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Sialic acids (Sia) are involved in many biological activ-
ities and frequently exist as monosialyl residues at
the non-reducing terminal end of glycoconjugates.
Occasionally, polymerized structures in the form of dis-
ialic acid (diSia), oligosialic acid (oligoSia) and poly-
sialic acid (polySia) are also found in glycoconjugates.
In particular, polySia, which is an evolutionarily con-
served epitope from sea urchin to humans, is one of the
most biologically important glycotopes in vertebrates.
The biological functions of polySia, especially on neural
cell adhesion molecules, have been well studied and an
in-depth body of knowledge concerning polySia has
been accumulated. However, considerably less attention
has been paid to glycoproteins containing di- and
oligoSia groups. However, advances in analytical meth-
ods for detecting oligo/polymerized structures have
allowed the identification and characterization of an
increasing number of glycoproteins containing di/
oligo/polySia chains in nature. In addition, sophisti-
cated genetic techniques have also helped to elucidate
the underlying mechanisms of polySia-mediated activ-
ities. In this review, recent advances in the study of the
chemical properties, distribution and functions of di-,
oligo- and polySia residues on glycoproteins are
described.

Keywords: disialic acid/oligosialic acid/polysialic acid/
polysialyltransferase/sialic acid.

Abbreviations: ALCAM, activated lymphocyte cell
adhesion molecule; AMPA-Rs, a-amino-3-hydroxy-5-
methylisoxazole-4-propionic acid receptors; BDNF,
brain-derived neurotrophic factor; CA, Cornet
d’Ammon; DG, dentate gyrus; diSia, disialic acid;
DMB, 1,2-diamino-4,5-methylenedioxybenzene; DP,
degree of polymerization; DRD2, dopamine receptor
D2; Endo-N, endo-N-acylneuraminidase; FAC, fron-
tal affinity chromatography; FGF2, fibroblast growth
factor 2; FNIII, fibronectin type-III; FSP,
fucose�sulphate polymer; GAGs, glycosaminogly-
cans; GDNF, glial-derived neurotrophic factor;
GFR1, GDNF receptor 1; GPI, glycosylphosphati-
dylinositol; HPLC, high-performance liquid chroma-
tography; HSPG, heparin sulphate proteoglycan; HY,
hippocampus; KDN, deaminoneuraminic acid; LTD,
long-term depression; LTP, long-term potentiation;
ManNAc, N-acetylmannosamine; MOE, molecular

operating environment; NCAM, neural cell adhesion
molecule; Neu5Ac, N-acetylneuraminic acid; Neu5Gc,
N-glycolylneuraminic acid; 2-keto-3-deoxy-D-glycero-
D-galacto-nononic acid; NGF, nerve growth factor;
NMDA-Rs, N-methyl-D-aspartate receptors; NSCL,
non-small cell lung; NT-3, neurotrophin-3; OB, ol-
factory bulb; oligoSia, oligosialic acid; p75NTR, p75
neurotrophin receptor; polySia, polysialic acid; PSGP,
polysialoglycoprotein; Sia, sialic acids; SNPs, single-
nucleotide polymorphisms; SPR, surface plasmon
resonance; ST8SIA, alpha2,8-sialyltransferase; SVZ,
subventricular zone; synCAM-1, synaptic cell adhe-
sion molecule 1; Trk, tropomyosin-receptor-kinase.

Sialic acids (Sia) or neuraminic acids comprise a family
of 9-carbon carboxylated sugars, named 2-keto-3-
deoxy-D-glycero-D-galacto-nonulosonic acids, which
are condensed with pyruvic acid and N-acetylmanno-
samine (ManNAc) or mannose. The presence of Sia
were first noticed by Levene and Landsteiner (1) in
USA and Walz (2) in Germany as sugar-like compo-
nents of purified animal lipids that reacted with Bial’s
reagent to give a purple colour rather than the typical
green product. Subsequent studies by Klenk (3), Blix
et al. (4), Blix et al. (4,5), Gottschalk (6), Comb and
Roseman (7) and Yu and Ledeen (8) from 1935 to 1970
confirmed the chemical and conformational structures
of Sia. Sia were named based on the organ from which
they were originally crystalized; sialic acid from the
salivary gland and neuraminic acid from neurological
organs. To date, more than 50 types of Sia have
been characterized and include derivatives of N-acet-
ylneuraminic acid (Neu5Ac), N-glycolylneuraminic
acid (Neu5Gc) and deaminoneuraminic acid
(KDN; 2-keto-3-deoxy-D-glycero-D-galacto-nononic
acid), which are the three major backbones of sialic
acid (9) (Fig. 1).

Sia are typically present as monosialyl residues at
the non-reducing termini of glycan chains on glyco-
proteins and glycolipids where they function as
mediators for ligand�receptor and cell�cell inter-
actions in fertilization, differentiation, immunological
and neurological events (9). Sia are critical for mam-
malian development, because mice deficient for
GlcNAc 2-epimerase/ManNAc kinase, a key enzyme
for the biosynthesis of sialic acid, are embryonic
lethal (10). Polymerized Sia (and Sia) are also inter-
esting sugars from the viewpoint of evolution, as the
distribution of Polymerized Sia (and Sia) is predom-
inantly restricted to Gram-negative bacteria and
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deuterostome lineage animals (Fig. 2), although the
existence of Polymerized Sia (and Sia) in the proto-
stome lineage has also been proposed (9). Another
unique aspect of Sia is that, unlike other sugars, Sia
often form a homo-oligo/polymer structures, specific-
ally disialic acid (diSia), oligosialic acid (oligoSia) and
polysialic acid (polySia) (11�13). Therefore, polymer-
ized Sia glycotopes exhibit structural diversity with
respect to not only the backbone components
(Neu5Ac, Neu5Gc and KDN) and modifications
(acetylation, sulphation, methylation, lactylation and
lactonization) but also in the type of intersialyl

linkage (a2,4, a2,5Oglycolyl, a2,8, a2,9 and a2,8/9)
and degree of polymerization (DP), which ranges
from 2 to 400 (Fig. 1) (13). Recently developed chem-
ical methods that sensitively detect Sia and oligo/
polymerized Sia structures have revealed that di/
oligoSia frequently modify glycoproteins and have a
large diversity in the DP, ranging from 2 to 400. In
addition, an increasing body of knowledge concerning
the functions of di/oligo/polySia structures in verte-
brate cells has accumulated. In this review, the struc-
ture, distribution and functions of di/oligo/polySia
are described and discussed.

Sia species (C5)

Sia, 2-keto3-deoxy nononic acid

Neu5Ac : R = -NHCOCH3
Neu5Gc : R = -NHCOCH2OH

Kdn : R = -OH
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Fig. 1 Diversity in polymerized Sia structure. Sia, 2-keto-3-deoxy nononic acid, has diversity in Sia species at C5 positions (Neu5Ac, Neu5Gc and
Kdn), substitutions at C1, 4, 7, 8 and 9 positions, including O-acetylation and sulphation. In addition, polymerized Sia structure has diversity in
the DPs (DP¼ 2 (di), 3�7 (oligo), and 8 or greater (poly)) and intersialyl-linkages.
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Fig. 2 Distribution of polymerized Sia structure in life. Simple phylogenic tree of living organism with information concerning the presence of
polymerized Sia structure based on published reports. Red colour shows that the presence of polymerized Sia structure is confirmed by many
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cerning the presence of polymerized Sia, even though several reports have been published.
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Definition of Di/Oligo/PolySia and
Detection Methods for Oligo/polySia
Structure

PolySia was first identified in Gram-negative bacterial
polysaccharide (Escherichia coli K235) and the neu-
roinvasive bacterium Neisseria meningitidis groups C
and B as a structure consisting of an extremely large
number of Sia chains (DP4200) (14). The antibodies
raised against bacterial polySia were termed anti-
polySia antibodies (15�18) and are widely available
for detection of polySia and isolation of polySia-con-
taining glycoproteins or even cells, such as the purifi-
cation of neuronal lineage cells from pluripotent
mouse ES cells (19). However, the antigenic specificity
of available antibodies, particularly concerning the
DP, is not precisely defined. Therefore, it is important
to understand the precise antigenicity of the antibody,
particularly concerning components, linkages and DP,
before use. According to the antibody specificity and
conformational aspect of polymerized Sia structures,
we have proposed the following classifications: diSia
(DP¼ 2), oligoSia (DP¼ 3�7) and polySia (DP� 8)
(11�13). PolySia can be identified with specific
probes, such as the anti-polySia antibodies monoclonal
antibody mAb.735 and mAb.12E3, enzymes such as
endo-N-acylneuraminidase (Endo-N) or by using
chemical methods, as described below.

