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We point out a set of operator identities that relate the operators corresponding to the oblique
corrections to operators that modify fermion couplings to the gauge bosons as well as operators that
modify triple gauge boson couplings. Such identities are simple consequences of the equations of motion.
Therefore the contributions from new physics to the oblique parameters can be disguised as modifications
of triple gauge boson couplings provided the fermion couplings to the gauge bosons are suitably modified
by higher-dimensional operators. Since the experimental constraints on triple gauge boson couplings are
much weaker than the constraints on the oblique parameters this observation allows extra room for model
building. We derive operator relations in effective theories of the standard model with the electroweak
symmetry either linearly or nonlinearly realized and discuss applications of our results.

DOI: 10.1103/PhysRevD.73.075008

I. INTRODUCTION

The consequences of new heavy particles in extensions
of the standard model (SM) can be accounted for at low
energies in terms of new effective operators. The wealth of
data collected by the LEP, SLD, and many other experi-
ments severely constrains new operators involving the
electroweak sector. The most widely used operators for
constraining new models are those that modify the gauge
boson two-point functions, which are often referred to as
the oblique [1,2], or universal [3], corrections. Among
several parametrizations of the gauge boson two-point
functions, the S, T, U parameters [2] are the best known.
The constraints on the S and 7 parameters are some of the
most stringent among operators of the same dimension [4].
Tight constraints on the oblique parameters pose chal-
lenges for many extensions of the SM.

We want to point out that, since a shift in the couplings
between fermions and gauge bosons can be absorbed as
oblique corrections, the observable effects of the oblique
parameters can be, to a large degree, removed if fermion
couplings to gauge bosons are also modified. That is to say
nonoblique corrections can obscure the oblique corrections
and new physics generating nonoblique corrections can
mask other effects that produce oblique corrections. We
consider a complete set of higher-dimensional operators
added to the SM Lagrangian and we show that the lowest-
order equations of motion imply relations between higher-
dimensional operators corresponding to the oblique opera-
tors, operators modifying the fermion couplings, and op-
erators modifying the triple gauge boson couplings. It
seems to us that although this fact is known its usefulness
is not widely appreciated. The triple gauge boson cou-
plings were measured by the LEP2 experiments, but the
statistics are much more limited compared to the Z-pole
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data. Therefore suitable modifications of couplings of fer-
mions to the gauge bosons can render the constraints on
many models much milder than one would have antici-
pated if only the oblique parameters were considered. To
turn things around, this implies that improving the electro-
weak constraints will certainly require a better knowledge
of triple gauge boson couplings. A task that will have to
wait for the linear collider.

One might think that the electroweak precision measure-
ments will become moot as we enter the LHC era. This is
not likely to happen even after the discovery of new
particles. At best, we will gain a partial knowledge about
the spectrum of new particles at the LHC. We will learn
very little about the couplings of the newly discovered
states. Electroweak precision tests will continue guiding
us towards the right theory.

In this paper we will discuss the operator relations in
the frameworks of effective theories of the SM both with
linearly and nonlinearly realized electroweak symmetry.
In the case of linearly realized symmetry only S and T
are relevant as they correspond to dimension 6 operators,
while U corresponds to a dimension 8 operator. The
equations of motion for the SU(2) X U(1) gauge fields
yield two independent relations involving S and T.
In the case of nonlinearly realized symmetry the same
equations of motion yield three independent relations in-
volving S, T, and U. The main point of this article can
be understood by glancing at Eqs. (12) and (13) in the
linear realization, and Eqgs. (28)—(30) in the nonlinear
realization.

In the next two sections we discuss in turn the linear and
nonlinear cases. In Sec. IV we give a toy example and
discuss applications to extra dimensional scenarios. We
summarize the lowest-dimensional chiral Lagrangian for
the electroweak theory in the appendix.

© 2006 The American Physical Society
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II. LINEAR CASE

We now turn to an effective theory containing the SM
fields with one Higgs doublet. The most important higher-
dimensional operators have dimension 6. A Majorana mass
term for the left-handed neutrinos has dimension 5, but we
are only interested in flavor-preserving operators since the
oblique parameters are flavor universal. It is straightfor-
ward to enumerate all operators of dimension 6, see
Ref. [5]. Integration by parts and equations of motion are
used extensively to avoid redundancy among operators.
What we now show is that using the equations of motion,
we relate particular linear combinations involving the
oblique parameters and other operators to peculiar redun-
dant operators that only affect the triple gauge boson
couplings.

