion of state this negative is in strong tension with

observational data [56–60] but it is not necessarily the

case that this value is reached at the present time. Indeed,

examination of Fig. 6 reveals that, for the model studied

there, the asymptotic value is not reached until far into the

future. Whether a model predicts that the Universe is in the

phantom phase at the present time or that it will undergo

one at some point in the future depends on the initial

conditions and model parameters such as m0 and Λ, which

do not determine the asymptotic state of the Universe but

do control how quickly it is reached. For example, if one

were to tunem0 ≫ H0 the field will begin to roll early on in

the Universe’s history and one would expect phantom

behavior today. Conversely, tuning m0 ≪ H0 will result in

the field being overdamped due to Hubble friction and the

phantom behavior will only ensue far into the future. When

fitting cosmological probes of the background expansion to

data, Bayesian analysis will likely favor regions of param-

eter space where the phantom phase has not yet begun and

so it is likely that cosmologically viable models can be

found. Such an investigation would make an interesting

topic for future work.

B. β ¼ λ=2

When β ¼ λ=2 we can write the Friedmann equation as

3H2 ¼ ð1þ 2μ2Þ
_ϕ2

2
þm2

0e
−λϕ þ 8πGρu

3
2: ð55Þ

FIG. 6 (color online). The evolution of H0=H found both

numerically (red solid curve) and using the approximation

(49) (blue dashed curve). The asymptotic value of 3 is shown

using the black dotted line. The parameters used were β ¼ 1.4,

λ ¼ 2 and m0 ¼ Λ ¼ H0. The initial conditions are those

indicated in Fig. 2.

FIG. 5 (color online). The evolution of ϕðNÞ found both

numerically (red solid curve) and using the approximation

(49) (blue dashed curve). The parameters used were β ¼ 1.4,

λ ¼ 2 and m0 ¼ Λ ¼ H0. The initial conditions are those

indicated in Fig. 2.
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Again, one expects that ϕ ≫ 1 at late times but, unlike the

previous case, there are no factors of e2βϕ that become large

in this limit. Instead, the second term is negligible and one

has

1 ≈ ð1þ 2μ2Þϕ
02

6
þΩmu

3
2; and ð56Þ

0 ≈ −
ϕ02

2
−
3

2
Ωmu

3
2 þ λ

2
ϕ0; ð57Þ

where the second equation comes from taking the limit

ϕ ≫ 1 in Eq. (20). Unlike the previous case, it is not

possible to find an exact analytic solution but one can find

late-time scaling solutions by looking for solutions of the

form ϕ0 ¼ δ1, Ωmu
3
2 ¼ δ2. Under these assumptions, one is

led to two equations for δi:

3 ¼ 1

2
ð2μ2 þ 1Þδ21 þ 3δ2 ð58Þ

0 ¼ λδ2

2
−
δ21
2
−
3δ2

2
; ð59Þ

which have the solutions

ð1Þ δ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2þ12μ2−6
p

þλ

1−2μ2

δ2 ¼
2

1−2μ2
−
λð2μ2þ1Þðλ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2þ12μ2−6
p

Þ
3ð1−2μ2Þ2 ð60Þ

ð2Þ δ1 ¼
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2þ12μ2−6
p

þλ

δ2 ¼
2

1−2μ2
−
λð2μ2þ1Þðλþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2þ12μ2−6
p

Þ
3ð1−2μ2Þ2 : ð61Þ

Note that one requires 2μ2 > 1 in order for this type of

solution to exist. If the converse is true the solution tends to

fixed point (4) found in Sec. IV C. Given this constraint,

one can see that solution (1) is incompatible with our

assumption that ϕ ≫ 1 because ϕ0 ¼ δ1 < 0 and so only

solution (2) is viable. A scaling relation such as this implies

a definite prediction for the asymptotic state of the

Universe. Indeed, since Ωmu
3
2 is constant one has, using

Eq. (52),

H0

H
¼ 3 −

3λ

2
δ1; ð62Þ

which implies

q ¼ 9λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2 þ 12μ2 − 6
p

þ λ
− 4; and ð63Þ

weff ¼
6λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2 þ 12μ2 − 6
p

þ λ
− 3: ð64Þ

One can see that in this case the asymptotic state of the

Universe is a function of λ and μ. Note that since δ1 > 0, the

Universe cannot accelerate with H0=H > 3. A natural

question is whether it is possible for the Universe to

achieve an asymptotic de Sitter state? Setting the left-hand

side of (62) equal to zero and using (61) one finds this is

achieved when

λ ¼
ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2μ2 − 1

q

: ð65Þ

As an example, we plot the evolution ofH0=H as a function

of N for the case μ ¼ 1 (λ ¼
ffiffiffi

2
p

) in Fig. 8. One can see that

the Universe does indeed tend to a de Sitter phase at

late times.

