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Abstract We prove that for every set of n pairwise disjoint line segments in the

plane in general position, where n is even, there is another set of n segments such

that the 2n segments form pairwise disjoint simple polygons in the plane. This settles

in the affirmative the Disjoint Compatible Matching Conjecture by Aichholzer et al.

(Comput. Geom. 42:617–626, 2009). The key tool in our proof is a novel subdivision

of the free space around n disjoint line segments into at most n + 1 convex cells such

that the dual graph of the subdivision contains two edge-disjoint spanning trees.

1 Introduction

A planar straight-line graph (PSLG, for short) is a graph G = (V ,E) where the ver-

tices are distinct points in the plane, the edges are straight-line segments between ver-

tices such that every edge can intersect vertices and other edges only at its endpoints.

A simple polygon is a 2-regular connected PSLG. A geometric matching is a 1-regular
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Fig. 1 (i) A geometric matching with eight edges in a bounding box. (ii) A convex subdivision eight cells.

(iii) An associated dual graph

PSLG. The edges of a geometric matching are pairwise disjoint line segments in the

plane. Two PSLGs (V ,E1) and (V ,E2) on the same vertex set are compatible if no

edge in E1 crosses any edge in E2.

A simple polygon with an even number of edges is the union of two disjoint com-

patible geometric matchings. Conversely, the union of two disjoint compatible geo-

metric matchings is the union of pairwise disjoint simple polygons, each of which has

an even number of edges. Aichholzer et al. [1] conjectured that for every geometric

matching M with an even number of edges, there is a disjoint compatible geometric

matching (Disjoint Compatible Matching Conjecture). The condition that M has an

even number of edges cannot be dropped: for every odd n ≥ 3, there are geometric

matchings with n edges that do not admit a disjoint compatible matching [1]. Our

main result is the proof of the Disjoint Compatible Matching Conjecture.

Theorem 1 For every geometric matching with an even number of edges, and no

three collinear vertices, there is a disjoint compatible geometric matching.

The General Framework for the Proof of Theorem 1 Aichholzer et al. [1] proposed

three stronger conjectures, each of which would immediately imply Theorem 1. Even

though we do not prove any of these stronger conjectures, they laid out a framework

that does lead to the proof of Theorem 1.

Before presenting two of these stronger conjectures, we recall a few definitions.

For a finite set M of disjoint line segments in the plane, a convex subdivision of the

free space is a set C of interior disjoint convex cells such that every cell is disjoint

from the segments in M , and the union of their closures tiles the plane. In a dual

(multi-)graph G associated with M and C, the vertices correspond to the cells in C,

and each endpoint of a segment in M corresponds to an edge between two incident

cells (see Fig. 1). Note that M and C do not always determine the dual graph uniquely,

since a segment endpoint may be incident to more than two convex cells, and the cor-

responding dual edge connects only two of those cells. In any case, the dual multi-

graph has exactly 2n edges, some of which may be parallel. For brevity, we use the

term dual graph even if G has parallel edges. An orientation of a (multi-)graph G

is an assignment of a direction to each edge of G. An orientation is even if the inde-

gree of every node is even. It is well known that every connected (multi-)graph with

an even number of edges has an even orientation [14].
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Fig. 2 (i) An even orientation of the dual graph from Fig. 1(iii) such that whenever a node has indegree 2,

the two incoming edges do not correspond to the two endpoints of the same segment. (ii) The even orien-

tation maps an even number of segment endpoints to each cell. The segment endpoints assigned to each

cell can be matched without crossings within that cell. (iii) The union of the matchings in all cells forms a

disjoint compatible geometric matching

Let M be a geometric matching with n edges. The Two Trees Conjecture [1] asserts

that there is a convex subdivision with n + 1 cells such that an associated dual graph

G is the edge-disjoint union of two spanning trees, and for every segment uv ∈ M ,

the edges of G corresponding to u and v are in different spanning trees. The Exten-

sion Conjecture [1] stipulates that if n is even, then there is a convex subdivision with

n + 1 cells such that an associated dual graph G admits an even orientation with the

property that for every node of G of indegree 2, the two incoming edges do not cor-

respond to the two endpoints of any segment uv ∈ M . We no longer believe that the

stronger conjectures hold [4], but we use several elements of these conjectures. For

example, an even orientation with the above property induces a disjoint compatible

geometric matching even if the convex subdivision has fewer than n + 1 cells (see

Fig. 2).

We first prove a weaker form of the Two Trees Conjecture (Theorem 2), and show

that there exists a convex subdivision with at most n + 1 cells whose dual graph

contains two edge-disjoint spanning trees. Combining Theorem 2 with a purely graph

theoretic lemma (Lemma 3), which is essentially a weaker form of the Extension

Conjecture, we prove the Disjoint Compatible Matching Conjecture.

Theorem 2 For every set M of n disjoint line segments in the plane, with no three

collinear segment endpoints, there is a convex subdivision of the free space into at

most n + 1 cells such that an associated dual graph G contains two edge-disjoint

spanning trees.

Lemma 3 Let G = (V ,E) be a multigraph with 4k edges that contains two edge-

disjoint spanning trees, and let X be a collection of disjoint pairs of adjacent edges

in E, called conflict pairs. Then G has an even orientation such that if the indegree of

a vertex is 2, then the two incoming edges are not in X.

Outline In Sect. 2, a class of convex subdivisions D(M) and corresponding dual

graphs are defined for a geometric matching M . Section 3 derives a sufficient condi-
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tions when a dual graph of a subdivision in D(M) contains two edge-disjoint span-

ning trees. Specifically, we show that the dual graph contains two edge-disjoint span-

ning trees if the subdivisions contains no “critical polygons,” a class of polygons that

we shall define below. To complete the proof of Theorem 2, it remains to construct a

convex subdivision in D(M) with no critical polygons. This is done algorithmically

in Sect. 4. The algorithm starts with a simple initial convex subdivision with n + 1

cells in D(M), and modifies it recursively until all critical polygons are eliminated.

The number of cells may decrease during the process, but the dual graph of the result-

ing convex subdivision contains two edge-disjoint spanning trees. Finally we prove

Lemma 3 in Sect. 5, and show that the combination of Theorem 2 and Lemma 3

readily implies the Disjoint Compatible Matching Conjecture (Theorem 1).

Motivation and Related Work The disjoint compatible matching conjecture is in the

family of augmentation problems for planar straight-line graphs. In a typical aug-

mentation problem, we are given a PSLG G = (V ,E) and a graph property P , and

asked to find a minimum set F of new edges such that G′ = (V ,E ∪ F) is a PSLG

with property P . Theorem 1 shows that every 1-regular PSLG with an even num-

ber of edges and no three collinear vertices can be augmented to a 2-regular PSLG.

Previously, Bose et al. [5] proved that every PSLG matching can be augmented to a

PSLG spanning tree of maximum degree 3, and the bound 3 is the best possible. Hoff-

mann et al. [11] showed that every PSLG can be augmented to a connected PSLG such

that the degree of every vertex increases by at most two. Al-Jubeh et al. [3] proved

that a PSLG matching on n ≥ 4 vertices can be augmented to a 3-connected PSLG iff

no edge is a chord of the convex hull of the vertices, and the augmented PSLG has

always at most 2n − 2 edges. We refer to a recent survey by Hurtado and Tóth [13]

on augmenting PSLGs.

The union of two disjoint compatible perfect geometric matchings is a collec-

tion of disjoint polygons in the plane. This simple fact is crucial for the best current

upper bound on the number of simple polygons on a fixed set of n points in the

plane [6, 12, 19]. The maximum number of perfect geometric matchings on a set

of n points in the plane is known to be between Ω(3n) and O(10.05n), as shown

by García et al. [10] and Sharir and Welzl [18], respectively. Replacing a geomet-

ric matching with a compatible matching can be thought of as a reconfiguration in

the configuration space of all perfect geometric matchings on a fixed point set. The

reconfigurations can be represented by the compatible matching graph (resp., dis-

joint compatible matching graph), whose nodes correspond to the perfect geometric

matchings on a fixed set of n points in the plane (n even), and two nodes are adja-

cent iff the corresponding matchings are compatible (resp., disjoint and compatible).

Aichholzer et al. [1] showed that the compatible matching graph is connected, and

its diameter is O(logn). Razen [17] constructed an n-element point set in general

position where the diameter of this graph is Ω(logn/ log logn). Theorem 1 shows

that the disjoint compatible matching graph has no isolated nodes, but it remains an

open problem whether it is always connected.

The stronger conjectures suggested by Aichholzer et al. [1] and our proof of The-

orem 1 rely on the convex subdivision method. A disjoint compatible matching is

constructed by studying the properties of a dual graph of a convex subdivision. This
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method has a long history in visibility problems in computational geometry, although

the definition of dual graphs is not uniform. For example, O’Rourke [16] used con-

nectivity properties of a dual graph of a convex subdivision to show that the free space

around every set of n ≥ 5 segments in the plane in general position can be covered

by the visibility polygons of ⌊2n/3⌋ point guards, and this bound is the best possible.

See also [20, 21] for variants of this problem. Recently, Al-Jubeh et al. [2] defined a

general class of convex subdivisions for a set of disjoint line segments, and proved

that there is a convex subdivision in this class whose dual graph is 2-edge-connected.

They proved that a bridge (i.e., a cut-edge) in the dual graph is equivalent to the ex-

istence of a simple polygon along the boundaries of some convex cells with certain

properties (a “forbidden” pattern). Starting from an arbitrary convex subdivision in

the class, they applied a sequence of local deformations until all forbidden configu-

rations were removed. In this paper, we follow a similar strategy with a considerably

more sophisticated machinery.

2 Convex Subdivisions

We define a general class of convex subdivisions for a set of disjoint line segments

in the plane. Let M be a set of n disjoint line segments in the plane, with no three

collinear segment endpoints. A convex subdivision of the free space is a set C of

interior disjoint convex sets (called cells) such that every cell is disjoint from the seg-

ments in M , and the union of their closures tiles the plane. We can interpret a convex

subdivision as a cell complex, and define the vertices and edges of a subdivision. The

vertices of the subdivision are the endpoints of the segments in M as well as any

other point that is incident to three or more cells. We will refer to these two types of

vertex as segment endpoints and Steiner points. The edges of the subdivision are line

segments between two consecutive vertices along the boundary of a cell, and rays

lying on the boundary of a cell incident to a vertex. Note that every segment in M

is the union of one or more edges of the subdivision. Every edge of the subdivision

is either a segment edge which lies along some line segment in M , or an extension

edge which lies in the free space. In the following definition, we orient the extension

edges, but keep all segment edges undirected.

Definition 1 For a set M of disjoint line segments, let D(M) be the set of all convex

subdivisions C that admit an orientation of the extension edges with the following

properties (refer to Fig. 3(i)).

• The outdegree of every segment endpoint is 1;

• the outdegree of every Steiner point in the free space is 0 or 1; the Steiner points

in the free space whose outdegree is 0 are called sinks;

• the outdegree of every Steiner point lying in the relative interior of a segment is 0;

• every cycle passes through at least one segment endpoint.

Let N = N(C) denote the 1-skeleton of the convex subdivision C ∈ D(C), that is,

the planar network formed by all segments and all extension edges. The network N

is partially directed: extension edges are directed and segment edges are undirected.
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Fig. 3 (i) A convex subdivision formed by a geometric matching and directed extension edges, with a

sink q . (ii) The extension-paths emitted by segment endpoints u and v. (iii) The extension tree rooted at

the sink q . (iv) The extension tree rooted at r

If no three segment endpoints are collinear, then it is easy to construct a con-

vex subdivision in D(C) with no sinks as follows. Consider the segment endpoints

v1, v2, . . . , v2n in an arbitrary order. For each vi , draw a directed edge (extension)

along the supporting line of the incident line segment vivj that starts from vi in di-

rection −−→vjvi and ends when it reaches another line segment, a previous extension, or

infinity. This simple algorithm does not produce sinks if no three segment endpoints

are collinear. (Aichholzer et al. [1] considered convex subdivisions obtained by this

simple algorithm only.)

Definition 2 Let C be a convex subdivision in D(M) with directed extension edges.

• The extension-path of a vertex p of outdegree 1 is the open directed path along

extension edges starting from p to the first point q 	= p lying on a segment or

at a sink, or to infinity (see Fig. 3(ii)). The extension-path does not include the

endpoints of the path, and so it is disjoint from all segments.

• An extension tree rooted at a vertex v lying on a segment or at a sink is the union

of all (open) extension-paths that terminate at v (see Figs. 3(iii)–(iv)). Every leaf

of an extension tree is a segment endpoint.

Al-Jubeh et al. [2] considered convex subdivisions with no sinks. By allowing

sinks, we have significantly more freedom in constructing and modifying convex

subdivisions. Figure 4 illustrates how one can modify adjacent extension edges, cre-

ate a sink, and reduce the number of cells by one. Note that we can relocate a sink

q to any other Steiner vertex q ′ of the same extension tree by changing the direc-

tions of the extension edges along the path between q and q ′. We will employ such

local deformations in Sect. 4 for constructing a convex subdivision with no critical

polygons.

Let S = S(C) denote the set of sinks of a convex subdivision C ∈ D(M), and

let s = |S(C)|. It is easy to verify that if there are |M| = n segments, then C has

n − s + 1 cells. Indeed, the free space of the n segments and s sinks, R2 \ (M ∪
S), is a connected region with n + s holes. Insert the 2n extension-paths one by

one. The insertion of each extension-path either splits a region into two regions or

decreases the number of holes. Eventually, the regions are convex cells, which are
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Fig. 4 (i) A convex subdivision four segments five cells. (ii) Extensions edges are deformed so that two

incoming edges at q become collinear. (iii) By removing the outgoing edge of q , it becomes a sink, and

we obtain a convex subdivision four cells. (iv) We can move the sink to any Steiner vertex within the same

extension tree by changing the directions of some extension edges

simply connected. So there were exactly n − s steps in which a region is split into

two.

