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Abstract. In this paper we describe a polynomial-time algorithm for the following 

problem: given: a planar graph G embedded in R 2, a subset {I~ . . . . .  lv) of the faces of 

G, and paths C 1 . . . . .  C k in G, with endpoints on the boundary of I~ u . . .  w Iv;find: 

pairwise disjoint simple paths P~ . . . . .  Pk in G so that, for each i =  1,. . . ,  k, Pi is 

homotopic to C~ in the space R 2 \ ( I 1  W " "  t.d Iv). 

Moreover, we prove a theorem characterizing the existence of a solution to this 

problem. Finally, we extend the algorithm to disjoint homotopic trees. As a corollary 

we derive that, for each fixed p, there exists a polynomial-time algorithm for the 

problem: given: a planar graph G embedded in ~2 and pairwise disjoint sets 

WI . . . . .  Wk of vertices, which can be covered by the boundaries of at most p faces of G; 

find: pairwise vertex-disjoint subtrees T~ . . . . .  Tk of G where Ti covers W~ (i = 1 . . . . .  k). 

1. Introduction 

In this paper we describe a polynomial- t ime algori thm for the following dis jo int  

h o m o t o p i c  pa th s  prob lem:  

given: a planar graph G embedded in the plane ~2; 

a subset I t . . . . .  Ip of the faces of G (including the unbounded  

face); 

paths C1 . . . . .  C k in G, each with endpoints on the boundary  

of 11 W ' "  ~9 I t ;  

f ind:  pairwise disjoint simple paths Pt  . . . . .  Pk in G so that, for each 

i = 1 . . . . .  k, Pi is homotopic  to Ci in the space ~ 2 \ ( I  t w "" w Iv). 

(1.1) 

We explain the terminology used here. By e m b e d d i n g  we mean embedding without  

intersecting edges and with piecewise linear edges. We identify G with its image in 

•2. We consider edges as open curves (i.e., without  endpoints)  and faces as open  

subsets of ll~ 2. 
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Two curves C, if: [0, 1 ] - - ~ 2 \ ( I 1  u . . . u I p )  are called homotopic in 

R2\(I1 u . - -w Ip) (in notat ion:  C ~ (~) if there exists a cont inuous function 

�9 : [0, 1] x [0, 1] ~ R2\(I1  u . . .  w lp) so that 

�9 (0, x) = C(x), ~(1, x) = ~(x),  ~(x,  0) = c(0),  ~(x,  l) = c(1)  0 .2 )  

for each x e [0, 1]. (It implies that C(0) = (~(0) and C(1) = C(1).) In this paper, by 

just homotopic we mean homotop ic  in ~ 2 \ ( I  1 w . . .  w Ip). 

A path is a sequence (Vo, el, v~ . . . . .  en, Vd) of not necessarily distinct vertices and 

edges, so that  ei connects vj_ ~ and v j ( j  = 1 . . . .  , d). It is simple ifv o, v~ . . . . .  va are all 

distinct. Vertices v o and v a are called the endpoints of the paths. By identifying paths 

in G with curves in R 2, homotopy  extends to paths in G. 

Thus we prove (in Section 3): 

Theorem 1. The disjoint homotopic paths problem (1.1) is solvable in polynomial 

time. 

The algori thm also yields the basis of a proof  of the following theorem (Section 

5) characterizing the existence of a solution to the disjoint homotop ic  paths 

problem (1.1) by means of "cut  condi t ions"  (conjectured by L. Lov~sz and P. D. 

Seymour):  

Theorem 2. Problem (1.1) has a solution if and only if: 

exist pairwise disjoint simple curves (i) there ~1 . . . . .  Ck in 

f f~2\(l lw ...  WIp) so that ~i is homotopic to C i (i = 1 . . . . .  k); 

(ii) for  each curve D: [0, 1] -o ~ 2 \ ( I  1 u . . .  u Ip) with D(O), D(1) E 

bd(I  1 w .. .  w Iv) we have 

k 

cr(G, D) > ~ mincr(C~, D); (1.3) 
i = 1  

(iii) for  each doubly odd closed curve D: $1 - o  ~ 2 \ ( I  1 U " "  W lp) we have 

k 

cr(G, D) > y, mincr(C~, D). 
i = 1  

Here bd denotes boundary.  For  curves C, D: [0, 1] --, ~ 2 \ ( I  1 w . . .  w Ip) we define 

cr(G, D) ,=  I(Y E I-0, I] ID(y) ~ G} l, 

cr(C, D)~= r{(x, y) ~ [0, 1] x [0, 1]lC(x) = D(y)} I, 

mincr(C, D)..= min{cr(t~,/3)1~ ~ C,/3 ~ O}. 

(1.4) 

(We take c(G, D) ,= 1 if D is a constant  function with D(0) e G.) 

A closed curve is a cont inuous  function D : S 1 ~ It~ 2 (where $1 denotes the unit 

circle in C). Two closed curves D, /3:S1--* •2\(I1 w ...  w Iv) are called freely 
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homotopic in ~ 2 \ ( I  1 w .. .  w lp), or just homotopic (in notat ion:  D ~ /3 ) ,  if there 

exists a cont inuous function ~"  [0, 1] • $1 --, ~ 2 \ ( i 1  w ..- w Ip) so that  

�9 (0, z) = D(z), (I)(1, z) = / ) ( z )  (1.5) 

for all z E S  1. (So there is no fixed point.) Again we denote (if C: [0 ,  1] 

~ 2 \ ( I  1 u . - .  ~ lp) is a curve) 

cr(G, D) :=  [{z e $11D(z) e G} l, 

cr(C, D) :=  I{(x, z) ~ [0, 1] x S,[C(x)  = D(z)}l, 

mincr(C, D) ,=  min{cr((~,/3)1~ ~ C,/3 ~ D}. 

(1.6) 

If D', D": $1 --' R 2 are closed curves with D'(1) = D"(1), then the concatenat ion 

D'. D" (or just  D'D") is the closed curve given by 

D'" D"(z):= D' (z  2) if Im z >_ 0, 

: =  D"(z 2) if Im z < 0. (1.7) 

Call a point  p af ixed point of a curve C if each curve homotop ic  to C traverses p. (In 

particular,  the endpoints  of C are fixed points of C.) A closed curve D is called 

doubly odd if: 

(i) D does not traverse any fixed point  of any C a . . . . .  Ck; 

(ii) D = D ' . D "  for some closed curves D', D" with D'(1) = D"(1) r G so 

that  

k 

cr(G, D') + ~ kr(Ci, D') is odd 
i=1 

and 

k 

cr(G, D") + ~ kr(Ci, D") is odd. 
i=1 

(1.8) 

Here kr(C, D) denotes the number  of crossings of C and D (see Fig. 1). 

D C C D 

crossing touching 

Fig. 1 
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I 1 

4 

Fig. 2. W a v y  curves represent  C1 . . . . .  C10 and  the dashed  curve represents  the doubly  odd closed 

curve O. N o w  cr(G, O') + ~ 2 ~  kr(Ci,  O') = 6 + 5 = 11 and  cr(G, O") + ~ ] ~  1 k r (C i, D") = 7 + 8 = 15, 

whereas  cr(G, D) = 13 = ~_-~ 1 mincr(Ci ,  D). So cond i t ion  (1.3(iii)) is not  satisfied, and  hence (1.1) has  

no  solut ion.  

To clarify condition (1.3), we give a proof of necessity (see Fig. 2). 

Proof of necessity of condition (1.3). Suppose problem (1.1) has a solution 
P1 . . . . .  Pk. Then condition (1.3(i)) is satisfied as we can take (~:= Pi for i =  
1 . . . . .  k. Condition (1.3(ii)) follows from 

k k k 

cr(G, D) _> ~ cr(Pi, D) > ~ mincr(Pi, D) = ~ mincr(C/, D) (1.9) 
i = l  i=1  i = 1  

(the first inequality follows from the fact that the P~ are simple and disjoint). 
To see condition (1.3(iii)), note that 

k k 

cr(G, D') >_ ~ cr(P i, D') _> ~ kr(P~, D') 
i=1  i = 1  

and (1.10) 

k k 

cr(G, D") > ~ cr(P~, D") > ~ kr(e,, D"). 
i=1  i=1  

Moreover, since the parity of kr(., �9 ) is invariant under homotopy, we have by 

(1.8(ii)) 

k k 

cr(G, O') ~ ~ kr(C,, D') = ~ kr(P,, D') (mod 2), 
i=l i=l 

k k 

cr(G, D") ~ ~ kr(C~, D") ~- ~ kr(Pi, D") (mod 2). 
i = l  i=i 

(1.11) 
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So we derive the following strict inequalities from (1.10): 

k k 

cr(G, D') > ~ kr(Pi, D') and cr(G, D") > ~ kr(P~, D"). (1.12) 
i=1 i=1 

Concluding, 

k 

cr(G, D) = cr(G, O') + cr(G, D") > ~ (kr(Pi, D') + kr(P,, O")) 
i=1 

(1.13/ 
k k k 

= ~ kr(P~, D ) >  ~ mincr(P~, D ) =  ~ mincr(Ci, D). 
i=1  i=1 i=1 

(The last inequality follows from the fact that D does not traverse any fixed point of 

any Ci, so that any touching of D and Pi can be removed.) Therefore we have the 

strict inequality in (1.3(iii)). [] 

In Section 6 we describe a polynomial-time algorithm for the following disjoint 

homotopic trees problem, generalizing the disjoint homotopic paths problem (1.1): 

given: a planar graph G embedded in ~ 2 ;  

a subset I1 . . . .  , ]p of the faces of G (including the unbounded face); 

paths Cll  . . . . .  Clt . . . . . .  Ckl . . . . .  Ckt~ in G, each with endpoints 

on the boundary of 11 w . . .  w 1p, so that, for each i = 1 . . . . .  k, 

Cil . . . . .  Cit, have the same beginning vertex; 

find: pairwise disjoint subtrees T 1 . . . . .  Tk of G so that, for each 

i = 1 . . . . .  k and j  = 1 . . . . .  ti, T~ contains a path homotopic to C~j 

in ~ 2 \ ( 1 1  LA " ' "  L.) Ip). 

Theorem 3. The disjoint homotopic trees problem (1.14) is solvable in polynomial 

time. 

Theorem 3 generalizes Theorem 1, since if t 1 . . . . .  t k = 1, then problem (1.14) 

reduces to problem (1.1). However, for the sake of exposition we first restrict 

ourselves to studying problem (1.1). The algorithm for (1.14) arises from that for 

(1.1) by some direct modifications. 

We do not formulate a theorem characterizing the existence of a solution to 

(1.14), analogous to Theorem 2, as we found only tedious inattractive conditions. 

Obviously, the fact that (1.14) is solvable in polynomial time implies that it has a 

"good characterization" (i.e., belongs to NP c~ co-NP). 

Finally, in Section 7 we consider the disjoint trees problem: 

given: a graph G; 

subsets W 1 . . . . .  Wk of V(G); 

find: pairwise disjoint subtrees 7"1 . . . . .  Tk of G so that W/_c V(T/) for (1.15) 

i = 1  . . . . .  k. 
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This problem is NP-complete. Robertson and Seymour showed that, for fixed 

IW 1 w . . - u  Wkl, problem (1.15) is solvable in polynomial time. We derive from 

Theorem 3 that if G is planar this can be extended to: 

Theorem 4. For each f ixed p there exists a polynomial-time algorithm for the 

disjoint trees problem (1.15) when G is planar and W 1 w ... w W k can be covered by 

the boundaries o f  p faces o f  G. 

The reduction to Theorem 3 is based on enumerating homotopy classes of trees, 

taking the p faces as "holes." 

Motivation for studying problems (1.1), (1.14), and (1.15) comes from two 

different sources. First, in their series of papers "Graph Minors," Robertson and 

Seymour study problem (1.I) for the case where p = 1 or 2 [6]. Moreover, they 

study a variant of problem (1.14) for graphs densely enough embedded on a 

compact surface [7], [8]. 

A second source of motivation is the design of very large-scale integrated (VLSI) 

circuits, where it is wished to interconnect sets of pins by disjoint sets of wires. 

Pinter [51 described a topological model for solving so-called "river-routing" 

problems. In consequence, Cole and Siegel [1] and Leiserson and Maley [3] 

proved the theorem above and gave a polynomial-time algorithm, respectively, for 

problem (1.1) in case G is part of the rectangular grid on ~2, provided that each 

face not surrounded by exactly four edges belongs to {11 . . . . .  lp} (then (1.3(iii)) is 

superfluous). 

The algorithm for (1.1) is purely combinatorial. In [2] we described a polyno- 

mial-time algorithm for (1.1) based on the ellipsoid method (first a fractional 

solution to (1.1) is found with the ellipsoid method, next this fractional solution is 

"uncrossed," from which a solution to (1.1) is derived). The present algorithm 

extends to disjoint trees. 

Another related result was published in [9], showing the necessity and suffi- 

ciency of conditions analogous to (1.3) for the existence of circuits of prescribed 

homotopy in a graph embedded on a compact surface. With some effort we may 

derive from this Theorem 2 above, by transforming the space ~ 2 \ ( 1 1  U ' "  U lp)  t o  

a compact closed surface, by adding some "handles" between the "holes" 

11 . . . . .  lp, and by extending the graph and the curves over these handles. 

Note 1.1. Analysis of our method would yield a running time bound of order 

O(n r log 2 n), where n is the number of vertices + edges of G, added with the lengths 

of the paths in the input. We do not however derive this bound. In fact, we 

conjecture that a sharpening of our methods gives a running time of order 
O(n 2 log 2 n). 

Note 1.2. To apply the algorithm, it is not necessary to describe the embedding of 

G in ~2. It suffices to specify the vertices, edges, and faces of G abstractly, and to 

give with each vertex and with each face the edges incident with it in clockwise 

orientation. 
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e '  I1 ~ - - ' "  x 
. . j -  . 