We will use the notation of Ref. [5]. We will need only a
small subset of operators in Ref. [5]

Owp = (hT o h)W4,BH, 0, = |htD, A%, (1)

03, = i(htDEh)(Iy,1) + H.e, o
03, = i(ht oD h)(ly,0°l) + Hee,
0;,, = i(htD*1)(Gy,q) + He, “
Ohg = i(hfo'aDMh)(C_]'}’#O'“q) + H.c.,

Opy = i(hTDMh)(ﬁyMu) + Hc, @

Ong = i(h'D*h)(dy,d) + H.c.,
|
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Ohe = l(thD“h)(Eyue) + H.c,, (5)

where Wy, is the SU(2) field strength, B, the hyper-
charge field strength, and % represents the Higgs doublet.
The left-handed fermions are denoted ¢ and [/, while the
right-handed ones u, d, and e. The family indices are
implicitly summed over all three families. Oy corre-
sponds to the S parameter and O, to T. The remaining
operators on our list alter fermion couplings to the B and W
gauge bosons.
The lowest-order Lagrangian is

L = £gauge-fermion + (D'uh)Jr(D;Lh) - V(h) (6)

and the corresponding equations of motion for the gauge
bosons are

!
4B, + i%(hfz)yh — Dty + ¢SV fy,f =0,
f

(N

DEWe, + i%(h*a“D,,h — D, htoh)
8 £ a
+ E;fL’YVO- fL=0 (8
where Y is the hypercharge of fermion f.

Multiplying Eq. (7) by (ikTD”h + H.c.) and Eq. (8) by
(ihta*D”h + H.c.) we obtain

!/ !
26'0, — gow + ¢'0}, = 2iB,, D*1'D"h — g'hthD*htD,h + %h*h(BW)2 = %h*h(mmh + (DY), (9)

—8'Oyp + (0, + = 4iW%,D*hTa*D*h — 6ghthDHRI D h + ghth(W,)> — ¢ D*h + (D :
'0 (0}, + 03,) = 4iWs,DFht g“D"h — 6ghthD#ht D h + ghth(We,)? — ghth(hTD*h + (D?h1)h)

where Oy, =>:Y05, =405, —305, + 504, —
%Ohd — 0),,. Note that of the four terms on the right-
hand sides of Egs. (9) and (10) the first terms are observ-
able as they modify gauge boson self couplings, while the
second and third terms are not currently observable and the
fourth term gives a contribution proportional to the fermion
masses that we neglect. The second and third and part of
the fourth terms renormalize the lowest-order Lagrangian
in Eq. (6) when hth is substituted by its vacuum expecta-
tion value, v.

To make the operator relations more transparent let us
redefine the normalization of operators Oyp and O, as
follows

a 2a
Og = WOWB’ Or = _70/1, (11)

(10)

[
where s and c are the sine and cosine of the weak mixing

angle, « is the fine structure constant, and v = 250 GeV.
The rescaled operators Og and O are defined such that
their coefficients are, respectively, the S and T parameters.
That is the Lagrangian including the operators L =
asO0g + arO7 gives a contribution to S and T equal to S =
ag and T = ay. Neglecting the unobservable terms in
Egs. (9) and (10) we get

2gscv? g'v? ,
- O — - Or + ¢'0}; = 2iB,,D*hD"h,
(12)
B 4g'scv?

Os + g0}, + 0},) = 4w, D*ht 0DV h.
(13)
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The relations (12) and (13) can be understood as an
equivalence between oblique corrections and shifts in the
fermion couplings to gauge bosons up to modification of
gauge boson self couplings. It is straightforward to convert
the operators on the right-hand sides to the well-known
parametrization of general triple gauge boson couplings in
Ref. [6] and ensuing to contributions to the eTe™ —
W* W™ scattering cross sections.

Alternatively, the same operator relations can be ob-
tained by field redefinitions [7]. Let us consider the
Lagrangian:

1 1
L= —qWi,werr - ZBWBW + D, htD*h

+sz¢f+g€1 ol + 520, +05). (14

2A2
Using the field redefinitions

A € .
B,=B,+ Fz(hTDMh — D, h"h), (15)

wea =wa +—l(th o’D,h — D, hto?h), (16)

the Lagrangian now reads

1

ira Ytramv 1A DUV A A
L= Wa, W =2 B,,B" + D, h'Dh

2g’ 61 ge +g'e

A?