A segment endpoint v may be incident to more than two cells. For a convex sub-

division C ∈ D(M), we define the dual graph G = G(C) such that the edge of G

corresponding to a segment endpoint v connects the two cells adjacent to the unique

out-going edge of v. Double edges are possible, corresponding to two endpoints of a

line segment lying on the common boundary of two cells.

3 Sufficient Conditions for Two Spanning Trees

In this section, we establish a sufficient condition for a convex subdivision C ∈ D(M)

to imply that the dual graph G(C) contains two edge-disjoint spanning trees. Fix a

convex subdivision C ∈ D(M) with directed extension edges for a set M of n disjoint

line segments. The dual graph G = G(C) has exactly 2n edges and at most n + 1

nodes, so there are enough edges for two edge-disjoint spanning trees. According

to a well-known result by Nash-Williams [15] and Tutte [22], a (multi-)graph G =
(V ,E) contains two edge-disjoint spanning trees if and only if, for every partition

V =
⋃r

i=1 Vi of the vertex set into r nonempty classes, there are at least 2(r − 1)

edges between different vertex classes. See Fig. 5 for an example. It is enough to

consider vertex sets Vi ⊂ V that each induce connected subgraphs of G, otherwise

we could break some Vi into two classes without increasing the number of edges

between different classes.

For a subset C′ ⊆ C of convex cells, let G(C′) be the subgraph of G induced by C′.

We will determine the number of edges of each G(C′). Then we find a sufficient

condition that guarantees that for every partition C =
⋃r

i=1 Ci , there are at most

2n − 2(r − 1) edges within the induced subgraphs G(Ci), and so there are at least

2(r − 1) edges between different vertex classes C1, . . . ,Cr .

Proposition 4 If every subset C′ ⊆ C induces at most 2(|C′| − 1) edges of the dual

graph G, then G contains two edge-disjoint spanning trees.

Proof For every partition C =
⋃r

i=1 Ci , the induced subgraphs G(Ci), i = 1, . . . , r ,

jointly have at most
∑r

i=1 2(|Ci | − 1) = 2|C| − 2r ≤ 2(n + 1) − 2r edges. The total
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Fig. 5 (i) A convex subdivision C ∈ D(M) for a set M eight segments. (ii) A partition of C into three

classes, labeled 1©, 2©, and 3©. In the dual four solid edges are between distinct node classes, 12 dotted

edges are within the node classes. (iii) Another partition of C into three classes. In the dual six solid edges

are between distinct classes, more than the requisite 4

number of edges is 2n. Therefore, there are at least 2(r − 1) edges between distinct

vertex classes. �

We can relax this condition noting that the total number of cells in C is only

n − s + 1. Intuitively, every sink “decreases” the total number of cells by one. We

distribute this beneficial effect among disjoint subsets of C. To every subset C′ ⊆ C,

we will assign a set of sinks S(C′), of cardinality s(C′), such that disjoint subsets of

C are assigned disjoint sets of sinks, that is, for every partition C =
⋃r

i=1 Ci we have∑r
i=1 s(Ci) ≤ s.

Proposition 5 If every subset C′ ⊆ C induces at most 2(|C′| + s(C′) − 1) edges of

the dual graph G, then G contains two edge-disjoint spanning trees.

Proof For every partition C =
⋃r

i=1 Ci , the induced subgraphs G(Ci), i = 1, . . . , r ,

jointly have at most
∑r

i=1 2(|Ci | + s(Ci) − 1) ≤ 2|C| + 2s − 2r = 2(n − s + 1) +
2s − 2r = 2(n + 1) − 2r edges. The total number of edges is 2n. Therefore, there are

at least 2(r − 1) edges between distinct vertex classes. �

Associating a Region and Sinks to Sets C′ ⊆ C Let C′ ⊂ C be a set that induces a

connected dual graph G(C′). Let A(C′) be the union of the closures of all cells in

C′, that is, A(C′) =
⋃

c∈C′ cl(c). See Fig. 6(i)–(ii). Denote by ∂A(C′) the boundary

of A(C′). Since every edge of G(C′) corresponds to an edge of the network N(C)

between cells in C′, the interior of A(C′) is connected.

Remark 1 Although we would like to assign to C′ ⊆ C every sink in the interior of

A(C′), instead we will assign sinks to C′ more carefully. Some sinks in the interior

of a hole of A(C′) will be assigned to C′, rather than to the hole. Similarly, A(C′)

may lie in a hole of another domain A(C′′) for some C′′ ⊂ C, and some sinks in the

interior of A(C′) may be assigned to C′′ instead of C′. This will be crucial later in

Lemma 8.
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Fig. 6 (i) A convex subdivision C ∈ D(M), the cells in a subset C′ ⊂ C are shaded. (ii) Domain A(C′)

is connected, and its complement R2 \ A(C′) has four connected components H1, . . . ,H4. The dotted

paths are removed from A(C′) to create R(C′). (iii) In this instance, the boundary of R(C′) is composed

of two weakly simple polygonal curves: γ1 is the boundary of a hole, and γ2 is an outer boundary. The

boundaries are perturbed into simple polygonal curves for clarity. Sink q2 is in S(C′) because it is in the

interior of a hole of R(C′) and an extension-path goes from a Steiner vertex on the boundary of this hole

to q2 . However, sinks q1 and q3 are not in S(C′): sink q1 is in the interior of a hole but no extension path

can reach it from the boundary of the hole; and q3 is on the outer boundary of R(C′)

We define a polygonal domain R(C′) ⊆ A(C′), which will be used for assigning

sinks to C′, and it will also simplify counting the number of edges and vertices of

G(C′) later in Lemma 7. Refer to Fig. 6. Construct region R(C′) from A(C′) by

removing a thin channel along every path of N(C) that

• connects a point of ∂A(C′) to a sink or to another point of ∂A(C′) via the interior

of A(C′), and

• does not contain the outgoing extension edge of any segment endpoint.

The boundary of R(C′) is the union of the boundary of A(C′) and all paths re-

moved from A(C′). Note that the interior of R(C′) is connected, since the edges of

N(C) that correspond to edges of G(C′) have not been removed. When we remove a

path between two points of ∂A(C′), we effectively merge two components of ∂A(C′)

into one component of ∂R(C′). When we remove a path between a boundary point

and a sink q , we effectively move q to the boundary of ∂R(C′). As a result, no path

of segment edges traverses the interior of R(C′) between two points of ∂R(C′); and

no extension-path traverses the interior of R(C′) from a Steiner point of ∂R(C′) to

another point of ∂R(C′).

We say that a closed polygonal curve (p1,p2, . . . , pn) is weakly simple if either

n ∈ {1,2}, or n ≥ 3 and for every ε > 0 and 1 ≤ i ≤ n, there are points p′
i in the

ε-neighborhood of pi such that (p′
1,p

′
2, . . . , p

′
n) is a simple closed polygonal curve.

Similarly, an open polygonal curve (p1,p2, . . . , pn), where p1 and pn are points at

infinity, is weakly simple if n ≥ 2 and for every ε > 0 and 1 < i < n, there are points

p′
i in the ε-neighborhood of pi such that (p1,p

′
2, . . . , p

′
n−1,pn) is a simple open

polygonal curve. Note that every (closed or open) weakly simple polygonal curve

with n ≥ 2 vertices subdivides the plane into a left and a right side (one of which may

be empty).

The boundary of R(C′) may have several connected components. Each connected

component is a weakly simple polygonal curve. We distinguish two types of boundary
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curve: boundaries of holes (closed curve whose interior is disjoint from R(C′)); and

outer boundaries (either a single closed curve whose interior contains R(C′), or one

or more open curves).

Sink Assignment Rule We can now assign sinks to each subset C′ ⊆ C as follows

(refer to Fig. 6(iii)). Let S(C′) ⊆ S(C) be the set of sinks q ∈ S(C) that satisfy one

of the following conditions.

• q lies in the interior of R(C′);

• q lies on the boundary of a hole of R(C′);

• q lies in the interior of a hole of R(C′) and there is an extension-path from a Steiner

point on the boundary of this hole to q .

Proposition 6 If C1,C2 ⊂ C such that C1 ∩ C2 = ∅ and G(C1) and G(C2) are

connected subgraphs, then S(C1) ∩ S(C2) = ∅.

Proof Suppose, to the contrary, that there is a sink q ∈ S(C1) ∩ S(C2). Since C1 and

C2 are disjoint, the corresponding domains R(C1) and R(C2) are interior disjoint, and

the boundaries of their holes are also disjoint. Therefore q has to lie in the interior of a

hole of R(C1) or R(C2). Assume without loss of generality that q lies in the interior

of a hole of R(C1) such that there is a extension-path from a Steiner point on the

boundary of that hole to q . Since R(C1) is connected, the entire domain R(C2) lies in

(the closure of) a hole of R(C1). The extension-path from ∂R(C1) to q would have to

traverse R(C2) from a Steiner point on the outer boundary of R(C2) to the boundary

of a hole of R(C2). However, such an extension path cannot traverse R(C2) by the

construction of R(C2). The contradiction shows that there is no sink q ∈ S(C1) ∩
S(C2). �

Counting the Number of Nodes and Edges of G(C′) We next give a formula for the

number of edges in G(C′) for C′ ⊆ C. Let Γ denote the set of all oriented weakly

simple polygonal curves in N(C) that subdivide the plane into a left and a right side.

The orientation of a curve γ ∈ Γ is independent from the directions of any extension

edges along γ . In fact, every curve γ ∈ Γ can be considered twice, once in each

direction. Each curve in Γ partitions the plane into three parts: curve γ , an open left,

and an open right side (depending the orientation of γ ). We define local features for

a curve γ ∈ Γ . A local feature of γ is an edge of N(C) incident to a vertex of γ , of

one of the following types (refer to Fig. 7):

(a) edge e lies on the left side of γ , and either e is a segment edge or the extension

edge emitted by a segment endpoint;

(b) edge e lies on the left side of γ , and it is the outgoing extension edge of a Steiner

vertex in γ ;

(c) edge e lies on the right side of γ , and either e is a segment edge or the extension

edge emitted by a segment endpoint;

(d) edge e lies on the right side of γ , and it is the outgoing extension edge of a

Steiner vertex in γ .
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Fig. 7 (i) A convex subdivision, the polygonal curve is the boundary between the white and the shaded

cells, where the left side of γ is shaded. The local features of γ are marked. For example, the segment edge

pu is an (a)-feature, lying on the left side of γ , with vertices p ∈ γ and segment endpoint u. (ii) A simpli-

fied figure, which shows only the edges of γ and its local features

Intuitively, an (a)- or (b)-feature is an opportunity to enter into the left side of γ

along a directed extension edge or an (undirected) segment edge: an (a)-feature offers

an entry into the left side of γ along a segment edge or an extension edge that leaves

a segment endpoint; a (b)-feature offers an entry into the left side of γ entirely in

the free space of M . The (c)- and (d)-features have analogous meaning, with an edge

entering into the right side of γ .

Let a(γ ), b(γ ), c(γ ), and d(γ ) denote the number of (a)-, (b)-, (c)-, and (d)-

features of γ , respectively. Note that if −γ and γ denote the same curve in Γ taken

with opposite orientations, then we have a(γ ) = c(−γ ), and b(γ ) = d(−γ ).

Lemma 7 Consider a subset C′ ⊆ C that induces a connected subgraph G(C′). Let

h be the number of holes of R(C′). Let sin denote the number of all sinks lying in the

interior of R(C′). Orient each component of the boundary ∂R(C′) such that R(C′)

lies on their left side, and let a (resp., b) be the total number of (a)-features (resp.,

(b)-features) along ∂R(C′). Then graph G(C′) has 2(|C′| − 1) − a − 2b + 2h + 2sin

edges.

Proof Since C′ induces a connected subgraph of G(C′), the domain R(C′) is con-

nected. Let x be the number of line segments in M lying in the interior of R(C′). Now

R(C′) \ (M ∪ S) is a connected polygonal domain with exactly h + x + sin holes.

The number of extension-paths that enter the interior of R(C′)\M from its bound-

aries is exactly a + b + 2x. Indeed, every segment in the interior of R(C′) emits two

extension-paths. Every (b)-feature emits an extension-path into the interior of R(C′).

Every (a)-feature either emits an extension-path into the interior of R(C′) \ M , or

is a segment edge. If an (a)-feature is a segment edge, then it is contained in some

segment uv ∈ M that enters the interior of R(C′) along e. If segment uv enters the

interior of R(C′) along e, then the remaining portion of uv is in the interior of R(C′),

since no path of segment edges traverses the interior of R(C′) by construction. The
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endpoint of uv corresponding to the (a)-feature and lying in the interior of R(C′)

emits an extension-path into the interior of R(C′) \ M .

Insert the a + b + 2x extension-paths one after the other into R(C′). The insertion

of each extension-path either splits a region into two regions or decreases the number

of holes. Eventually, we obtain convex cells, which are simply connected. So there

were exactly (a+b+2x)− (h+x + sin) = a+b+x −h− sin steps in which a region

is split into two regions. Thus the number of cells is |C′| = 1 + a + b + x − h − sin.