Fig. 3 

Note 1.3. If we would delete from the definition of "double  odd," condit ion 

(1.8(i)) that  D should not traverse any fixed point of any Ci, condit ion (1.3(iii)) 

would not be a necessary condition. This is shown by the example  in Fig. 3. 
The graph in Fig. 3 has four vertices: t, u, v, w, with a loop at tached at each of 

them, edges connecting t and u, and v and w, and two parallel edges connecting u 

and l~. Let C1 be the path from t to w following edges e, e', e". So problem (1.1) has a 

solution (taking k = 1). Let D be the closed curve indicated by the dashed curve. D 

traverses the fixed points u and v of C1. We easily check that  D satisfies (1.8(ii)), but  

not the strict inequality in (1.3(iii)) (since cr(G, D) = 4 = mincr(C~, D)). 

2. The Universal Covering Space and Shortest Homotopic Paths 

Before describing our  me thod  in Section 3, in this section we first discuss briefly the 

concept  of universal covering space, and we describe a polynomial- t ime algori thm 

for finding a shortest  pa th  of given homotopy .  One consequence of this algori thm is 

that  we can check in polynomial  t ime whether  two given paths are homotopic .  For  

background  literature on the universal  covering space, see Massey [4]. 

The universal covering space U of ~ 2 \ ( 1 1  k . ) - "  w lp) can be defined set- 

theoretically as follows. Choose  a point  u e [~2\(I  1 u . . .  w Ip). The underlying 

point set of U is the set of  all h o m o t o p y  classes of curves starting in u. A set T ~ U 

is open if and only if, for each # e T, say # e hom(u, w), there exists a ne ighborhood 

N o fw  in [ ~ 2 \ ( I  1 U - . .  U lp) SO that  i f P  is a curve contained in N starting in w, then 

~ - ( P )  e T. [Here  horn(u, w) denotes the collection of all h o m o t o p y  classes of 

curves from u to w, and ( P )  denotes the h o m o t o p y  class containing P.] 

It is not  difficult to see that  the universal covering space is independent  (up to 

h o m e o m o r p h i s m )  of the choice of u. With the universal  covering space U a 

projection func t ion  n: U ---h~2\(I1 • ' "  k9 Iv) is given by n(#) ,=  w i f#  ~ hom(u, w). 

There is an alternative, combina tor ia l  way of describing U. We can "cut  open"  

~ 2 \ ( I  1 w .. .  • lp) along p - 1 pairwise noncrossing simple curves, connecting the 

"holes"  11 . . . . .  Ip, in such a way that  we obtain  a simply connected region R, e.g., 

Fig. 4 becomes Fig. 5. We can deform R to a disk as in Fig. 6. If  two of the I i touch 

each other, we can obtain  a region with cut points. 
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We now take infinitely many copies of R, and glue them together along the cuts, 

in such a way that we obtain a simply connected space (see Fig. 7). This gives us the 

universal covering space U of ~ 2 \ ( I  1 U -- .  U Ip), with obvious projection function 

7g: U --* ~ 2 \ ( I  1 u - . -  u Iv). 
The inverse image G':= 7r-*[G] of  G is an infinite graph, embedded in U 

(assuming p _> 2 here, the case p = 1 being trivial). In fact, G' is planar, and U can 

be identified with ~ 2 \ U F ~ . ~  F,  where ~ is the collection of  unbounded faces of G' 

(assuming G to be connected). 

It is a fundamental property of the universal covering space that, for each curve 

C: [-0, l ]  --+ ~ 2 \ ( I  1 U""  U Iv) and each choice of  v E 7z-1(C(0)), there exists a 

unique curve C': [0, 1] ---, U satisfying n o C' = C and C'(0) = v. Curve C' is called a 

lifting of C to U. Two curves C, (~: [0, 1] --, R2\(I~ w .-- w lp) are homotopic  if and 

only if some lifting of C to U has the same endpoints as some lifting of  (~ to U. A 

point u e ~ 2 \ ( I  1 w . - - u  lp) is a fixed point of curve C i f  and only if, for some 

u' e ~-  ~(u) and some lifting C' of C to U, each curve in U connecting C'(0) and 

C'(1) traverses u'. 
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We now turn to the shortest homotopic path problem: 

9iven: a planar graph G = (V, E) embedded in N2; 

a subset {11  . . . . .  lp} of the faces of G (including the un- 

bounded face); 

a path P in G, (2.1) 

a "length" function l: E --, Z+; 

find: a path P in G homotopic to P in [~2\(11 t . d ' ' '  k.) lp) minimizing 

length (P). 

length(P) we mean, if P = (Vo, el, vl . . . . .  ed, Va), 

d 

length(P).'= ~ l(el). (2.2) 

We do not require that P is simple in (2.1). 

To solve (2.1), consider a lifting P'  of P to U. So P'  is a path in G', say from u to 

w. Then, clearly, if Q is a shortest path in G' from u to w, then its projection rto Q is a 

valid output for (2.1). (Taking the obvious length function on the edges of G'.) 

Hence, the shortest homotopic path problem in G can be reduced to the shortest 

(nonhomotopic) path problem in G'. This would give us an algorithm if G' were not 

an infinite graph. However, it is clearly not necessary to consider G' completely. In 

fact, it suffices to consider a part  of G' of polynomially bounded size, which 

implies that (2.1) is solvable in polynomial time. 

To see this, we may assume that when cutting ~ 2 \ ( I  1 W " - '  t.) Ip) open to obtain 

the region R, we have done this along shortest paths in G. In fact, we can find 

shortest paths Q2 . . . . .  Qp in G, where Qj connects I x with I t, so that Q2 . . . . .  Qp are 

pairwise edge-disjoint and do not have crossings. (They can be found as follows. 

Choose vertices v~ . . . . .  vp incident with 11 . . . . .  Ip, respectively. With Dijkstra's 

algorithm, find a spanning tree T in G so that all simple path in T starting in vl are 

shortest paths. Let Qj be the simple path in T from vl to vj (forj  = 2 . . . . .  p). Adding 

parallel edges gives Q~ . . . . .  Qp as required.) 

Now any lifting Q~ of any Qj to u is a shortest path in G'. So there exists a 

shortest path in G' from u to w not crossing any Q) which does not cross P'. That  is, 

we have to consider only that part  of U consisting of copies of R traversed by P'. 

This gives us a subgraph G" of G' of size polynomially bounded by the size of G and 

the number  of vertices in P'. For any shortest path Q in G" from u to w, the path 

p.-= ~ o Q is a shortest path homotopic to P. 

Here by 

Proposition 1. The shortest homotopic path problem is solvable in polynomial time. 

Proof See above. [] 

A consequence is: 

Proposition 2. It can be tested in polynomial time if two paths P and P in a planar 

graph are homotopic in R2\( /1 t; . . .  U !p) (where 11 . . . . .  Ip are faces). 
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Proof Paths P and P are homotopic if and only if the shortest path homotopic to 

path P.  P -1  has length 0 (where P-1  denotes the path reverse to /~ and taking 

length l(e) = 1 for each edge e). [] 

There is also a polynomial-time algorithm for finding a shortest path not 

homotopic to a given path. More generally, we have the following result. A 

mapping of a graph G to a space S is a not necessarily one-to-one 

cont inuous function from G to S. Call two paths in G homotopic if their 

images in S are homotopic in S. 

The shortest nonhomotopic path problem is: 

given: a graph G = (V, E) mapped into a space S; 

a path P in G, connecting, say, u and w; 

a "length" function h E --* 2+;  

.find: a path Q in G from u to w, so that Q is not homotopic to P and 

so that Q has minimum length. 

(2.3) 

Proposition 3. The shortest nonhomotopic path problem is solvable in polynomial 

time, provided we can decide in polynomial time if any 9iven path Q is homotopic to P. 

[In fact, this last is the only thing we need to know about S and the mapping.] 

Proof First find for each vertex v of G a shortest path Puv from u to v and a 

shortest path Pvw from v to w. Consider the following collection of paths in G: 

P,v" P~w (v e V), (2.4) 

P.v .e .  P~,~ (e = vv' e E). 

Select those paths Q from (2.4) which are not homotopic to P, and choose among 

these one of minimum length. We claim that this Q is a valid output for (2.3). 

To see this, let 

R = (u = Vo, et, v, . . . . .  ed, Vd = W) (2.5) 

be a minimum-length path not homotopic to P. We must show length(Q)< 

length(R). 

Choose the largest t so that P,v," (v ,  et+ 1 . . . . .  ed, vd) is not homotopic to P. Such 

a t exists, as R itself is not homotopic to P. If t = d, then Puw is not homotopic 

to P. Moreover, Puw = Puw'Pww occurs among (2.4), and hence length(Q)< 

length(P,w ) < length(R). 

If t < d, by the maximality of t, path Puv, 'et+ 1 �9 P . . . . .  is not homotopic to path 

P . . . . .  �9 P . . . . .  . Hence at least one of them is not homotopic to P. So one of them has 

length at least length(Q). On the other hand, each of them has length at most 

length(R) (since the P,~ and P,w are shortest paths). Therefore, length(Q)< 

length(R). [] 
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3. The Method 

We describe our  method for solving the disjoint homotopic  paths problem (t.1). 

Let input G, 11 . . . . .  l p ,  C~ . . . . .  C k be given. The algori thm finds P~ . . . . .  Pk as 

required, if conditions (1.3) are satisfied. It consists of four basic steps: 

I. Uncrossing C~, . . . ,  Ck. 

II. Constructing a system Ax <_ b of linear inequalities. 

III. Solving Ax  < b in integers. 

IV. Shifting C1 . . . . .  C k (using the integer solution of Ax  < b). 

In order  to facilitate the description, we make the following assumptions: 

(i) each edge of G is traversed at most  once by the C~; 

(ii) the endpoints  of each C~ have degree 1 in G; 

(iii) no edge traversed by any C~, except for the first and last edge of C~, (3.1) 

is incident with any face in {I1 . . . . .  lp}. 

These conditions can be fulfilled by adding new vertices and (parallel) edges. It 

follows from (3.1) that  the endpoints  of each C~ are not traversed by any other 

C1 . . . . .  C~. 

I. Uncrossing Ct . . . . .  Ck 

This step modifies C1 . . . . .  Ck SO that they do not have (self-)crossings or 

nul l -homotopic  parts. (A part is a subcurve.) Choose i, i' e { 1 . . . . .  k} with i # i', and 

let 
Ci = (Vo, el,  vl, e2, v2 . . . .  , e,,, v=), 

(3.2) ( . . . . . .  ; . )  
C i, = po~ e lm 131, e 2 ,  I ) 2 , . . . ~  era, ~ l) , . 

Consider  a pair (j , j ' )  with 1 _<j _< m - 1 and 1 _<j' _< m' - 1. Call (j , j ' )  a crossing 

if vj = v}, and the edges ej, e)., ej+l,  e},+l occur in this order  cyclically at vj, 

clockwise or anticlockwise (see Fig. 8). 

Now there is the following easy proposit ion:  

Proposition 4. lf(1.3(i)) is satisfied and i :/: i', then for any crossing ( j , f )  of  C i and 

Ci, there exists another crossing (h, h') of Ci and Ci, so that 

part (vj . . . . .  Vh) of  e l  is homotopic to part (v),, . . . .  V'h,) of  Ci,. (3.3) 

ej~ /ej, 

e'. '/+i \ e 3 j+l 

o r  

Fig. 8 

e . x  e I ' 

1~" v .=v'. 

e ~ ( "  \ej+l 
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[By part (vj . . . . .  vh) of Ci we mean (vj, ej+l, vj+ 1 . . . . .  eh, Vh) if j _< h, and 

(v~, ej, vj 1 . . . . .  eh+ t, vh) i f j  > h. Similarly for Ci,.] 

Proo f  If (j ,j ')  is a crossing of Ci and Ci, there exist liftings 

(7, = 07o, g'l, vt . . . . .  ~,,,, ,7,,,) and Ci, = (fi;, g"t, z7'1 . . . . .  g'~,,, ~5~,,) (3.4) 

of C~ and Cv respectively to U so that ~Tj = ~5~, and 0~, ~J,, e-j+1, ~'+1 occur in this 

order  cyclically at ~j. By (1.3(i)) there exist (~i ~ Ci and (~, ~ Cv so that (~ and (~, 

are disjoint. By considering liftings of (~ and (~, it follows that (~ and C v have an 

even number  of crossings. Hence C~ and Ci, must have a second crossing, say at 

Vh = v~,'. This implies (3.3). [ ]  

By Proposi t ion 2 we can test in polynomial  time if two paths are homotopic.  So 

if C~ and Ci, have a crossing, we can find in polynomial  time two distinct crossings 

(j,j ')  and (h, h') so that (3.3) holds. We now exchange parts (vj . . . . .  vh) of C i and 

(v~,, . . . .  v~,,) of Cv, e.g., i f j  < h and j '  < h', we reset 

~--- t t ! ! 

C i : = ( V o ,  e l , . . . , e j .  1, vj  v j , , e j , + l , . . . , e h , , V h ,  = Vh, e h + l , . . . , e m ,  Vrn), 

Ci, := (v;, e'l . . . . .  e~,-1, v~, = vj, ej+ 1 . . . . .  eh, vh = v~,, e~,+, . . . . .  e~,,, t'~,,). 

This resetting reduces the total number  of crossings of Ci and Ci, (summing up over 

all pairs i, i'). Hence after a polynomial  number of such modifications we are in the 

situation that no two distinct Ci, Ci, have crossings. 

Throughou t  this uncrossing process we remove nul l -homotopic  parts of any C~ 

(they can be recognized again by Proposi t ion 2). Since each such removal strictly 

decreases the total number  of edges used by the C,, this again can be done in 

polynomial  time. 

We still have to deal with self-crossings. A self-crossing of 

C i = (Vo,  e l ,  Vl ,  . . . ,  era, 1)m) (3.5) 

is a pair (j , j ' )  w i th j  # j '  and vj = vj, so that  ej, ej,, ej+l ,  ej,+l occur in this order 

cyclically at v j, clockwise or anticlockwise (see Fig. 9). (It follows that if (j , j ' )  is a 

self-crossing, then (j ' , j)  is also.) To  remove self-crossings we can apply a similar 

eJ~]v, ej, or eJ~ ej'+Ivj 

e. e ej+ 1 3 +i ej+l j' 
Fig. 9 
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approach  as above, a l though we should be more  careful: there are problems if we 

want  to exchange parts  (vj . . . . .  vh) and (vj,, . . . .  vv) of C~ if they "over lap,"  i.e., if 

they have at least one edge in common.  The following proposi t ion shows that  we 

can avoid this situation: 

Proposition 5. If(1.3(i)) is satisfied and (j , j ')  is a self-crossing o f  Ci with j as small as 

possible, then there exists another self-crossing (h, h') o f  Ci so that: 

(i) parts (vj . . . . .  Vh) and (v j , , . . . ,  Vh,) o f  Ci are homotopic; 

(ii) j < h < j '  < h' o r j  < h < h' < j ' .  (3.6) 

Proo f  By deforming Ci slightly, we may  assume that  Ci has no "self-touchings." 