+sz¢f— 0, + Owp + ..

a7

where the hatted quantities denote field strengths and co-
variant derivatives associated to the WZ and éu gauge
fields and the ... stands for the unobservable terms as
well as for the operators modifying the triple gauge boson
self couplings appearing on the right-hand side of Egs. (9)
and (10).

Let us comment on the result of Ref. [4] where bounds
on arbitrary linear combinations of the operators in
Egs. (1)—(5) were obtained. It is easy to check that the
linear combinations of operators on the left-hand sides of
Egs. (12) and (13) are relatively weakly constrained.
Suppose these linear combinations of operators are added
to the SM Lagrangian one at a time with a coefficient #
The 90% confidence level bounds are A > 650 GeV for
the coefficient multiplying the operators in Eq. (12), and
A > 1.2 TeV for the ones in Eq. (13). The only source of
these bounds is the data on the ete™ — W*W™ cross
section. If the data on the ete”™ — WTW~ scattering
was not used in Ref. [4] these linear combinations of
operators would not be bounded at all.

The analysis of gauge boson self energies was recently
extended in Ref. [3] to include higher-derivative terms.
The relevant higher-derivative terms are governed
by the operators Opp =13,Bg,0*BPY and Oyy =

PHYSICAL REVIEW D 73, 075008 (2006)

5D W4, D*W4FY. These operators are not listed as inde-

pendent operators in Ref. [5] because, using Bianchi iden-
tities like 0,B,,, + 9,B,, + 9,B,, = 0, they are equal to
(0#B,,,)* and (D*W¢ )%, respectively, so they can be ex-
pressed as the squares of Egs. (7) and (8), see also Ref. [8].
Therefore, Opp and Oy are equivalent to linear combi-
nations of the operators in Eqgs. (1)—(5) as well as four-
fermi operators. We are not aware of any further identities
that would relate Ogp or Oy to triple gauge boson
couplings in analogy with the S and T parameters.

III. NONLINEAR CASE

The scalar sector of the SM without the physical Higgs
boson is conveniently described by a 2. field

3= exp(iwio-u), (18)

where o are the Pauli matrices. 2 transforms linearly
under the SU(2), X SU(2)g as 3 — L3R'. The hyper-
charge is embedded in SU(2)g, so that D,3 =
9,2 —igW,X +1g¢'B,30?, where W, = Wi %. The
higher-dimensional operators of interest to us fall into
two classes. First, operators containing the gauge bosons
and the 3 fields [1,9-11]. These include the operators
corresponding to the oblique parameters as well as opera-
tors that modify higher-point gauge couplings. Second,
operators containing two fermions, gauge fields, and the
> field [12,13]. These operators modify the couplings of
fermions to the gauge fields. The appendix contains a list of
all such operators. To distinguish from the linear case
operators are denoted as L instead of O.

It is more transparent to trade the 3, field for the follow-
ing combinations

= (D,3)=t,

T =30331, (19)

=(D,3hH3s, T=o (20)

In terms of these objects, the lowest-order Lagrangian is

2
v
L= £gauge-fermi0n - I Tr(v,u Vy,) (21)
In addition to Tr(V# V,u) there exists another operator of
dimension 2, denoted L, in the appendix, but since L
violates the custodial symmetry it is assumed that its
coefficient is small. The corresponding equations of mo-
tion for B, and W¢ are
vzg
0B,
4

Tr(V,T) + g ZYffy,,f 0, (22

2
DEWS, + i 8 Tr(V, o) + %ZfLy,,a'“fL =0. (23)
f
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We multiply Eq. (22) by ig’ Tr(TV?”) and Eq. (23) by
ig Tr(V? o) as well as by ig Tr(TV*To?). After a bit of
algebra we obtain

2
§PLy~ Ly + gL = ~L,~ S B"B,, (24

L+ gXLL+ L) = Ls+ g Tr(WH'W,,)
2.2

v
+ gT Te(VAV,), (25)

—2g* Lo+ Ly —4Lg + g2 (L5 + L7)
g2v2
=Ly~ 4Ly — = Tr(VAV,), (26)

where L}f = %(ﬁé - Lg) - %(L,2 - L3) - (L‘; + Lg +
£;‘ + £16) is the product of the fermion hypercharge cur-
rent and i Tr(TV?”). The operators on the right-hand sides of
Egs. (24)—(26) that are not abbreviated as L; are terms in
the Lagrangian in Eq. (21) and therefore are not observ-
able. Equations (24)—(26) also imply that the operators
L,39 are redundant, an observation already made in
Ref. [14]. What is important for us is that £,;4 alter
only the gauge boson self couplings.

