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Abstract. Answering an old question in combinatorial geometry, we show that any 
configuration consisting of a set V of n points in general position in the plane and 
a set of 6n - 5 closed straight line segments whose endpoints lie in V, contains three 
pairwise disjoint line segments. 

A geometric graph is a pair G = (V, E), where V is a set of points (=vertices) in 
general position in the plane, i.e., no three on a line, and E is a set of distinct, 
closed, straight line segments, called edges, whose endpoints lie in V. An old 
theorem of the second author [Er] (see also [Ku] for another proof), states that 
any geometric graph with n points and n + 1 edges contains two disjoint edges, 
and this is best possible for every n >- 3. For k -> 2, let f ( k  n) denote the maximum 
number of edges of  a geometric graph on n vertices that contains no k pairwise 
disjoint edges. Thus, the result stated above is simply the fact f(2,  n) = n for all 
n>3.  Kupitz [Ku] and Perles [Pe] (see also [AA]) raised the problem of 
determining or estimating f ( k  n) for k_> 3. In particular, they asked if f(3,  n)-< 
O(n). This specific problem, of determining or estimating f(3,  n), was already 
mentioned in 1966 by Avital and Hanani [AH], and it seems it was a known 
problem even before that. In this note we answer this question by proving the 
following. 

Theorem 1. For every n >-1,f(3, n ) < 6 n - 5 ,  i.e., any geometric graph with n 
vertices and 6 n -  5 edges contains three pairwise disjoint edges. 
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Before proving this theorem we note that clearly 

f (3 ,  n ) = ( ~ )  fo rn -<5  

and the best-known lower bound for n ->6, given by Perles [Pe], is 

5 5 
f (3,  n ) - > ~ n - ~  for odd n-> 5, 

Lin - 4 for even n -> 2. 
(1) 

To prove inequality (1) for odd n consider the geometric graph G~ whose n 
vertices are the n - 1 points vj = (cos (2¢rj/(n - 1 )), s in(2vj /(n - 1))), 0 ~ j  < n - l, 
together with the additional point u = (e, 6) where e and 6 are small numbers 
chosen so that {v0 , . . . ,  v, 2, u} is in general position. The edges of G,  are the 
1(n - 1) line segments 

{[u, vj]: 0 - < j <  n -  1} 

k.) {[1)), /)j+(n-3)/2], [Vj, U;+{,_l)/2], [/)3, 0;+~n+l)/2]: 0--<j < n - 1}, 

where all indices are reduced modulo n - 1. We can easily check that if e and 8 
are sufficiently small then G,  contains no three pairwise disjoint edges. Thus 
f(3,  n)->~n-~ for every odd n->5. For even n, let G,  be the geometric graph 
obtained from G,+~ by deleting one of its vertices of degree 4. Then G,  has ~n - 4  
edges and contains no three pairwise disjoint edges. This establishes (1). On the 
other hand, Perles [Pc] showed that every geometric graph whose n vertices are 
the vertices of  a convex n-gon in the plane, with more than ( k - 1 ) n  edges, 
contains k pairwise disjoint edges. In particular, in the convex case 2n + 1 edges 
guarantee three pairwise disjoint edges. Comparing this with (1) we conclude 
that the convex case differs from the general one. 

Our final remark before the proof  of  Theorem 1 is that a special case of one 
of the results in [AA] implies that, for every k = o(log n) , f (k ,  n) = o(n2). It is 
very likely that, for every fixed k , f (k ,  n)= Ofn),  and that, for every k = o(n), 
f (k ,  n) = o(n2), but this remains open. 

Proof of Theorem 1. Let G be a geometric graph with n vertices and 6 n - 5  
edges. We must show that G contains three pairwise disjoint edges. It is first 
convenient to apply an affine transformation on the plane, in order to make all 
the edges of  G almost parallel to the x-axis. This is done by first choosing the 
x-axis so that any two distinct points of  G have different x-coordinates,  and 
then, by rescaling the y-coordinates so that the difference between the x-coordin- 
ates of  any two distinct points of  G is at least 1000 times bigger than the difference 
between their y-coordinates. Since any affine transformat~_on maps disjoint seg- 
ments into disjoint segments we may apply the above transformations, and hence 
may assume that G satisfies the following: 