(To allow this deformat ion  we can add a little " space"  at fixed points of C~--this 

does not invalidate the conclusion of Propos i t ion  5.) By (1.3(i)), there exists a 

simple curve Ci ~ Ci, Hence any two liftings of ff~ to the universal covering space U 

are disjoint and simple. So any two liftings of C~ to U have an even number  of 

crossings. 

Since Cg has no nul l -homotopic  parts,  each lifting of Ci to U is 

simple. Let us assume without  loss of  generality that  (j , j ' )  is a self-crossing where 

ej,  ej,, ej+ 1, ej'+l occur clockwise at vj = U j ,  (SO the first configurat ion in Fig. 9 

applies). Consider  a lifting 

C'i = (V'o, e'l, v'l . . . . .  e',., v',.) (3.7) 

of C i. As (j , j ' )  is a self-crossing, there exist liftings 

" ( . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (3 8) Ci = Vo, el, vl . . . . .  e,,, Vm) and Ci = (Vo, e l ,  vt . . . . .  era, v,,) . 

of Ci so that  v) = v) and v ;  = v~and so that  

t , t t  ! t t  t t  r 

e), ej,, ej+ 1, ej,+l o c c u r  clockwise at v), = v j  

and (3.9) 

vt eft t !  vt!  t t t  t !  

ej ,  ej,, ej+ 1, ej,+ t Occur  clockwise at vj, = vj. 

(see Fig. 10). 

N o w  C' i and C 7 must  have a second crossing. Choose  the smallest h so that  h 4: j 

and v~, = v~, gives a crossing of C' i and C'[ for some h'. By the minimali ty  o f j  we 

know h > j. Note  that  by the symmet ry  of the universal covering space, v~ = v~', 

gives a crossing of C'[ and C'f. We consider two cases. 

t t  Case 1 : h' >_ j'. Since, by the minimal i ty  of  j, C7' cannot  cross Ci at v~ . . . . .  v~_ 1 and 

o f  V j +  " ' ' it follows that  C'f crosses C'~' in one " 1 . . . . .  v j,. cannot  cross C'~ at Vo . . . . .  v j_ 1, 

Hence  h < j ' ,  and we have (3.6). 

Case 2: h' < j ' .  If h < h' we have (3.6), so assume h > h'. We show that  this is not  

possible. 
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Since  h > h', we  have  the s i tuat ion  s h o w n  in Fig. 11. Here  parts  (v~ . . . . .  v~,) o f  C'i 

and (v;~', . . . . .  vy;) of  C'/' might have more  than one  crossing. We k n o w  however,  by 

the minimali ty  of  h, that part (v~/ . . . . .  v~,) of  C'~ does  not  intersect part (v~,, . . . .  vy,) of  

C'/(except at the endpoints) .  Hence  they enclose  a simply connected  (closed) region 
! ~p it tit  tit  ttr 

R. Similarly, parts ( t j  . . . . .  Vh) of Ci and (vh,, . . . .  vj,) of  C~ enclose  a simply 

connected (closed) region R'. Moreover ,  by the symmetry  of  U, there exists a 
/ rt  t !  t t  r 

cont inuous  function ~b: R --* R', bringing (vj . . . . .  v~,) to (v~ . . . . .  Vh) and (Vh,, . . . .  Vj,) 

to (V;~', . . . . .  v~r) and not  having any fixed point. 

Furthermore,  there exists a cont inuous  function ~9: U --* R so that: 

(i) if y e R, then r  = y; 

(ii) if y e R'\R, then  if(y)  be longs  to  the subcurve  (v~ . . . . .  v;,) o f  C'~;  (3.10)  

(iii) if y belongs to subcurve (v] . . . .  , v~,) o f  C[, then ~(y)  = v;,. 

(This fol lows from the fact that C7 divides U into two  parts, and that R and R' are 

contained in one  of these parts.) 

N o w  consider the function ~oq , :  R - *  R. Since R is s imply connected,  by 

Brouwer's  f ixed-point theorem there exists an x e R so that ff(rp(x)) = x. Since rp 

has  n o  fixed points ,  rp(x) # x. H e n c e  q)(x) # ~9(r So  by (3 .100) )  r e R'kR. 

C i.,i i 

C"  �9 v; v;=v;,, v;, =v; v;=%,, v,: =v, i j v "  
3 m 

Fig. II 
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Therefore, by (3.10(ii)), x = ~(q~(x)) belongs to subcurve (vj . . . . .  v~,) of  C'i. So q~(x) 

belongs to subcurve (v~ . . . . .  v~,) of C'i'. This implies by (3.10(iii)) that x = ~b(q~(x)) = 

v~,. However,  ~O(r = qJ(v~) = v~ r v~,. [ ]  

Proposi t ion 4 enables us to remove self-crossings. We choose a self-crossing 

wi th j  as small as possible. Then with Proposi t ion 2 we can find in polynomial  time 

another  self-crossing (h, h') satisfying (3.6), and we reset 

C i : = ( v  o . . . . .  v~ = vj,, . . . .  Vh, = Vh . . . . .  V~, = Vj . . . . .  Vh = Vh', . . . .  V,) (3.1!) 

i f j '  < h'. Similarly if j '  > h'. 

After a polynomial  number  of such modifications we have that C1 . . . . .  Ck have 

no (self-)crossings and no nul l -homotopic  parts. 

I I .  Cons t ruc t i n9  the  S y s t e m  A x  < b o f  L i n e a r  Inequa l i t i e s  

For  each vertex of G, each time it is traversed by some Ci, we introduce a variable, 

indicating how far we should shift C~ in order  to make C~ . . . . .  Ck simple and 

pairwise disjoint. Figure 12 gives an impression. 

More  precisely, let, for each i = 1 . . . . .  k, 

C i ~ (vi0 , e i l ,  v i i ,  . . .  , eimi, Vimi). (3.12) 

We introduce a variable xi~ for each i = 1 . . . . .  k and j = 1 . . . . .  mi - 1. We put a 

number  of linear constraints on the x i j  in order to make sure that the shifted C~ are 

(1) homotop ic  to the original C~, (2) pairwise disjoint, and (3) simple. This divides 

the constraints into Classes 1, 2, and 3. It turns out that  the full constraint  system 

A x  <_ b has an integer solution if and only if problem (1.1) has a solution. 

We use the following notation. Let i ~ { 1 . . . .  , k} and j ~ { 1 . . . .  , mg - 1 }, and 

consider v i , j _ l ,  e i j  , Vij as in Fig. 13. Then Fi~. denotes the face incident with ei j  o n  

the r ight-hand side when going from v~,j_ 1 to vgj, and F~ denotes the face on the 

left-hand side. 

Two faces F, F '  are cal led  f r e e l y  ad jacen t  at vertex v if v is incident both with F 

and with F', and either F = F '  or, when el . . . . .  e~, es+l . . . . .  ed denote the edges 

incident with v in cyclic order as in Fig. 14, then there is no curve among  

CI  . . . . .  Ck containing . . . .  e~, v, ej  . . . .  or . . . .  e j ,  v, eg . . . .  with 1 < i <  s and 

s + 1 < j < t. So roughly speaking, we can go from F to F '  traversing v without  

crossing any C~ . . . . .  Ck. Note  that at any vertex v, free adjacency forms an 

equivalence relation on the faces incident with v. (If a face has multiple incidences 

at v, we must  be careful: each touch should be considered separately.) 

To facilitate the construct ion of the system of inequalities, we define an auxiliary 

graph  H, with length function on the edges, as follows. The vertices of H are the 

pairs (v, 2), where v is a vertex of G (not  being one of the endpoints  of C~ . . . . .  Ck )  

and where 2 is an equivalence class of  faces freely adjacent at v. If (v, 2) and (w, #) 

are vertices of H, there is an edge of length 1 connect ing them if 2 and # have a face 
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I 

Fig. 12. Here the heavy line indicates the initial path, and the dashed line indicates the shifted path. A 

positive number  t means shifting over a distance t to the right, and a negative number  - t means shifting 

over a distance t to the left (right and left with respect to the orientation of the initial path). For  distance 

between vertices v, v' of G we take the min imum number  of faces traversed by any curve connecting v 

and v'. 

vii 

FT. e.. Ft. 
x 3 l] x3 

V ,  1, j -1  

Fig. 13 
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, \  F / ,  

Ill/" " V X ~'~] 
Lk, ~ v /, 

Fig. 14 

F r  {11 . . . .  ,lp} in common. In fact, we have an edge ev for each face F in 

2 c~ # \ { I ,  . . . . .  lp}. Moreover, for each i e {1 . . . . .  k} andj,  j '  e {1 . . . . .  rn~ - 1} there 

is an edge connecting (Vu, (Fi+j)) and (vu,, (Fi~.,)) of length 

?i,j,j, '= min(cr(G, D) - 1), (3.13) 
D 

where D ranges over all curves D: [0, 1] ~ ~ 2 \ ( I  1 w . . .  w Iv) homotopic to part 

(v u . . . . .  vu,) of C~. (Here ( F )  denotes the equivalence class of F of free adjacency at 

the appropriate vertex.) Similarly, there is an edge connecting ( v u , ( F ~ ) )  and 

(vu,, (F~,))  of length 7~,jj,- Note that by Proposition 1, 7~,j,j, can be calculated in 

polynomial time. 

There exist two "canonical" mappings ~0 and 0 of H in ~2\( i1 w . . .  w lp). (A 

mapping is a continuous function, not necessarily one-to-one.) First, let 

~o(v, 2):= 0(v, 2):= v (3.14) 

for each vertex (v, 2) of H. The image, under ~o as well as under 0, of each edge e r is 

a line segment contained in F connecting v and w. For the other edges, the images 

under ~0 and under 0 generally are different: the edge connecting (v u, ( F  +))  and 

(vu,, (F~,))  has as its ~o-image a curve D attaining the minimum in (3.13). Its 

0-image is a curve traversing 

F + F + Fi~., , Vij~ i,j+l,Ui, j+l~ i,j+2,''', Vij', (3.15) 

respectively (assuming without loss of generality j <j ' ) .  So the 0-image is, 

informally speaking, parallel to part (v u . . . . .  vu, ) of Ci and does not cross any 

C1 . . . . .  C k (since Fi + and F~,++I are freely adjacent at vi, ). Similarly, the images of 

the edges connecting (vu, (Fij)) and (Uij, , (Fi~,))  are given. 

Each path P in H gives two curves ~o o P and O ~ P, which are homotopic to each 

other. So we can speak of the homotopy of a path P in H. 

We now describe the three classes of inequalities. 
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Class 1. This class of inequalities is meant to avoid that any C~ is shifted over any 

of the faces 11 . . . . .  lp (as we shall see below). Thus, for each i =  1 . . . . .  k and 

j = l , . . . ,  rni - 1, we require: 

(~) xij <_ minp length(P), 

(/3) - x i j  < minp length(P). 
(3.16) 

Here the minimum in (~) ranges over all paths P in H from (v~j, ( F ~ ) )  to any (w, 2) 

so that 2 contains a face in {11 . . . .  , lp}. Similarly, the minimum in (fl) ranges over 

all paths P in H from (v~j, ( F ~ ) )  to any (w,)0 so that )~ contains a face in 

{11 . . . . .  I,}. 

It is not  difficult to see that such paths always exist, as (vlj, (F~+)) and 

(vii, (Fi+l)) are connected by an edge of H, and as (F/~)  contains a face in 

{11 . . . . .  Ip}. So the r ight-hand sides of  (3.16) are finite. They can be calculated in 

polynomial  time. 

Note 3.1. The right-hand side of (3.16(00) can be described equivalently as 

min(cr(G, D) - 1), (3.17) 
D 

where D ranges over all curves D for which there exists a curve Q ~ D from v~i to a 

vertex w on bd(l~ w . . -  w lp) so that: 

(i) Q does not cross any C1 . . . . .  Ck; 

(ii) Q starts via a face freely adjacent at vij to Fi + ; 

(iii) Q ends via a face freely adjacent at w to some face in {I 1 . . . . .  lp}. 

(3.18) 

Here we say that Q starts via face F if Q[(0, ~:)] _~ F for some e > 0. Similarly, 

Q ends via F if Q[(1 - c,, 1)] _c F for some ~" > 0. 

The fact that  the r ight-hand side of (3.16(c~)) is equal to (3.17) can be seen by 

observing that each path P in the range of (3.16(:~)) gives a curve D := q~ ,~ P in the 

range of (3.17), with cr(G, D) - 1 = length(P). Conversely, for each curve D in the 

range of  (3.17) there exists a path P in the range of (3.16(~)) with length(P)_< 

cr(G, D ) -  1. 

A similar formula holds for the right-hand side of (3.16(/3)). 

Class 2. This class of  inequalities must accomplish th~at two different Ci and Ci, 

do not intersect after shifting. Thus, for each i, i' = 1 . . . . .  k with i ~ i', and for 

each k = 1 . . . . .  ml - 1 a n d j '  = 1 . . . .  , my - 1, we require: 

(~) xij + Xrj, < distu((vij , ( F + ) ) ,  (vi,j,, (Vi+i,))) -- 1, 

(fl) xij - xl,j, < distn((Vij, (Fi+)),  (vi'y, (Fi ' j ' ) ))  -- 1, 

(7) - -x i j  -- xi,j, < distv.((vij, <Fi~ >), (vi,f, (,Fi,j,>)) - -1 ,  

(3.19) 
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where dist H denotes the distance in H (with respect to the length function given). 

Again, the r ight-hand sides of  (3.19) are easily computed  in polynomial  t ime - - t hey  

are allowed to be infinite. 

