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DISJOINT EDGES IN GEOMETRIC GRAPHS

NIKITA CHERNEGA, ALEXANDR POLYANSKII, RINAT SADYKOV

Abstract. A geometric graph is a graph drawn in the plane so that its vertices and
edges are represented by points in general position and straight line segments, respec-
tively. A vertex of a geometric graph is called pointed if it lies outside of the convex hull
of its neighbours. We show that for a geometric graph with n vertices and e edges there

are at least n
2

(

2e/n
3

)

pairs of disjoint edges provided that 2e ≥ n and all the vertices of
the graph are pointed. Besides, we prove that if any edge of a geometric graph with n
vertices is disjoint from at most m edges, then the number of edges of this graph does
not exceed n(

√
1 + 8m+ 3)/4 provided that n is sufficiently large.

These two results are tight for an infinite family of graphs.

1. Introduction

A geometric graph G is a graph drawn in the plane by (possibly crossing) straight line
segments, that is, its vertex set V (G) is a set of points in general position in the plane
and its edge set E(G) is the set of straight line segments with endpoints belonging to
V (G). One of the classical problems on geometric graphs is a question raised by Avital
and Hanani [AH66], Kupitz [Kup79], Erdős and Perles: For positive integers k and n,
determine the smallest ek(n) such that any geometric graph with n vertices andm > ek(n)
edges contains k + 1 pairwise disjoint edges.

By results of Hopf and Pannwitz [HP34] and Erdős [Erd46], we know that e1(n) = n.
The upper bound for e2(n) was studied in papers of Alon and Erdős [AE89], Goddard,
Katchalski, and Kleitman [GKK96], Mészáros [M9́8]. The current best upper bound
e2(n) ≤ ⌈5n/2⌉ was proved by Černý [Č05]. This bound is tight up to additive constant:
Perles found an example showing that e2(n) ≥ ⌊5n/2⌋−3. Also, in [GKK96] it was shown
that 7n/2− 6 ≤ e3(n) ≤ 10n. For k ≤ n/2, Kupitz [Kup79] proved the lower bound
ek(n) ≥ kn, and later Tóth and Valtr [TV99] improved it: ek(n) ≥ 3(k − 1)n/2− 2k2.
Using Dilworth’s theorem, Pach and Törőcsik [PT94] found a beautiful proof of the upper
bound ek(n) ≤ k4n. Later, this bound was refined in [TV99], and the current best upper
bound ek(n) ≤ 256k2n belongs to Tóth [Tót00]; see also Theorem 1.11 in [Fel12]. Another
interesting result about disjoint edges of a convex graph is due to Kupitz [Kup79]. Recall
that a convex graph is a geometric graph whose vertices are in convex position. He proved
that if a convex graph on n vertices has no k+1 pairwise disjoint edge, then its number of
edges does not exceed kn provided n ≥ 2k+1. Keller and Perles [KP12] studied the case
n = 2k + 2 and gave the exact characterization of the extremal configurations (that is,
with the maximum number of edges); see Theorem 1.5 in their paper, which is stated in
terms of the so-calling blocking sets. For further reading, we refer the interested readers
to the survey of Pach [Pac13] on geometric and topological graphs.

All these classical results are about how many edges in a geometric graph on n vertices

guarantee k+1 disjoint edges. Motivated by them, we focus on the case k = 1 and study
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how many edges in a geometric graph on n vertices guarantee a lot of pairs of disjoint

edges.
To state the concrete problems, we introduce the following notation. For a geometric

graph G, denote by DJ(G) the set of pairs of disjoint edges of geometric graphs. For an
edge uv ∈ E(G), let DJ(uv) be the set of edges in G disjoint from uv. Clearly, we have
the equality

|DJ(G)| = 1

2

∑

uv∈E(G)

|DJ(uv)|.

These are the main problems of the paper.

Problem 1. For integers n > 0 and m ≥ 0, determine the greatest number e(n,m)
such that a geometric graph G on n vertices has at most e(n,m) edges provided that
|DJ(uv)| ≤ m for any uv ∈ E(G).

Problem 2. For positive integers n and e, determine the smallest number dj(n, e) such
that for any geometric graph G with n vertices and e edges, we have |DJ(G)| ≥ dj(n, e).