Detection Methods for Polymerized Sia
Structure

For the analysis of samples containing relatively high
amounts (10�100 mg) of di-, oligo- and polySia struc-
tures, a number of conventional methods, including
methylation analysis (20), NMR (21) and mild acid
hydrolysis—thin-layer chromatography (22) can be
applied. However, these approaches are not suitable
for samples containing only small amounts of di/
oligo/polySia residues (51 mg), as is often the case.
To overcome this limitation, the following highly sen-
sitive chemical and biochemical methods have been
successfully used to confirm the ubiquitous occurrence
of di/oligo/polySia in a wide variety of glycoproteins
and glycolipids at femtomole levels. These im-
proved detection methods have led to the identifica-
tion of polymerized Sia-modified carrier proteins
and have helped identify the specific functions of
polySia.

Chemical analyses
Fluorometric C7/C9 analysis. When an di/oligo/poly-
mer of a2! 8-linked N-acylneuraminic acid
(Neu5Acyl) residues is subjected to periodate oxida-
tion, the non-reducing terminal residue is oxidized to
the C7 analogue of N-acylneuraminic acid,
C7(Neu5Ac) (5-acetoamido-3,5-dideoxy-L-arabino-2-
hepturosonic acid) or C7(Neu5Gc) (5-hydroxyacetoa-
mido-3,5-dideoxy-L-arabino-2-hepturosonic acid),
from Neu5Ac or Neu5Gc residues, respectively,
whereas the internal residues of Neu5Ac
(C9(Neu5Ac)) or Neu5Gc (C9(Neu5Gc)) remain un-
changed (14, 23). Accordingly, the detection of

C9-compounds among the periodate oxidation prod-
ucts indicates the presence of internal sialyl residues
or a polymeric structure composed of a2! 8-linked
N-acylneuraminic acid. C7- and C9-compounds can
be quantitated by fluorometric high-performance
liquid chromatography (HPLC) after treatment with
the a-keto acid-specific fluorescent labelling re-
agent 1,2-diamino-4,5-methylenedioxybenzene (DMB)
(23�25) (Fig. 3A). However, this method has several
limitations that warrant mention. First, this method is
only applicable for the detection of a2! 8-linked
oligo/polymers ofN-acylneuraminic acid and cannot be
used to determine the DP of polymers with a2! 9,
a2! 8/a2! 9-mixed linkages or a2! 5Oglycolyl-link-
ages. Second, the detected C9-derivatives do not
always arise from a2! 8-linked Neu5Ac, because 8-
O-substituted Neu5Acyl residues may also yield indis-
tinguishable C9-derivatives. For this reason, samples
are typically saponified by mild alkali treatment prior
to periodate oxidation, although a few substituents are
not released under these conditions. Third, the molar
proportion of C9- to C7-derivatives does not directly
represent the DP, unless linear polySia chains are being
analysed. Thus, this method does not allow determin-
ation of the DP for samples containing multiple sialy-
lated chains.

Mild acid hydrolysis—fluorescent HPLC analysis. Our
group was the first to report that di/oligo/polymers
produced by mild acid hydrolysis of di/oligo/polySia
chains can be directly labelled with DMB and analysed
by anion-exchange HPLC (26) (Fig. 3B). Several
anion-exchange chromatography columns can be
used to analyse DMB-labelled Sia polymers, such as
Mono or Mini Q HR5/5 (0.5�5 cm; GE, Uppsala,
Sweden), Resource Q (1ml; GE), CarbopacPA100
(4�250mm; Dionex) and DNApac PA100
(4�250mm; Dionex) columns. DMB labelling is ap-
plicable for the detection of various types of oligo/
polymers of Sia found in glycoconjugates, which can
differ in component Sia species, inter-residual linkages
and DP. This analysis can be applied to glycoproteins
blotted on PVDF membrane. However, because oligo/
polySia easily degrades under mild acidic conditions, it
is difficult to accurately determine the DP of oligo/
polySia in glycans.

Biochemical probes
Antibody. To study the structure and function of a2,8-
linked polySia glycotopes, several ‘anti-polySia anti-
bodies’ have been developed in the past three decades.
Among them, the immunospecificities of only horse
polyclonal antibody H.46 (17) and mouse monoclonal
antibody mAb.735 (15) had been determined, whereas
the immunospecificity of the majority of other ‘anti-
polySia antibodies’ remained unknown. However,
comprehensive examination of the immunospecificity
of these ‘anti-polySia’ antibodies using an ELISA-
based method and phosphatidylethanolamine-
conjugated oligo/polySia chains as test antigens
demonstrated that these ‘anti-polySia antibodies’
recognized different species of Sia residues and chain
lengths (27). Thus, a large list of characterized
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antibodies recognizing di-, oligo- and/or polySia struc-
tures now exists (Table I), although the immunospeci-
ficity of a few antibodies remains to be determined.
Interestingly, anti-di/oligo/polySia antibodies can be
classified into three groups based on the immunospe-
cificity for chain length and involvement of the non-
reducing terminus in antibody recognition. Group I
consists of antibodies that recognize chains of a2,8-
linked Sia with DP� 8, including fully extended
polySia chains with a DP 8�400. Group I antibodies
are thought to recognize the helical conformation
formed by Sia residues within the internal region
of polySia chains, but not the non-reducing terminal
residues. Group II antibodies, designated as ‘anti-
oligoþ polySia antibodies’, recognize di/oligoSia with
a DP 2�7 and also polySia chains. In addition, these
antibodies are considered to recognize the distal
portion of oligo/polySia chains, including the non-
reducing termini. Group III antibodies, designated as
‘anti-di/oligoSia antibodies’, recognize specific con-
formations of di- and oligoSia with a DP 2�4, but

do not bind to polySia. Group II and III antibodies
are useful for detecting and determining di- and
oligoSia structures in combination with exo-
and endo-sialidase treatment, as described below
(Table II). One interesting anti-polySia antibody is
IgMNOV, which was identified in the serum of a patient
with IgM gammopathy and reacts with both polySia
and DNA/polynucleotides (28). This property is im-
portant because of the helical conformation of
polySia, as described below. Another approach that
has been used to obtain anti-polySia antibodies is the
use of N-substituted polySia as an immunizing antigen.
For example, Jennings et al. (29,30) substituted the
N-acetyl group of polySia with N-propionyl to
obtain an anti-polySia antibody that reacts not only
with N-propionylated polySia (polyNeu5Pro) but also
with N-acetylated polySia (polyNeu5Ac) with high af-
finity. These studies demonstrated that the antigenic
specificity of anti-polySia antibodies is intimately
related to the conformational state of the di/oligo/
polySia.

Fluorometric C7/C9 analysis Mild acid hydrolysis-fluorometric

anion exchange chromatography analysis 
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Fig. 3 Chemical methods to detect polymerized Sia structures. (A) Fluorometric C7/C9 analysis. A typical elution profile of DMB derivatives of
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metric HPLC on a TSK-gel ODS-120T column (250�4.6mm i.d.). The column was eluted with methanol/acetonitrile/water (7 : 9 : 84, v/v/v) at
1.0ml/min at 26�C. Elution profiles were monitored by the measurement of fluorescence (excitation, 373 nm; emission, 448 nm). (B) Mild acid
hydrolysis-fluorometric anion exchange chromatography analysis. Mini Q anion exchange chromatography of a2! 8-linked di/oligo/
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Cl�-form). The column was eluted with 5mM Tris�HCl (pH 8.0) with a gradient from 0 to 0.3M NaCl for 75min and 0.3M NaCl to 0.4M
NaCl for 120min after a 15-min wash. The elution was monitored by a fluorescence detector (set at wavelength of 373 nm excitation and 448 nm
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Enzymes. Endosialidase can serve as a specific molecu-
lar probe to detect and selectively modify a2,8-linked
polySia chains (31�33). A soluble enzyme derived from
bacteriophage K1F, designated Endo-N, catalyzes the
depolymerization of polySia chains as follows:
(! 8Neu5Acyla2!)n-X (n� 5)! (! 8Neu5Acyla
2!)2�4þ (! 8Neu5Acyla2!)2-X (31). Two other
types of endosialidases with substrate specificities that
differ from Endo-N of bacteriophage K1F have been
isolated: Endo-NE (33) and a bacteriophage endosiali-
dase (32), which require a minimum chain length of
DP� 11 and DP� 3, respectively, for cleavage.
Exosialidases that cleave specific linkages, for example,
a2,3- and a2,6-sialidase and a2,3-, a2,6-, a2,8 and
(a2,9)-sialidase have also been identified. As di- and
oligoSia (DP¼ 3�5) structures are not recognized by
Endo-N, but are cleavable by exosialidases, it is possible
to confirm the length of di-, oligo- and polySia chains
by treatment with endo- and exosialidase treatments
before and after immunostaining with anti-di/oligo/
polySia antibodies (Table II). Finne et al. established
a specific probe from Endo-NE that lacks enzymatic
activity, but retains the ability to bind and detect
polySia. Using this probe, they successfully detected
polySia-neural cell adhesion molecule (NCAM) (34).