Note  3.2. The r ight-hand side of (3.19(~)) can be described equivalently as 

min(cr(G, D) - 2), (3.20) 
D 

where the min imum ranges over  all curves D for which there exists a curve Q ~ D 

from v~j to vrj, not  crossing any C~ . . . . .  Ck, so that  Q starts via a face freely adjacent  

at vii to F~  and ends via a face freely adjacent  at v~,j, to F~,j,. Similarly for (fl) and 
(~,). 

Class  3. The last class of inequalities must  accomplish that  each shifted C~ is 

simple. Thus,  for each i = 1 . . . . .  k a n d j ,  j '  = 1 . . . . .  m~ - 1, we require: 

(~) x~j + xij, < minp length(P) - 1, 

(fl) xi j  - xij, < minp length(P) - 1, (3.21) 

(?) - x i j  - x~j, < minp length(P) - 1. 

Here  in (~) the min imum ranges over all paths  P in H from (v~j, (Fi~->) to 

(vii,, (Fi~.,>) which are not  homotop ic  to par t  (vii . . . . .  vly) of Ci. Similarly for (fl) 

and (?). Again the r ight-hand sides of (3.21) can be infinite. I f j  = j '  we obtain  

bounds  for +2xl j .  The r ight-hand side of  (3.21) can be calculated in polynomial  

t ime by Propos i t ion  3. 

Note  3.3. Again, the r ight-hand side of  (3.21(~)) can be described equivalently as 

min(cr(G, D) - 2), (3.22) 
D 

where D ranges over  all curves D from vij to Dij, which are not homotop ic  to par t  

(v o . . . .  , v~j,) of C~ and for which there exists a curve Q ,-~ D not  crossing any 

CI  . . . . .  C~, so that  Q starts via a face freely adjacent  at v~j to F + and ends via a face 

freely adjacent  at vii, to Fi+,. Similarly for (/~) and (?). 

We denote  the system of linear inequalities (3.16), (3.19), and (3.21) by A x  < b 

(where A is a matr ix  and b is a column vector). 

I lL  So lv ing  A x  <_ b in In tegers  

In general it is an NP-comple t e  p rob lem to solve a system of linear inequalities in 

integer variables. However ,  since matr ix  A = (aij) satisfies 

• l a i j l  ~ 2 for each i = 1 . . . .  , m (3.23) 
j = l  
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(where A has order m • n), it is quite easy to solve A x  < b in integers, namely by 

"Four ie r -Motzk in"  elimination of variables. This recursively solves Ax  < b in 

integers, for any integer matrix satisfying (3.23) and any vector b e (7/w {oo})"l. 

Proposition 6. There is a polynomial algorithm for solving Ax  <_ b in integers, for 

any integer m x n-matrix A satisfying (3.23) and any vector b �9 (7 /~  {oo}) m. 

Proof We may assume that all rows of A are distinct, that A does not have any 
all-zero row, and that  each integer row vector a T with 1 < tt a II 1 < 2 occurs as a 

row of A. 

We decompose the inequalities in Ax  < b as 

X 1 ~ 0~, 

2xl -< 3, 

xl  + xi < )~, 

- - X  1 ~_~ 8, 

- - 2 x  I ~ ~, 

- - x  1 - -  X i <_ rli 

- - x  1 -~- X i "~ O, 

A' x' < b', 

(i -- 2 . . . . .  n), 

(i = 2 . . . . .  n), 

(i = 2 . . . . .  n), 

(i = 2 . . . . .  n), 

where x ' =  (x 2 . . . . .  x,) x and where 

satisfying (3.23). 

We can replace (3.24) by the following equivalent conditions: 

A' is a matrix with n - 1  columns again 

m a x { - e ,  -�89189 a n d i f  - { = f l ,  then fl is even. (3.26) 

Eliminating xl from (3.25) gives 

m a x { - e , - � 8 9  2-<i-<nmax ( -rh-  x')' 2-<,-<.max (-0, + x,)} 

< min{~, �89 2-<,-<.min ( h -  xi), ~-<,-<.min (6, + x@,  A'x' < b'. (3.27) 

Now if max{ - e ,  - �89 > min{~, �89 then clearly (3.25) has no solution. Moreover, 

if - ~  = fl and is odd, (3.25) has no integer value for x 1. Hence we may assume 

_<x 1 < min{cq �89 2-<,-<.min ( 7 , - x , ) ,  2_<,_<.min ( 6 , + x , ) } ,  A ' x ' < b ' .  (3.25) 

(3.24) 

max{, 2   nmax  ix" 2:i:nmax 01+ t 
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Equivalently, 

xi  <-- 7~ + e 

x i  < ",'i + ~(  

- x i  <_ a~ + �89 

- x~ < rli + �89 

__ X i .At.. X j ~ q l -It'- • j 

- -  X i -  Xj <_ r h + ~Sj 

x i < O~ + c~ 

xz <_ O~ + �89 

x~ + x j  < O~ + yj 

x i -- x j  <_ 0 i + 6j 

A ' x '  _<_ b'. 

(i = 2 . . . .  n), 

(i = 2 . . . .  n), 

(i = 2 . . . .  n), 

(i = 2 . . . .  n), 

(i = 2 . . . .  n), 

(i = 2, . .  ,n), 

( i , j  = 2 . . . .  n), 

( i , j  = 2 . . . . .  n), 

(i = 2 . . . . .  n), 

(i = 2 . . . . .  n), 

( i , j  = 2 . . . . .  n), 

( i , j  = 2 . . . . .  n), 

(3.28) 

This is a system of linear inequalities in the variables x2 . . . . .  x ,  again satisfying 

(3.23). We can reduce (3.28) so that  we obtain  an equivalent system A " x '  < b" 

where A" has no two equal  rows. We next recursively solve A " x '  < b" in integers. If 

it has no integer solution, then the original system A x  < b has neither. If A " x '  < b" 

has an integer solution, we can insert it in (3.25), and determine an integer xl 

satisfying (3.25). 

Such an integer x ,  does exist: the m a x i m u m  in (3.25) is not  more  than the 

minimum.  As both  the m a x i m u m  and the min imum are half-integers, an integer 

value for x~ would not exist only if - � 8 9  = �89 and is not  an integer. But this is 

excluded by (3.26). 

The case n = 1 being trivial completes  the description of the algori thm. It has 

polynomial ly  bounded  running t ime since at each i teration we reduce the number  

of  inequalities in (3.28) to O(n2).  So we do not have exponential  growth of the 

number  of constraints  (which would occur in ordinary  Four ier  Motzk in  elimina- 

tion). []  

In Section 4 we show that  if condit ions (1.3) are satisfied, then the system A x  < b 

constructed in Step II  indeed has an integer solution. For  a direct p roof  of the fact 

that  if (1.1) has a solution, then A x  < b has an integer solution, see Proposi t ion  14 

in Section 6. 

I V .  Sh i f t i ng  C l . . . . .  C k 

Let (x~jli = 1 . . . . .  k; j = 1 , . . . ,  m ~ -  1) form an integer solution of A x  < b. These 

integers will determine the shifts of the C~. We describe an iterative process, shifting 

the C~ by little steps, adapt ing  the x~j throughout .  

If xij  = 0 for all i, j ,  then C 1 . . . . .  Ck are pairwise disjoint and simple, as follows 

directly from the Class 2 and 3 inequalities, and from the fact that  no C~ has 

nul l -homotopic  parts.  
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elg+l=e s 

\~I vlg'k // 

s 

e Ig = e 0 

Fig. 15 

s - 1  

Suppose  next 

M : = m a x { l x i ] ] l i  = 1 . . . . .  k ; j  = 1 . . . . .  m l -  1} > 0. (3.29) 

Firs t  assume xi0 = M for some i, g. Wi thou t  loss of generali ty,  i = I. Cons ider  elg, 

v10, el.0+ 1 and the faces and edges incident  with it "a t  the r ight -hand side," as in 

Fig. 15. No te  that  F1 . . . . .  Fs r {11 . . . . .  Ip}, by Class 1 inequalities.  We claim that  

none  of the edges e l , . . . ,  e~-i  is used by any C i. F o r  suppose  ~, = eij, vlo = Vu, and 

ec = eu+ ~ for some i , j  and some t, t' e {1 . . . . .  s - 1}. We may  assume that  e,,, is not  

t raversed by C1 . . . .  , Ck if 1 < t" < min{t, t'}. If t < t', then xl0 - x u < -- 1, and 

hence x~j >_ xl0 + 1 = M + 1, cont rad ic t ing  (3.29). Similarly,  if t > t', then xlo + 

xi~ < - 1 ,  and  hence - x  u >_ x~o + 1 = M + 1, again  cont rad ic t ing  (3.29). 

N o w  let 

( v l , -  1 = Wo, A ,  wl,  A ,  w2 . . . . .  L ,  w, = vl0+1) (3.30) 

be the vertices and edges on the pa th  following the outer  b o u n d a r y  of F1 . . . . .  Fs 

(see Fig. 16). More  precisely, let E(F)  denote  the set of edges incident  with F. We 

take for pa th  (3.30) any simple pa th  from via_ 1 to vlg+ 1 with edges in the 

symmetr ic  difference: 

E ( F 1 ) A E ( F 2 ) A . . .  AE(F~)A{exg,  elg + 1}" (3.31) 

Before proving  the easy fact that  pa th  (3.30) thus ob ta ined  is homotop i c  to par t  

( v lo_ l ,  elg, vlo, e lg+l ,  v lg+l)  of C1, we show the following. Let, for each h =  

0 . . . . .  r, F h be some curve from v19 to w h conta ined  in one of the faces F 1 . . . . .  F s. 

Then,  for each h = 0 . . . . .  r, 

F h is unique up to homotopy .  (3.32) 
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Fig. 16 

For suppose  there exists a curve F~ from vlg to wh in one  of  F1 . . . . .  Fs so that F~ is 

not  h o m o t o p i c  to F h. Then we would  have the contradict ion 2 < 2x~g < 

cr(G, F;,. F~- 1) _ 2 = 1, by a Class 3 inequality. 

W e  derive: 

Proposit ion 7. Path (3.30) is homotopic to part (vtg_ 1, elg, vlo, elg+ 1, via+ 1) of C1. 

Proof  By (3.32), e a c h  one-edge  path (w h_ 1, fh, wh) is h o m o t o p i c  to F~-J 1 - F h. 

Hence  (3.30) is h o m o t o p i c  to F o  1 .F , ,  which is by (3.32) h o m o t o p i c  to part 

(/)lg-1' elg,  rig,  elg+ 1, rio+ 1) of  C 1. [ ]  

Let g' be the smallest index so that vlg, = wh, for some  h' e {0 . . . .  , r} and so that 

part (ho',  . . . .  vlo ) of  C 1 is h o m o t o p i c  to F~; 1. So 9' < 9 - 1. We can determine g' 

in po lynomia l  time by Propos i t ion  2. 

Similarly, let O" be the largest index so that h e ,  = wh,, for some h" e { 0 , . . . ,  r} 

and so that part ( h , ,  . . . .  v1r ) o f  C1 is h o m o t o p i c  to Fh,,. So 9" > # + 1. Again 9" 

can be determined in po lynomia l  time. 

W e  easily check that h ' <  h" (using the fact that C~ does  not  have null- 

h o m o t o p i c  parts). N o w  we obtain (~1 from C1 by replacing part (hr  . . . .  var of 
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C~ by part (Wh,, . . . .  Wh,,) of (3.30). We add new edges to G so as to keep (~1, 

C2 . . . . .  Ck pairwise edge-disjoint and without (self-) crossings. 

Clearly, t~ t is homotop ic  to Cl(since (vlg,, . . . .  v~o,, ) is homotop ic  to F~, ~. Fh,,, 

which is homotopic  to (Wh,, . . . .  Wh,,)). The new t~1, C2 . . . . .  Ck give new variables ~s. 

We set them equal to the original x~j if i ~ 1, while 2 ~j are set equal to M - 1 on the 

new part of (~l and equal to the original values on the unchanged part  of (~. 

To be more precise, note that t~l passes ~ := ml - (g" - g') + (h" - h') edges. 

Let ;r if l<_j<_g' ,  ~ j : = M -  1 if g ' < j < g ' + ( h " - h ' ) ,  and ~ j . . =  

X~,s+~o,,_o,)_~h,,_h, ~ i fg '  + (h" -- h') < j  < ffq - 1. Moreover,  ~ij,=x~j for i 4= 1. 

Proposition 8. The ~ij form an integer solution for the system of linear inequalities 

derived from ~1, Cz . . . . .  Ck. 

Proof  We only have to check those inequalities in the new system in which 

variables occur corresponding to the new trajectory of t~ 1 (i.e., :~j  with g' < j < 

g' + (h" - h')). This follows from the fact that  for all other inequalities the values of 

the xij and the range for the minimum on the r ight-hand side are unchanged (see 

Notes  3.1-3.3). 

Denote  

C1 = (VlO . . . . .  /~lrh)- (3.33) 

Consider some Class 2 inequality in the new system in which fflj occurs 

(g' < j < g' + (h" - h')), say, 

+ 2aj + ff~j, < cr(G, D) - 2, (3.34) 

for some curve D in the range described in Note  3,2 (with i 4: 1). Let h be so that 

Wh = Olj (i.e., h .'= h' + j - 9'). 

If ~lj  has coefficient + 1 in (3.34), then we can extend D to a curve D' ..= F h �9 D 

from vxo to ~lj = Wh. Then cr(G, D') = cr(G, D) + 1, and 

xlg + xij, < cr(G, D') - 2 (3.35) 

(a Class 2 inequality in the original system). Therefore 

X~j + Xlj' = (M - 1) + xij, = xlg + x~j, -- 1 < cr(G,D')  - 2 - 1 = c r ( G , D ) -  2. 

(3.36) 

So we have (3.34). 