A segment endpoint corresponds to an edge between two cells in C′ if its outgoing

extension edge lies in the interior of R(C′). There are exactly a + 2x such segment

endpoints. Hence, G(C′) has

a + 2x = 2(a + b + x − h − sin) − a − 2b + 2h + 2sin

= 2
(
|C′| − 1

)
− a − 2b + 2h + 2sin

edges, as required. �

Critical Polygons We show next that if G(C′) has more than 2(|C′| + s(C′) − 1)

edges for some C′ ⊆ C, then a single component of the boundary ∂R(C′) is respon-

sible for this. Let Γ+ ⊂ Γ be the set of all closed weakly simple polygonal curves in

Γ oriented counterclockwise. For every γ ∈ Γ+, let s(γ ) denote the number of sinks

q such that either q ∈ γ , or q lies in the interior of γ and there is an extension-path

from a Steiner point of γ to q .

Lemma 8 If C ∈ D(M) is a convex subdivision such that

c(γ ) + 2d(γ ) + 2s(γ ) ≥ 2

for every γ ∈ Γ+, then the dual graph G(C) contains two edge-disjoint spanning

trees.

Proof By Proposition 5, it is enough to show that if G(C′) has more than 2(|C′| +
s(C′) − 1) edges for some C′ ⊆ C, then there is a curve γ ∈ Γ+ such that c(γ ) +
2d(γ ) + 2s(γ ) < 2.

Consider a subset C′ ⊆ C such that G(C′) has more than 2(|C′| + s(C′) − 1)

edges. (See an example in Fig. 8.) By Lemma 7, we have 2(|C′| + s(C′) − 1) <

2(|C′| − 1) − a − 2b + 2h + 2sin(C
′), that is, a + 2b + 2(s(C′) − sin(C

′)) < 2h. Let

γ1, . . . , γh ∈ Γ+ denote the weakly simple polygons on the boundaries of the h holes

of R(C′). By discarding features on the outer boundaries of R(C′), it is clear that

h∑

i=1

c(γi) ≤ a and

h∑

i=1

d(γi) ≤ b.

Thanks to the careful definition of the set S(C′) of sinks assigned to C′, we now have

s(C′) − sin(C
′) =

∑h
i=1 s(γi). This yields

h∑

i=1

(
c(γi) + 2d(γi) + 2s(γi)

)
< 2h.

For at least one of the holes γi , we have c(γi) + 2d(γi) + 2s(γi) < 2. �
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Fig. 8 (i) A convex subdivision C ∈ D(M). (ii) The dual graph does not contain two edge-disjoint span-

ning trees because there are seven edges between five vertex classes labeled 1© . . . 5©. Subgraph G(C1)

induced by six nodes labeled 1© has 12 dotted edges, but 2 · (6 − 1) = 10, so C1 violates the condition

in Propositions 4 and 5. (iii) The cells 1© are shaded, their union is region A(C1). (iv) Region R(C1) has

one hole, bounded by a weakly simple polygon γ , such that c(γ ) = d(γ ) = s(γ ) = 0. So γ is a 0-critical

polygon

A closed counterclockwise polygonal curve γ ∈ Γ+ is called critical if c(γ ) +
2d(γ ) + 2s(γ ) ≤ 1. In particular, it is 0-critical if c(γ ) + 2d(γ ) + 2s(γ ) = 0, and

1-critical if c(γ ) + 2d(γ ) + 2s(γ ) = 1. See Fig. 9 for a few examples. Observe that

if γ ∈ Γ+ is critical, then d(γ ) = s(γ ) = 0, that is, it has no (d)-features, it does not

pass through any sink, and there is no extension-path from γ to a sink in the interior

of γ . A reformulation of Lemma 8 using this terminology is the following.

Corollary 9 If C ∈ D(M) is a convex subdivision with no critical polygons, then the

dual graph G(C) contains two edge-disjoint spanning trees.

Intuitive Interpretation of Critical Polygons Recall that N = N(C) denotes the

planar network formed by all segments and extensions of a convex subdivision

C ∈ D(M). The line segments in M are undirected, and the extensions are directed. If

a polygon γ is 0-critical then one cannot travel from γ to the exterior of γ respecting

the directions of extension edges. Intuitively, “there is no way out” from γ . If γ is
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Fig. 9 Schematic drawing of some critical polygons. Only the critical polygons and their features are

shown: segment edges are bold, extension-paths are dotted (and curved). Upper row: 0-critical polygons

with no (c)- or (d)-features, that is, they have no D-paths to their exteriors. Lower row: 1-critical polygons

with exactly one (c)-feature each, that is, all D-paths to the exterior pass through the same segment edge

1-critical, then every path to the exterior of γ that respects the directions of extension

edges has to pass through the single (c)-feature of γ . The condition that the directions

of all extension edges should be respected can be relaxed for the edges of extension

trees rooted at sinks: if γ is critical, then s(γ ) = 0, and thus no extension-path starting

from the exterior of γ can terminate at a sink on or in the interior of γ .

D-paths We can formalize the above intuition. We say that a directed path in N(C)

is a D-path, if it respects the directions of all extension edges that are not part of any

extension tree rooted at a sink. That is, a D-path may traverse segment edges and

edges of extension trees rooted at sinks in an arbitrary direction.

Proposition 10

• If γ ∈ Γ+ is 0-critical, then there is no D-path from a point in γ to the exterior

of γ .

• If γ ∈ Γ+ is 1-critical, then every such D-path enters the exterior of γ along the

same edge, which is incident to a vertex lying on a line segment in M .

Proof Suppose that there is a D-path from γ ∈ Γ+ to its exterior, and let e be the first

edge that enters the exterior of γ . If e is a segment edge (undirected) or an extension

edge directed away from γ , then it is a (c)- or (d)-feature of γ . If e is an extension

edge directed towards γ , then it lies on an extension-path that terminates at a sink q .

If this extension-path leaves γ along some extension edge e′ before it reaches q ,

then e′ is a (d)-feature of γ . If, however, sink q lies on or in the interior of γ , then

s(γ ) ≥ 1. In all cases, we have c(γ ) + 2d(γ ) + 2s(γ ) > 0.

The only possibility for c(γ ) + 2d(γ ) + 2s(γ ) = 1 is that c(γ ) = 1. In this case,

any such D-path enters the exterior of γ along the same segment edge, which is

incident to a vertex lying on a line segment. �

Maximal Critical Polygons For every closed polygon γ ∈ Γ+, let C(γ ) denote the

set of cells in the interior of γ ; and let R(γ ) = R(C(γ )). We define the size of γ to
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Fig. 10 (i)–(ii) Schematic drawings of two intersecting 0-critical polygons γ1 and γ2 in the same convex

subdivision. (iii)–(iv) Two intersecting 1-critical polygons γ3 and γ4 in the same convex subdivision

be the cardinality of C(γ ). We say that a critical polygon γ is maximal if there is

no other critical polygon γ ′ such that C(γ ) ⊂ C(γ ′). Similarly, we define maximal

0-critical and maximal 1-critical polygons.

In the next section, we will construct a convex subdivision recursively, by modi-

fying the boundary of a maximal critical polygon (defined below). The disjointness

of maximal critical polygons is essential for this approach.

Proposition 11

(i) If γ1, γ2 ∈ Γ+ are maximal 0-critical, then R(γ1) and R(γ2) are disjoint.

(ii) If there is no 0-critical polygon in Γ+ and γ1, γ2 ∈ Γ+ are maximal 1-critical,

then R(γ1) and R(γ2) are disjoint.

Proof Suppose that γ1, γ2 ∈ Γ+ are maximal 0-critical polygons but they intersect

(Fig. 10(i)–(ii)). By definition, they have no (c)- or (d)-features. Hence there is no

such feature along the boundary of R(γ1) ∪ R(γ2). Let R be the union of R(γ1),

R(γ2), and all holes of R(γ1) ∪ R(γ2). Then the boundary of R is a weakly simple

polygon in Γ+ with no (c)- or (d)-feature. So it is a 0-critical polygon containing all

cells of C(γ1) and C(γ2), contradicting the maximality of γ1 and γ2.

Now suppose that there is no 0-critical polygon in Γ+, and γ1, γ2 ∈ Γ+ are maxi-

mal 1-critical polygons (Fig. 10(iii)–(iv)). That is, γ1 and γ2 have no (d)-features, and

they each have exactly one (c)-feature. Let R be the union of R(γ1), R(γ2), and all

holes of R(γ1) ∪ R(γ2). Then the boundary of R contains no (d)-feature, and at most

two (c)-features. Any (c)-feature of ∂R corresponds to a (c)-feature of either γ1 or γ2.

However, ∂R must have at least one (c)-feature, since we assumed that there is no 0-

critical polygon. If ∂R has exactly one (c)-feature (Fig. 10(iii)–(iv)), then its outer

boundary is a 1-critical polygon that is strictly larger than γ1 and γ2, contradicting

the maximality of γ1 and γ2. So we may assume that R has exactly two (c)-features,

each of which must be the same edge in N as the corresponding (c)-feature of γ1

or γ2. It follows that the (c)-feature of γ1 (resp., γ2) is in the exterior of R(γ2) (resp.,

R(γ1)).

We first show that the regions R(γ1) and R(γ2) overlap. Suppose, to the con-

trary, that R(γ1) and R(γ2) are interior disjoint, but they have some common edges.

Assume first that their common boundary γ1 ∩ γ2 contains an extension edge e

(Fig. 11(i)–(ii)). Then e is part of an extension tree rooted at some point r . The root r

also lies in γ1 ∩ γ1, otherwise the extension-path enters the exterior of γ1 or γ2, cre-

ating a (d)-feature. Since neither γ1 nor γ2 contains any sink, the root r lies on some
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Fig. 11 (i)–(ii) Two intersecting 1-critical polygons γ1 and γ2 in the same convex subdivision, where

R(γ1) and R(γ2) are interior disjoint, but their common boundary contains an extension edge e.

(iii)–(iv) Two intersecting 1-critical polygons γ3 and γ4 in the same convex subdivision, where R(γ1)

and R(γ2) overlap, and R(γ1) ∩ R(γ2) has two connected components, each of which is a 0-critical poly-

gon

line segment uv ∈ M . Since R(γ1) and R(γ2) are interior disjoint, uv is a (c)-feature

of both γ1 and γ2, hence R(γ1) ∪ R(γ2) has no (c)-feature, contradicting the above

assumption that it has at least two (c)-features. Assume now that γ1 ∩ γ2 contains no

extension edge, but it contains a segment edge along some segment uv ∈ M . Then the

two endpoints of (γ1 ∩ γ2) ∩ uv are (c)-features of both γ1 and γ2, and hence neither

γ1 not γ2 is critical.

We have shown that R(γ1) and R(γ2) overlap, that is, C(γ1) ∩ C(γ2) 	= ∅
(Fig. 11(iii)–(iv)). Let R′ be a connected component of int(R(γ1)) ∩ int(R(γ2)). As

noted above, R′ is disjoint of the (c)-features of γ1 and γ2. We conclude that ∂R′ has

neither (c)- nor (d)-features, since it would be a local feature of the same type for γ1

or γ2. Similarly, ∂R′ contains no sink, since such a sink would lie on γ1 or γ2. Hence

∂R′ is 0-critical, contradicting our assumption. �

4 Constructing a Convex Subdivision

Let M be a set of n disjoint line segments with no three collinear endpoints. In this

section we construct a convex subdivision C ∈ D(M) with no critical polygon. We

start with an initial convex subdivision C0 ∈ D(M), which has no sinks, and then

apply a sequence of modifications in order to eliminate critical polygons. For a con-

vex subdivision C ∈ D(M), let s(C) denote the total number of sinks, and let MC

be the set of segments that intersect or lie in the interior of some critical polygons.

A modification step may have two possible outcomes: (1) We create a new sink and

s(C) strictly increases. In this case, we redraw the convex subdivision by a simple

“left–right” algorithm described below that preserves all existing sinks. (2) There are

no new sinks but we destroy a maximal critical polygon and MC strictly decreases.

In this case we consider the next maximal critical polygon and recurse. In each mod-

ification step, the function f (C) = n · s(C)− |MC | strictly increases. Since the value

of f (C) is always between −n and n2, after fewer than n2 + n modification steps,

we obtain a convex subdivision C ∈ D(M) with MC = ∅, that is, with no critical

polygons.
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Fig. 12 (i) Disjoint line segments with an extension tree rooted at a sink. (ii) Left extensions drawn in the

first phase. (iii) Right extensions drawn in the second phase

Left–right Subdivisions Our initial convex subdivision C0 ∈ D(M) is a “left–right”

subdivision defined below. If a modification step creates a new sink, we redraw a

left–right subdivision that preserves all extension trees rooted at sinks, and draws

new extensions for all other segment endpoints.

Let M be a set of n disjoint line segments in the plane such that no three endpoints

are collinear, and no two segment endpoints have the same x-coordinate. Assume that

we are given a set T of s ≥ 0 pairwise disjoint extension trees (initially s = 0), each

of which terminates at a sink, and have convex angles at their vertices. We construct

extensions for all remaining segment endpoints in two phases.

Sort the segments in M according to the x-coordinates of their left endpoints in

increasing order. Let ui and vi be the left and right endpoint, respectively, of the ith

segment. In the first phase, consider the left endpoints u1, . . . , un, successively. If ui

is not incident to an extension tree in T , then draw a directed segment (left extension)

along −−→viui from ui until it reaches another segment, a previous extension, or infinity.

In the second phase, consider the right endpoints v1, . . . , vn. If vi is not incident to an

extension tree in T , then draw a directed segment (right extension) along −−→uivi from

vi until it reaches another segment, a previous extension, or infinity. The algorithm

extends all segments beyond both of their endpoints, all angles are convex, and so it

produces a convex subdivision in D(M) with exactly s sinks. The convex subdivision

constructed by this algorithm, for any set T , is called a left–right subdivision of M .