Chemical reagents
For the purpose of detection, imaging and targeting, in
vivo modification of Sia by treating samples with the
precursors of Sia biosynthesis is a useful and widely
available technique. Reutter and co-workers first
demonstrated that the addition of N-substituted man-
nosamine changed cell-surface Sia to an N-substituted
form, such as ManPro, ManBut and ManPent (35).
Mahal and Bertozzi (36) and Saxon et al. (37) used
ManLev and ManNAz as precursors to modify Sia
in a highly selective manner and observed that the in-
corporation of these unnatural Sia occurred not only
on Sia-containing glycoconjugates but also on polySia
chains (38). In the search for inhibitors of biosynthetic
pathway enzymes of polymerized Sia, the acceptor
substrate specificity of the enzymes STX/alpha2,8-sia-
lyltransferase 2 (ST8SIA2)/ST8SiaII/siat8b, which
play pivotal roles in the biosynthesis of polySia, was
found to be more restricted than that of PST/
ST8SIA4/ST8SiaIV/siat8d, and in addition, ManBut
was identified as a possible inhibitor of ST8SIA2 (39).

Conformation of Di/Oligo/Polysia

In 1987, Jennings and colleagues reported a conform-
ational difference between triSia and colominic acid
(polySia) by NMR (21) and proposed that the unex-
pectedly large size of the epitope of the anti-polySia
antibody H.46 (16). 1H- and 13C-NMR spectroscopy
and molecular modelling revealed that a2,8-linked
polyNeu5Ac structures adopt a helical conformation
(40�42), which is common conformational feature
among a2,8-linked polyNeu5Ac, polyNeu5Gc and
other N-substituted polySia (40, 43). X-ray crystallo-
graphic analysis of anti-polySia mAb.735 also sug-
gested that the helical conformation (six residues per
turn, 36 Å pitch) consisted of at least eight Neu5Ac
residues (41) and was well accommodated by the anti-
gen-binding site of the antibody. It has also been re-
ported that polySia adopts random structures. In
contrast, NMR studies of a2,8-linked di- and triSia
structures revealed that Neu5Ac residues have differ-
ent conformations than internal Neu5Ac residues of
polySia chains with a DP� 8. It was also demonstrated
that the conformation of proximal and distal diSia
residues in polySia chains differed from those of in-
ternal residues. Together, these results suggest that
di- and oligoSia structures have large conformational
differences compared with polySia structures, and ac-
cordingly, are likely to have distinct functions from
those described for polySia glycotopes.

The conformational features of di- and oligoSia
structures that differ from a2,8-linked polySia are
not well understood and need to be further explored.
As accurate molecular modelling techniques are now
readily available, we predicted the structures of a2,4-,
a2,5-, a2,7- (not reported), a2,8- and a2,9-linked
polySia using the molecular operating environment
(MOE) molecular modelling program (Chemical
Computing Group Inc., Montreal, Canada; Ryoka
System, Inc., Tokyo, Japan). The structures were opti-
mized using the energy minimization tools in MOE,
and conformational differences among these structures

Table I. Antigenic specificities and class of anti-a2,8-linked diSia/
oligoSia/polySia antibodies.

Antibody
Animal origina and
immunoglobulin-typeb

Sia in oligo/polySia
for recognition

Specificity
on DP

5Group I4Anti-polySia antibody
H.46 ho, poly, IgM Neu5Ac �8
735 mo, mono, IgG2a Neu5Ac �11

5Group II4Anti-oligoþ polySia antibody
12E3 mo, mono, IgM Neu5Ac �5
5A5 mo, mono, IgM Neu5Ac �3
2-2B mo, mono, IgM Neu5Ac �4
OL.28 mo, mono, IgM Neu5Ac �4
2-4B mo, mono, IgM Neu5Gc �2
kdn8kdn mo, mono, IgM KDN �2

5Group III4Anti-oligoSia antibody
S2-566 mo, mono, IgM Neu5Ac 2c

1E6 mo, mono, IgM Neu5Ac 2
A2B5 mo, mono, IgM Neu5Ac 3
AC1 mo, mono, IgG3 Neu5Gc 2�4

aho, horse; mo, mouse. bPoly, polyclonal; mono, monoclonal.
cNeu5Aca2! 8Neu5Aca2! 3Gal (Gal residue is required).

Table II. Reactivity of di�, oligo� and polySia chains towards
biochemical probes.

Biochemical probes
diSia
(DP¼ 2)

oligoSia
(DP¼ 3�7)

PolySia
(DP� 8)

Group I antibody � � þ

Group II antibody � þ þ

Group III antibody þ þ or � �

Endo-sialidase (Endo-N) � � or þa
þ

Endosialidaseb � þ þ

a2,3,6-Sialidase � � �

a2,3-, a2,6, a2,8-Sialidase þ þ þ

þ, reactive or sensitive; �, unreactive or insensitive. a
þ in the case

of DP¼ 6 and 7. bRefers to [32].
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(linkages) were clearly observed (Fig. 4). Interestingly,
a2,8- and a2,5-linked polySia exist as helical struc-
tures, whereas a2,9-linked polySia forms a linear struc-
ture. Molecular modelling of mono/di/tri/polySia also
suggested that conformational differences exist among
these structures (depending on DP) (13).

Distribution and Functions of Polysia

Eukaryotes
Mammals. NCAM, which is mainly expressed in the
embryonic brain of vertebrates, including fishes, birds,
reptiles, amphibians and mammals, is the most well-
characterized polysialylated molecule. The specific
spacio-temporal expression of polySia has been the
focus of numerous studies since the discovery of
polySia-NCAM in 1982 (44). Based on these investiga-
tions, polySia-NCAM was shown to have an
a2,8-linked polyNeu5Ac glycotope, which is the same
structure found in neuroinvasive determinants derived
from pathogenic bacteria, such as N. meningitidis
group B. To date, 27 isoforms of NCAM generated
by RNA splicing have been identified, among which
four major isoforms, NCAM-180, -140, and -120 and
soluble NCAM, have been characterized. All NCAMs
consist of five immunoglobulin-like (Ig) domains with
six N-glycosylation sites and two fibronectin type-III
(FNIII)-like domains in the extracellular region.
NCAM is attached to the transmembrane region via
a glycosylphosphatidylinositol (GPI) anchor (NCAM-
120) or connected through the membrane to the

cytosol and transduces extracellular signals into the
cell (NCAM-140 and -180) (Fig. 5C). PolySia chains
are linked to the di-, tri- or tetra-antennary N-linked
glycan chains on immunoglobulin domain-V of
NCAM (45, 46).

PolySia is mainly expressed in embryonic brains
and is only present at very low levels in adult
brains, although the NCAM expression level remains
relatively unchanged. PolySia persists in adult brains
in distinct regions where neural plasticity, re-
modelling of neural connections or neural generation
are ongoing, such as the hippocampus (HY), subven-
tricular zone (SVZ), thalamus, prefrontal cortex and
amygdala.

The biological functions of polySia, particularly in
embryonic brains, have been shown to include neural
cell migration, axonal guidance, fasciculation, mye-
lination, synapse formation and functional plasticity
of the nervous system. The molecular mechanism
underling these functions is considered to be the
antiadhesive effect of polySia on cell-cell or/and
cell-matrix interactions, including not only through
the homophilic binding but also the heterophilic
binding (47). The binding of these counterparts by
NCAM affects many downstream signalling path-
ways, including those that regulate neurite out-
growth, cell migration, fasciculation, axonal
guidance and branching and synaptogenesis.
PolySia is considered to function as an anti-adhesive
molecule because of its bulky polyanionic nature,
which imparts a large negative field (Fig. 6A).

α2,4-linked (Neu5Ac)12α2,3Gal α2,5-linked (Neu5Ac)12α2,3Gal α2,7-linked (Neu5Ac)12α2,3GalA B C

FED α2,8-linked (Neu5Ac)12α2,3Gal α2,9-linked (Neu5Ac)12α2,3Gal α2,8/9-linked (Neu5Ac)12α2,3Gal

Fig. 4 Molecular modelling of polySia. a2,4- (A), a2,5- (B), a2,7- (C), a2,8- (D), a2,9- (E) and a2,8/9-linked (F) polySia structures (DP¼ 12) are
linked to Gal at the C3-position. Calculated dodecaNeu5Ac-Gal structures are shown as space-filling models. The MOE program was used for
the construction and calculation of the energies of polySia under force field, MMF94. The a2,7-linkgae is not found in nature.
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Recently, polySia has been shown to directly bind
and regulate the function of a number of soluble bio-
active factors (13), including neurotrophins (brain-
derived neurotrophic factor (BDNF), neurotrophin-3
(NT3) and nerve growth factor (NGF)) (48�51),
growth factors (52) and neurotransmitters (dopamine,
epinephrine and norepinephrine) (53). Thus, polySia
also appears to have an attractive field of force that
retains specific bioactive factors involved in neural
function in intercellular spaces (Fig. 6B) and can there-
fore regulate the function of these neurologically active
molecules. This property clearly indicates that polySia
is involved in not only neurogenesis but also in the
regulation of neural function. The bioactive molecules
that bind to polySia have been well characterized
in relation to behaviour and social interaction, as
well as schizophrenia and other psychiatric disorders.
Interestingly, polySia-impaired mice have profound
impairment in movement and social behaviours (54).
It is also reported that polySia regulate ion channels
probably through direct binding to the channels. We

describe these new functions of polySia recently
reported in detail.