If  ~lj  has coefficient - 1 in (3,34), the situation is slightly more complicated. We 

may  assume D does not  intersect edges of G. N o w  D is the concatenat ion D' .  D" of 

two curves D' and D" so that D' connects ~ls with some vertex vl f  on C1, in such a 

way that part  (v~g, . . . ,  v~s) of C~ is homotop ic  to F h �9 D'. (This follows from the fact 

that  D is homotop ic  to some curve Q starting at the negative side of  t~  at ~ i  and 

not  crossing any of ~1, C 2 , . . . ,  Ck.) 
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N o w  cr(G, D') _> 2. (Otherwise, par t  (vlg . . . . .  v~f)  of C~ would be homotop ic  to 

F h. However ,  v~s = f l j  belongs to {wv+ ~ . . . .  , wh,,_ ~}, contradict ing the choice of h' 

and h".) Moreover ,  x~y _< M and - x ~ i  + xij, <_ cr(G, D") - 2. Therefore,  

- ~ j  + .;qj, = - - M  + 1 + Xij ,  

- -  X.l f -~ Xij ,  ql- 1 

< cr(G, D") - 1 

_< cr(G, D') + cr(G, D") - 3 

= cr(G, D) - 2. 

Again we have (3.34). 

Other  inequalities are proved  similarly. []  

The  case xlg = - M is dealt  with similarly. This describes an iterative process of 

adapt ing  paths  and variables. It  is easy to see that  it terminates,  as at each iteration 

the n u m b e r  of variables xij with Ixljl = M strictly decreases. If all Ixlj I = M have 

been removed,  we can start  to remove  all Ix,jl = M - 1, and so on. We will end up 

with all xij = 0, i.e., the shifted C1 . . . . .  Ck finally are simple and pairwise disjoint. 

In fact, this is a po lynomia l - t ime procedure:  

Proposit ion 9. T h e  number  o f  i terations in the above algori thm is polynomial ly  

bounded. 

Proof.  First, the number  M is bounded  by a polynomial  in the size of the input, 

since, for each variable xij ,  we have xij < j as consequence of Class 1 inequalities 

(since there is a curve D following vii, F ~ ,  vi j-1,  Fi +- 1 . . . . .  via successively, with 

cr(G, D) = j). Similarly, - xij  < j. 

Moreover ,  the number  of  variables xi j  at  any stage of the shifting process is 

bounded  by (2M + 1)e, where e is the number  of edges in the initial graph  G, i.e., 

before adding parallel edges to G. 

To  see this upper  bound,  consider a parallel class of  edges connecting, say, v and 

w. If eij belongs to this parallel class, let zl j := xlj  if v = vii and zij := - x ~ j - i  if 

v = vii- r N o w  choose eij and  evj, both  in this parallel class, so that  elj is left of  erj, 

(when going from v to w), and  so that  no edge between eli and ei, i, is traversed by 

any C1 . . . . .  CR. Then  we have zli - Zrj, < - 1 (by Class 2 and 3 inequalities, since 

all faces between eli and evj, belong to the same free adjacency class at v). 

So z~,j, > z~j + 1. Since each [zij I is at most  M, it follows that  there are at most  

2M + 1 edges in the parallel class that  are t raversed by C1 . . . . .  C k. Hence the sum 

of the lengths of the Ci is at mos t  (2M + 1)e. Therefore,  there are at  mos t  (2M + 1)e 

variables, which proves  the proposi t ion.  [ ]  

This finishes the descript ion of the algori thm. In Section 5 we show that  if 

condit ion (1.3) is satisfied, the system A x  < b indeed has a solution. So if (1.3) 

holds, the a lgor i thm yields a solution to the disjoint homotop ic  paths problem,  

thereby proving  Theorems  1 and 2. 
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4. Integer Solutions to Systems Ax < b 

We now give necessary and  sufficient condi t ions  for the existence of an integer 

solut ion for a general  system Ax <_ b of l inear inequalit ies,  where A = (au) is any  

integer rn • n-matr ix  satisfying 

L lau] <_ 2 for all i = 1 . . . . .  m (4.1) 
j = l  

In Section 5 we apply  this charac ter iza t ion  to the special system Ax < b const ructed  

in Step II of the a lgor i thm in Section 3. 

Thus let A = (au) be an integer rn • n matr ix  satisfying (4.1), and  let b e 7/". By 

(4.1), each row of  A has at most  two nonzeros.  In character iz ing if Ax < b has an 

integer solut ion,  we may  assume tha t  each row of A has at least one nonzero.  

I t  is helpful to think of A as a bidirected graph: its vertices are the column indices 

and its edges are the row indices. If row i has nonzeros  in pos i t ions  j and  j '  with 

j r  it gives an edge connect ing j and j ' ,  and  can be represented as in Fig. 17, 

depending  on whether  (aij, au,) = ( l ,  1), (1, - 1), ( -  1, 1) or  ( -  1, - 1). 

If row i has only one nonzero  aii = +_ 2, it is represented by a loop as in Fig. 18 

(where alj = + 2 and - 2, respectively). Moreover ,  there are edges called ends, with 

exactly one nonzero  a o being + 1. We represent  them as shown in Fig. 19 (where 

aij = + 1 and - 1, respectively). 

We consider  certain types of pa ths  in this b idi rected graph A, which we call 

"l inks."  A link is a sequence 

(il,jl ,  i2 ,J2  . . . . .  Jr-l ,  it) (4.2) 

.+ i +. .+ i -. . - i 4-_ . - i -. 

j j' j j' j j' j j' 

Fig. 17 

i i 

J J 

Fig. 18 

J J 

Fig. 19 
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Fig. 20 

(with t > 2) of  rows il . . . . .  i, and columns j~ . . . . .  j ,_ ~ satisfying: 

(i) i I is an end at jr  and i t is an end at jt_~; 

(ii) for each h = 2 , . . . ,  t - 1, e i ther ju  :/:Jh and i h is an edge connecting 

Jh- ,  and jh, orjh_~ =Jh and ih is a loop at jh;  

(iii) for each h = 1 . . . . .  t - 1, 

ai~jh" aih+~jh < O. 

(4.3) 

Condi t ion  (4.3(iii)) means that  at each vertexjh the sign flips. Examples of links are 

shown in Fig. 20. 

Note  that  (4.3(iii)) implies that, for each vertex j = 1 . . . . .  n, 

i aih2 = 0. (4.4) 
h=l 

That  is, adding up the rows of A with indices i 1 . . . . .  it gives all zeros. 

The length of link (4.2) is by definition 

i b,,. (4.5) 
h=l 

It follows directly f rom (4.4) that if Ax  < b has a solution x (integer or not), then 

each link has nonnegative length, since 

~, bi, > ai~jx j = xj ~ a/~ = 0. (4.6) 
h = l  h = l  j = l  j = l  h = l  

We next consider cycles. A cycle is a sequence 

(Jo, i , , j l  . . . . .  i,,j,) (4.7) 



Disjoint Homotopic Paths and Trees in a Planar Graph 555 

Js=Jo i 1 Jl i 2 J2 

J7 + 

- - + -~/14 

i 6 i 5 
J6 95 J4 

Fig. 21 

J3 

(with t > 1) satisfying: 

(i) Jo = J,; 
(ii) for each h = 1 . . . . .  t, either Jh-x r and i, is an edge connecting 

Jn-x and jh, o r jh -1  =Jn and in is a loop atjh;  
(iii) for each h = 1 . . . . .  t (taking i,+x .'= ix), (4.8) 

aihjh  " a ih  + lJh ~ O. 

We give an example in Fig. 21 (in fact, vcrtices and edges may coincide). 

Again, the length of cycle (4.7) is given by (4.5). Since (4.4) again holds, we know 

that if Ax <_ b has a solution x (integer or not), then each cycle has nonnegativc 

length. Actually, it can be shown that Ax <_ b has a solution x, if and only if each 

link and each cycle has nonnegative length. 

To characterize the existence of an integer solution, wc need one further concept. 

A cycle (4.'7) is called doubly odd if there exists an s with 0 < s < t so that 

(i) Jo = Js = J, and al,jo .al.j. > 0; (4.9) 
(ii) YI=I bl. and ~ , = s + ,  bl, are odd numbers. 

An example of a cycle satisfying (4.90)) is given in Fig. 22. 

Note  that (4.9(i)) implies 

{0+ if j % j o ,  (4.10) 
h=*aihJ= 2 if j = j o .  

J9 ilo Jlo Jl 
-- of- 

+ i 8 + =311 + 
98 J7 J5 

Fig. 22 

i 2 +J2 

• 

J3 

• - J4 
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This implies that if A x  < b has an integer solution x, then any doubly odd cycle has 

positive length; since 

h = l  h = l  j = l  j = l  h = l  

(4.11) 

and since the first term in (4.11) is odd, we should have strict inequality in (4.11) 

and hence also in (4.6). 

We show that the necessary conditions mentioned are also sufficient: 

Proposition 10. A system A x  < b satisfying (4.1), with b e Z m, has an integer 

solution x, i f  and only if: 

(i) each link has nonnegative length; 

(ii) each cycle has nonnegative length; (4.12) 

(iii) each doubly odd cycle has positive length. 

Proof  Above we showed the necessity of(4.12). We show sufficiency by induction 

on n, the case n = 1 being trivial. In fact, the inductive step follows from the 

algori thm (Four i e r -Motzk in  elimination) described in Proposi t ion 6. To see this, 

let (4.12) be satisfied. This implies (3.26) (by applying (4.12(ii)) and (4.12(iii)) to 

cycles consisting of two loops at the same vertex). Moreover ,  (4.12) is maintained 

after elimination. This follows from the fact that each inequality in (3.28) is a 

combinat ion  of inequalities in (3.24), in such a way that each link and each (doubly 

odd)  cycle for (3.28) comes from a link or (doubly odd) cycle for (3.24) with the 

same length. The induction hypothesis gives that (3.28) has an integer solution. 

Hence (3.24) also has an integer solution. []  

In fact we have: 

Proposition 11. Let  A x  < b be a system satisfying (4.1), and b ~ ~_m, SO that, for each 

j = 1 . . . . .  n, the inequalities x j  < aj and - x j  < flj occur among A x  < b for  some otj, 

flj ~ Z. Then condition (4.12(ii)) is implied by (4.12(i)). 

Proof  Suppose (J0, il,j~ . . . . .  it,jO is a cycle of length - 2  < 0. Wi thout  loss of 

generality, al,jo < 0 and a~tj, > 0. By assumption,  Xjo < ~ and - X j o  < fl occur 

among A x  < b, with finite ~ and ft. We may assume that they are the first two 

inequalities in A x  <__ b. Let r be a natural  number  with r > ~ + ft. Consider  the link 

(1, jo(il, J l , . . . ,  it, Jt = Jo) . . . .  , (i~, J1 . . . . .  i,, Jt = Jo), 2), (4.13) 

where there are r repetitions of string i 1, j l  . . . . .  it, Jt =Jo .  Link (4.13) has length 

a - r2 + fl < 0. This contradicts  (4.12(i)). [ ]  
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5. Proof of Theorems 1 and 2 

We now apply the results described in Section 4 to the special system Ax  < b of 

linear inequalities constructed in Step II of the algori thm. 

Proposition 12. Let Ax  < b be the system of  linear inequalities given by (3.16), 

(3.19), and (3.21). I f  condition (1.3) is satisfied, then A x  < b has an integer solution x. 

Proof  Since the r ight-hand sides of (3.16) are finite, by Proposi t ions  10 and 11 it 

suffices to show that  condit ions (4.12(i)) and (4.12(iii)) are satisfied. Observe  that  

the column indices of A are now pairs (i,j), and that  each row of A corresponds  to a 

pair  of curves D ~ Q (see Notes  3.1-3.3). 

I. Suppose A x  < b contains a link of negative length. By construct ion of A x  < b 

it means  that  there exist: 

(i) pairs ( i l , jO,  (i2,j2) . . . . .  ( i , j  O, 

(ii) curves Do, D1 . . . . .  D,: [0, 1] ~ ~ 2 \ ( I  1 t ) . - .  W lp), 

(iii) curves Q0, Q1 . . . . .  Q,: [0, 1] ~ ~ 2 \ ( I  1 w . . .  w lp), 

so that:  

(i) D h is homotop ic  to Qh (for h = 0 . . . . .  t), 

(ii) Qo(0), Q,(1) e bd( l l  ~ . . .  w Ip), 

(iii) Qh-1(1) = Qh(O) = v,,j, (for h = 1 . . . . .  t), 

(iv) Qh does not cross any C1 . . . . .  Ck (h = 0 . . . . .  t), 

(v) Q0 starts via a face freely adjacent  at Qo(0) to some face in 

{ l l , . . . , l p } ,  

(vi) Qh- 1 ends via a face freely adjacent  at v~,~h to Fi+i, and Qh starts via 

a face freely adjacent  at v~hj, to F ~ , ,  or conversely (i.e., Fi+, and 

F~j,  interchanged) (for h = 1 . . . . .  t), 

(vii) Q, ends via a face freely adjacent  at Q,(1) to some face in 

{11 . . . . .  Ip}, 
(viii) if ih = ia+l, then Qh is not  homotop ic  to par t  (vi, ~ . . . . . .  vl,a,.,) of 

Ci h, 

and so that  

(5.1) 

(5.2) 

(cr(G, Do) - 1) + (cr(G, Dh) -- 2) + (cr(G, Dr) - 1) < 0. 
\ h =  1 

(5.3) 

Note  that  it follows f rom (5.2(vi)) that  the concatenat ion  Qh- 1Qh crosses Cih at vl,j,. 

Let  D and Q be the concatenat ions  DoD 1 ... Dt and QoQ1 "'" Q ,  respectively. So 

D and Q are homotop ic  (by (5.2(i))), and, moreover ,  

c r ( G , D ) =  1 + ~ (cr(G, D h ) -  l ) < t  
h=O 

(5.4) 
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by (5.3). We show 

k 

mincr(Ci, D) > t, (5.5) 
i = 1  

thus contradicting (1.3(ii)). Since Q and D are homotopic, it is equivalent to show 

k 

mincr(Ci, Q) > t. (5.6) 
i = 1  

To this end, consider the universal covering space U of R 2 \ ( I 1  U " "  U Ip). Each 

lifting Q' of Q to u is the concatenation of liftings Q~,... ,Q't of Qo . . . . .  Qt, 

respectively. Now Q' connects two points on the boundary of U, and crosses, 

successively, t different liftings of C 1 . . . . .  Ck (by (5.2(viii))) (i.e., any two successive 

liftings of Cl . . . . .  Ck met by Q' are different). Moreover, there are no further 

crossings of Q' with liftings of C1 . . . . .  Ck. Hence, if (~1 . . . . .  ~k, Q are homotopic to 

C1 . . . . .  Ck, Q, respectively, then any lifting of (~ to U intersects at least t liftings of 

~1 . . . . .  t~ k. This implies (5.6). 