In particular, we study these problems for pointed graphs. To define these graphs,
recall that the neighbourhood N(v) of a vertex v ∈ V (G) is the set of vertices adjacent
to v. A vertex is called pointed if it lies outside of the convex hull of its neighbourhood,
otherwise, it is called cyclic. A pointed graph is a geometric graph such that any of its
vertices is pointed; see Figure 1, where a pointed graph is drawn. Clearly, any convex
graph is pointed as well.

Also, for positive integer k and any α ∈ R, we use the standard notation of binomial
coefficient

(

α

k

)

:=
α(α− 1) . . . (α− k + 1)

k!
.

The goal of this paper is to prove the following two theorems.

Theorem 3. Let m be a non-negative integer and G be a geometric graph such that

|DJ(uv)| ≤ m for any edge uv ∈ E(G). Then

|E(G)| ≤ max
(

|V (G)|
(√

1 + 8m+ 3
)

/4, |V (G)|+ 3m− 1
)

.

Theorem 4. For a pointed graph G with 2|E(G)| ≥ |V (G)|, we have

|DJ(G)| ≥ |V (G)|
2

·
(

d(G)

3

)

,

where d(G) = 2|E(G)|/|V (G)| is the average degree of G.

Note that Theorem 3 is a strengthening of a result mentioned above.

Theorem 5 (Hopf and Pannwitz [HP34], Erdős [Erd46]). If every edge of a geometric

graph G intersects all other edges of G, then |E(G)| ≤ |V (G)|.

The rest of the paper is organized as follows. In Section 2, we prove auxiliary lemmas.
In Sections 3 and 4, we prove Theorems 3 and 4, respectively. In Section 5, we show that
these theorems are tight for an infinite family of graphs. Also, in this section, we discuss
open problems related to strengthenings of our main results.
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2. Preliminaries

Throughout the rest of the paper, we denote by n and e the number of vertices and
edges of a geometric graph G, respectively, that is, n = |V (G)| and e = |E(G)|. In this
section, we additionally assume that G is a pointed graph such that every vertex has
degree at least 2.

For distinct points x, y, z ∈ R2 in general position, by the oriented angle ∠xyz we mean
α in the range (−π, π) such that the rotation by the angle α around y maps the ray yx
to the ray yz. Here we assume that if α is positive, then the corresponding rotation is
in the counterclockwise direction, otherwise, it is in the clockwise direction; see Figure 1.
By this definition, we have ∠xyz = −∠zyx.

For a vertex v ∈ V (G), choose x, y ∈ N(v) such that

∠xvy = max {∠avb : a, b ∈ N(v)} .
Set ℓv := y and rv := x. The edges vℓv and vrv are called the leftmost and rightmost edges

of v, respectively. Analogously, we call the vertices ℓv and rv the leftmost and rightmost

neighbours of v, respectively.

v

d

rvlv

c
b a

f

L(v) = {ℓva, ℓvb}
DJ(vℓv) = {ab, cf, rvc, rvd}
DJℓ(v) = {cf, rvc, rvd}

R(v) = {rvc}
DJ(vrv) = {ab, ℓva, ℓvb}
DJr(v) = {ℓva, ℓvb}

Figure 1. The green angles are positive and the red angle is negative.

It turns out that in the case of pointed graphs it is enough to focus only on the edges
disjoint from leftmost and rightmost edges. To formalize this idea, we introduce the
following important notation that we will use instead of DJ(uv).

For v ∈ V (G), let DJℓ(v) be the set of edges incident to one of the vertices of N(v) and
disjoint from the leftmost edge vℓv. Analogously, let DJr(v) be the set of edges incident to
one of the vertices of N(v) and disjoint from the rightmost edge vrv; see Figure 1. Clearly,
DJℓ(v) ⊆ DJ(vℓv) and DJr(v) ⊆ DJ(vrv), and thus, we have |DJ(vℓv)| ≥ |DJℓ(v)| and
|DJ(vrv)| ≥ |DJr(v)|.

For v ∈ V (G), denote by L(v) the set of edges ℓvx ∈ E(G) such that the angle ∠xℓvv
is positive; see Figure 1. Equivalently, the edge ℓvx belongs to L(v) if and only if the ray
ℓvx shares with the affine convex cone v+cone{ℓv − v, rv − v} only the point ℓv. Clearly,
the edges from L(v) are disjoint from vrv and L(v) ⊂ DJr(v).

