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DISJOINT INVARIANT SUBSPACES

MALCOLM J. SHERMAN

Let Ή.%, denote the (separable) Hubert space of all func-
tions F(eiΘ) defined on the unit circle with values in the
separable (usually infinite dimensional) Hubert space έ%?', and
which are weakly in the Hardy class H2. For a closed sub-
space of H%, "invariant" means invariant under the right shift
operator. Such an invariant subspace is said to be of full
range if it is of the form ^H^, where ^(eίθ) is a.e. a
unitary operator on £%f\ i.e., an inner function. We show
that if Sίf is infinite dimensional there exists an uncountable
family {^*C} of invariant subspaces of Ή.^ of full range such
that ^ C Π - ^ = (0) if aΦβ.

This extends a theorem in the author's paper [2, p. 169] asserting
the existence of two invariant subspaces ^//, Λ/' of full range such
that ^/S Π ̂ Γ — (0). For basic definitions and notations consult [1],
particularly Chapter VI.

For a bounded operator T on <%f, | | Γ | | < 1 , define the Rota
subspace ^f/τ of T to be all F e i ϊ i with Fourier series F = Σ~=o ΨΦhix

such that Σ?=o Tkφk = 0. It is known [2, p. 161] that ^//τ is of full
range. It was shown in [2, p. 169] that if Γ, U are-one-to one
operators on β^ with disjoint ranges, then ^ τ Π ̂ /έu = (0). It suffices
then to prove the existence in a separable infinite dimensional Hubert
space of an uncountable family of bounded one-to-one operators with
disjoint ranges. To do this it suffices to exhibit an uncountable family
of disjoint closed infinite dimensional subspaces of a separable Hubert
space, since the subspaces are then unitarily equivalent to the original
space and the operators can be taken to be of the form [7/2, where
U is unitary as a mapping onto its range. It is convenient to describe
such an example in έ%f realized as L^, where 3ίΓ is some other
Hubert space. Let {ea} be an uncountable family of pairwise linearly
independent vectors in SΓ (which exists if J ^ is at least two-dimen-
sional) and for the subspaces let

^Ka = {FeL2^: F(eίx) - f(eix)ea, for some fe L2} .

The situation when £ίf is infinite dimensional thus contrasts
strongly with the finite dimensional situation [1, p. 70] where the
intersection of two invariant subspaces of full range also has full
range, and the implication is that only when £ίf is infinite dimen-
sional can invariant subspaces of full range be pretty small. On the
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other hand, if nontrivial maximal invariant subspaces of iJi* exist (or,
equivalently, if there exist bounded operators on ^f without non-
triviant subspaces [1, p. 103]), the existence of an uncountable family
of disjoint maximal invariant subspaces is conceivable. For if there
exists an operator T on 3ίf without an invariant subspace, it may
also happen that T is not invertible and the codimension of the range
of T is uncountably infinite in the linear space sense. It is then
almost certain that one can find an uncountable family of such opera-
tors whose ranges are disjoint.
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