II. It turns out that deriving condition (4.12(iii)) from (1.3) is less direct, due to 

the fact that fixed points are excluded from being traversed by doubly odd closed 

curves. To settle this, we first show a somewhat technical statement. Let B = B1B 2 

be the concatenation of two closed curves B1, B E :  $ 1  ~ [ ~ 2 \ ( I 1  t )  . . .  u I t ,  ) s o  that 

BI(1) = Be(1 ) ~ G, cr(G, B) is finite, and 

k (i) cr(G, B1) ~ ~'.i= 1 kr(Ci, B1) (mod 2), 
k (ii) cr(G, B2) ~ ~i= 1 kr(Ci, B2) (mod 2), 

(5.7) 

We show: 

Claim. There exists a natural number n so that, for each closed curve Q freely 

homotopic to (B1BE)n(B( I B 2 i), with the property that each lifting of Q crosses each 

lifting of each CI at most once, we have 

k 

cr(G, (B1B2)"(B-~ ~B[ 1).) > ~ kr(Ci, Q). (5.8) 
i = 1  

(Here for any closed curve D and n e Z, D" denotes the closed curve with 

D"(z) ,= D(z") for all z e $1 .) 

Proof of the Claim. If B1B 2 does not traverse any fixed point of any CI, we can 
take n = 1; since B1BzB?~B21 is doubly odd (with respect to the splitting into 

B1B2B~ 1 and B21), we have by (1.3(iii)) 

k k 

cr(G, B1B2B ? 1B i 1) > ~ mincr(Ci, Q) > ~ kr(Ci, Q). (5.9) 
i = 1  i = 1  

This implies (5.8). 
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Suppose next that BiB 2 traverses some fixed point w of some Cv Without  loss of 

generality, i = 1 and B1 traverses w. By condit ion (1.3(ii)), w cannot  be a fixed point  

of any other C~ and is a fixed point of C I only once (i.e., C 1 is homotop ic  to a curve 

traversing w exactly once). So we can shift each C~ slightly in the ne ighborhood of 

w, so as to obtain curves ~ ~ Ci so that 

no (~i traverses w, except for t~ 1 traversing w exactly once. (5.10) 

We can decompose B 1 as the concatenat ion B'~B'~ of two (nonclosed) curves B'~ 
o 

and B~ with B'~(1) = B';(0) = w. 

Consider for n e IN the curve 

Ax := B,;(B2Bx)nB2(B ; 1Bf 1)n(B, ; ) -  1, (5.11) 

taken as a nonclosed curve from w to w. (Here, for any curve D: [0, 1] ~ ~2, curve 

D -  1 is given by D -  l(x) ,= O(1 - x) for x e [0, 1].) 

Let -'tl be a lifting o fA  1 to the universal covering space U of R 2 \ ( I 1  U " "  ~ Ip).  

Then ,41 connects liftings w 1 and w 2 of w, which are fixed points of liftings C tl and 

C12, respectively, of ~ .  Now we choose n so that C1~ and C12 cross ,4a the same 

number  of times. (Such an n exists since, if n is large enough, C11 only crosses the 

beginning part  (corresponding to B'~(BEB1)") of J l ,  and C12 only crosses the end 

part  (corresponding to (B~-1B 21)n(B'~)-x) of ,41. By the symmetry  of the universal 

covering space and of  A1, it follows that the number  of crossings are the same.) 

Let A 2 be the following curve from w to w: 

Az := (B'I)- ~BE ~B'~. (5.12) 

Let -42 be the lifting of A 2 to U with A2(0 ) = w 2. Let w3 .'= ,42(1),  which is again a 

lifting ofw. Let C13 be the lifting of ~1 which has w 3 as a fixed point. Schematically 

we have Fig. 23. 

Let ~ denote the collection of all liftings of all ~1 . . . . .  (~k" Note  that, except for 

C1~ and C~2, no lifting in 5(' traverses the endpoints  w~ and w2 of ,4~ (by (5.10)). 

Similarly, except for C12 and C~3, no lifting in 5r traverses the endpoints  w2 and w 3 

of "42' 

I, wl AI w2 

I 

l 

I 

l 
J 

Cll IIC12 

I w3 
I 

I 

I 

IC13 

Fig. 23 
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Define 

a l  '=  number  of L e ~r with kr(L,/11) odd and L r C l l ,  C l z ,  

az '=  number  of L e L,t ~ with kr(L, -4z) odd and L r C12, C13. 
(5.13) 

Then:  

(i) cr(G, A1) 2> 2/k:1 mincr(Ci,  A1) >__ ~1 -4- 2, 

(ii) cr(G,  A2) >_ ~~ik: 1 mincr(Ci,  A2) ~ 0(2 @ 2. 
(5.14) 

Moreover ,  since k r ( C l l ,  ,41) = kr(Cl2,  A1), we have 

k 

~1 + 2 - el  - number  of L e ~  with kr(L, Al) odd - ~ kr(Ci, Ai) 
i - I  

k 
- ~ kr(Ci, B2) ~ cr(a,  B2) - cr(a ,  A 1) (mod 2). 

i=1 

So we have strict inequality in (5.14(i)). Hence 

(5.15) 

c r ( G , ( B 1 B 2 ) " + I ( B ? I B ~ I )  "+1) = cr(G,A 0 + cr(G, A2) - 2 > ~1 + ~2 + 2 

> 1 + (number  o f L  e s with kr(L, A1A2)  odd) 

k 

>_ ~ kr(C,,  Q) (5.16) 
i=1 

for any closed curve Q freely homotop ic  to ( B t B 2 ) " + ~ ( B [ X B ~ I )  "+1 with the 

proper ty  that  any lifting of Q crosses any L e 2~' at  mos t  once. [ ]  

III .  We now show (4.12(iii)). Suppose to the cont ra ry  that  A x  < b has a doubly  

odd  cycle of  nonposi t ive length. Again it follows that  there exist: 

(i) pairs  ( i l , j O  , (iz, j2) . . . . .  (i,,Jt), 

(ii) curves 9x . . . . .  D,: [0, 1] ~ IR2\(I1 ~ . . .  u Iv), 

(iii) curves Q1 . . . . .  Q,: [0, 1] ~ 1R2\(I1 u . . .  w Iv), (5.17) 

(iv) an index s with 0 < s < t and (is, j~) = (i,, j,), 

so that  ( taking Qt+ 1 '=  Q 0 :  

(i) D h is homotop ic  to Qh (for h = 0 . . . . .  t), 

(ii) Qh(1) = Qh+l(O) = vihj ~ (for h = 1 . . . . .  t), 

(iii) Qh does not  cross any C~ . . . .  , Ck (h = 1 . . . . .  t), 

(iv) Qh ends via a face freely adjacent  at vi,j,  to Fi+jh and Qh+ 1 starts via 

a face freely adjacent  at vihj, to F ~ , ,  or  conversely (i.e., Fi+j, and 

F ~ j ,  interchanged)  (for h = 1 . . . . .  t), (5.18) 

(v) if i h = ih+ 1, then Qh is not  homotop ic  to par t  (vih_ , j ,_,  . . . . .  vi , j ,)  of 

Cih (h = 1 . . . . .  t), 

(vi) Qs ends via a face freely adjacent  at vi,j~ to F .+.,,j" and Qt ends via a 

face freely adjacent  at v~,i, to F~j, or conversely, 

(vii) ~ , =  1 (cr(G, Dh) -- 2) and ~I,=,+ 1 (cr(G, Dh) -- 2) are odd, 
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and so that 

L (cr(G, Dh) -- 2) < 0. (5.19) 
h = l  

Define the closed curves 

RI,=D,. . .D~,  R2,=Ds+,.. .D,, Y , :=Q," 'Qs ,  Y2'=Q~+I""Q, �9 (5.20) 

We can decompose R1 as R'IR~., where R'I and R'~ are (nonclosed) curves with 

R'~(I) = R';(O) r G. Let B 1 and B 2 be the closed curves given by 

B..=R,;R2(R,;) 1 and B2:=(R'I)-IR~IR'~. (5.21) 

So B~(1) = B2(I ) = R'~(1) r G. By (5.18)(vii)) we have 

cr(G, B~) = 1 + 2(cr(G, R';) -- 1) + cr(G, R2) -= 1 + cr(G, R2) 

= 1 + ~ (cr(G, Oh)-- 1 ) = t - - s  (rood2). (5.22) 
h = s +  l 

Moreover, as each D h crosses the C~ an even number of times, 

kr(Ci, BI) = 2 kr(C/, R';) 
i = 1  i 

t - s  (mod2). (5.23) 

So cr(G, B1) ~ ~k= 1 kr(Ci, B 0  (rood 2). Similarly for B2. Hence the Claim applies. 

Let n have the properties described. As 

(B~Bz)n(B; XB2 ~)n = (R,~R2R ~ ~R21R,1)n(R,~R 21R; rRzR,x). (5.24) 

is freely homotopic to (R1RzR ~ 1R 21)n(R1R21R~ ~R2) n, it is also freely homotopic 

to 

Q,=(y~ yzy? ~ Y2~)"(YI Y ~  YF~ Y2) ". (5.25) 

By (5.18(iii)-(v)), any lifting of Q does not cross any lifting of any C i more than 

once. So we have (5.8) 

k 

cr(G, (B~B2)"(B ~ IB 21),) > ~ kr(Ci, Q). (5.26) 
i = 1  

Now 

cr(G, (BIB2)"(B ~ 1B z 1),) = 4n. cr(G, R1Rz) 

= 2n. ~ (cr(G, Dh) -- 1) _< 4nt 
h = l  

(5.27) 
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by (5.19). On the other hand, 

k 

kr(C,, Q) = 4nt, (5.28) 
i = 1  

contradicting (5.26). [] 

Proposition 12 shows the correctness of the algorithm, and proves Theorems 1 

and 2. 

6. Disjoint Homotopic Trees 

I n  

homotopic trees problem: 

given: a planar graph G embedded in ~2; 
a subset {11 . . . . .  Ip} of the faces of G (including the unbounded 
face); 

paths Cl l  . . . . .  Clt . . . . . .  Ck~ . . . . .  Ckt~ in G, each with endpoints 
on the boundary of 11 u . ' .  u Iv, so that, for each i = 1 . . . . .  k, 

C , , . . . ,  C,, begin in the same vertex; 

find: pairwise vertex-disjoint subtrees T~ . . . . .  Tk of G so that, for 

each i = 1 . . . . .  k and j = 1 . . . . .  ti, T~ contains a path homotopic 
to Cij in ~2\(11 L)" 'L )  Ip). 

this section we extend the method described in Section 3 to the disjoint 

(6.1) 

Theorem 3. The disjoint homotopic trees problem (6.1) is solvable in polynomial 

time. 

The polynomial-time algorithm for (6.1) consists of four basic steps similar to 

those for solving the disjoint homotopic paths problem: 

I. Uncrossing C ~  . . . . .  CRib. 

II. Constructing a system A x  < b of linear inequalities. (6.2) 

III. Solving A x  < b in integers. 

IV. Shifting C l l , . . . ,  Ckt~ and deducing trees T1,. . . ,  TR. 

We make similar assumptions to those in Section 3 (assumptions (3.1)): 

(i) each edge of G is traversed at most once by the Cii; 

(ii) the beginning vertex of any Cij has degree tl in G, while the end 

vertex has degree 1 in G; (6.3) 

(iii) no edge traversed by any C o, except for the first and last edge of C~j, 

is incident with a face in {11 . . . .  , Ip}. 

These conditions can be attained by adding new vertices and (parallel) edges. From 

(6.3(ii)) it follows that the common beginning vertex of C ,  . . . . .  C~,, is not traversed 

by any other C 1 ~ . . . . .  Ck, ~. The end vertex of any C~i is not traversed by any other 

C 11, �9 �9 � 9  Cktk.  
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L Uncrossing C 11 . . . . .  C k t k  

This step modifies C1~ . . . . .  Ckt k SO that they have no (self-)crossings and no 

nul l -homotopic  parts. We can proceed similarly as in the uncrossing step of Section 

3.1. We should however be a little more careful as now different curves can have the 

same beginning vertex. It means that in some cases we must  exchange not  the parts 

between two crossings, but the parts between the c o m m o n  beginning vertex and a 

crossing. 

More  precisely, let 

Cij = ( V o ,  el ,  vl, . . . ,  e,,, v,,), 
t ! t 

Ci'j' = (V'o, el ,  Vl . . . . .  em,, v'~,). 
(6.4) 

Again, if ( i . j ) % ( i ' , j ' )  we call a pair (h ,h ' )  (with l < h < m - 1  and 

1 < h' < m' - 1) a crossing if Vh = V'h, and eh, e~,,, eh+ 1, e'h,+l o c c u r  in this order 

cyclically at vh (clockwise or anticlockwise). Then we have: 

Proposition 13. Let  (6.1) have a solution, let ( i , j ) v  ~ (i',j '), and let (h, h') be a 

crossing o f  Czj and Ccj,. Then  there exists  (g, g') so that 

r r 
part (v o . . . .  , Vh) o f  Ci~ is homotopic to part (vr . . . .  vh,) o f  Ci,j, (6.5) 

and so that (g, g') = (0, 0) or (g, g') is a crossing o f  Cij and ci,j,. 

Proof. Similar to the proof  of Proposi t ion 4 (consider the universal covering 

space of  ~ 2 \ ( I  1 W ' "  W lp)). [ ]  

So if Cij and Crj, have a crossing, we can find (by Proposi t ion 2), in polynomial  

time, pairs (g, g') and (h, h') so that (6.5) holds. After exchanging the two parts we 

arrive at a situation with fewer crossings. Repeating this, finally no two different C~j 

and C~,j, have any crossing. 

Self-crossings and nul l -homotopic  parts can be removed just as in Section 3 (see 

Proposi t ion 5). So we end up with Cl l  . . . . .  Ck,~ without  (self-)crossings and 

nul l -homotopic  parts. 