FIG. 7 (color online). The coordinate time as a function ofN for

both quintessencelike solutions (blue) and phantom solutions

(red). The parameters used were β ¼ 1.4, λ ¼ 2 (red) and

β ¼ 0.3, λ ¼ 2 (blue). In both cases m0 ¼ Λ ¼ H0. The initial

conditions are those indicated in Fig. 2.

FIG. 8 (color online). H0=H as a function of N for a model with

μ ¼ 1, m0 ¼ H0, λ ¼
ffiffiffi

2
p

and Λ ¼ H0. The initial conditions are

those indicated in Fig. 2.
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VI. DISCUSSION AND CONCLUSIONS

This paper has presented and studied the Jordan frame

formulation of disformal gravity theories for the first time.

The Einstein frame has been studied extensively and moti-

vates this study for several reasons. First, there is an apparent

metric singularity that previous studies have found, both

numerically and analytically, to be approached on cosmo-

logical scales when calculating using the Einstein frame

formulation. This result has some pathological implications

but, as discussed inSec. II, it is currently unknownwhether or

not is it a physical pathology ormerely an artifact of working

in the Einstein frame. This paper has taken the first steps

towards answering this by studying the Jordan frame

cosmology and looking for equivalent pathologies.

Second, disformal transformations from the Einstein to

Jordan frame do not preserve the lapse. This has the result

that the proper time for observers in the Jordan frame is not

aligned with the coordinate time, which makes the inter-

pretation of Einstein frame calculations difficult from a

technical point of view. The Jordan frame does not have

this problem since the lapse is unity from the outset.

The first part of the paper was dedicated to analyzing the

phase space of solutions using a dynamical systems analysis.

We were successful in compactifying the three-dimensional

phase space so that all solutions lie inside of the half-cone

shown in Fig. 1. Interestingly, the phase space of the

equivalent quintessence model (found by turning off the

disformal couplings) coincides with the base of the cone,

which allowed for transparent comparisons with quintes-

sence. In particular, any trajectory that terminates on the base

of the cone has a late-time cosmology that is indistinguish-

able from quintessence, at least at the background level. The

fixed points on the base of the cone correspond to those found

in the Einstein frame by previous studies precisely because

disformal effects are absent and the time variables used to

describe the dynamics in both frames are identical.

Trajectories at the tip of the cone yield no information about

the late-time cosmology and it was necessary to find

approximate late-time solutions in order to discern the

asymptotic state of the Universe. In this case, one can only

relate the Einstein and Jordan frame time variables by

integrating a nonlinear relation, and it is here that the power

of the Jordan frame formalism becomes apparent.

The cosmological behavior can be summarized concisely

in the β − λ plane shown in Fig. 9. When β < λ=2, all of the
fixed points lie in the quintessence plane and so the late-

time fixed points are identical to those found in [48],

although their stability is different due to the phase space

being three instead of two dimensional. When β > λ=2, the
only stable fixed point lies at the tip of the cone and so it

was necessary to look for approximate late-time solutions.

These were found in Sec. V where we showed that the

Universe asymptotes to a phantom state where weff ¼ −3

( _H=H2 ¼ 3) independent of the model parameters. One can

see from the various figures that the pathological behavior

is typically reached in the future for universes that start

from matter domination and so it may be possible to

reconcile the models with current observations. In particu-

lar, there are several model parameters, such as m0 and Λ,

that do not alter the position of the fixed points or the

stability. One would therefore expect a wide region in

parameter space where the Universe is close to ΛCDM

today but may undergo a phantom phase sometime in the

future. Such a model is not at odds with current observa-

tions. When fitting the model to cosmological probes of the

background cosmology, it is likely that this region will be

preferred by Bayesian fitting methods, although such

analyses lie beyond the scope of this work.

There is amarginal case given byβ ¼ λ=2where the phase
space is reduced to 2. In this case we found two late-time

attracting fixed points that lie inside the cone and one that lies

at the tip. By looking for late-time scaling solutions we

derived the asymptotic value of _H=H2 for solutions that

approach the tip and, in particular, were able to show that by

tuning the parameters, a late-time de Sitter phase can be

reached.