In analogy with the linear case discussed in the previous
section, we define L to be the operator whose coefficient
is the S parameter, and so on for 7 and U,

1 a
.ES:_—L], .ET:—.E(),
167 2 7
o]
v 167 ®

Neglecting the unobservable terms in Egs. (24)—(26) we
get

16m L5+ L+ "L = ~Lp  (29)
—l67wLg + gz(ﬁ}l + L)) = L, (29)

—167 L — 16—27T£T +64m Ly + g (L) + L)
S
= L5 —4L,. (30)

As in the linear case, these relations can be obtained by
field redefinitions. Indeed, the Lagrangian:
r— =Ly wewr — Vg gV ey
- Z y73% Z nv Z r( ,u)

+ ;ifﬁf +g%e L] + ger(Ly + L))

+ g2e;(L3 + L), 31)

can be brought back to its more canonical from

PHYSICAL REVIEW D 73, 075008 (2006)

1 ira Ytrapv 1A DY U2 LYy
£=_1W#VW'U' _ZB‘M,,B# _ZTT(V#V”)

+ Zifﬁf + (=g +28%€3) L
f
+(€1 _62_63)£1 +4€3£8+... (32)

by the field redefinitions:
B, =B, + €ig' Ti(TV,), (33)

W4 = W + €ig Tr(V,0°) + €ig Tr(TV,To®). (34)

IV. APPLICATIONS

We want to illustrate how one might use our results in a
toy example, and comment how some of the results have
already been incorporated into models with extra
dimensions.

Let us start with a toy example. An electroweak triplet
scalar breaks the custodial symmetry and therefore gener-
ates a contribution to the T parameter. Hence one expects
stringent constraints on the couplings and mass of such a
field. Suppose we introduce a complex triplet scalar with
the hypercharge —1 that couples to the Higgs doublet as
follows

V=Mo" pt + u(ghtoh + g htah),  (35)

where /i = ig?h*. Assuming that M ¢ 18 large we integrate
¢ out and keep the interesting part of the effective action

L,= L (36)

which corresponds to a negative correction to the T pa-
rameter. If ¢ were the only source of new physics, we
would then get a 90% confidence level limit

© 1

Ll S 37
MY " (14 Tev)? 37)

If we want to relax this bound, we could add new particles
that would give a positive contribution to 7' to compensate.
One could, for instance introduce a hypercharge 0 weak
triplet. Alternatively, we can use the results presented in
Section II and look for new physics that will modify the
fermion-gauge boson coupling in order not to cancel the
coefficient of the O, operator but in order to generate a
particular linear combination of higher-dimensional opera-
tors that is poorly constrained.

Combining Egs. (9) and (10) gives a relation that only
involves the operator O, and does not involve Oy p

2
2670, + g20Y, - ‘%(0;11 +0L) =0y, (39

where Osy indicates a linear combination of operators on
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the right-hand sides of Egs. (9) and (10) that modify gauge
boson self couplings. This particular linear combination of
operators is much less constrained by the precision elec-
troweak data than the coefficient of O,. Let us make a
comparison with the bound in Eq. (37). Suppose the SM
Lagrangian is amended by the linear combination of op-
erators in Eq. (38) with a coefficient ﬁ Then the 90%
confidence level bound is only A > 600 GeV, which we
obtained using Ref. [4]. Clearly, we can accommodate a
much larger contribution from the triplet scalar provided
that we generate the appropriate combination of operators.

Our goal in this toy example is obtaining the linear
combination of operators in Eq. (38) by including addi-
tional heavy states that induce the operators 0,’,}, 0}, and

¢ - The obvious choices are heavy gauge bosons of addi-
tional spontaneously broken SU(2) X U(1) symmetry. We
will refer to such gauge bosons as B’ and W’. Suppose that
these bosons couple to the Higgs current and the fermion
currents as follows:

L = qBLjy +ar) YeBlLjf + awWijy"
f
+ Wiy ji, (39)
fL

where ji' = i(htD,h — D, hth), ji* =i(hto*D h —
D /LhTo"‘h), and j(’f‘ are the obvious fermion currents. We
denoted the coupling constants and charges as gy, ¢y and
assumed that the couplings of fermions to the B’ are
proportional to the fermion hypercharge. Integrating out
the heavy vector boson yields

__2q; ads v _ div
Ly = _M—é/oh - M—lzg/ohf - M—%V,(O;’l + 0},)
+ 04, (40)

where Oy4_; are four-fermion operators induced by the B’
and W’ that we do not need to specify in detail.