We show that a left–right subdivision contains no 0-critical polygon. Recall that

N = N(C) is the network of all segment and extension edges of C (see Fig. 12(iii)).

For a left–right subdivision C ∈ D(M), let N1 ⊂ N be the union of all segments

edges, all extension trees rooted at sinks, and all left extensions (see Fig. 12(ii)). That

is, N1 is the union of edges we have at the end of phase 1 of the above subdivision

algorithm. Recall that a D-path is a directed path in N that respects the directions of

extension edges that are not part of any extension tree rooted at a sink (intuitively, a

sink “neutralizes” the directions of an extension tree).

Proposition 12 If C ∈ D(M) is a left–right subdivision, then N1 contains a D-path

from any point p ∈ N1 to infinity.
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Proof We construct a D-path starting from a point p ∈ N1 by repeating the following

three steps: (1) If p lies on a segment, then walk to its left endpoint. (2) If p is a point

incident to an extension tree rooted at a sink, then walk to the leftmost leaf of the

extension tree. (3) If p lies on a left extension in N1, then follow the left extension

to the end. To prove that this walk goes to infinity, it is enough to show that it has no

loops. Each left segment endpoint ui either emits a left extension or is incident to an

extension tree rooted at a sink and the leftmost vertex of the extension tree is strictly

to the left of ui . Therefore the left endpoints of the segments along the walk have

decreasing x-coordinates, and so the walk visits every left segment endpoint at most

once. �

Corollary 13 Left–right subdivisions have no 0-critical polygons.

Proof Combine Propositions 10 and 12. �

Subdivisions with No 0-Critical Polygons Our algorithm performs a sequence of

local modifications starting from a left–right subdivision that will either eliminate

all critical polygons from the resulting subdivisions or else introduce a new sink. It

maintains the invariant that the subdivision always remains in the class D∗(M) ⊆
D(M) defined here. Refer to Fig. 13.

Definition 3 A subdivision C ∈ D(M) is in the class D∗(M) if it has the following

properties.

1. N(C) contains a D-path from every point p ∈ N(C) to infinity.

2. If a segment endpoint v lies on or in the interior of a critical polygon, or if v is

incident to any extension tree rooted at a sink, then its outgoing edge is collinear

with the incident segment.

3. If a Steiner point p of outdegree 1 lies on or in the interior of a critical polygon,

but it is not incident to any extension tree rooted at a sink, then its outgoing edge

is collinear with an incoming edge.

Proposition 14 Every left–right subdivision is in D∗(M).

Proof Property 1 follows from Proposition 12. For property 2, consider an endpoint

v of a segment uv ∈ M . If v is incident to an extension tree in T , rooted at a sink,

then v is a leaf of this tree. Since every tree in T has convex angles at their vertices,

the outgoing edge of v is collinear with segment uv. If v is not incident to any tree in

T , then the outgoing edge is an extension of uv by construction. For property 3, let p

be a Steiner vertex of outdegree 1, but not part of any tree in T . By construction, the

outgoing edge of p is collinear with an incoming edge. �

In fact, the vertices of a left–right subdivision satisfy all these conditions in the

exterior of critical polygons, too. The intuition for the definition of class D∗(M)

is that our local modifications successively destroy maximal critical polygons, but

their effect remains largely outside of the surviving critical polygons. That is, on the
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Fig. 13 A subdivision C ∈ D
∗(M). The weakly simple polygon γ with white interior is maximal 1-crit-

ical. A sink q lies in the interior of γ . The outgoing edges of the segment endpoints v1 and v2 are not

collinear with the incident segment in M ; these endpoints are in the exterior of γ and not incident to any

extension tree rooted at a sink. The outgoing edges of the Steiner points p1, . . . , p5 are not collinear with

any incoming edges; these Steiner points are either in the exterior of γ or incident to an extension tree

rooted at q

boundary and inside the current critical polygons, we always find a structure similar

to left–right subdivisions. The special conditions on the extension trees rooted at

sinks ensure that at every incident segment endpoint v, the incident extension edge of

the tree and the segment edge already determine convex angles (that is, two straight

angles), independently of any incoming extension edges incident to v.

As an immediate consequence of Definition 3, the subdivisions in D∗(M) have no

0-critical polygons.

Proposition 15 Let C ∈ D∗(M). If γ ∈ Γ+(C) is a 1-critical polygon, then for every

p ∈ N(C) in the closed polygonal domain bounded by γ , there is a D-path δ(p) ⊂
N(C) from p to the (c)-feature of γ .

Proof By Definition 3, N contains a D-path δ(p) from p to infinity. By Proposi-

tion 10, δ(p) has to pass through the (c)-feature of γ . �

We can now focus on 1-critical polygons. For our local modification steps, it will

be convenient to group together consecutive collinear extension edges in N . Let a

straight-extension be a maximal path along consecutive collinear extension edges

in N . For example, in a left–right subdivision, every left extension (resp., right exten-

sion) is a straight-extension, even though they may consist of several collinear exten-

sion edges of N (see Fig. 12(iii)). Definition 3(2) requires that if a straight-extension

is not part of an extension tree rooted at a sink and its endpoint p is a Steiner point on

or in the interior of a critical polygon, then p must be in the relative interior of some

other straight-extension.

Testing Whether a Segment is in MC While the number of sinks remains the same,

we measure the progress of our algorithm with |MC |, the number of segments that

intersect or lie in the interior of some critical polygon. If C ∈ D∗(M), there is a

simple equivalent condition for m ∈ MC . Two D-paths in N are endpoint-disjoint if

no segment endpoint lies in the relative interior of both paths.
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Proposition 16 Let C ∈ D∗(M) and m ∈ M . We have m 	∈ MC if and only if N(C)

contains two endpoint-disjoint D-paths from any point p ∈ m to infinity.

Proof First consider a segment m ∈ MC . Let γ be the maximal 1-critical polygon

that intersects m or contains m in its interior. If m contains the (c)-feature of γ , then

all D-paths from any point p ∈ m to infinity must pass through the endpoint of m

lying in the exterior of γ . For all other segments m ∈ MC , all D-paths from any point

p ∈ m to infinity must pass through the (c)-feature of γ , and then follow the line

segment containing the (c)-feature to its endpoint in the exterior of γ . Hence any two

D-paths to infinity have to pass through the same segment endpoint.

Next consider a segment m 	∈ MC . By Definition 3(1), there is a D-path from any

p ∈ m to infinity in N . Suppose that every D-path in N from p ∈ m to infinity passes

through the same segment endpoint w. Let W ⊂ N be the set of all points q ∈ N such

that all D-paths from q to infinity go through w. The set W is bounded, and its outer

boundary is a 1-critical polygon γ ∈ Γ+. Segment m lies on or in the interior of γ ,

contradicting our assumption that m 	∈ MC . �

One Step of the Recursion It remains to show that if a convex subdivision in D∗(M)

has a critical polygon, then we can perform a local modification step that strictly

increases f (C) = n · s(C) − |MC |.

Lemma 17 If C ∈ D∗(M) and C has a 1-critical polygon, then there is a convex

subdivision C′ ∈ D∗(M) such that n · s(C) − |MC | < n · s(C′) − |MC′ |.

Proof Let C ∈ D∗(M) and let γ ∈ Γ+ be a maximal 1-critical polygon (refer to

Fig. 14). Let e0 be the unique (c)-feature of γ , let p0 = e0 ∩ γ , and let q0 be the

endpoint of the line segment containing e0 that lies either on or in the exterior of γ .

Let Hγ denote the geodesic hull of γ ∪ {q0} with respect to the line segments of M

lying in the exterior of γ . The geodesic hull Hγ is a closed polygonal domain, with

boundary ∂Hγ . Note that every convex vertex of Hγ is either q0 or a convex vertex

of γ ; and every reflex vertex of Hγ is a segment endpoint in the exterior of γ . Let

(q0, q1, . . . , qk) denote the convex vertices of Hγ in counterclockwise order.

Every convex vertex qi , i = 1, . . . , k, is a Steiner point in the free space: qi cannot

be at a (c)- or (d)-feature of γ by our assumptions. It cannot be at an (a)-feature, either,

because an incident line segment would create a (c)-feature of γ by Definition 3(2).

Every qi , i = 1, . . . , k, is incident to two edges of γ , which are extension edges.

We define an orientation for these vertices as follows. Vertex qi is counterclock-

wise if the edge preceding qi in a counterclockwise order along γ is directed into qi .

Vertex qi is clockwise if the edge following qi in a counterclockwise order along γ

is directed into qi . If both edges are directed into qi , then it is both clockwise and

counterclockwise.

A Brief Preview A very brief preview of the remainder of the proof of Lemma 17

follows. Choose a convex vertex qi , 1 ≤ i ≤ k, modify the outgoing edge of qi , and

make some additional adjustments to obtain a convex subdivision C′ ∈ D∗(M). One

of the following two strategies will suffice. (1) Replace the outgoing edge of qi with



Discrete Comput Geom (2013) 49:89–131 109

Fig. 14 A left–right subdivision. The interior of a 1-critical polygon γ is shaded, its unique (c)-feature is

the edge p0q0 . Dotted lines indicate the boundary of the geodesic hull Hγ . The convex vertices of Hγ are

(q0, . . . , q5), where q1 is counterclockwise, and q2 , q3 , q4 , q5 are clockwise

qiqi+1, and introduce a new sink at qi+1. In this case, recompute a left–right subdi-

vision (including the new sink) C′, and the number of sinks increases by one. (2) Re-

place the outgoing edge of qi with an edge of ∂Hγ , and recompute some of the ex-

tension edges lying in the geodesic hull Hγ . In this case, the number of sinks remains

the same but MC strictly decreases.

We proceed with the details. Distinguish two cases.

Case 1 There are two consecutive convex vertices, qi and qi+1, 1 ≤ i ≤ k − 2, such

that qi is oriented counterclockwise and qi+1 is oriented clockwise (e.g., q1 and q2

in Fig. 14 or q2 and q3 in Fig. 15(ii)). We distinguish two subcases.

Subcase 1a: qiqi+1 is an edge of Hγ (see q2q3 in Fig. 15). Replace the outgoing

extension edge of qi with the directed edge qiqi+1, thereby introducing a new sink at

qi+1. Build a valid extension tree rooted at qi+1 (described below), which is disjoint

from any extension trees rooted at existing sinks of C. Then compute a left–right

subdivision C′ with these s(C) + 1 sinks (the s(C) sinks of C and a new sink at

qi+1). Subdivision C′ is in D∗(M) because it is a left–right subdivision, and it has

one more sink than C.

It remains to build an extension tree rooted at qi+1. Let T0 be the union of qiqi+1,

all extension-paths of N leading to qi , and all extension paths of N leading to qi+1.

To show that T0 is a crossing-free directed tree rooted at qi+1, we need the following

claim. Let γ (qi, qi+1) denote the portion of γ from qi to qi+1 in counterclockwise

order.

Claim 1 There is no extension-path in N(C) to qi (resp., qi+1) from any other vertex

of γ (qi, qi+1).
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Fig. 15 Subcase 1a. (i) A 1-critical polygon γ with shaded interior. q2 is counterclockwise and q3 is

clockwise, and q2q3 is an edge of the geodesic ∂Hγ . (ii) Introduce a sink at q3, which is the root of the

directed tree T0 formed by edge q2q3 and all extension-paths leading to q2 and q3 . Extend T0 recursively

with the extension trees rooted at v1 and v2 to obtain a tree which has convex angles at all vertices. We

perturb the tree at v1 and v2 so that they include very short outgoing edges collinear with the incident line

segments, and obtain an extension tree rooted at q3

Proof Suppose, to the contrary, that there is such an extension-path δ. Then the com-

position of δ with (part of) γ (qi, qi+1) is a weakly simple polygon with nonempty

interior and without (c)- or (d)-features. This contradicts the fact that N(C) has no

0-critical polygons, completing the proof. �

Since the original outgoing edges of qi and qi+1 are not part of T0, and any other

vertex has outdegree at most one, T0 is a tree. The tree T0 does not contain any

extension edge that crosses qiqi+1, because every such extension edge leads to an

interior vertex of γ (qi, qi+1), which are not in T0 by Claim 1. Therefore T0 is a plane

directed tree rooted at qi+1. Its leaves are adjacent to segments in M by definition. At

the leaves of T0 lying on the boundary or in the interior of γ , the adjacent segment

is collinear with the leaf by Definition 3(2). But this does not necessarily hold for

leaves in the exterior of γ (see, e.g., segment endpoint v1 in Fig. 15(i)).

We augment T0 to a tree in which every leaf is collinear with the incident segment

edge. Set T = T0, and augment it by recursively appending to it any extension tree

rooted at a segment endpoint v, which is at a leaf of T but the leaf is not collinear with

the incident line segment. The resulting directed tree T consists of extension edges,

it is rooted at qi+1, but is it not necessarily an extension tree because some of its non-

leaf vertices may be segment endpoints. Perturb T at each such segment endpoint v,

by creating a sufficiently short outgoing edge vv′ collinear with the segment incident

to v (see Fig. 15(ii)). After this perturbation, we obtain an extension tree rooted at

qi+1, as required.