This solution deserves further comment in light of the

cosmological constant problem. In order to achieve the

solution required for an asymptotic de Sitter phase it was

necessary to tune β ¼ λ=2 but this is not enough. One must

further tune λ and μ to values where the fixed point at the tip

is the only stable one and the asymptotic value of weff is

exactly −1. The theory does not contain any sort of

protective symmetry and thus the tunings required are

unlikely to be technically natural. Furthermore, the model

has nothing to say about the old cosmological constant

problem because we have set all contributions to the

FIG. 9 (color online). The cosmological solutions found in this

work.
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cosmological constant from both the scalar and matter

sectors to zero from the outset. Given this, the asymptoti-

cally de Sitter cosmological solution found here has little to

say about the cosmological constant problem, and the fine-

tuned model is hardly a compelling alternative to ΛCDM.
One of the goals of this paper is to discuss the metric

singularity found by previous works using the Einstein

frame formulation of the theory. The pathologies associated

with this singularity were discussed at length in Sec. II.

There, we noted that it is a coordinate singularity since one

can find a gauge where the metric is perfectly regular and

that it is apparently absent in the Jordan frame since one can

work in this gauge from the outset. We showed that the

singularity is located at the tip of the cone in this gauge and,

furthermore, that trajectories approaching the tip are those

that exhibit late-time phantom behavior. The physical

manifestation of the singularity is then clear: the

Universe undergoes phantom behavior à la [61].

Retrospectively, this is somewhat to be expected from

the Einstein frame behavior: the approach to the singularity

corresponds to the Jordan frame lapse approaching zero so

that the clock for comoving observers slows down. A large

number of e-folds can then pass in a short amount of time,

which is precisely the behavior of a phantom Universe.
We end by discussing the generality of our findings. In

particular, the choice among a theory that is identical to

quintessence, a phantom Universe or a finely tuned de

Sitter phase seems unappealing compared with simpler

models. Here, we have only considered models where the

scalar potential and disformal factor are exponential. This

choice was made in order to yield the minimal phase space

and preserve some of the scaling symmetry present in

quintessence models. More general models will have a

larger phase space that will require different variables to

explore and one hence expects a new set of fixed points.

Despite this, one would expect the qualitative features we

have found here to apply. In particular, the fixed points

were found to correspond to either phantom behavior or the

equivalent quintessence model except for a finely tuned set

of parameters. When written in terms of the cosmological

variables and using N ¼ ln a as a proxy for time in the

Einstein frame, the disformal coupling leaves the spatial

component unchanged but the Jordan frame lapse is given

by N2 ¼ 1 − BðϕÞ2H2ϕ02=Λ2. All nonphantom Universes

have H → 0 at late times and so one expects a set of fixed

points corresponding to the equivalent quintessence models

precisely because the disformal coupling is set to zero

dynamically and the Jordan and Einstein frames are

equivalent. One can then discern the requirements for

the existence of new fixed points corresponding to nonzero

disformal couplings: either the Einstein frame Universe

must be phantom so that H or ϕ0 increases without bound,
or BðϕÞ must be chosen such that it is a strongly increasing

function of ϕ. This was the case with exponential models.

Indeed, here we found that the disformal factor was only

nonzero for values of β that were large enough to

compensate for the decreasing of H. One can then see
that phantom behavior is expected for any model where
BðϕÞ can increase rapidly enough at late times, what is not
universal is the prediction that weff ¼ −3, which is likely to
be a theory-dependent prediction. Said another way, one
can design models that do not exhibit phantom behavior by
construction. One simple example of this is simply B ¼ 1,
which shows only quintessence fixed points. A more
general example is the case of monomial potentials
VðϕÞ ∼ ϕn, BðϕÞ ∼ ϕm (with n and m positive even
integers). In this case, one would expect ϕ to roll to the
minimum of the potential located at ϕ ¼ 0 at late times so
that BðϕÞ tends to zero and the system behaves like
quintessence. In light of the discussion above, we conclude
that the general features found here—quintessencelike
fixed points and phantom behavior—are properties of more
general disformal dark energy models.
In order to find fixed points that were neither quintes-

sence models nor phantom Universes it was necessary to
fine-tune several model parameters to specific values. This
corresponded to reducing the dimension of the phase space
so that BH=Λwas fixed by the kinetic and potential energy.
In this case it could neither grow without bound nor
become zero. Such a fine-tuning is a very special property
of the model considered here and it is unlikely to be a
feature of more general models. More technically, the