It is clear that by choosing the couplings g, ,w appro-
priately the sum of £, and £y can be made proportional
to the combination of operators on the left-hand side of
Eq. (38). This would result in a theory with apparent
custodial symmetry breaking that is nevertheless relatively
poorly constrained. The only observable consequence of
the custodial symmetry breaking would be through the
presence of the operator Oz, on the right-hand side of
Eq. (38). This is a toy example because of two obvious
caveats. First, we had to fine-tune the couplings to obtain
the desired linear combination of different operators. To
make it useful one would hope for a dynamical reason for
the couplings and masses of heavy fields to have suitable
values. Second, the exchanges of the B’ and W' also induce
four-fermi operators. Such operators are usually tightly
constrained as well [4]. Of course, our toy example is
reminiscent of the littlest Higgs model [15], where the

PHYSICAL REVIEW D 73, 075008 (2006)

heavy fields are analogous to the ones in our toy example.
The details of the effective operators induced in that case
and bounds on the parameters are presented in Ref. [16].

One may expect that it is possible to move beyond toy
models in the context of extra dimensions with fermions
and gauge fields living in the bulk. In that case, depending
on the bulk and boundary couplings as well as the back-
ground geometry, one can manipulate the wave functions
of different fields to minimize the constraints on such
models. Indeed a subset of our results was used in the
literature, for example, in Refs. [17-19].

In Refs. [17,18] models with the linearly realized elec-
troweak symmetry are considered. A field redefinition is
used to shift the oblique parameters in presence of addi-
tional operators. The particular field redefinition used there
is equivalent to a linear combination of Egs. (15) and (16)
where these equations are added together with their relative
weights proportional to the coupling constants g’ and g,
respectively.

In the case of Higgsless models where electroweak
symmetry is nonlinearly realized it was shown in
Ref. [19] how to reduce the oblique parameters by an
equivalent linear combination that can be obtained from
our Egs. (28)—(30). It was also pointed out in Ref. [20] that
reducing the oblique parameters leaves an imprint on triple
gauge boson couplings, which is in complete agreement
with our results. It is worth remembering, however, that
there is more than one operator relation that can be used to
lessen the effect of oblique parameters and exploiting that
fact could lead to construction of more successful models.

V. CONCLUSIONS

We have explored operator relations derived from equa-
tions of motions in effective theories of physics beyond the
standard model. The resulting operator identities relate the
oblique parameters and operators that change gauge boson-
fermion couplings to operators that modify gauge boson
self couplings. When electroweak symmetry is linearly
realized there are two such relations involving the oblique
parameters S and 7. In case of nonlinearly realized sym-
metry, there are three relations that involve S, T, and U.

These particular combinations of operators can only be
observed by measuring the triple gauge boson couplings. If
one constructed an extension of the SM in which only these
special combination of operators are present, there would
be no other way to distinguish this model from the SM by
making precision measurements. This presents an interest-
ing opportunity and challenge for model building. It also
means that a better measurement of the gauge boson self
couplings could be very useful for constraining new
physics.

To date, some of the operator relations have been used to
reduce electroweak constraints on extra dimensional mod-
els. One accomplishes that by choosing profiles of fields to
alter the couplings of the SM fields to Kaluza-Klein ex-
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citations. Not all operators relations we pointed out seem to
have been explored in model building thus far. It would be
intriguing if one could find theories with dynamics such
that only the special linear combinations of operators
appear at low energies.
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APPENDIX: ELECTROWEAK CHIRAL
LAGRANGIAN

For completeness, we list here CP-conserving operators
in the electroweak chiral Lagrangian to the lowest interest-
ing order. These include dimension 2 and 4 operators
containing the 3, field and the gauge field strengths, as
well as dimension 4 operators containing two fermions and
the 3, field [10-13]. We briefly explain how to obtain these
results.

It is useful to express the operators in terms of V,, =
(D,3)3%and T = Y0331 instead of the = field itself. We
will also use \7# = (DMET)E and T = o when we dis-
cuss operators containing fermions. Under the SU(2); X
SU(2)y these combinations transform as follows

(V. T)— L(V,, T)LT and (V,,T)— R(V,, T)RT.

Since ¥ is unitary (D, )31 + (D, X1) = 0. Therefore,
V;Q = -V, and Tt = T. The same holds for \7# and T.
Because det(2) = 1 we have Tr(V,,) = Tr(Vﬂ) =0.Tand
T are traceless as well.