Analogously, denote by R(v) the set of edges rvv ∈ E(G) such that the angle ∠xrvv
is negative; see Figure 1. Clearly, the edges from R(v) are disjoint from vℓv and R(v) ⊂
DJℓ(v). Remark that if ℓvx ∈ L(v) or rvx ∈ R(v), then x 6∈ N(v).

Lemma 6. For any vertex v ∈ V (G), we have

|DJℓ(v)|+ |DJr(v)| ≥
∑

w∈N(v)\{ℓv ,rv}
(degw − 1) + |L(v)|+ |R(v)|,

where degw is the degree of vertex w ∈ V (G).
3



Proof. To prove this lemma, we apply the so-called discharging method. Let us assign a
charge to every edge wt ∈ E(G) as follows:

1. If the vertex v coincides with w or t, then the charge of wt is 0.
2. If wt ∈ L(v) ∪R(v), then the charge of wt is 1.
3. If wt 6∈ L(v) ∪R(v) and v is distinct from w and t, then the charge of wt is

|{w, t} ∩N(v) \ {ℓv, rv}|,
which can be equal to 0, 1, or 2; see the Figure 2.

v

rvlv = w

t

(a)

v

rv = wlv

t

(b)

v

rvlv = w

t

(c)

v

rvlv tw

(d)

v

rvlv = w t

(e)

v

rvlv

t

w

(f)

v

rv = tlv = w

(g)

v

rvlv w t

(h)

Figure 2. In cases (b), (c), and (g), the charge of wt is 0, in cases (a),
(e), (f), and (h), the charge wt is 1, and in case (d) the charge of wt is 2.

Notice that the charge of an edge is well-define. Moreover, it equals 2 if and only the
edge connects two neighbours of v distinct from its rightmost and leftmost neighbours.
Thus we conclude that the sum of charges of all edges equals the right-hand side of the
desired inequality.

Notice that an edge has a positive charge only if it connects one of the neighbours of v
distinct from ℓv and rv. Hence it is enough to show that if an edge wt ∈ E(G) has charge
1 or 2, then it is disjoint from one or two of the edges vrv and vℓv, respectively. There
are the following possible cases:

1. If wt belongs to L(v) or R(v) then it has charge 1 and is disjoint from vrv or vℓv,
respectively. See Figure 2a.

2. If the edge wt connects a vertex in N(v) \ {rv, ℓv} with a vertex in

V (G) \ ({v} ∪N(v) \ {rv, ℓv}),
then wt has charge 1 and is disjoint from at least one of the edges vℓv or vrv. See
Figures 2e, 2f and 2h.

3. If the edge wt connects two vertices from N(v) \ {rv, ℓv}, then wt has charge 2
and lies in the interior of the affine convex cone v+cone{rv−v, ℓv−v}, and thus,
it is disjoint from the edges vℓv and vrv. See Figure 2d.

4



Since any other edge has charge 0, we are done; see Figures 2c, 2b and 2g. �

For v ∈ V (G), denote by αℓ(v) the number of vertices w ∈ N(v) such that v is the
leftmost neighbour of w, that is, w = ℓv; see Figure 3. Analogously, denote by αr(v) the
number of vertices w ∈ N(v) such that v is the rightmost neighbour of w, that is, v = rw.
Since any vertex has exactly one leftmost edge and exactly one rightmost edge, we get

∑

v∈V (G)

αℓ(v) =
∑

v∈V (G)

αr(v) = n. (1)

Also, we need the standard equality
∑

w∈V (G)

degw = 2e. (2)

Corollary 7. We have

∑

v∈V (G)

(

|DJℓ(v)|+ |DJr(v)|
)

≥ −2(e− n) +
∑

w∈V (G)

deg2w

−
∑

w∈V (G)

(

αℓ(w) + αr(w)
)

degw +
∑

v∈V (G)

|L(v)|+
∑

v∈V (G)

|R(v)|

Proof. Summing up the inequalities from Lemma 6 for all vertices of G, we obtain that
∑

v∈V (G)

(

|DJℓ(v)|+ |DJr(v)|
)

≥
∑

v∈V (G)

∑

w∈N(v)

(degw − 1)

−
∑

w∈V (G)

(αℓ(w) + αr(w))(degw − 1) +
∑

v∈V (G)

|L(v)|+
∑

v∈V (G)

|R(v)|.