Subcase 1b: qiqi+1 is not an edge of Hγ (see q2q3 in Fig. 16). We replace the

outgoing edge of qi or qi+1 with the incident edge of ∂Hγ . This provides a new

edge from γ to the exterior of γ , and ensures that some segment in MC has two

endpoint-disjoint D-paths to infinity (cf. Claim 5 below). After modifying the outgo-

ing edge of qi or qi+1, a careful rebuilding of the nearby extensions yields a subdivi-

sion C′ ∈ D∗(M) with MC′ ⊂ MC . To control the extent of the modifications, we will
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Fig. 16 Subcase 1b. (i) A 1-critical polygon γ with shaded interior. q2 is counterclockwise and q3 is

clockwise. The geodesic Hγ between q2 and q3 wraps around the segment endpoints r2 and r3. The ray
−−→q2r2 hits the boundary of γ at point t . (ii) Modification in Subcase 1b: the outgoing edge of q2 is replaced

by q2r2 , and the outgoing edge of r2 is replaced by r2t . The extensions originating in the shaded polygon

P are redrawn. After the modification, segment uv has two endpoint-disjoint D-paths to infinity

define a polygonal domain P ⊂ Hγ : all extension edges in the exterior of P remain

unchanged, and the extension edges inside P are redrawn. Polygon P is defined in

the next two paragraphs.

By Proposition 15, N(C) contains D-paths δ(qi) and δ(qi+1) from qi and qi+1,

respectively, to the (c)-feature of γ . The D-paths δ(qi) and δ(qi+1) meet at some

point q̂ , and we denote by δ(qi, qi+1) the union of the initial portions of δ(qi) and

δ(qi+1) up to q̂ (see Fig. 17(i)). Let qiri and ri+1qi+1 be the edges of ∂Hγ incident to

qi and qi+1, respectively (possibly ri = ri+1). Since ri and ri+1 are reflex vertices of

the geodesic hull Hγ , they are endpoints of some line segments lying in the exterior

of γ . The extension-paths emitted by ri and ri+1 reach γ (qi, qi+1), so N(C) contains

D-paths δ(ri) and δ(ri+1) from ri and ri+1, respectively, to the (c)-feature of γ . Both

δ(ri) and δ(ri+1) reach δ(qi, qi+1) at some points r̂i and r̂i+1, respectively (possibly

r̂i = r̂i+1). Since δ(ri) and δ(ri+1) do not cross, the points (qi, r̂i, r̂i+1, qi+1) appear

in this order along path δ(qi, qi+1). Assume, by applying a reflection if necessary,

that q̂ does not lie between qi and r̂i along δ(qi, qi+1).

The ray −→qiri hits γ (qi, qi+1) at some point t (see Fig. 17(ii)). Note that any ex-

tension edge that crosses qi t is directed from the right to the left side of
−→
qi t , because

no extension leaves γ (qi, qi+1). Let α(ri, qi+1) be the directed path1 from ri to qi+1

that starts with the directed segment ri t and then follows γ counterclockwise from

t to qi+1. Let x be the first point on α(ri, qi+1) that lies on a straight-extension that

contains an edge of δ(qi, qi+1). Point x ∈ α(ri, qi+1) exists, because the outgoing

edge of qi+1 is part of δ(qi, qi+1). Let δ(x) be a D-path from x to the (c)-feature of

γ . Now let P be the polygonal domain enclosed by segment qiri , the initial portion

of path α(ri, qi+1) from ri to x, and paths δ(qi) and δ(x).

Let e0 be the straight-extension emitted by qi (see Fig. 17(iii)). We will replace

e0 with qiri . Any extension edge that crosses qiri in N(C) will be truncated. Let E

1Path α(ri , qi+1) is not part of N(C), and does not have to follow the directions of extension edges

along γ .
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Fig. 17 (i) The portions of δ and ∂Hγ between a counterclockwise vertex qi and a clockwise vertex qi+1.

The paths δ(qi ), δ(ri ), δ(ri+1), and δ(qi+1) go to the (c)-feature of γ (which is outside of the figure). The

interior of γ is shaded light gray. (ii) Three straight-extensions cross segment ri t , one of them contains an

edge of δ(qi ). Polygon P is shaded dark gray. (iii) A straight-extension crosses qiri , and it contains an

edge of δ(qi )

be the set of all edges of polygon P that are contained in some straight-extension of

N(C) that intersects qiri . Clearly, we have e0 ∈ E. Let every edge e ∈ E inherit its

direction from the straight-extension it is contained in.

Claim 2 The interior of P lies on the right side of every edge e ∈ E.

Proof Let P0 be the polygonal domain enclosed by qiri , δ(qi), and δ(ri). Consider

an edge e ∈ E. Since e crosses neither δ(qi) nor δ(ri), we have e ⊂ P0. Recall that

q̂ does not lie between qi and r̂i along path δ(qi, qi+1). This implies that P0 ⊂ P .

Hence edge e ∈ E lies on δ(qi), and the interiors of both P0 and P are on the right

side of e. �

Every straight-extension that contains an edge e ∈ E crosses segment qiri (see

Fig. 18(i)). Order the segments in E by e0, . . . , eℓ−1, according to their intersections

with qiri . The straight-extensions containing the segments in E decompose polygon

P into sectors, each of which is adjacent to a unique edge in E by Claim 2. For

j = 0, . . . , ℓ − 1, denote by Sj the sector adjacent to ej ∈ E.

Claim 3 If p is a point on an edge e ∈ E, then a ray shot from p into the interior of

P cannot hit any other edge in E.

Proof If a ray is emitted from a point p ∈ e of some edge e ∈ E, then it cannot hit

another edge of E in the same sector, and it can only cross the boundary between any

two adjacent sectors from left to right. �

Let riy = ri t ∩ ∂P be the portion of ri t on the boundary of P (that is, y = x if

x ∈ ri t as in Fig. 17(ii), and y = t otherwise as in Fig. 16(ii)).

We are now ready to construct a new convex subdivision C′, by modifying some

extensions of C. Refer to Fig. 18. All extensions in the exterior of P remain the same

(but some new extensions starting from P may enter the exterior of P ). All extension



Discrete Comput Geom (2013) 49:89–131 113

Fig. 18 (i) Polygon P with edges E = {e0, e1, e2, e3} is decomposed into four sectors. A ray enters

the interior of P at point p of edge e1. (ii) The edges of the subdivision C ∈ D
∗(M) that intersect P .

(iii) The outgoing edge of qi is replaced by qiri , and the outgoing edge of ri is replaced by riy. The

straight-extensions inside polygon P are erased unless they overlap with the boundary of P . (iv) New

straight-extensions are created in polygon P

trees rooted at sinks remain the same (even if they are in the polygon P ). All straight-

line extensions that start from the interior of P and overlap with some edge of P

are also preserved. Replace the straight-extension e0 emitted by qi by the directed

segments qiri and riy (these become the outgoing edges of qi and ri , respectively).

The edges of N(C) that cross qiy (from the exterior of P into the interior of P )

are truncated such that they now end at qiy. In particular, all extension edges along

e0, . . . , eℓ−1 are erased. Extend the edges of N(C) that hit some e ∈ E from the

exterior of P successively into the interior of P until they hit a line segment, the

boundary of ∂P , or another extension (by Claim 3, they do not hit any other edge

in E). See Fig. 18(iii).

It remains to replace the straight-extensions of N(C) that start from a segment

endpoint u in the interior of P but do not overlap with any edge of P and are not part

of any extension tree rooted at a sink. Denote by U the set of segments endpoints

in the interior of P whose straight-extensions are still missing. Consider the sectors

S0, . . . , Sℓ−1 in this order. Recall that no segment in M crosses the boundary between

sectors. For each sector Sj , we draw extensions for the endpoints U ∩ Sj in two

phases. In the first phase, successively draw the extensions whose directions point

towards the right of edge ej . In the second phase, draw successively the extensions

whose directions point towards the left of ej . The extensions drawn in the first phase

remain in polygon P (they may enter sectors Sj ′ , j ′ > j ); the extensions drawn in



114 Discrete Comput Geom (2013) 49:89–131

the second phase may exit polygon P through the segment ej . Denote by C′ ∈ D(M)

the resulting convex subdivision of M (Fig. 18(iv)).

Claim 4

• N(C′) contains a D-path from every point p ∈ N(C′) to infinity.

• N(C′) contain a D-path from every point p ∈ R(γ ) ∪ P to q0.

Proof Before the modifications, N(C) contained a D-path from every point p ∈
N(C) to infinity, since C ∈ D∗(M). The modification affects only those paths that

intersect the interior of polygon P . Suppose that p ∈ N(C), and its D-path δ(p)

to infinity intersected polygon P . If δ(p) reached ∂P from the exterior of P , and

overlapped with an edge e ∈ E, then it now enters the interior of P , reaches a point

p′ ∈ ∂P (along extensions drawn in the first phase in each sector, as in the proof of

Proposition 12), and then goes to infinity along δ(p′). If δ(p) reached ∂P from the

exterior of P at the edge qiy, then it now follows qiy to y, and goes to infinity along

δ(y). Finally, if p lies in the interior of P , then N(C′) now contains a path from p

to a point p′ ∈ ∂P (along the extensions drawn in the first phase in each sector), and

then path δ(p′) continues in the exterior of P to infinity. �

Claim 5 We have MC′ � MC .

Proof We use Proposition 16 to check whether a segment m ∈ M is in MC . First

we show that every segment m ∈ M \ MC continues to have two endpoint-disjoint

D-paths to infinity. Let m ∈ M \ MC . It lies in the exterior of γ , and it had two

endpoint-disjoint D-paths to infinity in N(C). The modification affects only those

paths that intersect polygon P . Every D-path intersecting P reaches γ , and so it has

to pass through the (c)-feature q0. Out of two endpoint-disjoint D-paths from m, at

most one passes through q0, and so at most one intersects polygon P . Let p ∈ ∂P be

the point where this D-path reaches ∂P . It is enough to show that N(C′) contains a

D-path from p to q0. It was shown in Claim 4 that there is a D-path from p to q0,

which remains in the polygonal domain R(γ ) ∪ P .

Next we show that at least one segment m ∈ MC has two endpoint-disjoint D-

paths to infinity in N(C′). Let u ∈ γ be the segment endpoint whose extension-path

reaches qi , and let uv ∈ M be the segment incident to u (see Fig. 16(ii)). We have

uv ∈ MC , since u ∈ γ . After the modification, the extension-path of u ends at ri ,

which is the endpoint of a segment in the exterior of γ . From the other endpoint v,

however, there is still a path to q0 by Claim 4. In N(C), ri had two endpoint-disjoint

D-paths to infinity: one goes to q0 followed by some D-path α1 to infinity, and the

other a D-path α2 remains entirely in the exterior of γ . After the modification, N(C′)

contains two endpoint-disjoint D-paths from uv to infinity: one going from v to q0

followed by α1, and another one goes from u to ri followed by α2. Hence uv ∈ MC

but uv 	∈ MC′ . �

Claim 6

• If a segment endpoint v ∈ N(C′) lies on or in the interior of a critical polygon,

or if v is incident to an extension tree rooted at a sink, then its outgoing edge is

collinear with the line segment.
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Fig. 19 Subcase 2a. (i) A 1-critical polygon γ with shaded interior. q1 is oriented clockwise. q0q1 is

an edge of the geodesic ∂Hγ . (ii) We replace the outgoing edge of q1 with a directed edge q1q ′
0

, which

creates a new D-path from q1 to the exterior of γ that does not pass through the bottleneck (c)-feature q0

• If a Steiner point p ∈ N(C′) of outdegree 1 lies on or in the interior of a critical

polygon, but it is not part of any extension tree rooted at a sink, then its outgoing

edge is collinear with an incoming edge.

Proof As a result of the modifications in polygon P , the first condition is violated

only at the segment endpoint ri (the new outgoing edge of ri is contained in riy,

which is not collinear with the incident segment in M). However, ri was in the exte-

rior of all critical polygons in N(C) by the maximality of γ ∈ Γ+, and by Claim 5

it is also in the exterior of all critical polygons in N(C′). The second condition is

violated only for the Steiner vertex qi . However, qi now has an extension-path to ri ,

which lies in the exterior of all critical polygons of N(C′), and so qi is also in the

exterior of all critical polygons of N(C′). �

By Claims 4, 5, and 6, the modification in subcase 1b produces a subdivision

C′ ∈ D∗(M) such that s(C′) = s(C) and |MC′ | < |MC |.

Case 2 Vertex q1 is oriented clockwise or qk is oriented counterclockwise (e.g. q1

in Fig. 19(i)). We may assume w.l.o.g. that q1 is clockwise (by applying a reflection

if necessary). We distinguish two subcases.

Subcase 2a: the line segment q0q1 lies in the geodesic hull Hγ (see q0q1 in

Fig. 19(i)). Replace the outgoing edge of q1 with the directed edge q1q
′
0, where

q ′
0 is a point on the outgoing edge of q0 in a small neighborhood of q0 (Fig. 19).

Let P be the polygonal domain bounded by q1q
′
0, q0q

′
0, and the D-path δ(q1)

(note that the D-path δ(q0) degenerates to a single point). Recompute the exten-

sions within P in the same way as it was done in Subcase 1b above. We ob-

tain a new convex subdivision C′ ∈ D∗(M), analogously to subcase 1b. All seg-

ments in M \ MC still have two endpoint-disjoint D-paths to infinity. Let u be the

segment endpoint along γ whose extension-path reaches q1. It is an endpoint of

some segment uv ∈ MC . We show that uv 	∈ MC′ , and so |MC′ | ≤ |MC |, as re-

quired.
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Fig. 20 Subcase 2b. (i) A 1-critical polygon γ with shaded interior. q1 is oriented clockwise. The geodesic

Hγ between q0 and q1 wraps around the segment endpoint r1. The ray �q2r2 hits the boundary of γ at

point t . (ii) Modification in Subcase 2b: x is the first intersection point of ray �q1r1 with a straight-extension

that contains an edge of δ(qi , qi+1). The outgoing edge of q1 is replaced by q1r1 , and the outgoing edge

of r1 is replaced by r1x. The extension edges in the shaded polygon P are redrawn. After the modification,

segment uv has two endpoint-disjoint D-paths to infinity

We use Proposition 16 to verify that uv 	∈ MC′ . Let αv be the D-path from v that

starts with the extension-path emitted by v and goes to infinity. Since uv ∈ MC , the

D-path αv passes through q0, and q ′
0. After the modification, there is still a D-path

from v to q0 in the polygonal domain R(γ ) ∪ P . On the other hand, u now has a D-

path to q ′
0 along an extension-path that uses the new edge q1q

′
0; this D-path bypasses

the bottleneck q0. So there are now two endpoint-disjoint D-paths from any point in

M to q ′
0. Note that q ′

0 is in the exterior of γ , and by the maximality of the 1-critical

polygon γ , it has two endpoint-disjoint D-paths to infinity. The composition of these

D-paths (from m to q ′
0 and from q ′

0 to infinity) provides two endpoint-disjoint D-paths

from m to infinity.