symmetries of the equations of motion [ _ϕ2
∼H2, VðϕÞ ∼

H2 and Vϕ ∼ VðϕÞ] were crucial in allowing one to have

the minimal possible phase space dimension and to identify
the requisite parameter tunings. Constructing other theories
that exhibit these features would require looking at the
symmetries present when the disformal coupling is absent
and choosing the functional form of BðϕÞ appropriately
such that the dimension of the phase space can be preserved
with suitable parameter tunings. It is then clear that the
novel fixed points found in the marginal case are not
general and require finely tuned simple models to exist.
We have not included a conformal factor in our analysis

and it is unlikely that this will have any mitigating effects
for the pathologies. Indeed, a conformal factor was
included in the Einstein frame analysis of [34] with the
only effect being to move the location of the fixed points.
Such factors are strongly constrained by solar system tests
and so the change is expected to be minimal. Indeed, if a
conformal factor A2ðϕÞ is present then the Cassini con-

straint on the PPN parameter γ [62] constrains d lnA=dϕ <
10−3 [42,63], which is the factor that appears in the
equations governing the cosmological dynamics.

Finally, one can relax the universal coupling and couple

to dark matter only, at the cost of introducing violations of

the equivalence principle, which are poorly constrained in

the dark sector. In this case, the relevant fixed points for

observers are those found in [34], although the metric

governing the motion of dark matter is that of a phantom

universe and so one expects a drastic suppression of late-

time structure compared with GR.
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APPENDIX A: TRANSFORMATION

TO THE JORDAN FRAME

In this appendix we transform the Einstein frame

action to the Jordan frame and derive the Friedmann

and Klein-Gordon equations.

1. The Jordan frame action

Our starting point is the Einstein frame action (3), which

we write as

S ¼
Z

d4xMpl
2½Lg þ Lϕ� þ Sm½~g� with

Lg ¼
ffiffiffiffiffiffi

−g
p

RðgÞ
2

and

Lϕ ¼ ffiffiffiffiffiffi

−g
p �

−
1

2
~∇μϕ

~∇
μ
ϕ − VðϕÞ

�

: ðA1Þ

Bettoni and Liberati [14] have shown that the Horndeski

action [24]—the most general scalar-tensor theory with

manifestly second-order field equations—is invariant under

disformal transformations and furthermore that the Einstein

frame exists only when terms quintic in the scalar are

absent. For this reason, we expect that the Jordan frame

action takes the form

S ¼
Z

d4x
ffiffiffiffiffiffi

−~g
p

ðG2ðϕ; XÞ þG3ðϕ; XÞ□ϕþG4ðϕ; XÞRð~gÞ

þG4;X½ð□ϕÞ2 − ~∇μ
~∇νϕ

~∇
μ ~∇

ν
ϕ�Þ þ Sm½~gμν�; ðA2Þ

where Gi are arbitrary functions, X ¼ −~gμν∂μϕ∂νϕ=2, and
□ ¼ ~gμν∇μ∇ν. Our strategy is then to transform each term

in (A1) into the Jordan frame by inverting (4) and then

performing manipulations to get it into the form (A2). To

accomplish this, we follow the methods of [15,27]. We

begin by inverting (4) to find

gμν ¼ ~gμν −
B2ðϕÞ
Λ2

∂μϕ∂νϕ and ðA3Þ

gμν ¼ ~gμν þ B2ðϕÞ
Λ2

~∇
μ
ϕ ~∇

ν
ϕ

1þ 2B2ðϕÞX
Λ2

; ðA4Þ

where all contractions are performed using ~gμν. Next, we
introduce the tensor

Kα
μν ¼ Γ

α
μν −

~Γ
α
μν ðA5Þ

¼B2ðϕÞ ~∇α
ϕ ~∇μ

~∇νϕþBðϕÞBϕðϕÞ ~∇α
ϕ∂μϕ∂νϕ

Λ2ð1þ2B2ðϕÞX
Λ2 Þ

: ðA6Þ

Using the identity 2 ~∇½μ ~∇ν�v
β ¼ Rα

βμνv
β one finds [15]

Rα
βμν ¼ ~Rα

βμν þ 2 ~∇½μK
α
ν�β þ 2Kα

σ½μK
α
ν�β; ðA7Þ

which, after making the appropriate contractions and using

Eqs. (6) and (A3), can be used to transform Lg:

Lg
ffiffiffiffiffiffi

−~g
p ¼

ffiffiffiffiffiffi

−g
p
ffiffiffiffiffiffi

−~g
p ½gμνð ~Rα

μαν − 2Kα
σ½αK

σ
μ�νÞ�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2B2ðϕÞX
Λ2

r

~R

2
þ B2ðϕÞ

Λ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2B2ðϕÞX
Λ2

q

~Rμν
~∇
μ
ϕ ~∇

ν
ϕ

−
B2ðϕÞ

2Λ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2B2ðϕÞX
Λ2

q ½ð□ϕÞ2 − ~∇μ
~∇νϕ

~∇
μ ~∇

ν
ϕ� þ BðϕÞBϕðϕÞ

Λ2ð1þ 2B2ðϕÞX
Λ2 Þ

3
2

½ ~∇μ
ϕ ~∇μ

~∇νϕ
~∇
ν
ϕþ 2X□ϕ�

þ B4ðϕÞ
Λ2ð1þ 2B2ðϕÞX

Λ2 Þ
3
2

½□ϕ ~∇
μ
ϕ ~∇μ

~∇νϕ
~∇
ν
ϕþ ~∇

μ
ϕ ~∇

ν
ϕ ~∇α

~∇νϕ
~∇
α ~∇μϕ�: ðA8Þ

This is not yet in Horndeski form; there are two quartic

terms and one cubic term that need to be removed.

Furthermore, there is a term proportional to ~Rμν
~∇
μ
ϕ ~∇

ν
ϕ.

We can remove this term and the quartic one by adding a

total derivative of the form ~∇μξ
μ with

ξμ ¼ B2ðϕÞ

2Λ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2B2ðϕÞX
Λ2

q ½ ~∇μ
ϕ□ϕ − ~∇

μ ~∇
ν
ϕ∂νϕ�: ðA9Þ

This simplifies the action to
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Lg
ffiffiffiffiffiffi

−~g
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2B2ðϕÞX
Λ2

r

~R

2
þ B2ðϕÞ

2Λ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2B2ðϕÞX
Λ2

q ½ð□ϕÞ2 − ~∇μ
~∇νϕ

~∇
μ ~∇

ν
ϕ� − BðϕÞBϕðϕÞ

Λ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2B2ðϕÞX
Λ2

q ½2X□ϕþ ~∇
μ
ϕ ~∇μ

~∇νϕ
~∇
ν
ϕ�:

ðA10Þ

One can see that the quartic terms are in Horndeski form but there is still one cubic term that does not fit. This too can be

removed by subtracting a second total derivative ~∇μζ
μ with

ζμ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2B2ðϕÞX
Λ2

r

BϕðϕÞ
BðϕÞ

~∇
μ
ϕ: ðA11Þ

The action then becomes

Lg
ffiffiffiffiffiffi

−~g
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2B2ðϕÞX
Λ2

r

~R

2
þ B2ðϕÞ

2Λ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2B2ðϕÞX
Λ2

q ½ð□ϕÞ2 − ~∇μ
~∇νϕ

~∇
μ ~∇

ν
ϕ� − BϕðϕÞ

BðϕÞΛ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2B2ðϕÞX
Λ2

q

�

1þ 4B2ðϕÞX
Λ2

�

□ϕ

þ 2X

�

Bϕϕ

B2ðϕÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2B2ðϕÞX
Λ2

r

−
B2
ϕðϕÞ

B2ðϕÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2B2ðϕÞX
Λ2

q

�

; ðA12Þ

which is now in the Horndeski form.

Next, we need to transformLϕ. This is a lot simpler since

one only needs to transform the metric determinant and the

metric appearing in the kinetic term using (A4) to find

Lϕ
ffiffiffiffiffiffi

−~g
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2B2ðϕÞX
Λ2

r

�

X −
2B2ðϕÞX2

Λ4ð1þ 2B2ðϕÞX
Λ2 Þ

− VðϕÞ
�

:

ðA13Þ

The action is then in Horndeski form with

G4ðϕ; XÞ ¼
Mpl

2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2B2ðϕÞX
Λ2

r

ðA14Þ

G3ðϕ; XÞ ¼ −Mpl
2

BϕðϕÞ

BðϕÞΛ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2B2ðϕÞX
Λ2

q

�

1þ 4B2ðϕÞX
Λ2

�

ðA15Þ

G2ðϕ; XÞ ¼ Mpl
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2B2ðϕÞX
Λ2

r

�

2XBϕϕ

B2ðϕÞ

−
2XB2

ϕðϕÞ
B2ðϕÞð1þ 2B2ðϕÞX

Λ2 Þ
þ X

−
2B2ðϕÞX2

Λ4ð1þ 2B2ðϕÞX
Λ2 Þ

− VðϕÞ
�

: ðA16Þ

Note that a similar action was obtained in [64].