By (1) and (2), we are done. �

For a vertex v, let L′(v) be a subset of L(v) consisting of edges ℓvw with ℓw = ℓv, that
is, ℓv is the leftmost neighbour also for w; see Figure 3. Analogously, let R′(v) be a subset
of R(v) consisting of edges rvw with rw = rv, that is, rv is the rightmost neighbour also
for w.

Lemma 8. For a vertex v ∈ V (G), the following equalities hold

∑

v∈V (G)

|L′(v)| =
∑

v∈V (G)

αℓ(v)(αℓ(v)− 1)

2
and

∑

v∈V (G)

|R′(v)| =
∑

v∈V (G)

αr(v)(αr(v)− 1)

2
.

Proof. If we prove that for each vertex w ∈ V (G), we have

∑

v∈V (G):ℓv=w

|L′(v)| = αℓ(w)(αℓ(w)− 1)

2
(3)

then the first desired equality follows. Analogously, one can show the second equality.
Since (3) is trivial if αℓ(w) = 0, we may assume αℓ(w) = k > 0. Let u1, . . . , uk ∈ N(w)

be distinct vertices with ℓui
= w; see the vertex w and its neighbours on Figure 3. Without

loss of generality, assume that among wu1, . . . , wuk, the edge wu1 is the leftmost edge, the
edge wu2 is the second leftmost edge, etc., that is, the angles ∠uiwuj for 1 ≤ i < j ≤ k
are positive. Therefore, |L′(ui)| = k − i for 1 ≤ i ≤ k. Summing up all these equalities,
we obtain (3). �
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a

b

c

d = u1

f

g = u2

h = u3

w
αℓ δℓ L L′

w 3 0

a 1 1 gb, gc gb

b 0 1 gc

c 0 0

d 1 1 wf, wg, wh wg, wh

f 0 0

g 2 0 wh wh

h 1 0

Figure 3. Here we use red arrows to illustrate leftmost edges: If an arrow
connects x to y, then y is the leftmost neighbour of x.

To apply induction in Theorem 4, we consider the contribution of the vertices that
satisfy one of the properties

deg(v) = αℓ(v), deg(v) = αr(v),L′(v) ( L(v), or R′(v) ( R(v).

For that, we introduce the following auxiliary notation.
Denote by nℓ the number of vertices v ∈ V (G) such that for every w ∈ N(v) we

have v = ℓw, that is, deg(v) = αℓ(v). Analogously, denote by nr the number of vertices
v ∈ V (G) such that for every w ∈ N(v) we have v = rw, that is, deg(v) = αr(v).

For a vertex v ∈ V (G), put δℓ(v) = 1 if there is at least one edge ℓvx such that ∠xℓvv
is positive and ℓx 6= ℓv, otherwise, put δℓ(v) = 0; see Figure 3. Analogously, we define
δr(v). Remark that δℓ(v) = 1 if and only if the set L(v)\L′(v) is not empty. In particular
, we have

|L(v)| ≥ |L′(v)|+ δℓ(v) and |R(v)| ≥ |R′(v)|+ δr(v). (4)

Corollary 9. The following inequality holds

∑

v∈V (G)

|DJℓ(v)|+
∑

v∈V (G)

|DJr(v)|

≥





(2e− n)2

2(n− nℓ)
− e+

n

2
+
∑

v∈V (G)

δℓ(v)



+





(2e− n)2

2(n− nr)
− e+

n

2
+
∑

v∈V (G)

δr(v)



 .

Proof. The idea of the proof is to apply the inequality of arithmetic and geometric means
to Corollary 7. Indeed, by Corollary 7, Lemma 8 and (4), we obtain

∑

v∈V (G)

(

|DJℓ(v)|+ |DJr(v)|
)

≥
∑

w∈V (G)

(degw2

2
− αℓ(w) degw +

αℓ(w)(αℓ(w)− 1)

2
+

+
degw2

2
− αr(w) degw +

αr(w)(αr(w)− 1)

2

)

− 2(e− n) +
∑

v∈V (G)

(

δℓ(v) + δr(v)
)

(5)
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By (1) and (2), we have

∑

w∈V (G)

(degw2

2
− αℓ(w) degw +

αℓ(w)(αℓ(w)− 1)

2

)

=
∑

w∈V (G)

(degw − αℓ(w))
2

2
− n

2
≥ (2e− n)2

2(n− nℓ)
− n

2
,

where to prove the last inequality, we use that the number of vanishing terms degw−αℓ(w)
equals nℓ.