Subcase 2b: q0q1 does not lie in the geodesic hull Hγ (see q0q1 in Fig. 20). We

can repeat the same argument as in subcase 1b, with the only difference (in fact,

simplification) that path δ(q0) degenerates to a point. This implies that q̂ = q0 and so

δ(q0, q1) = δ(q1).

Let q1r1 be the edge of ∂Hγ incident to q1. Since r1 is a reflex vertex of the

geodesic hull Hγ , it is an endpoint of some line segments lying in the exterior of γ .

The ray −−→q1r1 hits γ (q0, q1) at some point t (Fig. 20(i)). Note that any extension edge

that crosses qi t is directed from the left to the right side of
−→
q1t , because no extension

leaves γ (q0, q1). Let α(r1, q0) be the directed path from r1 to q0 that starts with

the directed segment r1t and then follows γ clockwise from t to q0. Let x be the

first point on α(r1, q0) such that either x lies on a straight-extension that contains

an edge of δ(q0, q1), or x = q0. Let δ(x) be a D-path from x to q0. Now let P be

the polygonal domain enclosed by segment q1r1, the initial portion of path α(r1, q0)

from r1 to x, and paths δ(q1) and δ(x). Analogously to subcase 1b, we construct a

subdivision C′ ∈ D∗(C) by replacing the outgoing edge of q1 by q1r1, and redrawing

the extensions inside polygon P (Fig. 20(ii)). This completes Subcase 2b, and the

proof of Lemma 17. �
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5 From Two Edge-Disjoint Spanning Trees to Disjoint Compatible Matchings

In this section, we prove the disjoint compatible matching conjecture. We first prove

Lemma 3, which involves purely graph theoretic arguments. Then we show that The-

orem 2 and Lemma 3 readily imply the existence of a compatible disjoint matching

for any matching M .

We mention two related results. Farber et al. [9] and Cordovil and Moreira [8]

proved independently that if G = (V ,E) is the union of two edge-disjoint spanning

trees on n vertices, then one can exchange all edges of the two trees in n − 1 steps

such that each step exchanges one pair of edges and maintains a partition of E into

two spanning trees. These exchange steps, however, do not seem to be sufficient to

reach a partition of E into two conflict-free spanning trees. Cannon et al. [7] have

recently designed a polynomial-time algorithm for testing whether a multigraph with

given conflict pairs has an even orientation such that if the indegree of a vertex is 2,

then the two incoming edges are not in conflict.

5.1 The Union of Two Edge-Disjoint Spanning Trees

We start with a brief review of well-known properties of multigraphs formed by the

edge-disjoint union of two spanning trees. We use the following shorthand notation

throughout this section: for a set S and an element t , we write S + t = S ∪ {t} and

S − t = S \ {t}. Let G = (V ,E) be a multigraph on n vertices which is the edge-

disjoint union of a blue spanning tree (V ,B) and a red spanning tree (V ,R). Since G

has n vertices and 2n − 2 edges, the sum of the vertex degrees is 4n − 4. Since each

vertex is incident to both spanning trees, the minimum vertex degree is 2. It follows

that G has at least two vertices of degree 2 or 3.

Vertex Pruning Let v1 ∈ V be a vertex of degree 2, incident to edges e1, e2 ∈ E.

Then {e1, e2} is a cut set of G, and so each spanning tree has at least one edge in

{e1, e2}. Assume without loss of generality that e1 ∈ B and e2 ∈ R. Then v is a leaf

in each spanning tree. It follows that (V − v1,B − e1) and (V − v1,R − e2) are

two edge-disjoint spanning trees on the vertex set V − v1. Pruning vertex v1 is the

operation that replaces (V ,B ∪ R) by (V − v1, (B − e1) ∪ (R − e2)).

Now let v2 ∈ V be a vertex of degree 3, incident to edges e1 = v2u1, e2 = v2u2,

and e3 = v2u3. Then two of these edges are in the same tree, and the third edge is

in the other tree. Assume without loss of generality that e1, e2 ∈ B and e3 ∈ R. Note

that if we remove v2 and all three incident edges from G, then the blue tree breaks

into exactly two connected components, where u2 and u3 are in distinct components.

The two components can be reconnected by adding a new edge between u2 and u3.

Consequently, (V − v2,B − e1 − e2 + u1u2) and (V − v2,R − e3) are two edge-

disjoint spanning trees on the vertex set V − v2. Pruning vertex v2 is the operation

that replaces (V ,B ∪ R) by (V − v2, (B − e1 − e2 + u1u2) ∪ (R − e3)).

We can reduce G to a single vertex by successively pruning vertices of degree 2

or 3 (see Fig. 21).
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Fig. 21 Multigraph G1, which is the edge-disjoint union of a dotted red tree and a dashed blue tree.

Algorithm 1 successively prunes vertices v1, . . . , v7 of degree 2 or 3, and maintains two edge-disjoint

spanning trees

Algorithm 1. Successive Pruning

1. Input: a multigraph G1 = (V1,E1) such that E1 = B1 ∪ R1, where (V1,B1) and

(V1,R1) are edge-disjoint spanning trees.

2. Put i = 1. While |Ei | > 0, do:

(a) pick an arbitrary vertex vi ∈ Vi which has degree 2 or 3 in Gi ;

(b) prune vi from Gi = (Vi,Bi ∪ Ri) to obtain Gi+1 = (Vi+1,Bi+1 ∪ Ri+1);

(c) put i = i + 1.

Edge Flip at a Vertex of Degree 3 Consider again a vertex v2 of degree 3 in G,

incident to edges e1 = v2u1, e2 = v2u2, and e3 = v2u3. Assume, without loss of

generality, that e1, e2 ∈ B and e3 ∈ R. If we delete e1 and e2, the blue tree breaks

into three components, containing the vertices u1, u2 and v2, respectively, where

{v2} is a one-vertex component of (V ,B − e1 − e2). Suppose that u3 is in the same

component as u2. Then (V ,B − e2 + e3) and (V ,R − e3 + e2) are also two edge-

disjoint spanning trees of G. An edge flip at v2 is the operation that replaces the edge

partition E = B ∪ R by E = (E − e2 + e3) ∪ (E − e3 + e2).

Contracting Double Edges Suppose that G = (V ,E) contains two parallel edges,

that is, edges e1, e2 ∈ E with two common endpoints u,v ∈ V . Since no spanning tree

has double edges, e1 and e2 are in distinct spanning trees, say e1 ∈ B and e2 ∈ R. The

contraction of e1 and e2 is the operation of deleting edges e1 and e2 and identifying

vertices u and v. We obtain a multigraph G′ with n − 1 vertices and 2(n − 2) edges.

Exactly one edge is contracted in each of (V ,B) and (V ,R), hence G′ is the edge-

disjoint union of two spanning trees.

5.2 Conflict-Free Tree Representations

Our proof of Lemma 3 is based on the concept of conflict-free tree representation,

defined below. Recall that a vertex splitting in a (multi-)graph G = (V ,E) is the

operation that replaces a vertex v ∈ V with two vertices v1 and v2, and replaces each

edge vu ∈ E incident to v with a new edge incident to either v1 or v2 (see Fig. 22(i)–

(ii)). We assume that the replacement edge is identified with the original edge, and in

particular it preserves the same conflicts.

Definition 4 Let G = (V ,E) be a multigraph and let X ⊆
(
E
2

)
be a collection of

disjoint pairs of adjacent edges in E (called conflict pairs).
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Fig. 22 (i) A graph G with an even number of edges. Conflicting pairs of edges are joined by small

circular arcs. (ii) A conflict-free tree representation with a leaf at u after some vertex splitting steps.

(iii) An even orientation on the tree. (iv) The induced even orientation of the original graph G

• A subset of edges R ⊆ E has a conflict-free tree representation if, after some ap-

propriate vertex splitting operations, the edges in R form a tree in which adjacent

edges are not in conflict.

• Let U ⊆ V be a subset of vertices. A subset of edges R ⊆ E has a conflict-free tree

representation with leaves at U if, after some appropriate vertex splitting opera-

tions, the edges in R form a tree in which adjacent edges are not in conflict, and all

copies of each vertex u ∈ U are leaves.

Proposition 18 Let G = (V ,E) be a multigraph and let X ⊆
(
E
2

)
be a collection of

disjoint conflict pairs. If R ⊆ E has a conflict-free tree representation and |R| is even,

then (V ,R) has an even orientation such that if the indegree of a vertex is 2, then the

two inbound edges are not in conflict.

Proof It is well known that every connected graph with an even number of edges has

an even orientation [14]. After some vertex splitting operations, (V ,R) becomes a

spanning tree (V ′,R′) with no two adjacent edges in conflict (as in Fig. 22). Fix an

arbitrary even orientation for the tree (V ′,R′). Since all indegrees are even, for every

directed edge −→e ∈ R′, there is another edge
−→
f ∈ R′ directed into the same vertex

such that e and f are not in conflict. This orientation is an even orientation of (V ,R)

with the same property. Hence, if a vertex has indegree 2, then the two inbound edges

are not in conflict. �

In the proof of Lemma 3, we find an even orientation for a multigraph G = (V ,E)

which contains two edge-disjoint spanning trees. Our technique for constructing an

even orientation focuses on the subgraph of G formed by two edge-disjoint spanning

trees, and all other edges will have only supporting roles. To avoid conflicts between

the extra edges and the edges of the two spanning trees, we choose two spanning trees

with special properties, established in the following proposition.

Proposition 19 Let G = (V ,E) be a multigraph that contains two edge-disjoint

spanning trees and let X ⊆
(
E
2

)
be a collection of disjoint conflict pairs. There is

a partition E = B ∪ R ∪ Y such that (V ,B) and (V ,R) are spanning trees, and if

two parallel edges of E are in conflict, then either both of them are in B ∪ R or

neither of them is in B ∪ R. (See Fig. 23(i)–(ii).)
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Fig. 23 (i) The dual (multi-)graph G from Fig. 1(iii). It contains two edge-disjoint spanning trees: the

dotted red tree and the dashed blue tree. Two additional edges are solid black. Conflicting pairs of edges

are joined by small circular arcs. (ii) G also contains two edge-disjoint spanning trees, (V ,B) and (V ,R),

with the property that if two parallel edges are in conflict then either both of them are contained in B ∪ R

or neither of them is in B ∪ R. (iii) After some vertex splitting operations, we obtain a multigraph H in

which (V ,B ∪ R) is a subgraph, and all other edges have exactly one endpoint in V and are not in conflict

with any adjacent edge

Proof We proceed by induction on n = |V |. If n = 1, then both spanning trees are

empty, and the claim trivially holds. Let n > 1 and assume that the claim holds for

all smaller multigraphs. If no two parallel edges are in conflict, then any two edge-

disjoint spanning trees have the required property. Suppose that edges e1, e2 ∈ E are

parallel and in conflict. Let u,v ∈ V be the endpoints of e1 and e2. Contract edges

e1 and e2 (that is, identify u and v, and remove all edges between u and v), and

denote by G′ the resulting multigraph on n − 1 vertices, which also contains two

edge-disjoint spanning trees. By induction, G′ contains two edge-disjoint spanning

trees, say B ′ and R′, such that conflicting parallel edges are either both in B ′ ∪ R′,

or neither of them is in B ′ ∪ R′. Let B ′
0 and R′

0 be the subgraphs of G corresponding

to B ′ and R′, respectively. Note that B ′
0 and R′

0 each have two components such that

u and v lie in distinct components. Now B ′
0 ∪ {e1} and R′

0 ∪ {e2} are edge-disjoint

spanning trees in G with the required property. �

Corollary 20 Let G = (V ,E) be a multigraph that contains two edge-disjoint span-

ning trees and let X ⊆
(
E
2

)
be a collection of disjoint conflict pairs. Then there is

a sequence of vertex splitting operations on G that produces a multigraph H =
(V ∪ W,B ∪ R ∪ Y) where (V ,B) and (V ,R) are spanning trees on V , each edge

in Y connects a vertex in V to a leaf in W , and no edge in Y is in conflict with any

adjacent edge. (See Fig. 23(iii).)

Proof Let E = B ∪R ∪Y be the edge partition from Proposition 19. We use a vertex

splitting operation to turn one endpoint of each edge e ∈ Y into a leaf as follows.