The small angle between any edge of G and the x-axis is less than ~-/200. (2) 
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We now define the clockwise derivative and the counterclockwise derivative 
of an arbitrary geometric graph. Let H = (V, E)  be a geometric graph and let 
e = [u, v] be an edge of H. We say that e is clockwise good at u if there is another 
edge e ' = [ u ,  v'] of H such that the directed line ~ is obtained from ~ by 
rotating it clockwise around u by an angle smaller than 7r/100. If  e is not clockwise 
good at u, we say that it is clockwise bad at u. The edge e = [u, v] is clockwise 
good if it is clockwise good at both u and v. The clockwise derivative of /4, 
denoted by OH, is the geometric graph whose set of  vertices is the set of  all 
vertices of  H, and whose set of  edges consists of  all clockwise good edges of  H. 
The notions of  an edge e = [u, v] which is counterclockwise good at u and that of  
an edge which is counterclockwise good are defined analogously. The counterclock- 
wise derivative of H, denoted by HO, is also defined in an analogous manner. 

Claim 1. Let G = ( V, E)  be a geometric graph with n >- 2 vertices and m edges 
satisfying (2). Then the number of  edges of  OG is at least m - ( 2 n - 2 ) .  Similarly, 
the number of  edges of  GO is at least m - ( 2 n - 2 ) .  

Proof We prove the assertion for O G. The proof  for GO is analogous. Let v c V 
be an arbitrary vertex of G. We claim that the number of  edges of the form [v, u] 
of G which are clockwise bad at v does not exceed 2. Indeed, assume this is 
false and let [v, u~], [v, u2], [v, u3] be three such edges. Without loss of generality, 
assume that the x-coordinates of  u~ and u2 lie in the same side of  the x-coordinate 
of v. By (2), the angle between Iv, u~] and [v, u2] is smaller than ~/100,  and 
hence at least one of  these two edges is clockwise good at v. This contradiction 
shows that indeed at most two edges of  the form [v, u] are clockwise bad at v. 
The same argument shows that if u is a vertex of G whose x-coordinate is 
maximum or minimum, then there is at most one edge incident with u which is 
clockwise bad at u. Altogether, the total number  of clockwise bad edges is bounded 
by 2+2  • ( n - 2 )  = 2 n - 2 ,  completing the proof  of Claim 1. [] 

Returning to our graph G with n edges and 6n - 5  edges, which satisfies (2), 
define G~ = GO, G2 = aGi,  G3 = G20. Clearly, all the graphs G1, G2, and G3 
satisfy (2) and hence, by applying Claim 1 three times, we conclude that the 
number of  edges of  G3 is at least 6 n - 5 - 3 ( 2 n - 2 ) =  1. Let e=[u~,  u2] be an 
edge of G3. Since G3 = G20, [u~, u2] is a counterclockwise good edge of G2. 
Consequently, there is an edge [u~, v~] of  G~ such that the directed line u~v~ is 
obtained from ui u~ by rotating it counterclockwise around u~ by an angle smaller 
than zr/100 (see Fig. 1). Similarly, there is an edge [u2, v2] of  G2 with ~U~UEV2< 
~r/100, as in Fig. 1. Since Gz=OG1 there are edges [v~, w~] and [v2, W2] of  G~ 
with ¢ujv~w~ < 7r/100 and Ku2v2w2< ~r/100, as in Fig. 1. (It  is worth noting that 
it may be, for example,  that [v~, w~] intersects both [v2, u2] and [vz, w2], or even 
that w~ = v2.) Finally, as G~ = GO there are edges [w~, x~] and [w2, xz] o f  G, with 
Lvjw~x~< ~r/100 and 2~VzW2X2<~/lO0, as in Fig. 1. All seven edges [x2, w2], 
[w2, v2], [v2, u2], [u2, ut], [ul ,  vl], [vl ,  wl], and [w~, xl], depicted in Fig. 1, belong 
to G. To complete the proof  we show that they must contain three pairwise 
disjoint edges. Without loss of generality we may assume that ~u2u~ v~ >- ~UlU2Vz. 
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Fig. 1 

If the length l[v:, u2] of the segment [v2, u:] satisfies l[v2, u2] >- l[ul, u2] (as is 
the case in Fig. 1), then we can easily check that [x2, w2], Iv2, u2], and [u~, v~] 
are three pairwise disjoint edges. Otherwise, l[v2, u2] < l[ul, u2] and then it is 
easy to check that [v2, w2], [u~, u2], and [w:, v~] are three pairwise disjoint edges. 
Therefore, in any case, G contains three pairwise disjoint edges, completing the 
proof of  Theorem 1. [] 
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