Regulator of neurotrophins—BDNF, NT3 and NGF.
BDNF is the most abundant neurotrophin in brain
and promotes the growth and development of imma-
ture neurons, and survival and functional maintenance
of adult neurons and neural plasticity, which is import-
ant for memory and learning, through binding to a
low-affinity receptor, p75 neurotrophin receptor
(p75NTR) and a high-affinity receptor, tropomyosin-
receptor-kinase B (TrkB). Biochemically, the direct
binding between polySia and BDNF was first demon-
strated using gel filtration, horizontal native-PAGE
and surface plasmon resonance (SPR) methods
(50�52). Using these solid-based approaches, it was
shown that BDNF dimers directly bind to polySia
with a minimum DP 12 or greater. The complex
formed between polySia and BDNF is extremely
large (�2500 kDa, 14mol BDNF dimer and 28mol
polySia (mean DP¼ 43) chains), as calculated from

A

C

B

Fig. 5 Examples of polySia-containing glycoproteins. (A) Flagellasialin, discovered on the surface of sea urchin surface, is a peripheral (or GPI-)
protein composed of a2,9-linked polyNeu5Ac chains capped with 8-O-sulphated Neu5Ac at the non-reducing terminal end. The function of
polySia on flagellasialin involves the regulation of Ca2þ ions. (B) PSGP from trout egg is composed of a2,8-linked polyNeu5Gc chains capped
with Kdn at the non-reducing terminal end. PSGP is a soluble protein in cortical alveoli and the perivitelline space. The functions of PSGP
include anti-bacterial effects, retaining Ca2þ ions and regulation of ion balance. (C) NCAM discovered in the avian embryonic brain is composed
of a2,8-linked polyNeu5Ac chains capped with O-acetylation at the non-reducing terminal sialic acid residue. The majority of NCAM is the
transmembrane type (NCAM-180, 140 and 120). All NCAM isoforms have five immunoglobulin domains (IgI�IgV) and two FNIII domains. On
the IgV domains, two of the three N-glycosylation sites are polysialylated.
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titration and gel filtration experiments. The neurotro-
phins NT-3 and NGF also bind polySia, most likely
through basic regions in their C-terminal.

Unlike fibroblast growth factor 2
(FGF2)�FGFR�heparan sulphate (HS), BDNF and
polySia do not form ternary complexes with BDNF
receptors, BDNF after forming a complex with
polySia easily migrate towards receptors. The migra-
tion can be explained by the differing binding affinities
of BDNF. The KD of BDNF towards polySia, as cal-
culated by SPR, is �10�9M, whereas the KD of BDNF
towards TrkB and p75NTR is 10�12 and 10�10M, re-
spectively. Based on these affinities, BDNF in
BDNF�polySia complexes would move towards

BDNF receptors because BDNF has one to three
orders of magnitude stronger affinity towards BDNF
receptors than towards polySia (Fig. 6C). With regard
to the mechanism by which polySia and BDNF disas-
sociate (releasing mechanism), studies using the micro-
glia cell line Ra2 revealed that cell polysialylation
rapidly disappeared after lipopolysaccharide-induced
secretion of sialidase secreted into the cell culture
medium. Under these conditions, both BDNF and
GDNF in complex with polySia are rapidly released
by sialidase-mediated degradation of polySia, which
represents a novel release mechanism (C. Sato et al.,
unpublished data). From a biological point of view,
polySia and polySia�BDNF complexes were also

polySia-

NCAM

A

C

BAnti-adhesive effect Retain or reservoir

Neurotrophins
Growth factors

Neurotransmitters
<Attractive

field> <Repulsive

NT-Rs
field>

Control of signals

Molecule Releasing Mechanism of polySia

Retention or reservoir Specific receptor-

mediated releasin
Specific receptor-

mediated releasing g

mechanism

(co-receptor)
mechanism

(affinity)

Neurotransmitters
Growth

factors
Growth

HS

Neurotrophins

HSGPHigh affinity

FGFR
receptors
(Trk, p75)

Signaling

Signaling

factors
Neurotrophin

Fig. 6 Functions of polySia. (A) Anti-adhesive effect. PolySia-NCAM has repulsive fields on the cell surface to negatively regulate cell�cell
interaction due to the large volume of polySia, as shown in grey. PolySia is considered to function only as a negative regulator among molecules.
(B) New functions of polySia are suggested based on the recent findings of occurrence of various polySia-binding molecules. As an attractive
field, polySia on NCAM directly binds to bioactive molecules involved in neural function, such as neurotrophins, neurotransmitters and growth
factors. The binding regulates their concentrations outside the cells and signalling modes. (C) Proposed mechanism for the retention and release
of bioactive molecules. PolySia captures bioactive molecules by direct binding. The retained molecules are released by several ways, as shown in
the right and left panels. Left panel shows the specific receptor-mediated mechanism (affinity-mediated model). For example, BDNF in BDNF-
polySia complexes migrates to its receptors, TrkB or p75NTR, according to differences of the affinity between BDNF, the receptors, and
polySia. Right panel shows the specific receptor-mediated, but co-receptor-mediated mechanism. In the case of FGF2, polySia does not release
FGF2 from the FGF2-polySia complex to FGFR. Interestingly, FGF2 in the FGF2-polySia complex can migrate to heparan sulphate (HS) to
form FGF2�HS complex, which can bind to FGFR as a ternary complex to enhance FGF signalling. Therefore, polySia regulates FGF2
signalling by passing FGF2 to HS and finally FGFR. This is a hypothetical model for the new function of polySia (retain and release hypothesis).
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shown to increase the proliferation of neuroblastoma
cells compared with untreated control cells. Based on
these findings, polySia also has the ability to prolong
the effects of neurotrophins. Recently, ProBDNF pro-
cessed extracellularly by tPA/plasmin was shown to be
important for memory in the HY (55). In this context,
it is also important to consider the reservoir function
of polySia, because proBDNF and BDNF, but not the
pro-domain alone, are capable of binding polySia (K.
Matsuoka et al., unpublished data). Taken together,
the findings from these studies demonstrate that
polySia is involved in several neurotrophin-mediated
biological functions, including cell growth, neurogen-
esis and memory.

Regulator of neurotransmitters—catecholamines. The
specific binding between polySia and catecholamine
neurotransmitters, particularly dopamine, has been
demonstrated by frontal affinity chromatography
(FAC) analyses of numerous factors, including hista-
mine, acetylcholine, serotonin, catecholamines (dopa-
mine, epinephrine and norepinephrine) and their
precursors. Catecholamine appears to specifically
bind polySia, because binding is not observed with
diSia (DP¼ 2), and it is speculated that these intermo-
lecular interactions occur between specific structures of
polySia and the catechol backbone. As the KD of
dopamine towards polySia changes depending on
pH, the specific interaction between these molecules
might be fine-tuned by subtle changes of the extracel-
lular pH (50). PolySia is also involved in Akt signalling
in the human neuroblastoma cell line SK-N-SH
through dopamine receptor D2 (DRD2) (53). It is
also reported that polySia is required for DRD2-
mediated plasticity of inhibitory circuits of the rat
medial prefrontal cortex (56). Together, these results
suggest that polySia�NCAM localized on postsynaptic
membranes directly interacts with catecholamine
neurotransmitters, such as dopamine, and represents
a novel function of polySia.

Regulator of growth factors—FGF2. FGF2 is a proto-
typical member of the FGF family that stimulates the
growth of various cell types, from fibroblasts to
tumour cells. FGF2 is highly expressed in the brain
during earlier stages of development and is involved
in brain formation. As recent studies have demon-
strated that FGF2 is a potent modulator of prolifer-
ation and differentiation of multi-potent neural
progenitor cells isolated from the adult SVZ, FGF2
also appears to play a pivotal role in adult neurogen-
esis (57). Due to its importance in both brain develop-
ment and function, it is not surprising that FGF2 is
implicated in psychiatric disorders (58�63).
FGF2�FGFR signals are enhanced following the for-
mation of ternary complexes with HS on HSPG.
However, the relationship between polySia and
FGF2 was not identified until the results of several
recent biochemical analyses, including gel shift
assays, gel filtration and SPR, demonstrated that
FGF2 monomers bind polySia directly and form a
large complex that does not migrate towards FGFR,
even if the receptors are located in close proximity to

the complex (52). The KD of FGF2 towards polySia
(1.5�10�8M) is smaller than that towards HS
(2.8�10�8M). Consistent with these differences in af-
finity, FGF2�polySia and FGF2�HS complexes dis-
play unique physical and biochemical properties. For
example, FGF2�polySia binds to HS- or polySia-
coated surfaces, whereas HS-polySia does not bind to
either of these surfaces, indicating that the polySia-
binding regions of FGF2 and HS differ. In addition,
FGF2 complexed with polySia cannot migrate towards
FGFRs, but does migrate towards HS, and FGF2 can
also disassociate from polySia and then bind HS. It
was also demonstrated that Erk and Akt signallings
are regulated by polySia and HS in polySia- and HS-
expressing cells, respectively (52). Taken together,
these findings with FGF2 show that polySia can be
released by in-direct mechanisms that are distinct
from those of BDNF (Fig. 6C), as described above,
and exhibits binding specificity among complex an-
ionic glycan molecules and bioactive molecules in the
brain. This study is the first demonstration of an
intimate interaction between polySia and HS.