Recall that every edge e ∈ E is in conflict with at most one other edge. Assign suc-

cessively every edge uv ∈ Y to either u or v such that (1) if e = uv is in conflict

with a parallel edge f = uv (hence f is also in Y ), then assign e and f to different

endpoints; (2) if uv is in conflict with a nonparallel but adjacent edge vw, then assign

uv to u (the vertex not incident to the conflicting edge); (3) if uv is not in conflict
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with any adjacent edge, then assign it to u or v arbitrarily. Apply a vertex splitting

operation successively for every e ∈ Y : if an edge e = uv ∈ Y is assigned to u, then

split v into two vertices, one of which becomes a leaf incident to e only. �

Edge Partition Algorithm We next present an algorithm that partitions the edges

of G = (V ,E) into nonempty subsets such that each subset has a conflict-free tree

representation with a leaf at a common vertex v ∈ V . In general we cannot hope for a

single conflict-free tree representation for all edges in E. For example, if G = (V ,E)

consists of two parallel edges, and the two edges are in conflict, then E does not have

any conflict-free tree representation.

Let G = (V ,E) be a multigraph on n vertices that contains two edge-disjoint

spanning trees and let X ⊆
(
E
2

)
be a set of disjoint conflict pairs. Let H = (V ∪

W,B ∪ R ∪ Y) be the multigraph from Corollary 20. We apply a sequence of vertex

splitting operations on H to obtain a partition of the edge set E.

The edge partition algorithm is guided by a successive pruning algorithm, with

possible edge flips between consecutive prune steps. Put G1 = (V ,B ∪ R). Now

G1 is the edge-disjoint union of a blue spanning tree (V1,B1) = (V ,B) and a red

spanning tree (V1,R1) = (V ,R). The successive pruning algorithm will produce a

sequence of multigraphs G = G1,G2, . . . ,Gn = ({vn},∅), where Gi = (Vi,Ei) is an

edge-disjoint union of two spanning trees: a blue tree (Vi,Bi) and a red tree (Vi,Ri).

Simultaneously with the pruning steps on Gi , we maintain a dynamic data structure

that consists of a partition Ei of E into subsets, each of which has a conflict-free

tree representation. Each set in Ei is associated with a vertex or an edge of Gi , as

described below. When we prune a vertex vi from Gi , the sets associated with vi and

its incident edges are “rearranged” to form new sets associated with the vertices and

edges of Gi+1. Eventually, we have Gn = ({vn},∅), and all sets in En are associated

with vn. The edge partition En will be the output of the algorithm.

We maintain the following invariants for i = 1,2, . . . , n. Each edge e ∈ Ei be-

tween vertices u,v ∈ Vi corresponds to a unique nonempty edge set Ei(e) ∈ Ei , which

has a conflict-free tree representation with leaves at both u and v. In the conflict-free

tree representation of Ei(e), two edges incident to the leaves u and v are called the

designated edges of Ei(e) (the two designated edges may coincide if E(e) = {e}).
Any other set Ai ∈ Ei is associated with some vertex v ∈ Vi , such that Ai has a

conflict-free tree representation with a leaf at v. The edge in Ai incident to the leaf v

is called the designated edge of Ai . Several sets may be associated to the same vertex

v ∈ Vi . For every vertex v ∈ Vi , denote by Ei(v) ⊂ Ei the edge sets associated with v.

Initialization and a General Step i For every edge e ∈ B ∪ R, create a set E1(e) =
{e} corresponding to e ∈ E1. For every edge e ∈ Y , incident to v ∈ V and a leaf

w ∈ W , create a set A1(v), associated with vertex v. Each edge set in E1 contains a

single edge, and so they each have a conflict-free tree representation in which each

vertex is a leaf. Consider now one step of the successive pruning algorithm where we

are given Gi = (Vi,Ei) and Ei = Bi ∪ Ri . Let vi ∈ Vi be a vertex of degree 2 or 3

in Gi that we wish to prune. We distinguish between two cases based on the degree

of vi .
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Fig. 24 (i) Graph Gi with a

vertex vi of degree 2. (ii) Graph

Gi+1 after pruning vi .

(iii) Graph Gi with a vertex vi

of degree 3. (iv) Graph Gi+1

after pruning vi

Case 1 vi has degree 2 in Gi . Refer to Fig. 24(i)–(ii). Assume without loss of gen-

erality that vi is incident to the edges viu1 ∈ Bi and viu2 ∈ Ri (possibly u1 = u2).

Vertex vi and the edges viu1, viu2 are removed from Gi to obtain Gi+1. We need

to take care of the associated edge sets Ei(viu1), Ei(viu2) and all sets in Ei(vi). Put

Ei+1(u1) = Ei(viu1); and then successively augment Ei+1(u1) with sets Ai(vi) ∈
Ei(vi) such that the designated edge of Ai(vi) is in conflict with neither the desig-

nated edge of Ei(viu1) at vi , nor the designated edge of any other set A′
i(vi) ∈ Ei(vi)

that has already been added to Ei+1(u1). Let Ei+1(u2) be the union of Ei(viu2)

and all remaining sets from Ei(vi) (whose designated edges are in conflict with nei-

ther the designated edge of Ei(viu2) incident to vi , nor each other). Note that both

Ei+1(u1) and Ei+1(u2) have a conflict-free tree representation. We construct Ei+1

from Ei by removing Ei(viu1), Ei(viu2) and all sets in Ei(vi); and adding Ei+1(u1)

and Ei+1(u2). Let the designated edge of Ei+1(u1) (resp., Ei+1(u2)) be the desig-

nated edge of Ei(viu1) (resp., Ei(viu2)) incident to u1 (resp., u2).

Case 2 vi has degree 3 in Gi . Refer to Fig. 24(iii)–(iv). Assume without loss of

generality that vi is incident to the edges viu1 ∈ Bi and viu2, viu3 ∈ Ri . If the des-

ignated edges of Ei(viu2) and Ei(viu3) are in conflict, then perform an edge flip at

vi in the graph Gi (see G2 in Fig. 25, for an example). We may now assume that vi

is incident to the edges viu1 ∈ Bi and viu2, viu3 ∈ Ri ; and the designated edges of

Ei(viu2) and Ei(viu3) are not in conflict. Put Ei+1(u1) = Ei(viu1); and then succes-

sively augment Ei+1(u1) with sets Ai(vi) ∈ Ei(vi) such that the designated edge of

Ai(vi) is in conflict with neither the designated edge of Ei(viu1) at vi , nor the desig-

nated edge of any other set A′
i(vi) ∈ Ei(vi) that has already been added to Ei+1(u1).

Let Ei+1(u2u3) be the union of Ei(viu2), Ei(viu3), and all remaining sets from

Ei(vi) (whose designated edges are in conflict with neither the designated edges of
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Fig. 25 A sequence of graphs G1, . . . ,G8 is obtained by successively pruning vertices v1, . . . , v7. Each

Gi , i = 1, . . . ,8, is the edge-disjoint union of a dotted red spanning tree and a dashed blue spanning tree.

Conflicts are indicated by small circular arcs. Before v2 is pruned, an edge flip is applied at v2 to ensure

that the two incident edges of the same color are not in conflict. Each Gi , i = 1, . . . ,8, corresponds to an

edge partition Ei , where each set has a conflict-free tree representation, as shown in the figure. There are

four sets in E8, each of which contains a designated edge incident to v8. Each even set has a conflict-free

even orientation; and each odd set has an orientation where the indegree of v8 is odd. In this instance, the

two edges oriented into v8 are not in conflict, hence we obtain a conflict-free even orientation for H and

hence for G

Ei(viu2) and Ei(viu3) incident to vi , nor each other). Now Ei+1(u1) and Ei+1(u2u3)

each have a conflict-free tree representation. We construct Ei+1 from Ei by remov-

ing Ei(viu1), Ei(viu2), Ei(viu3) and all sets in Ei(vi); and adding Ei+1(u1) and

Ei+1(u2u3). Let the designated edge of Ei+1(u1) be the designated edge of Ei(viu1)

incident to u1; and let the designated edges of Ei+1(u2u3) be the designated edges

of Ei(viu2) and Ei(viu3) incident to u2 and u3, respectively.

After n−1 prune steps, we obtain Gn = ({vn},∅). That is, Gn has only one vertex,

and no edges. It follows that En = En(vn). This completes the description of our edge

partition algorithm. See Fig. 25 for an example.

As noted above, the edge partition algorithm is guided by the successive pruning

algorithm. Since Gi has at least two vertices of degree 2 or 3, , for i = 1, . . . , n − 1,

we always have at least two possible choices for the vertex vi ∈ Vi we prune in step i.
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These choices are crucial for the proof of Lemma 3. We now point out several im-

portant properties of the edge partition algorithm, which hold independently of the

choices for the vertices v1, . . . , vn−1.

Proposition 21 Let G = (V ,E) be a multigraph on n vertices that contains two

edge-disjoint spanning trees and let X ⊆
(
E
2

)
be a collection of disjoint conflict pairs.

Then the above algorithm returns: (1) a vertex vn ∈ V , (2) a partition of E into a

collection En of nonempty edge sets, and (3) a conflict-free tree representation with a

leaf at vn for each set A ∈ En. A vertex v ∈ V may have several copies (due to vertex

splitting) over the conflict-free tree representations of the sets in En, but at most two

copies of each v ∈ V have degree 2 or higher.

Proof The first claim follows directly from the invariants maintained for the sets in

Ei , i = 1,2, . . . , n. To verify that at most two copies of each v ∈ V have degree 2 or

higher, notice that H = (V ∪ W,B ∪ R ∪ Y) (cf. Corollary 20) was obtained from

G = (V ,E) by a sequence of vertex splitting operations, where exactly one copy of

each vertex has degree 2 or higher. In the remainder of the algorithm, every vertex vi

is split only once, when pruning vi . Hence at most two copies of each vertex v ∈ V

have degree 2 or higher over the conflict-free tree representations of all sets in En. �

If all edge sets in En have even size, then they each have an even orientation. In

this case, by Proposition 18, graph G has an even orientation such that whenever the

indegree of a vertex is 2, then the two incoming edges are not in conflict. If some sets

in En have odd size, we can still construct a desired orientation for G under certain

conditions.

Proposition 22 Let G = (V ,E) be a multigraph with n vertices and an even number

of edges that contains two edge-disjoint spanning trees and let X ⊆
(
E
2

)
be a collec-

tion of disjoint conflict pairs. Suppose that there is a vertex v0 and a partition of E

into a collection E of subsets with the following properties:

• every even set A ∈ E has a conflict-free tree representation;

• every odd set A ∈ E has a conflict-free tree representation with a leaf at v0;

• if E contains exactly two odd sets, then their edges incident to v0 are not in conflict.

Then G has an even orientation such that whenever the indegree of a vertex is 2, then

the two incoming edges are not in conflict.

Proof We show that E can be partitioned into even sets each of which has a conflict-

free tree representation. Every such edge set has a conflict-free even orientation and

so Proposition 18 completes the proof. If E contains no odd sets, then our proof is

complete. Since |E| is even, the number of odd sets in E is even. If E contains exactly

two odd sets but their edges incident to v0 are not in conflict, then the union of the

two odd sets is even, and it has a conflict-free tree representation. If E contains four or

more odd sets, then they can be paired up so that the edges incident to v0 in each pair

are not in conflict. The union of each pair has even cardinality and has a conflict-free

tree representation. �
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We can now establish Lemma 3 in several important special cases.

Corollary 23 Let G = (V ,E) be a multigraph with n vertices and an even number of

edges that contains two edge-disjoint spanning trees and let X ⊆
(
E
2

)
be a collection

of disjoint conflict pairs. Assume that

• G contains more than 2n − 2 edges, or

• G has a vertex such that no two incident edges are in conflict.

Then G has an even orientation such that whenever the indegree of a vertex is 2, then

the two incoming edges are not in conflict.

Proof First assume that G has more than 2n−2 edges. Consider the multigraph H =
(V ∪ W,B ∪ R ∪ Y) from Corollary 20. Since B and R are spanning trees, we have

|B| = |R| = n−1 and so Y 	= ∅. Let v0w0 = e0 be an arbitrary edge in Y with v0 ∈ V

and w0 ∈ W . Recall that e0 is not in conflict with any adjacent edge in H . Perform

the edge partition algorithm such that vertex v0 is never pruned (that is, vi 	= v0 for

i = 1, . . . , n − 1). This is possible, since Gi has at least two vertices of degree 2 or

3 for i = 1, . . . , n − 1. The algorithm returns an edge partition En = En(v0), with

{e0} ∈ En. If En contains exactly two odd sets, then one of them is {e0}, and so the

designated edges of these two sets are not in conflict. Proposition 22 completes the

proof.

Assume now that G has a vertex v0 such that no two incident edges are in conflict.

Perform the edge partition algorithm such that vertex v0 is never pruned (that is, vi 	=
v0 for i = 1, . . . , n − 1). This is possible, since Gi has at least two vertices of degree

2 or 3 for i = 1, . . . , n − 1. The algorithm returns an edge partition En = En(v0). The

designated edges of no two sets in En are in conflict, and Proposition 22 completes

the proof. �

5.3 Contracting Double Edges in Conflict

By Corollary 23, we may assume that G = (V ,E) is the edge-disjoint union of two

spanning trees. Then G has |V | = n vertices and |E| = 2n − 2 edges, and so there

are at most n − 1 conflict pairs in X. If any two conflicting edges have at most one

common endpoint, then there is a vertex v0 ∈ V such that no two incident edges are

in conflict, and Corollary 23 yields a desired even orientation for G. Therefore, we

may assume that G contains at least one pair of parallel edges in conflict.

Let G = (V ,E) be a multigraph on n vertices which is the edge-disjoint union of

two spanning trees and let X ⊆
(
E
2

)
be a collection of disjoint conflict pairs. Succes-

sively contract any pair of parallel edges that are in conflict, and denote the resulting

graph by Ĝ = (V̂ , Ê). (Refer to Fig. 26(i)–(ii)). Note that Ê ⊂ E. Each vertex v̂ ∈ V̂

is the result of identifying a set Uv̂ ⊆ V of vertices. Let G[v̂] denote the subgraph of

G induced by Uv̂ . By construction, G[v̂] is the edge-disjoint union of two spanning

trees, a red tree (Uv̂,Rv̂) and a blue tree (Uv̂,Bv̂), each of which is conflict-free. We

say that a vertex v̂ ∈ V̂ is odd if both Rv̂ and Bv̂ are odd; and v̂ ∈ V̂ is even if both

Rv̂ and Bv̂ are even.