Gauge invariant operators containing only the 2 field
and the gauge fields can be written as traces of V,, T, B,
andW,, = Wy, "7“ . One could also construct invariants by
taking determinants instead, but doing so does not lead to
any independent operators [10]. There is no need to use V L
and 7 since traces are cyclic and S is unitary. Also, there is
no need to include covariant derivatives because deriva-
tives acting on B, and W ,, can be removed by integration
by parts. Moreover, D, T =[V,,T]land D,V, — D,V, =
—igW,, +4¢'B,,T +[V,,V,]. Our sign convention for
the covariant derivative is such that D,% =9,% —
igW,2 +4¢'B,30”. In addition, o*Tr(V,T) =0 and
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D*V,, = 0 by taking derivatives of the equations of mo-
tion in Eq. (22) and (23). The approximate sign indicates
that we neglect terms proportional to fermion masses.
Since W;w V/u and T are traceless two-by-two matrices
therefore an arbitrary trace of these matrices can be written
as a product of traces of pairs of matrices if the number of
matrices in such a trace is even or as a product of one trace
of three matrices and several traces of pairs of matrices
otherwise.

Using the observations outlined above it is straightfor-
ward to enumerate operators of dimension 2:

2
Ly = — T Tr(V,V#), (AT)
2

L,= T Tr(V,T) Te(VAT), (A2)

and dimension 4
L, =1gg'B* Tr(W,,T), (A3)
L,= %g’B*“’ Tr([VM, V,T), (A4)
-£ 3= lg TI'(W’U’V[VM, VV])’ (AS)
‘£4 = [Tr(vlu, VV)]2’ (A6)
L= [Tr(V”VM)]z, (A7)
Lo =Tr(VEV")Tr(V,T) Tr(V,T), (A8)
L, =Te(VFV,) Te(V'T) Tr(V,T), (A9)
L 8 = ig2[Tr(W#VT)]2’ (AIO)
L= é ¢ TE (WA T) Tr([V ., V, 7). (A1)
Lo =Te(VFT) Te(V,T)P, (A12)
Ly = ger??Te(V,T)Te(V,W,,). (A13)

We followed the notation of Ref. [11]. Note that
i Te(WH'[V,,, T]) Tr(V,T) can be expressed as a combina-
tion of L5 and L,. All operators in the equations above are
Hermitian and even under CP. Under CP, the fields of
interest to us have the following transformation properties

(CP)B;LV(CP)_I = _(_1)#+VB/.LV’

Al4
(CP)W,,(CP)"! = (=1)**"o?W 07, (A1
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(cP)V, (CP)' = (=D o?V, 07,

. (A15)
(CP)T(CP)™' = —¢*Ta?,

where the last line follows from (CP)7*c“(CP)”! =
o*(m*o*)o?. Meanwhile, (—1)* equals 1 for u in the
time direction and —1 for w in the space directions.
Therefore, terms without the €*87? tensor are even under
CP when the combined number of B, and T fields is even.
Terms with the €*#7% tensor must have an odd number of
B, and T fields to be CP even.

‘We now turn to operators of dimension 4 containing two
fermions [12,13]. These are all products of fermion cur-
rents with one V,,, or V/u and several T’s, or 1’s, sand-
wiched between the fermions. There are six such operators

Li=ifty*Vufu, (A16)
L= if y*(V,T+TV,)fL, (A17)
L3 =if y*TV,Tf1, (A18)
L4 =ifgy*Vufr (A19)

L35 =ifgy"(V, T+ 1TV, )fr, (A20)
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LG = ifgy*TV , Tfx. (A21)
The subscript f can be either ¢ or [ for operators L123.
With a slight abuse of notation, we are going to use the
same subscript for £+3% to denote the doublets of right-
handed quarks or leptons.

Operators of the form fermion current times a trace of
the bosonic matrices are not independent. If the current and
the trace contain a sum over o“ such operator can be
reduced to £}"'6 using the completeness relation for the
Pauli matrices. Without the Pauli matrices there is only one
nonvanishing trace that is Tr(V, T). Because V,, and T are
traceless V,, T + TV, is proportional to the identity matrix,
so its trace is trivial. The operators with fermions, £ }"-6,
are CP even. The standard CP transformation property of
fermion currents, (CP)j} z(CP)™' = —(=1)*j} ., in-
volves transposing the fermion fields. Transposing the
right-hand sides of Eq. (A15) yields extra minus signs:
(0?V,0?)" = =V, and (6°To?)" = —T. The CP trans-
formation properties of VM and T are identical to those of
V,and T.
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