II. Constructing the Sys t em  A x  <_ b o f  Linear Inequalities 

Again we introduce a variable each time a curve Cij traverses a vertex. More  

precisely, let, for each i = 1, . . . ,  k and j = 1 . . . . .  tl, 

Cij = (Uijo, el jl,  Vijl, . . .  , eijmij, Vijmij). (6.6) 

We introduce a variable x~jh for each i = 1 . . . . .  k, j = 1 . . . . .  t~, and h = 1 . . . . .  

m~j - 1. The values of these variables are going to determine the shifts of the C~j. 
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Again we put linear constraints on the x~j h in order to accomplish that the shifted 

Ci~ can be combined to trees as required. 

We denote by Fi+h and Fij  h the faces on the r ight-hand side and on the left-hand 

side, respectively, of  elj h when going from Vijh-1 to V~jh. As in Section 3, the curves 

C~j give us the free adjacency relation between faces at any vertex v (except at the 

end vertices of  each C~j). This yields the auxiliary graph H, with length function on 

the edges, and with two mappings tp and ~k t o  R2\( /1  k3 . . .  U l p ) .  

The inequalities in Class 1 are similar to those in Section 3: 

Class  l .  F o r e a c h i =  1 . . . . .  k, j = 1 . . . . .  tl, a n d  h = 1 . . . . .  mij  - 1 we require: 

(~) Xijh < mine length(P), 

(fl) -- Xijh < mine length(P). (6.7) 

The minimum in (e) ranges over all paths P in H from (V~jh, ( F ~ h ) )  to any vertex 

(w, 2) of  H with 2 c~ {I 1 . . . . .  lp} 4: f2~. The min imum in (fl) ranges over all paths P 

in H from (1)ijh, ( F i j h ) )  to any vertex (w, 2) of H with 2 n {11 . . . . .  Ip} r ~ .  

Class 2 falls apart  into two subclasses. Class 2A will assure that curves C~j and 

C~,j, with i 4: i' do  not intersect: 

C l a s s 2 A .  For  each i ,  i ' =  1 . . . . .  k , j =  1 . . . . .  ti, h =  1 . . . . .  m ~ j -  l , j ' =  1 . . . . .  tr, 

and h' = 1 . . . . .  rn~,j, - 1 with i r i' we require: 

(0~) Xij h "-1- Xi,j, h, ~ diStH((Vijh, (Fi'~h)) , (Vi,j,h, , (F~,j ,h,)))  -- 1, 

(fl) Xijh -- Xi'j'h' < diStH((Vijh, ( F + h ) ) ,  (Vrj'h', (F~j,h,))) -- 1, (6.8) 

(7) - -Xi jh  --  Xi'j'h' ~ distn((Vijh, (Fi+h)), (Vi'j 'h" ( F i - j ' h ' ) ) )  --  1. 

If  i = i', j 4: j ' , then the shifted C~j and Crj ,  may touch, but may  not cross. This 

gives the Class 2B inequalities: 

Class  2B.  For  each i =  1 . . . . .  k , j , j ' =  1 . . . . .  tl ( j r  h =  1 . . . . .  m l j -  l, and 

h ' =  1 . . . . .  m~j . -  1 we require: 

(0~) Xij h -~- Xi,j, h, ~ diStH((Vijh, (Fij+h)),  (1)i,j,h, , (F i l ,  h , ) ) ) ,  

(fl) Xijh -- Xij'h' < dis tn((vi jh ,  (Fiy+h)), (vlj'h', (FiS'h '))) ,  (6.9) 

(7) - -x i jh  -- xij'h' < distH((Vijh, (F i j h ) ) ,  (Vij'h', (F~ ,h , ) ) ) .  

Finally, Class 3 inequalities are intended to avoid that  C~j and C~j, (possible 

j = j ' )  intersect each other a round one of the holes 11 . . . .  , Ip: 

C lass  3. For  each i =  1 . . . . .  k, j, j ' =  1 . . . . .  ti, h =  1 . . . . .  m i j - 1 ,  and h ' =  

1 . . . . .  mij, - 1 we require: 

(~) xijh + X~j,h, < mine length(P) - 1, 

(fl) Xljh --  xij'n' < minp length(P) - 1, (6.10) 

(7) - x i j ,  - Xij'h' < minp length(P) - 1. 
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Here in (~) the min imum ranges over  all paths P in H from (V~jh, (F~h) )  to 

(Vij,h', (F~+j,h,)) which are not homotop ic  to the following part  of C~ ~Co,: 

(Vijh . . . . .  Vijo = Vij'o . . . . .  Vij'h') (6.1 1) 

(ifj  = j ' ,  (6.1 1) is homotop ic  to par t  (Vljh . . . . .  Vijh, ) of C,j). Similarly for (fl) and (7). 

This defines the inequality system A x  < b. Note  that  the same left-hand sides 

may  occur among  (6.9) and (6.10)--we can restrict ourselves to the ones with 

smallest r ight-hand side. 

III. Solving A x  <_ b in Integers 

Since matr ix  A again has the proper ty  that  the sum of the absolute values in any 

row is at most  2, we can solve A x  < b in integers in the same way as we did in 

Section 3. We show here: 

Proposition 14. / f (6 .1)  has a solution, then A x  <_ b has an integer solution. 

Proo f  Suppose (6.1) has a solution, i.e., disjoint trees T 1 . . . . .  Tk as required exist. 

We describe an integer solution z for A x  < b. Let U be the universal covering space 

of R2\ ( I1  w ... u lp), with projection function n, and let G be the (infinite) graph 

7z- 1 [G]. Choose  i = 1 . . . . .  k, j = 1 . . . . .  tl, and h = 1 . . . . .  m 0 - 1. Let Cij be some 

lifting of Cij to U. Denote  

C i j  = (V i jo  . . . .  , Uijm,j),  (6.12) 

where r5 is a lifting of v. As Cij has no nul l -homotopic  parts,  Cij is a simple pa th  in G. 

Let Q be the unique path  in T~ connecting Voo and v~jm,j. So Q and C~j are 

homotopic .  Hence there exists a lifting Q of Q to u so that  (~ is a simple pa th  from 

Vij 0 to  Vijrnij. 
splits U into two parts (as O~jo and ~j,,,j are on the boundary  of U): a par t  to 

the left of (~ and a par t  to the right of  Q. We consider three cases. 

Case 1 : ~ijh is on Q. Then define 

Zijh '=  0. (6.13) 

Case 2: Vijh is to the left o f  Q (see Fig. 24). Then define 

zij h .'= min cr((7, D) - 1, (6.14) 
D 

where the min imum ranges over all curves D in U connecting Vijh and any point  

o n  0 .  
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Fig. 24 

Case 3. fijh is to the right o f  Q (see Fig. 25). Now define 

z,jh,= - (mAn cr(G, D ) - 1 ) ,  (6.15) 

where again the minimum ranges over all curves D in U connecting ~Sijh and any 

point on (~. 

This defines the z~i ~. Note that by the symmetry of the universal covering 

surface, the values are independent of the choice of lifting (7~j. 

We show that the z~j, form a solution to A x  <_ b. 

Class 1 inequalities. By symmetry we need only check (6.7(~t)). If z~ih < 0 the 

inequality is trivially satisfied. If Z~jh > 0 we are in Case 2 above. Let P attain the 

minimum in (6.7(a)). Then ~ o P is a curve from v~j h to the boundary of l l  w ...  w Iv, 

starting via a face freely adjacent at v~j h to F+h and not crossing any Cij. Hence the 

lifting L of ~ o P to U with L(0) = O~h has its endpoint on the boundary of U, on the 

right-hand side of (7~j or on C'~i. Hence L(0) is also on the right-hand side of (~ or on 

(~. So the lifting L' of ~o o P to U with L'(0) = O~jh also has its endpoint on the 

boundary of U, on the right-hand side of Q or on (~. So L' intersects Q. Therefore, 

by definition (6.14) of z~jh: 

zi~, < cr(G, L') - 1 = length(P). (6.16) 

Fig. 25 
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v i ' j ' m i , j ,  

Class 2A inequalities. By symmetry we need only check (6.8(~)). Let P be a shortest 

path in H from (vijh, <FiSh>) to (v~,j,h,, (F~,j,h,>). Consider a lifting L of r o P to U, 

connecting liftings vijh and ~Ti,j, h, say, of Vi~h and v~v, h, respectively. Let (7~j and (7~,j, be 
liftings of C~j and C~,~, so that the hth vertex of (7~j is v~jh and the h'th vertex of (7'~,j, is 

~i'j'h" 
Since ~ o P starts via a face freely adjacent to F+h at vii s and ends via a face freely 

adjacent to F~,j, h, at vi,j, h, and since it does not cross any C1 . . . . .  Ck, we know that L 
runs on the right-hand side of (7~ and on the fight-hand side of (~,j, (see Fig. 26). 

Let Q be the simple path in T~ connecting v~j o and vijm,j and let Q' be the simple path 

in T~, connecting v~,j, o and v~,i,m,,j,. Let (~ and Q' be liftings of Q and Q' homotopic to 

(7~j and (7'~,~., respectively. Again (~' is on the right-hand side of Q, and Q is on the 

right-hand side of Q' (see Figure 27). 

So U is decomposed into three regions A, B, and C as indicated, where we 

assume B to be open and A and C to be closed (so (~ is in A and Q' is in C). We 

consider a number of cases depending on in which of the parts A, B, and C the 

Vijm.. vi , 
i] j'O 

Vijo vi'j 'm. 
l'j' 

Fig. 27 
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points fijh and t31,j, h, are located. The following fact is trivial but basic: 

for any curve D in U connecting Q and (~' we have cr(G, D) > 2 (6.17) 

(since Q and Q' are disjoint, as T~ and T~, are disjoint). Let L' be the lifting of (p ,~ P 

connecting 6ijh and 6~'j'h'. 

Case A: VijhEA and v~,j,h, ~ C. Then L' can be decomposed a s  D1DzD 3 with 

Dl(1 ) = D2(O ) on Q and Dz(1 ) = D3(0 ) o n  Q ' .  By (6.17), cr((~, D2) -> 2, and hence 

Zij h -]- Zi,j, h, ~ (cr(Cr, D1) -- 1) -t- (cr((~, D 3 )  - -  1) 

= cr((~, L') - cr(tT, D2) _< cr(C,, L') - 2 = length(P) - 1. (6.18) 

Case B: 6~jheB and ~r j 'h ' eC.  Then L' can be decomposed as D2D3 with 

D2(1 ) = D3(0 ) on Q'. Let D 1 attain the minimum in (6.15). Then, by (6.17), 

cr((7, D1D2) > 2, and hence 

z~, + zi,j,n, < ( - c r ( G ,  D1) + 1) q- (cr(G, D3) - l) 

= cr(G, D2D3) - cr((~, D1D2) < cr(G, L') - 2 = length(P) - 1. (6.19) 

Case C: fijh E C and ~rj'h' ~ C. Let D attain the minimum in (6.15). Then D can be 

decomposed as DID 2 with Dl(1 ) = D2(0) on Q'. Then, by (6.17), cr((~, D1)>_ 2, 

and hence 

Zij h "[- Zi,j, h, "( ( - - c r (d ,  D) + 1) + (cr(d,  D2L' ) - 1) 

= cr(tT, L') - cr((7, Dx) < cr(G, L')  - 2 = length(P) - 1. (6.20) 

Case D: vijh E A and g~'j'h' ~ B. By symmetry similar to Case B. 

Case E: ~jh ~ A and ~i'j'h' ~ A. By symmetry similar to Case C. 

Case F: ~ijh ~- B w C and ~i'j'h' ~: A w B. Then Zij h ~ 0 and z~,j,h, N O, and hence 

trivially zij h + zi,j, h, < length(P) - 1. 

This shows (6.8(c0). 

Class 2B inequalities. By symmetry we only consider (6.9(c0). They can be checked 

similarly to checking (6.8(ct)) above. The only difference is that now Q and Q' can 

touch. So the liftings Q and Q' may also touch. Therefore instead of (6.17) we have 

for any curve D in U connecting Q and (~' we have cr(G, D) > 1. (6.21) 

Hence we get z~jh + zi,j,h, < length(P) instead of < length(P) - 1. 

Class 3 inequalities. By symmetry we only consider (6.10(ct)). Again checking this is 

similar to checking (6.8(c0), As path P attaining the minimum in (6.10(ct)) is not  

homotop ic  to part  (v~j h . . . . .  V~io = v~j,o . . . . .  v~j,h,) of C~j~Cij,, we know that the 
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lifting L of ~b o P connects disjoint liftings Q and Q'. So we can proceed as for Class 

2A inequalities. []  

IV. Shi f t ing C 11 . . . . .  Ck~ ~ and Obtaining T 1 . . . . .  T k 

We finally shift the Cij using the integer solution xlj h to A x  < b, and derive from the 

shifted C~j the trees 7"1 . . . . .  Tk. 

First assume Xijh = 0 for all i, j, h. For  each i = 1 . . . . .  k, let T~ be any spanning 

tree in the subgraph of G made up by the vertices and edges occurring in 

Cil . . . . .  C,,. We show: 

Proposition 15, T 1 . . . . .  Tk f o r m  a solution to the disjoint homotopic trees problem 

(6.1). 

P r o o f  First note that  Class 2A and 3 inequalities imply that  if C o and Crt, have a 

vertex in common,  say vii h = V~'j'h', then i = i' and 

par t  (Vijo . . . . .  vith) of Cit is homotop ic  to par t  (vit,o . . . . .  vii,h,) of C~j,. (6.22) 

In particular,  if moreover  j = j ' ,  then par t  (Vith . . . . .  Vijh, ) of Cit is nul l -homotopic ,  

and hence h = h'. 