We shall construct an even orientation for Ĝ such that (1) the indegree of every

odd vertex v̂ ∈ V̂ is at least 2; and (2) if the indegree of an even vertex v̂ ∈ V̂ is 2, then
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Fig. 26 (i) G is the edge-disjoint union of two spanning trees: a dotted red tree and a dashed blue tree.

Edge pairs in conflict are marked with small circular arcs. (ii) Ĝ is obtained from G by successively

contracting parallel edges in conflict. Odd (even) vertices are marked with empty (full) dots. (iii) Ĥ is

obtained by adding two leaves in conflict to each odd vertex of Ĝ. (iv) An even orientation for Ĥ such that

whenever the indegree of a vertex is 2, the two incoming edges are not in conflict

the two incoming edges are not in conflict. See Fig. 26(iii)–(iv). The minimum degree

requirement is enforced by augmenting Ĝ with pairs of leaves in conflict: For each

odd vertex v̂, introduce two new vertices ŵ1, ŵ2, two new edges v̂ŵ1, v̂ŵ2, and a new

conflict pair {v̂ŵ1, v̂ŵ2}. Denote the augmented multigraph by Ĥ = (V̂ ∪ Ŵ , Ê ∪ Ŝ),

and the augmented conflict pairs by X̂. We refer to the new edges in Ĥ as special

edges. Consider an even orientation of Ĥ such that if the indegree of a vertex is 2,

then the two incoming edges are not in conflict. At each odd vertex v̂ ∈ V̂ , the two

special edges must be oriented into v̂. However, the two special edges are in conflict,

so at least two edges of E must also be oriented into v̂.

Lemma 24 Let G = (V ,E) be a multigraph on n vertices which is the edge-disjoint

union of two spanning trees and let X ⊆
(
E
2

)
be a collection of disjoint conflict pairs.

Assume that not all vertices of Ĝ are odd. Then G has an even orientation such that

whenever the indegree of a vertex is 2, then the two incoming edges are not in conflict.

Proof Compute Ĥ and X̂ as described above. We perform the edge partition algo-

rithm on Ĥ , with certain additional constraints to be specified below. The algorithm

maintains the edge partitions E1, . . . , En for the edges of Ĥ (that is, including the

special edges). Recall that the algorithm is guided by a sequence of multigraphs

Ĝ = G1,G2, . . . ,Gn. Perform the edge partition algorithm on Ĥ until the first step

ℓ, 1 ≤ ℓ < n, where there exists an even vertex x̂ ∈ Vℓ of degree 2 or 3. For all steps

i ≤ ℓ, the following invariants are automatically maintained by the algorithm:

1. For every edge uv ∈ Ei , the edge set Ei(uv) ∈ Ei has odd cardinality.

2. Every set Ai(v) ∈ Ei(v) for every v ∈ Vi , either consists of a single special edge

or has even cardinality.

Both invariants clearly hold for i = 1, where every set E1(uv) associated with an

edge uv ∈ E1 contains exactly one edge; and every A1(v) ∈ E1(v) associated with a

vertex v ∈ V1 contains exactly one edge, which is a special edge. For maintaining the
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invariants, consider cases 1 and 2 of the edge partition algorithm. Note that in every

step i ≤ ℓ, the vertex vi is odd, and so it is incident to two special edges (leaves)

in conflict. In case 1, two new edge sets are created, Ei+1(u1) and Ei+1(u2), each

of which is associated with a vertex. They are each formed by the union of a set

Ei(viu1) or Ei(viu2) associated with an edge, one special edge of vi , and some other

sets associated with vertex vi . Due to the invariants, both Ei+1(u1) and Ei+1(u2)

are even. In case 2, two new edge sets are created: Ei+1(u1) associated with vertex

u1, and Ei+1(u2u3) associated with edge u2u3 ∈ Ei+1. Ei+1(u1) is the union of

Ei(viu1), one special edge of vi , and some other sets associated with vertex vi ; and

so it is even. Ei+1(u2u3) is the union of Ei(viu2), Ei(viu3), one special edge of vi ,

and some other sets associated with vertex vi ; and so it is odd. We have established

that both invariants hold for the edge partition Eℓ.

Now consider step ℓ of the algorithm, where there exists an even vertex x̂ ∈ Vℓ of

degree 2 or 3. We distinguish between two possible scenarios.

Case A For any two edges of Gℓ incident to x̂, the two designated edges incident

to x̂ are not in conflict. In this case, complete the edge partition algorithm so that x̂

is never pruned (that is, vi 	= x̂ for i = ℓ, . . . , n − 1). The algorithm returns the edge

partition En = En(x̂). Note that En(x̂) contains all sets of Eℓ(x̂), which are even by

invariant 2. The designated edges of the other sets in En(x̂) are not in conflict with

each other.

Based on the edge partition En of Ĥ , we now construct an edge partition E for

the original graph G = (V ,E). The edge partition algorithm for Ĥ has split each

vertex v̂ ∈ V̂ , v̂ 	= x̂, into exactly two copies (in the step when v̂ is pruned). If v̂ is

an odd vertex, then its two special edges are incident to distinct copies of v̂. Modify

the sets in En(x̂) as follows: replace the two copies of each vertex v̂ ∈ V̂ , v̂ 	= x̂,

by the spanning trees (Uv̂,Rv̂) and (Uv̂,Bv̂); and remove any special edges incident

to v̂ (in case v̂ is odd). Denote the resulting collection of sets by E ′. Note that this

operation preserves the parity of every set in En. Each edge set in E ′ has a conflict-

free tree representation with a leaf in Ux̂ . So far, we have not replaced x̂ with the

two corresponding even trees (Ux̂,Rx̂) and (Ux̂,Bx̂). We can now define the edge

partition E of G. Let E contain all even sets of E ′, the set Bx̂ , and the union of Rx̂ with

all odd sets of E ′. Every set in E is even, and has a conflict-free tree representation.

Proposition 22 completes the proof.

Case B There are two edges in Ei incident to x̂ such that their designated edges

incident to x̂ are in conflict. See Fig. 27. In this case, prune x̂ in step ℓ, that is put

vℓ = x̂. Vertex vℓ = x̂ is incident to two or three edges in Gℓ, say vℓu1, vℓu2, and

possibly vℓu3. We may assume without loss of generality that the designated edges of

vℓu1 and vℓu2 are in conflict. Let û = u1, and complete the edge partition algorithm

so that û is never pruned, that is, vi 	= û for i = ℓ + 1, . . . , n − 1. Invariant 1 implies

that Eℓ(x̂û) is odd; and invariant 2 implies that every set in Eℓ(x̂) is even. In step

ℓ, the union of Eℓ(x̂û) and some of the even sets in Eℓ(x̂) forms an odd set, say

A(û) ∈ Eℓ+1(û). This set A(û) remains in the edge partition in steps ℓ + 1, . . . , n − 1

of the algorithm, and so A(û) ∈ En = En(û).

Based on the edge partition En of Ĥ , we now construct an edge partition E for

the original graph G = (V ,E). Similarly to Case A, replace the two copies of each
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Fig. 27 (i) Ĥ from Fig. 26(iii) is the edge-disjoint union of two spanning trees: a dotted red tree and

a dashed blue tree. Edge pairs in conflict are marked with small circular arcs. (ii) The edge partition

algorithm returns sets E4, each with a conflict-free tree representation, and each incident to a common

vertex v̂4. Vertices v̂1, v̂2, v̂3 have been each split into two vertices. (iii) Each copy of v̂1, v̂2, v̂3 is replaced

by a conflict-free copy of G[v̂i ]. The resulting graph now has an even orientation. (iv) This gives a required

even orientation for graph G from Fig. 26(i)

vertex v̂ ∈ V̂ , v̂ 	= û, by the spanning trees (Uv̂,Rv̂) and (Uv̂,Bv̂); and remove any

special edges incident to v̂ (in case v̂ is odd). Denote the resulting collection of sets

by E ′, and let A ∈ E ′ be the set that contains A(û). Since this operation preserves the

parity of all edge sets in En, the set A is odd. Each edge set in E ′ has a conflict-free

tree representation with a leaf in Uû. Let v0 ∈ Uû be the designated leaf of A ∈ E ′

(note that v0 ∈ V is a vertex of the original graph G). Partition E ′ into three sets

E ′ = E 0 ∪ E − ∪ E + as follows: let E 0 contain every set in E ′ with a leaf at v0; the

remaining sets in E ′ are partitioned between E − and E + such that if their leaves

incident to Uû are in conflict then they are in different collections. We can now define

the edge partition E of G. Let E contain all sets of E 0, the union of Bû and all sets

in E −, and the union of Rx̂ and all sets in E +. Every set in E has a conflict-free tree

representation with a leaf at v0. Proposition 22 completes the proof unless E contains

exactly two odd edge sets and their edges incident to v0 are in conflict.

Suppose now that E contains exactly two odd edge sets, and their edges incident to

v0 are in conflict. By construction, one of the two odd edge sets in E is A. Recall that

Eℓ(x̂û) ⊂ A, and the edge in A incident to v0 ∈ Uû is the designated edge of Eℓ(x̂û)

incident to û. Consider step ℓ of the edge partition algorithm above. In Case B, we

assumed that the designated edge of Eℓ(x̂û) is in conflict with some other edge in-

cident to x̂. Since Ĝ has no two parallel edges in conflict, the edge set Eℓ(x̂û) has

two distinct designated edges, incident to x̂ and û, respectively. In particular, Eℓ(x̂û)

contains at least two edges. Let j < ℓ be the largest index such that some edge in

Eℓ(x̂û) is incident to vj . Since j < ℓ, vj is an odd vertex. In step j , vertex vj was

pruned. That is, vj was split into two copies: one is incident to Eℓ(ûx̂), and the other
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is incident to some component Bj+1 ∈ Ej+1, which becomes part of some set B ∈ E ,

B 	= A. Merge A into B by splitting û into two copies and identifying the two copies

of vj (effectively, reversing the vertex split operation performed in step j ). Proposi-

tion 22 completes the proof. �

We are now ready to prove Lemma 3.

Lemma 1 Let G = (V ,E) be a multigraph with 4k edges that contains two edge-

disjoint spanning trees, and let X ⊆
(
E
2

)
be a collection of disjoint conflict pairs.

Then G has an even orientation such that if the indegree of a vertex is 2, then the two

incoming edges are not in conflict.

Proof Let n = |V | be the number of vertices in G. If 4k > 2n − 2, then Corollary 23

completes the proof. Suppose that 4k = 2n − 2, and so G is the edge-disjoint union

of two spanning trees. Compute the multigraph Ĝ = (V̂ , Ê). Since Ĝ is also the

edge-disjoint union of two spanning trees, it has |Ê| = 2|V̂ | − 2 edges. If a vertex

v̂ ∈ V̂ is odd, then the subgraph G[v̂] of G represents and odd number of edge pairs.

Therefore it has 4kv̂ − 2 edges for some kv̂ ∈ N. If all vertices v̂ ∈ V̂ are odd, then

the total number of edges in G is

|E| =
∣∣Ê

∣∣ +
∑

v̂∈V̂

(4kv̂ − 2) =
(
2
∣∣V̂

∣∣ − 2
)
− 2

∣∣V̂
∣∣ + 4

∑

v̂∈V̂

kv̂ = −2 + 4
∑

v̂∈V̂

kv̂,

which is not a multiple of 4. Since G has 4k edges, not all vertices of Ĝ are odd, and

Lemma 24 completes the proof. �

5.4 Disjoint Compatible Matchings

We recall a result by Aichholzer et al. [1] [Lemma 2] for points in convex position.

Proposition 2 [1] Let P be a set of points in convex position. Let M be a (not nec-

essarily perfect) matching on P such that every segment in M is on the boundary

of the convex hull of P . Then there is a perfect matching of P that is disjoint and

compatible with M if and only if |P | is even and |P | = 2 implies M = ∅.

We can now prove Theorem 1 and settle the Disjoint Compatible Matching Con-

jecture.

Theorem 1 For every perfect straight-line matching M with an even number of

edges, and no three collinear vertices, there is a disjoint compatible perfect straight-

line matching.

Proof Let M be a set of disjoint line segments in the plane, with no three collinear

segment endpoints. Refer to Fig. 1 and 2. By Theorem 2, there is a convex subdivision

C ∈ D(M) with no critical polygons. In the dual graph, the nodes correspond to cells

in C, and the edges correspond to segment endpoints. Two edges of the dual graph

are in conflict if they are adjacent and correspond to the two endpoints of the same

segment. By Lemma 3, the dual graph has an even orientation such that if a vertex has
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indegree 2, then the two incoming edges are not in conflict. Fix such an orientation

for the remainder of the proof.

For every cell c ∈ C, assign incident segment endpoints to c if the corresponding

edge is oriented into c. In every cell c ∈ C, independently, we construct a perfect

matching on the segment endpoints assigned to c. Since the orientation is even, every

cell is assigned to an even number of segment endpoints. Furthermore, if a cell is as-

signed to exactly two segment endpoints, then these endpoints are not connected by a

segment in M . By Proposition 2, there is a perfect matching on the segment endpoints

assigned to each c. The union of these perfect matchings is a perfect matching on all

segment endpoints. It is disjoint from M and compatible with M , as required. �
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