2. The field equations

Given Eqs. (A14)–(A16), it is clear that the resulting

field equations will be cumbersome and complicated. Since

we are only interested in the homogeneous and isotropic

Friedmann equations it is simplest to first reduce the action

to minisuperspace using the coordinates

d~s2 ¼ −N2ðtÞdt2 þ aðtÞ2d~x2; ϕ ¼ ϕðtÞ: ðA17Þ

The Friedmann and Klein-Gordon equations can then be

found using the Euler-Lagrange equations for NðtÞ, aðtÞ
and ϕðtÞ and setting NðtÞ ¼ 1. Setting BðϕÞ ¼ eβϕ12 one

finds

S½NðtÞ;aðtÞ;ϕðtÞ� ¼
Z

dt
aðtÞ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ e2βϕ

N2Λ2

q

�

3γ
_a2

a2N2
−3γ

_a _N

aN2

þ3γβ
_a _ϕ

aN
−βγ

_N _ϕ

N2
þ

_ϕ2

2

−VðϕÞN2

�

1þ e2βϕ

N2Λ2

�

þβ2
e2βϕ _ϕ4

Λ2N3

þ3
ä

aN

�

1þ e2βϕ

N2Λ2

�

þβγ
ϕ̈

N
þ3

e2βϕ _a _ϕϕ̈

Λ2aN3

�

; ðA18Þ

12
We do this for simplicity; it is not necessary to specialize at

this stage but leaving the function general results in a far longer
expression.
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where

γ ¼ 1þ 2
e2βϕ

N2Λ2
: ðA19Þ

The Euler-Lagrange equation for NðtÞ yields the Friedmann equation (19) (after setting N ¼ 1), which can be used in the

Euler-Lagrange equations for aðtÞ and ϕðtÞ to find Eqs. (20) and (22).

APPENDIX B: DYNAMICAL SYSTEM WHEN β ¼ λ=2

In this appendix we present the dynamical system after substituting the constraint (40) into (35)–(37) to eliminate Y. They
are

U1

dX

dN
¼ −Xð3X4ð4ðμ2 − 1ÞZ4

3 þ 3Z8=3 þ 1 − 4μ4Þ þ 2
ffiffiffi

6
p

λX3Zð2μ2 − 2ð2μ2 þ 1ÞZ4
3 þ Z8=3 þ 1Þ

− 6X2Z2ðZ4
3 − 1Þð2μ2 þ 4Z

4
3 − 3Þ þ

ffiffiffi

6
p

λXZ3ðZ4
3 − 1Þ2 − 3Z4ðZ4

3 − 1Þ2Þ; ðB1Þ

U2

dY

dN
¼ μXð3X4ð2μ2 þ Z

4
3 − 1Þð2μ2 − 3Z

4
3 þ 1Þ þ 2

ffiffiffi

6
p

λð2μ2 þ 1ÞX3ZðZ4
3 − 1Þ

þ 6X2Z2ðZ4
3 − 1Þð2μ2 þ 2Z

4
3 − 3Þ −

ffiffiffi

6
p

λXZ3ðZ4
3 − 1Þ2 þ 3Z4ðZ4

3 − 1Þ2Þ; ðB2Þ

dZ

dN
¼ 3X2ð

ffiffiffi

6
p

λXZ
4
3 − 6Z7=3 þ 6Z −

ffiffiffi

6
p

λð2μ2 þ 1ÞXÞ
2ðX2ð−2μ2 þ 3Z

4
3 − 1Þ − Z10=3 þ Z2Þ

ðB3Þ

where

U1 ¼ 2Z2ðZ4
3 − 1ÞðX2ð2μ2 − 3Z

4
3 þ 1Þ þ Z2ðZ4

3 − 1ÞÞ
ðB4Þ

U2 ¼ Z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 − 2Z
4
3

p

ðZ4
3 − 1ÞðX2ð2μ2 − 3Z

4
3 þ 1Þ þ Z2ðZ4

3 − 1ÞÞ
ðB5Þ

Note that only two of these are independent since differentiating the constraint one has

2
X0

X
¼ 2

Y 0

Y
þ 4Z

1
3

3ð1 − Z
4
3Þ
Z0

Z
: ðB6Þ

It is straightforward to verify that the dynamical system above indeed satisfies this relation.
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