Analogously, we show that

∑

w∈V (G)

(degw2

2
− αr(w) degw +

αr(w)(αr(w)− 1)

2

)

≥ (2e− n)2

2(n− nr)
− n

2
.

Substituting these two inequalities in (5), we finish the proof of the corollary. �

Corollary 10. The following inequality holds

∑

v∈V (G)

(

|DJ(vℓv)|+ |DJ(vrv)|
)

≥ n

(

2e

n
− 1

)(

2e

n
− 2

)

.

Proof. By the definitions of DJr(v) and DJℓ(v), we have |DJ(vℓv)| ≥ |DJℓ(v)| and
|DJ(vrv)| ≥ |DJr(v)|, and therefore, Corollary 9 yields

∑

v∈V (G)

(

|DJ(vℓv)|+ |DJ(vrv)|
)

≥ (2e− n)2

n
− (2e− n) = n

(

2e

n
− 1

)(

2e

n
− 2

)

,

which finishes the proof.
�

3. Proof of Theorem 3

Consider two possible cases.
Case 1. Let G be a pointed graph. Since (

√
1 + 8m + 3)/4 ≥ 1, we may assume that

G does not contain vertices of degree 0 or 1; otherwise, we can delete such a vertex and
use induction on the number of vertices. Hence we can apply the results of Section 2.
Combining Corollary 10 together with |DJ(vℓv)| ≤ m and |DJ(vrv)| ≤ m, we obtain

2mn ≥ n

(

2e

n
− 1

)(

2e

n
− 2

)

= n

(

(

2e

n
− 3

2

)2

− 1

4

)

,

which finishes the proof of the first case.
Case 2. Let G have a cyclic vertex v. Hence, there are vertices v1, v2, v3 ∈ N(v) such

that v lies in the convex hull of v1, v2, and v3. Remark that any edge that is not incident
to v is disjoint from at least one of the edges vv1, vv2, vv3. Since each of the edges vv1, vv2,
and vv3 is disjoint from at most m edges, we have that there are at most 3m + deg v
edges in G. The inequality deg v < n finishes the proof of the second case.

4. Proof of Theorem 4

The proof is by induction on e. Since we assume e ≥ n/2, we have d(G) ≥ 1.
Base of induction. Assume that e ≤ 3n/2, and thus, d(G) = 2e/n ≤ 3.

If 1 ≤ d(G) ≤ 2, the desired inequality trivially follows from
(

d(G)
3

)

≤ 0.
7



If 2 < d(G) ≤ 3, then consider a graph G′ obtained from G by deleting one edge in
every pair of disjoint edges. Thus all edges in G′ are pairwise intersecting. By Theorem 5,
we have |E(G′)| ≤ n. Since we delete at most |DJ(G)| edges, we obtain

|DJ(G)| ≥ |E(G)| − |E(G′)| ≥ e− n =
n(d(G)− 2)

2
≥ n

2

(

d(G)

3

)

.

Induction step. Assume that e > 3n/2, and thus, d(G) > 3.
First, we show that we may assume that G does not contain vertices of degree 0 or 1.

Indeed, let

F (G) :=
|V (G)|

2

(

d(G)

3

)

and suppose that G has a vertex of degree 0 or 1. Let G′ be a graph obtained from G by
removing this vertex. Then |DJ(G)| ≥ |DJ(G′)| and

F (G′) ≥ n− 1

2

(

2e−2
n−1

3

)

=
2e− 2n

12

(

2e− 2

n− 1

)(

2e− n− 1

n− 1

)

(∗)
>

2e− 2n

12

(

2e− 2

n− 1

)(

2e− n− 1

n− 1

)(

e(n− 1)

(e− 1)n

)(

(2e− n)(n− 1)

(2e− n− 1)n

)

=
2e(2e− n)(2e− 2n)

12n2
= F (G).