Regulator of ion channels. Zuber et al. (64) reported
that the a-subunit of Naþ channels in the adult rat
brain is modified with a2,8-linked polyNeu5Ac. In
this regard, it is interesting that James and Agnew
(65) reported the presence of a2,8-linked polySia in
voltage sensitive-Naþ channels in the electric eel
(Electrophorus electricus). Although the function of
polySia on Naþ channel is unknown, it is reported
that polySia plays some roles in regulation of channels.
For example, the relationship between
polySia�NCAM and memory has been investigated
using in vitro electrophysiological methods, which
demonstrate that polySia on NCAM modulates the
activity of a-amino-3-hydroxy-5-methylisoxazole-4-
propionic acid receptors (AMPA-Rs) in immature pyr-
amidal neurons isolated from the CA1 region of the
HY (66). Specifically, polySia prolongs the open chan-
nel time of AMPA-R-mediated currents and alters the
bursting pattern of the receptor channels, but does not
modify AMPA-R single-channel conductance (66).
These properties suggest that polySia likely directly
interacts with AMPA-R. Several reports have also
examined the relationship between polySia and
N-methyl-D-aspartate receptors (NMDA-Rs).
Impaired CA1 long-term potentiation (LTP) in hippo-
campal slices is rescued by the addition of polySia or
polySia�NCAM but not NCAM alone (67), and treat-
ment with polySia alone or polySia�NCAM inhibits
the activation of GluN2B-containing NMDA-Rs by
low micro-molar concentrations of glutamate (68).
PolySia reduces the open probability, but not the con-
ductance, of NR2B-containing NMDA-Rs in a
polySia- and glutamate concentration-dependent
manner by inhibiting NR2B subunit-containing
NMDA-Rs through the Ras-GRF1-p38 MAPK sig-
nalling cascade, which is intimately involved in LTP.
These findings suggest that polySia�NCAM is
involved in synaptic function in the HY, where it regu-
lates different types of channels in a specific manner.
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Consistent with the regulation of Ca2þ channels,
polySia also has the ability to restore Ca2þ ions (69).

Miscellaneous. The polysialyltransferases ST8SIA2
and ST8SIA4 are capable of directly synthesizing
polySia (70, 71) on them, although polysialylation is
not required for their enzymatic activity. CD36 from
human milk was reported to be modified with polySia
and the state of polySia was developmentally changed
(72). Recently, neuropilin-2 from human dendritic cells
was shown to be modified with a2,8-linked polySia
(73) and to regulate chemotaxis through binding of
CCL21 (74). PolySia synthesized by ST8Sia IV on T
cells is reported to be involved in haematopoietic de-
velopment (75). Inoue et al. (76) detected the presence
of a2,9-linked polySia in C-1300 mouse neuroblastoma
cells (NB41A3) by chemical analyses. Recently, synap-
tic cell adhesion molecule 1 (synCAM-1; also known as
Cadm1 or TSLC1) was found to have polySia on an
N-linked glycan chain of Ig domain I of NG2-positive
cells in the mouse brain, and polySia was demon-
strated to inhibit homophilic binding through an
anti-adhesive effect (77). Although several types of
mammalian proteins are modified with polySia, as
described above, NCAM is the major and most critical
carrier protein, because mice deficient in NCAM have
only small amounts of polySia. Notably, however,
polySia may still play important functional roles,
even in small amounts.

Fish and Vertebrates Other than Mammals

In 1978, an a2,8-linked polyNeu5Gc structure in sal-
monid fish eggs was discovered (78) and represented
the first demonstration of polySia in vertebrates. The
composition of the polySia-containing carrier glyco-
protein was determined (78�81) and named polysia-
loglycoprotein (PSGP). PSGPs are ubiquitously
found in Salmonidae fish eggs and are the major
glycoprotein components of cortical alveoli, which
are Golgi-derived secretory organelles found in the
peripheral cytoplasm of mature eggs of almost all
animal species, including humans. After fertilization,
cortical alveoli fuse with the egg plasma membrane
and release their contents into the perivitelline space.
In cortical alveoli, PSGP is present as a high-molecu-
lar-weight form (H-PSGP, �200 kDa) and co-local-
izes with a degradative enzyme, PSGPase, which is
inactive in the cortical vesicles. PSGPase is only
active under low salt concentrations (550mM), and
therefore remains inactive at the physiologic salt con-
centration of the cortical vesicles (82). After fertiliza-
tion, H-PSGP is degraded to a low-molecular-weight
form (L-PSGP, �10 kDa), which is the repetitive unit
of H-PSGP, through the action of PSGPase upon its
activation in the low salt environment of the perivi-
telline space. The glycan structure of PSGP does not
change before or after fertilization. The peptide and
polySia structures of the PSGPs derived from eight
species of Salmonidae fishes, Salvelinus namaycush
(Lake trout), Salvelinus fontinalis (Brook trout),
Salvelinus leucomaenis pluvius (Japanese common
char, Iwana), Salmo trutta falio (Brown trout),

Oncorhynchus keta (Chum salmon), Oncorhynchus
masou ishikawai (Land-locked cherry salmon,
yamame), Oncorhynchus mykiss (Rainbow trout)
and Oncorhynchus nerka adonis (Kokanee salmon),
have been well studied. Apo-L-PSGP is a single,
tri- or dodecapeptide with the structure
(D)DAT*S *XAAT*GPSX (X¼E or A, Z¼D or
S or G, * indicates the position of the O-linked
polySia chain) (Fig. 5B). Diversity in the polySia
structure was first observed in Salmonid fish egg
and included a2,8-linked polyNeu5Ac, polyNeu5Gc
and polyNeu5Ac/Neu5Gc and its O-acetylated form
(83), with each species displaying a characteristic
structure of polySia.

PolySia chains on PSGP are thought to serve two
main functions in addition to ionic regulation and the
blockage of polyspermy (80). PolySia protects the
embryo from bacterial invasion (i.e. bacterial sialidase
versus polySia). Notably, the polysialyl groups of sal-
monid PSGP are highly modified, including O-acetyl-
ation of the hydroxyl-groups at C-4, -7 and -9, and the
presence of KDN at non-reducing termini. These
modifications of PSGP confer resistance to bacterial
sialidases. PolySia also functions as a regulator of
Ca2þ concentration in the perivitelline space during
embryogenesis, as polySia on PSGP has been shown
to bind Ca2þ (69).

Echinoderms
Echinoderms are the most primitive organisms to con-
tain Sia. Echinoderms have several notable features: an
abundance of Sia, several types of polySia are often
found within the same cell, and the presence of oligo/
polysialylated gangliosides when compared with the
typical mono- or disialylated gangliosides found in ver-
tebrates other than fish. The starfish Asterias forbesi
was the first echinoderm reported to contain Sia (84),
and polymerized chains of ! 8Neu5Aca2! were first
detected in a sperm ganglioside derived from the sea
urchin Anthocidaris crassispina (85). In addition, the
! 5OglycolylNeu5Gca2! chain was first reported in
gangliosides of eggs from Asterias amurensis and
Asterias rubens (86), and more recently, a
! 4Neu5Gca2! chain was found in the gangliosides
of the sea cucumber Holothuria leucospilota (87). The
longest DP of an echinodermal ganglioside had been
only 6 (88); however, a polysialoganglioside composed
of as many as 16 residues from Hemicentrotus pulcher-
rimus was reported (89).

The sea urchin is the most abundant and widely
dispersed echinoderm in which polySia has been stu-
died in great detail. Sea urchin eggs are surrounded by
egg jelly, a gelatinous layer that is composed of a
fucose�sulphate polymer (FSP) and sialic acid-rich
glycoproteins (SGPs) (90). The structure of polySia
in SGP, designated as polySia-gp, was characterized
as (! 5OglycolylNeu5Gca2!)n, with n ranging from 4
to �40 (91). An oligomerized structure of 8-O-
sulphated (! 5OglycolylNeu5Gca2!)n is also found
on the sperm receptor on the egg cell surface, although
the DP was only 2�3 (92). SGP in sea urchin egg jelly
plays a role in the sperm acrosome reaction, which is
an important process that must occur before a sperm
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cells bind to an egg and involve a change of the intra-
cellular pH [pH]i and Ca2þ concentration [Ca2þ]i. The
(! 5OglycolylNeu5Gca2!)n-containing glycan chain
from SGP upregulates the [pH]i of sperm although
the [Ca2þ]i does not change, indicating that this
polySia structure is involved in the acrosome reaction
through a different mechanism than that of FSP (92).