It follows that  7"1 . . . . .  Tk are pairwise vertex-disjoint. Next  we show that  for each 

i, j the unique simple pa th  in T~ from Vijo to vlj,,,j is homotop ic  to Cij. In fact we 

show that  for each i, j, h the unique simple pa th  Pith in T~ from V0o to vlj h is 

homotop ic  to par t  (vlj o . . . . .  V~jh) of Cij. This is done by induction on the number  of 

edges in Pith" 
If Pith has length 0, the s ta tement  is trivial. If Pijh has at least one edge, consider 

the last edge e of Pijh. As it is in one of the paths Cix . . . . .  C~t , there exist j ' ,  h' so that  

e = eli,h,, Uijh = vi~,h,. (6.23) 

Now Pijh'-1 is shorter  than Pijh and hence by the induction hypothesis  it is 

homotop ic  to par t  (v~j, 0 . . . .  , V~j'h,- x) of Ciy. Therefore, Pith is homotop ic  to par t  

(vlt,o . . . . .  V~j,h,) of C~t,. Then by (6.22) we know that  Pijh is homotop ic  to par t  

(Voo . . . . .  Vljh) of Cir. [] 

Suppose next 

M ' = m a x { i x l i h l  li = 1 . . . . .  k ; j =  1 . . . .  , t l ; h  = 1 . . . . .  mo} > 0 ,  (6.24) 

and suppose Xoh = M for some i,j,  h. Like in Section 3, consider eijh, Vijh, eljh+ 1 and 

the faces and edges incident "on  the r ight-hand side" (see Fig. 28). 

Note  that  F~ . . . .  , Fs r {Ix . . . . .  Ip} by Class 1 inequalities. We claim: 

we may  assume that ~1 . . . . .  es-1 a r e  not used by C11 . . . . .  Cktk" (6.25) 
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E 1 

eijh=sO 

Fig. 28 

P r o o f  o f  (6.25). Suppose 

SO : e i ' j  'h', v i j  h : v i ' j  'h', ~'o' : ei ' j 'h '  + 1 (6.26) 

for some i', j ' ,  h' and 9, g' e {i . . . . .  s - 1 }. We may  assume that  so,, is not t raversed 

by Cl l  . . . . .  Ckt k if 1 < 9" < min{9, 9'}. 

Suppose first ~7 > 8'. Then 

Xi] h ~- Xi,j ,  h, ~ - -  1 (6.27) 

if i-g: i', or  if i =  i' and part  (v~j o . . . . .  vijh) of C~j is not  homotop ic  to par t  

(v~j, o . . . . .  Vo,h, ) of Cii, (by Class 2A and 3 inequalities). However ,  (6.27) implies 

X~V,h, < --X~jh -- 1 = - - M  -- 1, contradict ing (6.24). 

Moreover ,  we have, if i = i', 

xzjh + x~j,h, < 0 (6.28) 

if pa r t  (v~j o . . . . .  Vijh) of Ci~ is homotop ic  to par t  (v~,o, . . . ,  v~j,h,) of C o, (by Class 2B 

inequalities). This however  implies that  either v~,,,j or  v~j,,,,j, is in the interior of the 

closed curve fo rmed by (V~jo, . . . ,  v~jh) and (v~j,o . . . . .  V~j,h,). As this closed curve is 

nul l -homotopic  and  as vij.,,j and vij,,,,j, are on the boundary  of /1  u . . .  u Ip, this is a 

contradict ion.  

So we know 9 < O'. Then  Xijh -- Xi'j'h' <-- 0 (by Class 2A, 2B, and 3 inequalities). 

Hence  also Xrj'h' = M .  Replacing i , j ,  h by i ' , j ' ,  h' decreases the "open ing"  (i.e., the 

number  s of  faces on the r ight -hand side in Fig. 28). After a finite number  of  such 

replacements  we are in a s i tuat ion as claimed in (6.25). [ ]  
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Knowing (6.25), we can shift Cij at vii h as in Section 3, and similarly if 

x~jh = - M .  As in Proposi t ion 9 we show that the number  of  iterations is 

polynomially bounded,  and hence we have a polynomial-t ime alagorithm. This 

proves Theorem 3. 

7. Disjoint Trees 

We finally consider the disjoint trees problem: 

given: a graph G; 

subsets 1411 . . . . .  Wk of V(G); 

find: pairwise vertex-disjoint subtrees T 1 . . . . .  T k in G so that W~ ~_ V(T~) 

f o r i =  1 . . . . .  k. 

(7.1) 

This problem is NP-complete.  Robertson and Seymour showed that for fixed 

11411 w ... w VCkl there exists a polynomial-t ime algorithm for (7.1). We show that  if 

G is planar, it suffices to fix the number  of faces necessary to cover 1411 w . . .  w I,V k. 

This is derived from Theorem 3, essentially by enumerat ing " h o m o t o p y  classes" of 

trees. 

For  any connected planar graph G and any choice of faces 11 . . . . .  Ip of G, call 

two spanning trees T 1 and T2 of G equivalent (with respect to 11 . . . . .  lp) if, for any 

two vertices u, w on bd( l l  w ... w Ip), the unique u-w path in TI is homotopic  to the 

unique u-w path in T2 in the space R2\ ( I1  w .-. Ip). 

We study enumerat ing equivalence classes of spanning trees. In fact, we 

enumerate representatives for these classes, i.e., we enumerate trees B1 . . . .  , B N so 

that each equivalence class intersects {B 1 . . . . .  BN}. 

Proposition 16. For each fixed p, we can enumerate, in polynomial time, representa- 

tives for the equivalence classes of spanning trees, for any connected planar graph G 

and any choice of faces 11 . . . . .  Ip of G. 

Proof. Let W..= V(G) c~ bd(I  1 w . . .  w Ip). Draw a graph G* dual to G. So in each 

face F of  G we put a vertex F* of G*. If F I  and F 2 have an edge e in common,  we 

connect  F* and F* by an edge of G* crossing e. 

I. We first show that, for each j = 2 , . . . ,  p, we can enumerate,  in polynomial  

time, * * * * path in G* is 11-1 i paths P1 . . . . .  PM in G*, so that  each simple I1-I  j 

homotop ic  to at least one path among  P1 . . . . .  PM in the space ~ 2 \ W .  Without  loss 

of generality, j = 2. 

Consider the set El of edges of G on bd(l l  w . '-  w lp). Let E2 be an inclusionwise 

minimal set of edges so that E1 w E2 forms a connected graph on the set Vo of  

vertices covered by E 1 w E 2. Note  that the edges in E 2 form a forest. 

Let I/1 be the set of vertices that are not  in bd(I1 w ...  w lp) and that are incident 

with at least three edges in E2. Then the graph (Vo, E1 w E2) is topologically 

homeomorph ic  to a graph H with vertex set W u V 1 and edge set E 1 w {ql . . . . .  q,} 

for some edges ql . . . . .  q, (which come from paths in E2). So each vertex in 1/1 has 
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degree at least three in H. This implies ;" _< 2p - 3. (To see this, contract  the edges 

in E 1, making H a tree with r edges. Let the contracted bd(l  1 w ... u lp) give p' 

vertices. So p' < p. Then r = p' + 11/11 - 1. On  the other hand, all vertices in V l 

have degree at least 3. So 2r >_ 31 V11 + P' = 3r - 2p' + 3, implying r < 2 / -  3 < 

2p - 3.) 

Since H is connected, each face of H is simply connected. Note  that ql . . . . .  q, all 

are incident (at both sides) with only one face of H, call it F o. 

We enumerate representatives for the h o m o t o p y  classes containing simple 11.-I 2. 

curves, so that each face among  11, . . . ,  lp is traversed at most  once, and so that face 

F o is traversed at most  m:= IE(G)I times (homotopy in the space R2\W). This 

clearly includes all h o m o t o p y  classes containing a simple I1"-I2" path in G*. 

To enumerate the curves, we first decide how often it crosses each of the edges of 

H. To this end, we decide, for j = 3 . . . . .  p, whether Ij is traversed or not. If we 

decide I t is traversed, then we choose two edges on bd(Ij)  to be crossed by the 

curve. Moreover ,  we choose one edge on bd(I1) and one edge on bd(lz) to be 

crossed. These choices can be made in O(m zp) ways. For  each edge we decided is 

crossed, we consider a "little" line segment crossing this edge. 

This fixes the crossings of  the curves with the edges in El.  To fix crossings with 

q~ . . . . .  q,, we choose, for e a c h j  = 1 . . . . .  r, a number  ej, indicating how often edge 

qj is crossed. We take 0 < ~j < m. So this choice can be made in O(m r) ways. For  

each j we consider ~j "little" line segments crossing qj. 

We take all "little" line segments pairwise disjoint. Let L/' denote the set of all 

these line segments, and let R denote the set of endpoints of these line segments (so 

[RI = 2 1 ~  I). Let R} and R~ be the sets of endpoints  of these line segments crossing 

q j, at the two sides of  qj (see Fig. 29). 

For  j = 1, 2 we consider a curve in I t connecting I* with the unique point in 

R n lj. F o r j  = 3 . . . .  , p, if IR ~ It[ = 2, we consider a curve in I t connecting the two 

points in R c~ I t. In face F o we connect  the points in R c~ F o pairwise, by pairwise 

disjoint curves (not crossing any line segment in 5~ in such a way that no two 

points both  in the same R} or both  in the same R] are connected. Such a 

"match ing"  can be chosen in O(m 4r+4p) ways. 

This bound  can be seen as follows. Let c~ be the parti t ion of R c~ F o with classes 

R'~, R'~ . . . . .  R '  r, R;', together with singletons for the remaining points in R c~ F o. 

Note  that [c~[ < 2r + 2p. For  any two distinct classes ?, 6 in ~ we choose a number  

fl~6 indicating how many  points in ? are to be matched to points in 6. We take 

/~r~ < m, and hence the choice can be made in O(m 4'+4p) ways. In fact, we consider 

R~ 

r" 

�9 iiiiiii �9 
R? 
] 

Fig. 29 
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only those choices for which 

Z ~,~ = I~1 (7.2) 

holds for each 7 e cg. Then, for each 7, 6, we know which points in 7 are matched to 

which points in 6. (This follows from the fact that  F o is simply connected and that  

two distinct curves must  be disjoint.) We only consider those choices fl~o for which 

this matching yields pairwise noncrossing curves. 

Finally, in each face F of H with F r {11 . . . . .  lp, Fo}, we consider pairwise 

disjoint curves, pairwise connecting the points in R n F. Since ]R\FoL < 4p, there 

is a constant  number  of such choices (as p is fixed). 

Now all line segments and curves chosen yield a curve C from I* to 17, together  

with some (or none) closed curves. It is not difficult to replace C by a path  P in G* 

homotop ic  to C (path P need not  be simple). All paths P thus generated, give our  

enumerat ion.  

Clearly, eachs imple  * * G* 1 1 - 1 2  path in is homotop ic  to at least one of these paths. 

II. We now enumera te  spanning trees of G, covering all equivalence classes with 

respect to I 1 , . . . ,  Ip. By the first par t  of this p roof  we can enumerate ,  for each 

�9 * paths Psi, PjMj in G* so that  each simple * * j = 2 . . . . .  p, 11-I  s . . . .  I 1 - I  s pa th  is 

homotop ic  to at least one of them (in ~ 2 \ W ) .  

For  each choice i 2 . . . .  , ip with 1 < i 2 _< M 2 , . . .  , 1 < ip < Mp we can find, in 

polynomial  time (by Theorem 3), a tree T in G* connecting I*, . . . ,  1" so that  the 

simple * * 11 - I j  pa th  in T is homotop ic  to Pjij (J = 2 . . . . .  p), provided that  such a tree 

exists. Choose  an arbi t rary spanning tree B in G not intersecting T. 

We prove that  the spanning trees thus obtained intersect all equivalence classes. 

Let B' be any spanning tree in G. Then, for each j = 2 . . . . .  p, there exists a unique 

simple 11.-I s* pa th  Qs in G* not intersecting B'. Wi thout  loss of generality, let Qj be 

homotop ic  to Psi in R 2 \ W  (j = 2 . . . . .  p). Let T O be the unique spanning tree in G* 

not  intersecting B'. So the choice i2 = 1 . . . . .  ip = 1 indeed gives us a tree T in G* 

connecting I* . . . . .  I* so that  the simple l l - I j  path  in T is homotop ic  to Psi in 

~ 2 \ W  (j = 2 . . . . .  p). Let B be the chosen spanning tree in G not intersecting T. 

Then, for each u, w~  W, any u-w path not intersecting Q2 u . . . w  Qp is 

homotop ic  to any u-w path not  intersecting T, in ~ 2 \ ( I  1 u . . .  w Ip). Hence B' is 

equivalent to B. [ ]  

We finally derive: 

Theorem 4. For each f ixed p there exists a polynomial-time algorithm for  the 

disjoint trees problem (7.1) when G is planar and W 1 tj . . .  u Wk can be covered by the 

boundaries o f  p faces o f  G. 

Proof  Let G be a p lanar  graph, and let W 1 . . . . .  Wk be subsets of V(G) so that  

W 1 w . . .  w Wk ~ bd( l l  w . - .  w Ip) for faces 11 . . . . .  Ip of  G. We may  assume that  the 

unbounded  face is included in {11 . . . . .  lp}, that  G is connected,  and that  W 1 . . . . .  W k 

are nonempty  and pairwise disjoint. Choose  w 1 E W 1 . . . . .  w k e Wk arbitrarily.  
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We enumerate spanning trees B~ . . . . .  B N of G covering all equivalence classes 

with respect to 11 . . . . .  Ip. By Proposition 16, this can be done in polynomial time. 

For each tree Bj we do the following. For  each i =  1 . . . . .  k and each 

w e W ~ \ { w i } ,  let Ci,~ be the simple w i - w  path in B~. With the algorithm of Theorem 

3 we solve the problem: 

f ind:  pairwise vertex-disjoint subtrees T, . . . . .  T k of G so that, for each 

i =  1 . . . . .  k and each w e  W i \ { w l } ,  Ti contains a w i w path 

homotopic to Ciw (in Rz\(I1  u . . -  w Ip)). 

(7.3) 

If, for some B i, (7.3) has a solution, it clearly is a solution to (7.1). We show that, 

conversely, if (7.1) has a solution, then (7.3) has a solution for at least one B 1. Let 

T 1 . . . . .  T k be a solution to (7.1). Extend T 1 u . . .  u TR to a spanning tree B of G. 

Then B is equivalent to spanning tree Bj for at least onej.  Then, for this j, problem 

(7.3) has a solution (namely T 1 . . . . .  T~). [] 
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