Here in (∗) we use that

e(n− 1)

(e− 1)n
< 1 and

(2e− n)(n− 1)

(2e− n− 1)n
< 1.

Both of these inequalities easily follow from e > n > 1. Since d(G′) > d(G) > 3, we may
apply induction on the number of vertices for G′ and obtain the desired inequality

|DJ(G)| ≥ |DJ(G′)| ≥ F (G′) ≥ F (G).

Therefore, without loss of generality we assume that each vertex of G has degree at least
2, and thus, we can use the results of Section 2.

Finally, we are almost ready to delete from G either all leftmost or all rightmost edges
and then apply the induction hypothesis to the obtained graph.

By Corollary 9, we may assume without loss of generality that
∑

v∈V (G)

|DJℓ(v)| ≥
(2e− n)2

2(n− nℓ)
− e +

n

2
+
∑

v∈V (G)

δℓ(v). (6)

Otherwise, if this inequality does not hold, then Corollary 9 yields the analogous inequal-
ity for the r-summands.

Let G′ be a graph obtained from G by deleting all leftmost edges and also all vertices
v ∈ V (G) with αℓ(v) = deg v (as they become vertices of degree 0); see Figure 4. Let
us find the numbers of vertices and edges in the new graph. Since nℓ is the number of
deleted vertices, we have

|V (G′)| = n− nℓ.

Denote by tℓ the number of double leftmost edges, where an edge uv is called double

leftmost if leftmost with respect to both its endpoints u and v, that is, u = ℓv and v = ℓu.
Since we delete each leftmost edge (and can not delete such an edge twice), we obtain

|E(G′)| = e− n + tℓ.

8



a

b

c

df

g

h

i

j k

(a) Graph G

a

b

c

df

g

h

j k

(b) Graph G′

Figure 4. Here the leftmost edges are drawn as red arrows: If the red
arrow connects x to y, then y is the leftmost neighbour of x. The dashed
edge ib is a double leftmost edge. Remark that we delete the vertex i and
at the same time do not delete f because it is not the leftmost neighbour
for a.

First, we claim that the following inequality holds

|DJ(G)| ≥ |DJ(G′)|+
∑

v∈V (G)

|DJℓ(v)| − |E(G′)|. (7)

To prove this inequality, we show that each pair of disjoint edges in G counted on the
right-hand side of this inequality at most once. Indeed, there are three types of disjoint
pairs of edges in G.

1. Both edges are not leftmost. Then this pair belongs to DJ(G′).
2. One of the edges is leftmost and the second one is not. Then we count such a

pair at most once in the sum
∑

v∈V (G) |DJℓ(v)|. Recall that by DJℓ(v), we denote

edges incident to N(v) and disjoint from vℓv.
3. Both edges are leftmost. Denote them by vℓv and uℓu. We can count their pair

in the sum
∑

v∈V (G) |DJℓ(v)| only in the case when u and v are neighbours in G

and the edge uv ∈ E(G) is distinct from them. Under this assumptions, we count
this pair twice when consider the summands |DJℓ(v)| and |DJℓ(u)|. However, in
this case the edge uv is not leftmost for G and thus belongs to G′. As each edge
xy ∈ E(G′) corresponds to such a pair of disjoint edges in G and we subtract
|E(G′)| on the right-hand side, we can say that any pair of disjoint leftmost edges
is counted at most one there.

Second, for any double leftmost edge uv ∈ E(G) we have

δℓ(v) + βℓ(u) = 1, (8)

where for every w ∈ V (G) put βℓ(w) = 1 if degw = αℓ(w), otherwise, βℓ(w) = 0. Remark
that if βℓ(w) = 1 then the edge wℓw is a double leftmost edge. Recall that δℓ(w) = 1 if
there is at least one edge ℓxy ∈ E(G) such that ℓx 6= ℓy and the ray ℓxy shares with the
affine cone x+ cone{ℓx − x, rx − x} only the point ℓx. Otherwise, δℓ(x) = 0.
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To prove (8), we consider two possible cases.