Interestingly, a different type of polySia, 8-O-
sulphated (! 9Neu5Aca2!)n structure (DPavr. of
15) is also present in sperm of the sea urchin, H. pul-
cherrimus (93, 94). The carrier protein of this new type
of polySia structure was cloned and designated as
flagellasialin (94), which is a highly O-linked polysia-
lylated cell-surface glycoprotein that displays 8-O-
sulphated (! 9Neu5Aca2!)n residues on the cell
surface and lacks a cytosolic region (Fig. 5A). This
protein was recently shown to be GPI anchored and
is an ancestor of CD52 of vertebrates. Upon treatment
of sea urchin sperm with antibodies 4F7 and 3G9,
which recognize internal (! 9Neu5Aca2!)n (93)
and terminal (8-O-sulphated Neu5Aca2! 9) (95)
structures of the polySia chain, respectively, sperm mo-
tility was only inhibited by 4F7. In addition, measure-
ment of sperm [Ca2þ]i with and without antibodies
demonstrated that 4F7, but not 3G9, led to increased
[Ca2þ]i, which resulted in the impairment of sperm mo-
tility (94). The regulation of Ca2þ appears to be de-
pendent on the binding of a2,9-linked polySia to Ca2þ

transporters, suNCKX (Kþ-dependent Naþ/Ca2þ ex-
changer) and suPMCA (Ca2þ ATPase), which are
involved in regulating the influx and efflux of Ca2þ

in sperm (96). Collectively, these data suggest that
the internal structure of this unique polySia chain is
important for the regulation of intracellular Ca2þ con-
centration and that 8-O-sulphation might protect
polySia chains from degradation, because O-sulphate
groups on Sia are stable in alkaline conditions, such as
seawater, in contrast to O-acetylation, which is sensi-
tive to such conditions. We observed the presence of
(! 8Neu5Aca2!)n on not only glycoproteins but also
on glycolipids with the same sperm cells, and it is inter-
esting that different types of polySia are present in the
same cell. Several species of sea urchin, including
Strongylocentrotus purpuratus, Strongylocentrotus
intermedius, Strongylocentrotus undus, A. crassispina,
Pseudocentrotus depressus and Clypeaster japonicus,
contain the (! 8Neu5Aca9!)n structure on flagella-
sialin, although the molecular weight of this protein
varies among the species, likely due to variation in
the DP of the polySia chain.

Prokaryotes
Bacteria. PolySia was first identified in the Gram-
negative bacterium E. coli K-235 and was designated
as colominic acid (97). After determination of the com-
position of the E. coli K-235 polysaccharide capsule,
the structure of polySia was reported as a2,8-linked
polyNeu5Ac with a DP4200 (14, 98). Later, polysac-
charides isolated from N. meningitidis groups B and C
were also shown to contain a2,8-linked polyNeu5Ac
and a2,9-linked polyNeu5Ac, respectively (99�101).
PolySia from E. coli K1 and N. meningitidis group B
was reported to be neuroinvasive determinant (100).

The O-acetylation of polySia residues on capsular
polysaccharide chain was also reported in E. coli K1
and was demonstrated to increase the immunogenicity
and invasiveness of cells into host neurons (102, 103).
In Legionella pneumophili, a2,4-linked homopolymer
of 5-acetamidino-7-acetamido-8-O-acetyl-3,5,7,9-tetra-
deoxy-D-glycero-D-galacto-nononic acid within poly-
saccharides chains was reported (104), and E. coli
K-92 strain was shown to contain alternately linked
a2,8- and a2,9-linked polySia (105). The Gram-
negative and pathogenic bacteria Pasteurella haemoly-
tica and Moraxella nonliquefaciens have a2,8-linked
polyNeu5Ac residues (106). Notably, several unchar-
acterized bacteria may also have polySia chains as the
presence of nonulosonic acid has been reported (107).

In neuroinvasive bacteria, particularly within the
Neisseria group, polySia appears to be involved in
the invasion of host cells and functions to protect bac-
teria from the host innate immune system (106, 108).
PolySia is also associated with the difficulties of produ-
cing vaccines against these neuroinvasive organisms
because polyNeu5Ac is also present in the brains of
humans and rodents, as described below. It is note-
worthy that Neu5Gc has not been found in bacteria.

Distribution and Functions of Di/OligoSia

The distribution of a2,8-linked diNeu5Ac on glycopro-
teins in the brain and other tissues derived from rat
was first reported by Finne et al. in 1977 (20, 109).
Several diSia-containing glycoproteins have since
been detected in mammals. For example, a2,8-linked
diNeu5Ac and diNeu5Gc structures were shown to be
linked to a GalNAc residue on chromogranins, which
are a class of related acidic glycoproteins located in
chromaffin granules in the bovine adrenal medulla
(110). The glycopeptides human erythrocyte glyco-
phorin and umbilical cord erythrocyte Band 3 were
also found to contain a2,8-linked diNeu5Ac residues
on O- and N-linked glycan chains, respectively (111,
112). In 1985, Fukuda et al. (113) demonstrated the
presence of the a2,9-linked diNeu5Ac structure on lac-
tosaminoglycan in human teratocarcinoma cells (PA1)
by methylation analysis and fast atom bombardment-
mass spectroscopy.

The presence of a2,8-linked Neu5Gc-bearing glyco-
proteins was also detected in the rat thymus using
chemical and immunochemical methods with the
newly developed anti-oligo/polyNeu5Gc antibody 2-
4B (114). Notably, a 100-kDa glycoprotein on the rat
T-cell surface was shown to contain the AC1 epitope,
which is an a2,8-linked diNeu5Gc structure (115), and
was thought to be activated lymphocyte cell adhesion
molecule (ALCAM). These findings led us to conclude
that di- and oligoSia structures occur in glycoproteins
far more frequently than previously recognized.

As presented in Table III, an extremely large
number of glycoproteins in mammals are modified
with diSia and oligoSia. Although a few of these struc-
tures have been determined, many remain unknown.
We have screened several cultured mammalian cell
lines, including human myelocytic leukaemia cells
(HL-60), human teratocarcinoma cells (PA1), mouse
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neuroblastoma cells (Neuro2A), mouse myoblasts
(C2C12) and mouse preadipocytes (3T3-L1), for the
di/oligoSia glycotope before and after cell differenti-
ation. The findings from these various mammalian
cell types clearly demonstrate that di/oligosialylation
changes during differentiation (11), although the bio-
logical relevance of these changes remain unknown.
DiNeu5Ac and triNeu5Ac occur on different glycopro-
teins in the mouse brain (116, 117), and the expression
of these Sia residues matches that of ST8SIA3 during
neurogenesis. The high-molecular-weight band of
triSia-containing glycoprotein was shown to increase

in an age-dependent manner, indicating that trisialyla-
tion might be related to ageing. DiSia-containing
glycoproteins are also present in mouse serum
(Table II) (118). Interestingly, a 32-kDa glycoprotein
that was demonstrated to be a carbonic anhydrase II
and to lack Sia was shown to cross-react with anti-
diSia antibodies, suggesting that such cross-reactivity
might be the source of autoimmune antibodies that
occasionally cause neurodegenerative diseases (119).

In the ovarian fluid of rainbow trout, N-linked
glycoproteins contain an abundance of a2,8-linked
diNeu5Ac residues (120), and a large amount of

Table III. Distribution of di/oligo/polySia in glycoconjugates.

Structure DP Occurrence Carrier protein Type

(! 5OglycolylNeu5Gca2!)n 2�40 Sea urchin egg jelly PolySia-gp O
2�3 Sea urchin egg Sperm receptor O
2�3 Starfish gonad Glycolipid (Gl)

(! 8Neu5Aca2!)n 5200 N. meningitidis Gp. B Capsular Polysaccharide (Cp) �

E. coli K1
Pasteurella haemolytica
Moraxella nonlinquefacies

2�25 Lake trout egg PSGP O
�100 Vertebrates embryonic brain, tumours N-CAM N
�11 Eel, Rat brain Naþ-channel N

�4 Human tumour, rat tumour n.d. O
�11 Fruit fly (Drosophila) n.d. n.d.
�11 Cicada n.d. n.d.
�11 Several cell lines Polysialyltransferase N
2�18 Human milk CD36 O
�11 Human dendritic cells Neuropilin-2 O
�11 Mouse brain NG2 cells SynCAM N
5�7 Human melanoma cells, fibroblast cells, leukaemia cells Integrin a5 n.d.
2 Ovarian fluid of rainbow trout Glycoprotein (Gp) N
2 Rat tissues Gp n.d.
2�5 Pig brain Gp N
2 Bovine adrenal medulla Chromogranin O
2 Human erythrocyte Band-3 N
2 Human erythrocyte Glycophorin O
2 Bovine serum Fetuin, adipoQ, a2-macroglobulin n.d.
2 Human-cultured cell: HL60, PA1 Gp n.d.
2 Mouse-cultured cell: 3T3-L1, Neuro2A, C2C12 Gp n.d.
2 Rat brain IgLON family N
2 Rat serum Vitronectin n.d.
2�16 Sea urchin Gl �

2�4 Several vertebrate cells and tissues Gl �

2�4 Zebrafish Gl/Gp N, O

(! 8Neu5Gca2!)n 2�25 Rainbow trout egg PSGP O
2 Bovine adrenal medulla Chromogranin O
2 Bovine serum a2-Macroglobulin, fetuin N
2 Rat thymus, mouse T cell 100 kDa-gp (ALCAM?) O?
2 Mouse-cultured cells: 3T3-L1, Neuro2A, C2C12 n.d. n.d.
2 Mouse serum plasminogen, Ig n.d.
2�4 Zebrafish Gl/Gp N, O

(! 8Neu5Ac/Neu5Gca2!)n 2�25 Brown trout egg, Iwana egg PSGP O

(! 8KDNa2!)n 2�7 Rainbow trout ovarian fluid KDN-gp O
2�7 Rat kidney Megalin O
2�7 Rat various organ Ceruloplasmin O

(! 9Neu5Aca2!)n 5200 N. meningitidis Gp. C Cp �

2 Human teratocarcinoma n.d. N
2�20 Sea urchin sperm Flagellasialin O
2�30 Mouse neuroblastoma n.d. n.d

(! 8/9Neu5Aca2!)n 5200 Bos�12, E. coli K92 Cp �

(! 4Neu5Aca2!)n 2 N. meningitidis Gp. Y Cp �

(! 4Neu5Gca2!)n 2�4 Sea cucumber Gl �

(! 4Lega2!)n n.d. Legionella pneumophilli Cp �
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mono to oligoKDN (DP¼ 1�7) linked to mucin
(KDN-gp) has also been detected (121, 122), although
the specific function of these modifications remains un-
known. Guérardel and colleagues (123) examined the
di/oligosialylation state of zebrafish embryos during
development and found that the amount of oligoSia
on glycoproteins decreased during embryogenesis,
whereas the oligosialylation of glycolipids was dramat-
ically upregulated, indicating that oligoSia, including
its DP and composition (Neu5Ac�Neu5Ac,
Neu5Ac�Neu5Gc, Neu5Gc�Neu5Ac and Neu5Gc-
Neu5Gc) may play a role in embryogenesis (123).
Recently, morpholino-knockdown of ST8Sia III in
zebrafish appeared to lead to anomalous somite
morphologies (124), indicating that di/oligosialylation
is involved in somite development in zebrafish.

Integrins on human melanoma cells, fibroblasts and
leukaemia cells are also modified with oligoSia (125).
The significance of this oligoSia modification was exam-
ined by a pull-down assay with fibronectin-Sepharose
before and after the linkage-specific sialidase digestion
of integrin, demonstrating that the deletion of oligoSia
on the integrin molecule inhibits adhesion with fibro-
nectin. Notably, colominic acid (average DP¼ 15) did
not inhibit the integrin�fibronectin interaction. In add-
ition, the susceptibility of integrin to an antibody recog-
nizing the fibronectin-binding domain decreased after
the removal of oligoSia. Together, these results indicate
that oligoSia may help human integrins maintain a suit-
able conformation for forming strong associations with
fibronectin.

Binding Molecules of Di/Oligo/PolySia

Oligo/polysialyltransferases, Endo-N and anti-di/
oligo/polySia antibodies are considered to be binding
molecules for di/oligo/polySia. In addition, it is well
known that many bacteria and viruses contain hae-
magglutinin that is capable of binding to Sia residues
on host cells. Some of these haemagglutinins, such as
those of Sendai virus, specifically bind to a2,8-linkages
(126).

The Sia-recognizing molecules that are present on
animal cells consist of a family of lectins, known as
Sia-binding immunoglobulin-like lectins (siglecs)
(127). Siglec-1 to -15 are present on red blood cells
and neuronal cells. Siglecs-1, -5, -7, -10 and -11 are
reported to have affinity towards a2,8-linkages (128).
In particular, siglec-7 and -11 bind to a2,8-linked diSia
and oligoSia with high affinity (129�131). Although
the natural ligands of siglecs are disialylated ganglio-
sides such as GD3, the di/oligoSia-containing glyco-
proteins described in this review, including yet
unidentified di- and oligoSia-containing glycoproteins
or bacterial determinants that have or mimic di/
oligoSia, are also likely candidates for siglec ligands.
The bacterium Campylobacter jejuni has a diSia epi-
tope that is reported to bind to siglec-7 (132).

A number of neurotrophic factors, such as BDNF,
NT-3 and NGF, and the growth factor FGF2 bind to
polySia (48, 52). Very recently, histone H1 secreted
from human neuronal cells was demonstrated to bind
polySia and regulate cell activity (133). The cytokine

CCL21 is also reported to bind to polySia; however,
we could not detect an interaction between polySia and
CCL21 using SPR and (GlcNAc)3 as a negative con-
trol, although HS binding to CCL21 was observed.

Recently, we also demonstrated by FAC that several
types of small molecules, such as neurotransmitters,
particularly the catecholamine dopamine, bind to
polySia, but not to diSia (50, 53), as described above.
X-ray crystallography, NMR and tomography are im-
portant tools for investigating the structural basis for
the interaction between di/oligo/polySia and biologic-
ally active molecules. Understanding the molecular
mechanisms of the interaction between Sia-modified
proteins and their target molecules, including the de-
tachment and release mechanisms, is important for
understanding polySia function. The use of new tech-
niques, such as ITC, may be necessary to analyse
weak-binding interactions, because some are not
stable or static.

Diseases

PolySia is associated with a number of diseases, includ-
ing various types of cancer. NCAM is thought to be
the main carrier protein of polySia in cancer cells, al-
though some cells do not express NCAM protein
(134). The majority of polysialylated NCAM is ex-
pressed in embryos and normal cells in adult tissues
do not typically display polySia on the cell surface;
however, some cancer cells express polySia. Thus,
polySia is recognized as an oncodevelopmental anti-
gen. For example, neuroblastomas (135, 136), Wilms’
tumours (137), medulloblastomas (138), pheochromo-
cytomas (139), medullary thyroid carcinomas (140),
non-small cell lung (NSCL) carcinomas (141, 142), pi-
tuitary adenomas (138) and breast cancer (134) are
shown to re-express polySia on cell surface. In NSCL
carcinoma cells, tumour progression is related with the
expression of polySia and the levels of its biosynthesiz-
ing enzyme, ST8SIA2 (142, 143). As polysialylation
has an anti-adhesive effect on cell�cell interactions, it
is likely involved in the detachment and metastasis of
cancer cells.

Schizophrenia is a psychiatric disorder with multiple
factors contributing to pathogenesis. Interestingly,
some reports suggest that polySia is involved in schizo-
phrenia and other related psychiatric disorders. For ex-
ample, the number of polySia�NCAM immunostained
cells derived from the HY of schizophrenic brains is
decreased compared with that of normal brains (144).
Chromosome 15q26, which is the genomic region where
the gene encoding ST8SIA2 localizes, is related to
schizophrenia and bipolar disorders among the popu-
lation of Eastern Quebec (145). Recently, it was also
shown that a relationship exists between single-nucleo-
tide polymorphisms (SNPs) in the promoter region of
ST8SIA2 and schizophrenia by genome-wide studies
among Japanese (146) and Chinese-Han (147) popula-
tions. The ST8SIA2 gene is also reported to be a gen-
eralized susceptibility marker for psychotic and mood
disorders on chromosome 15q25-26 (148) and is asso-
ciated with an increased risk of mental illness, such as
autism (149). Interestingly, the mutation of synCAM,
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which is another substrate for ST8SIA2, is also related
with autism spectrum disorders (150). Biochemical-
based studies using SNP-7 (Glu141Lys) in the coding
region of ST8SIA2 reported from a schizophrenic pa-
tient have shown that the in vitro and in vivo enzymatic
activity of ST8SIA2with SNP-7 decreases dramatically,
and that the polySia products are also impaired with
respect to quantity and quality (53). Considering that
polySia functions as a regulator of biologically active
molecules, such as BDNF, FGF2 and dopamine, which
are intimately involved in brain function (48),
polySia�NCAM synthesized by mutated ST8SIA2
likely plays a role in the development of schizophrenia
(51, 53).

Anatomically, the volume of olfactory bulbs (OBs)
derived from schizophrenic brains is reduced (151),
which is a similar phenotype to that of NCAM-KO
mice (152). The functional impairment and disturbed
organization of the HY are also involved in the eti-
ology of schizophrenia (153). In this regard, it is inter-
esting that the loss of ST8SIA2 or NCAM results in
the misguidance of infrapyramidal mossy fibres and
formation of ectopic synapses in the HY (154). In add-
ition, several characteristic properties, such as brain
structure, neural plasticity and various morphological,
cognitive and emotional deficits related to schizophre-
nia have been observed in ST8SIA2 single KO mice
(54, 155). Very recently, NCAM-KO mice were
demonstrated to be useful for studying specific endo-
phenotypes related to schizophrenia, although these
mice do not display typical schizophrenia-like pheno-
types (156). Although these results highlight the

importance of polySia in psychiatric disorder, bio-
chemical studies that examine the underlying molecu-
lar mechanism between behaviour or anatomical
phenotypes and polySia are needed.

Phenotypes of PolySia-Impaired Mice

To understand the function of polySia structure at an
animal level, several approaches have been performed
using specific probes for polySia, such as Endo-N and
anti-polySia antibodies and gene-targeting techniques.
The phenotypes of polySia-impaired mice were sum-
marized in Table IV.

NCAM�/� mice was first established to understand
the function of polySia and NCAM (152) because
NCAM is the major carrier of polySia in brain.
Almost all polySia disappeared in NCAM�/� mice.
NCAM�/� mice have several morphological changes
for example, reduced OB size due to disturbed migra-
tion from SVZ, disturbed mossy fibre architecture
(152), and a reduced amygdalo-hippocampal theta syn-
chronization during fear memory retrieval (156).
NCAM�/� mice show some behavioural changes such
as impairment of spacial learning (152), locomotion
(156) and social interactions (156). Cognitive functions
of NCAM�/� mice and conditional NCAM-deficient
mice (forebrain specific) such as contextual fear condi-
tioning and cued fear conditioning are also impaired
especially under stress (157). Interestingly, expression
of D2-receptor and sensitivity of dopamine are upregu-
lated in cells derived from NCAM�/� mice (158). It

Table IV. Phenotypes of polySia-impaired mice.

Mouse type Wild Type NCAM�/� ST8SIA2�/� ST8SIA4�/� ST8SIA2�/�

ST8SIA4�/�

References 152,156�158,56 154,155,56 160,155,56 162,163,155

Biochemical aspects

Amount of ST8SIA2 100 100 0 100 0
Amount of ST8SIA4 100 100 100 0 0
Amount of polySia 100 Negligible 50 95 0

Lethality

No No No No Yes (58w)

Brain morphology

Size Normal # Normal Normal #

OB Normal Abnormal Normal Normal Abnormal
HY (mossy fiber) Normal Abnormal Abnormal Normal Abnormal

Electrophysiology

LTP and LTD in CA1 Normal # Normal # ?
LTP in CA3 and DG Normal # Normal Normal ?

Memory, learning and behaviour

Spacial learning Normal # Normal # ?
Contextual fear conditioning Normal # # Normal ?
Cued fear conditioning Normal # # Normal ?
Locomotion (OF) Normal " " " ?
Social interaction Normal # # # ?

C. Sato and K. Kitajima
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should be noted that NCAM is not the only substrate of
polysialyltransferase as described above.

The other strategy to understand the polySia func-
tion more clearly is to establish polysialyltransferase-
deficient mice. As polySia can be biosynthesized by
two polysialyltransferases, ST8SIA2 and ST8SIA4
(159), single polysialyltransferase-deficient mice, such
as ST8SIA2�/� mice (154) or ST8SIA4�/� mice (160),
contain a large amount of remaining polySia in brain
(158). Interestingly, the change of polySia staining and
the phenotypes are different among them. ST8SIA2�/�

mice were first established by Angata et al. (154) and
well characterized. PolySia staining greatly decreased
at OB and cerebral cortex. In HY, polySia deficit in the
dentate gyrus (DG) (inner rim of the granular layer
where newborn precursors from the subgranular
layer first acquire polySia-staining) was observed
(154). ST8SIA2�/� mice show the misguidance of
infrapyramidal mossy fibres and the formation of ec-
topic synapses in the HY CA3 region. ST8SIA2�/�

mice exhibit higher exploratory drive and reduce beha-
vioural responses to Pavlovian fear conditioning. In
addition, ST8SIA2�/� mice show impairment of
social interaction (54). ST8SIA4�/� mice were first es-
tablished by Eckhardt and Cremer and surprisingly,
the polySia amounts slightly decreased. The precursor
migration and mossy fibre organization were normal.
However, the expression of polySia in CA1 region of
Ammon’s horn was down-regulated and LTP and
long-term depression (LTD) in CA1 were also im-
paired (160). ST8SIA4�/� mice display a decreased
motivation in social interaction (54).

It was unexpected that large amounts of polySia
remain in ST8SIA2�/� (55%) and ST8SIA4�/� (95%)
(161). Therefore, it was necessary to establish ST8SIA2
and ST8SIA4 double KO mice to remove polySia com-
pletely (162, 163). ST8SIA2�/�/ST8SIA4�/� mice show
severe phenotypes and die within 8 weeks. The major
phenotypes are hypoplasia of corticospinal tract, size re-
duction of internal capsule, hypoplasia of mammillotha-
lamic tract, high incidence of hydrocephalus, growth
retardation and precocious death. These functions are
considered to be NCAM-specific. Other phenotypes
such as small OBs and rostral migratory stream expan-
sion, and delamination of mossy fibres are considered to
be polySia-specific function. Interestingly, in NCAM,
ST8SIA2 and ST8SIA4 triple-KO mice, the severe
phenotype of the DKO mice is rescued, suggesting that
an uncontrolled type of NCAM-mediated cell adhesion
is followed by increased signal transduction events (155).
In NCAM�/�/ST8SIA2�/�/ST8SIA4�/� mice, im-
proved signalling through increased cell�cell interactions
in the polySia-deficient brain is likely to result from the
reduced levels of cell adhesion molecules resulting from
the NCAM deficiency. Thus, the reduction of NCAM
leads to the recovery of normal physiological interactions
and to the rescue of the severe phenotype of polySia-
deleted mice.

Perspective

Based on the current status of polySia research, the
following are interesting topics to pursue in future

polySia studies. First, polySia has long been recog-
nized as a negative regulator of cell�cell adhesion.
This characteristic of polySia is important for neuro-
genesis during embryogenesis, as well as neuroplasti-
city. In addition to anti-adhesive and ion regulation
functions, we recently proposed and demonstrated
that of polySia serves as a reservoir for components
involved in the maintenance of neural activity and
growth of brain cells, including particular groups of
neurotrophic factors, growth factors and neurotrans-
mitters. In particular, the interaction of polySia with
small molecules other than calcium ions (69) had not
been examined in detail before our study (48�53).
Numerous other interactions between polySia and bio-
logically active molecules, such as histone H1 (133)
and CCL21 (74), are expected to be revealed, which
will shed light on the potential roles of polySia
in neural, immunological and reprogramming
phenomena.

Second, the reservoir function of polySia for growth
factors, morphogens and cytokines is also exemplified
by glycosaminoglycans (GAGs), such as HS, keratan
sulphate and chondroitin sulphate, which are another
group of acidic polymers. However, polySia and
GAGs exhibit different binding properties to neuro-
trophic and growth factors with respect to strength,
stoichiometry and range of binding counterparts (52).
The fact that polySia and GAGs share a similar reser-
voir function is interesting because it indicates that
polySia can function in roles though to be typically
performed by GAGs. This functional mimicry is
most likely due to the molecular mimicry of GAGs
by polySia. As described above, antibodies against
polySia occasionally cross-react with polynucleotides,
which are a different group of polyanions than polySia
or GAGs. Thus, polySia may share mimetic conform-
ations with these polyanionic compounds, such as
steric distribution of carboxyl anions along the helical
chain. This may explain why anti-polySia antibodies
sometimes detect the polySia epitope in organisms
that would not be expected to express even monomeric
Sia (164, 165). An alternative possibility is that the
polySia epitope is synthesized by unknown mechan-
isms in those organisms. However, we have encoun-
tered molecular mimicry of diSia by carbonic
anhydrase lacking carbohydrates (119). Of course,
the detection of polySia by methods other than immu-
nochemical detection, such as chemical assays, needs
to be confirmed before a definitive conclusion can be
reached. The molecular mimicry of di/oligo/polySia
structure in various cell types is an interesting phenom-
enon that warrants further attention.

Third, many important questions concerning the
biosynthesis of di/oligo/polySia remain to be resolved.
For example, how are the expression and disappear-
ance of polySia regulated at the transcriptional, trans-
lational and protein levels? Which sialyltransferases
are responsible for the synthesis of glycosidic linkages
other than the a2,8-linkage? Although chain length is
known to be biologically important, as we first demon-
strated that a DP of at least 12 is required for polySia
to act as a reservoir for BDNF (48), whereas a DP of
17 is needed to bind FGF2, the regulation of diSia,
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oligoSia and polySia chain length is not well under-
stood. The answers to these, and many other ques-
tions, will supply the necessary insights for
understanding polySia biosynthesis.

Fourth, although polySia has been relatively well
studied, greater focus on di- and oligoSia glycoproteins
is expected to provide in-depth knowledge concerning
the function of these interesting glycoproteins. After
we identified a large group of diSia/oligoSia-containing
glycoproteins (11�13), a growing number of studies on
di- and oligoSia structures have demonstrated that the
biological functions of di- and oligoSia are clearly dis-
tinct from those of polySia, although many details
remain unknown.

In conclusion, oligo/polymerized Sia is a distinct,
unusual, carbohydrate structure with respect to its
size, properties and functions compared with carbohy-
drates that are commonly present on cell surfaces. For
this reason, the study of diSia/oligoSia/polySia-con-
taining glycoproteins, including the structures of oligo-
merized Sia, is expected to continuously reveal
interesting findings, as long as we view these molecules
from a distance, as well as close range.
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