1. The vertex u is the leftmost vertex with respect to all its neighbours, and hence,
βℓ(u) = 1 and δℓ(v) = 0.

2. There is an edge uw that is not leftmost with respect to w, and hence, βℓ(u) = 0
and δℓ(v) = 1.

By (8), we easily obtain that the equality

δℓ(u) + δℓ(v) + βℓ(u) + βℓ(v) = 2 (9)

holds for all double leftmost edges uv.
Recall that nℓ is the number of vertices w with deg(w) = αℓ(w), that is, nℓ =

∑

v∈V (G) βℓ(v). Summing up (9) over all double leftmost edges in G and using that
each vertex can be incident to at most one double leftmost edge, we easily obtain

∑

v∈V (G)

δℓ(v) +
∑

v∈V (G)

βℓ(v) =
∑

v∈V (G)

δℓ(v) + nℓ ≥ 2tℓ ≥ nℓ =
∑

v∈V (G)

βℓ(v), (10)

where tℓ is the number of double leftmost edges.

Third, by (10), we have n− 2tℓ ≤ n− nℓ, and thus,

d(G′) =
2(e− n + tℓ)

n− nℓ

≥ 2e− n

n− nℓ

− 1 ≥ 2e− n

n
− 1 = d(G)− 2 > 1, (11)

and thus, we can apply the induction hypothesis for G′.

By the induction hypothesis, (7), (11), and (6), we obtain

|DJ(G)| ≥ (n− nℓ)

2
·
( 2e−n

n−nℓ

− 1

3

)

+
(2e− n)2

2(n− nℓ)
− e +

n

2
+
∑

v∈V (G)

δℓ(v)− e+ n− tℓ.

Finally, by (10), we have

∑

v∈V (G)

δℓ(v)− tℓ ≥
1

2

∑

v∈V (G)

δℓ(v)− tℓ ≥
nℓ

2
,

and thus,

|DJ(G)| ≥ n− nℓ

2
·
( 2e−n

n−nℓ

− 1

3

)

+
(2e− n)2

2(n− nℓ)
− (2e− n) +

n− nℓ

2

=
n− nℓ

2
·
(

( 2e−n
n−nℓ

− 1

3

)

+

(

2e− n

n− nℓ

− 1

)2
)

=
2e− n

12
·
(

(

2e− n

n− nℓ

)2

− 1

)

≥ 2e− n

12
·
((

2e− n

n

)2

− 1

)

=
n

2

(

2e
n

3

)

,

which finishes the proof of the theorem.
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5. Discussion

5.1. Tightness of the theorems. Let n, k be integers of different parity such that
n−2 > k > 2. Let Gn,k be a convex graph whose vertices are denoted x1, . . . , xn in cyclic
order and edges are xixj for j − i ≡ n−k−1

2
, . . . , n+k+1

2
(mod n); see Figure 5.

It is not difficult to verify that the number of edges of Gn,k is n(k + 2)/2. Moreover,

|DJ(Gn,k)| =
n

2
·
(

k + 2

3

)

and |DJ(uv)| ≤ k(k + 1)

2
for any edge uv ∈ E(Gn,k).

Therefore, for the graph Gn,k, the bounds in Theorems 3 and 4 are tight.

x1

x2

x3
x4

x5

x6

x7

x8

x9
x10

x11

(a) n = 11, k = 2

x1

x2

x3

x4x5

x6

x7

x8

x9

x10

x11

x12

(b) n = 12, k = 3

Figure 5. Graph Gn,k.

5.2. Open problems and conjectures. Unfortunately, Theorem 4 becomes wrong if
one replaces the bound

n

2

(

d(G)

3

)

by
1

2

∑

v∈V (G)

(

deg v

3

)

.

Indeed, a star S on n+ 1 vertices satisfies the following inequality

1

2

∑

v∈V (S)

(

deg v

3

)

=

(

n

3

)

> 0 = DJ(S).

We believe that the following conjectures hold.

Conjecture 11. Let m be a non-negative integer and G be a geometric graph such that

|DJ(uv)| ≤ m for any edge uv ∈ E(G). Then

|E(G)| ≤
√
1 + 8m+ 3

4
· |V (G)|.

Conjecture 12. For any geometric graph G with 2|E(G)| ≥ |V (G)|, we have

|DJ(G)| ≥ n

2
·
(

d(G)

3

)

.

At last, remark that Theorem 3 implies Conjecture 11 for a geometric graph G with

at least 3(
√
1+8m+1)

2
vertices.
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