DISJOINT PAIRS OF ANNULI AND DISKS FOR HEEGAARD SPLITTINGS

Toshio Saito

ABSTRACT. We consider interesting conditions, one of which will be called the disjoint (A^2, D^2) -pair property, on genus $g \geq 2$ Heegaard splittings of compact orientable 3-manifolds. Here a Heegaard splitting $(C_1, C_2; F)$ admits the disjoint (A^2, D^2) -pair property if there are an essential annulus A_i normally embedded in C_i and an essential disk D_j in C_j ((i, j) = (1, 2) or (2, 1)) such that ∂A_i is disjoint from ∂D_j . It is proved that all genus $g \geq 2$ Heegaard splittings of toroidal manifolds and Seifert fibered spaces admit the disjoint (A^2, D^2) -pair property.

1. Introduction

Let M denote a compact orientable 3-manifold and $(C_1, C_2; F)$ a genus $g \geq 2$ Heegaard splitting of M. In the 1960s, Haken[4] introduced a condition of Heegaard splittings which is now said to be reducible. Here, $(C_1, C_2; F)$ is said to be reducible if there are essential disks $D_i \subset C_i$ (i = 1, 2) with $\partial D_1 = \partial D_2$. Otherwise, $(C_1, C_2; F)$ is said to be irreducible. It is proved that if M is reducible, then any Heegaard splitting of M is reducible. The concept of weak reducibility was introduced by Casson and Gordon[3]. Here, $(C_1, C_2; F)$ is said to be weakly reducible if there are essential disks $D_i \subset C_i$ (i = 1, 2) with $\partial D_1 \cap \partial D_2 = \emptyset$. Otherwise, $(C_1, C_2; F)$ is said to be strongly irreducible. They proved in [3] that if a Heegaard splitting of M is weakly reducible, then either the splitting is reducible or M contains an orientable incompressible surface. In this direction, Thompson[11] introduced a condition called the disjoint curve property. Here, $(C_1, C_2; F)$ admits the disjoint curve property if there are essential disks $D_i \subset C_i$ (i = 1, 2) and an

Received April 9, 2004.

²⁰⁰⁰ Mathematics Subject Classification: 57N10.

Key words and phrases: Heegaard splittings; the disjoint (A^2, D^2) -pair property. The first author was supported by the 21st century COE program 'Towards a New Basic Science; Depth and Synthesis'.

essential loop $z \subset F$ with $(\partial D_1 \cup \partial D_2) \cap z = \emptyset$. In [11], she studied genus 2 closed orientable manifolds with Heegaard splittings satisfying the disjoint curve property. Moreover, Hempel[5] introduced complexity of genus $g \ge 2$ Heegaard splittings of closed orientable 3-manifolds. It is called the 'distance' and is determined by a non-negative integer. The 'distance' is defined by using the curve complex of a Heegaard surface and is extension of the above conditions. In fact, Heegaard splittings with 'distance 0' are reducible splittings and vise versa. A Heegaard splitting has 'distance < 1' if and only if the splitting is weakly reducible. A Heegaard splitting has 'distance < 2' if and only if the splitting admits the disjoint curve property. He proved that if a closed orientable 3-manifold M is reducible, toroidal or Seifert fibered, then any splitting of M has 'distance ≤ 2 '. He also showed that for any integer n, there is a closed 3-manifold with a Heegaard splittings of 'distance n'. Note that Schleimer showed in [8] that for a given 3-manifold, the numbers of Heegaard splittings of 'distance > 3' is finite.

In this paper, we consider some conditions for Heegaard splittings (see Definition 2.2). One of them is the following: a Heegaard splitting $(C_1, C_2; F)$ admits the disjoint (A^2, D^2) -pair property if there are an essential annulus A_i normally embedded in C_i and an essential disk D_j in C_i ((i, j) = (1, 2) or (2, 1) such that ∂A_i is disjoint from ∂D_j .

We remark that the conditions (in Definition 2.2) are essentially defined by Kobayashi[6] and Schleimer[8]. If a Heegaard splitting is weakly reducible, then it admits the disjoint (A^2, D^2) -pair property and if a Heegaard splitting admits the disjoint (A^2, D^2) -pair property, then it admits the disjoint curve property (see Lemma 3.1).

Our main result is the following.

THEOREM 1.1. Let M be a compact orientable 3-manifold. If M is reducible, Seifert fibered or toroidal, then any genus $g \geq 2$ Heegaard splitting of M admits the disjoint (A^2, D^2) -pair property.

We also give an example of a Heegaard splitting such that it does not admit the disjoint (A^2, D^2) -pair property but admits the disjoint curve property. To this end, we will use the concept of the strong rectangle condition defined by Kobayashi[6].

2. Preliminaries

Throughout this paper, we work in the piecewise linear category. Let B be a sub-manifold of a manifold A. The notation N(B; A) denotes a

regular neighborhood of B in A. The notation $|\cdot|$ denotes the number of connected components. A *surface* means a connected 2-manifold.

A simple loop/arc properly embedded in a surface is said to be inessential if the loop/arc cuts off a disk from the surface. A simple loop/arc properly embedded in a surface is essential if the loop/arc is not inessential. A disk D^2 properly embedded in a 3-manifold M is inessential in M if ∂D^2 is inessential in ∂M . A disk D^2 properly embedded in a 3-manifold M is essential in M if D^2 is not inessential in M. A 2-manifold $S(\neq D^2)$ properly embedded in a 3-manifold M is said to be compressible in M if there is a disk $D \subset M$ such that $D \cap S = \partial D$ and ∂D is essential in S. The disk D is called a compression disk of S. We say that $S(\neq D^2)$ is incompressible in M if S is not compressible in M. The surface $S(\neq D^2)$ is ∂ -parallel in M if $\partial M \neq \emptyset$ and S is isotopic into ∂M relative ∂S . In particular, a ∂ -parallel annulus A in a 3-manifold cuts off the solid torus $A \times [0,1]$ from M. We say that $S(\neq D^2)$ is essential in M if S is incompressible in M and is not ∂ -parallel in M. The surface $S(\neq D^2)$ is said to be ∂ -compressible in M if $\partial M \neq \emptyset$, $\partial S \neq \emptyset$ and there is a disk $\delta \subset M$ such that $\delta \cap S = \partial \delta \cap S =: \alpha$ is an essential arc in S and that $\operatorname{cl}(\partial \delta \setminus \alpha)$ is an arc in ∂M . The disk δ is called a ∂ compression disk of S. We say that $S(\neq D^2)$ is ∂ -incompressible in M if S is not ∂ -compressible in M.

A 3-manifold C is a compression body if there is a compact connected closed surface F such that C is obtained from $F \times [0,1]$ by attaching 2-handles along mutually disjoint simple loops in $F \times \{1\}$ and capping off the resulting 2-sphere boundary components by 3-handles. Then $\partial_+ C$ denotes the component of ∂C corresponding to $F \times \{0\}$, and $\partial_- C$ denotes $\partial C \setminus \partial_+ C$. If $\partial_- C = \emptyset$, then C is called a handlebody. We say that a surface S properly embedded in C is normally embedded in C if $S \cap \partial_+ C = \partial S$. It is known that a ∂ -compressible essential surface normally embedded in a compression body is a disk.

LEMMA 2.1. Let D be an essential disk in a compression body C and γ an arc in C such that γ joins ∂D to itself and the interior of γ is disjoint from ∂D . Let A be an annulus obtained by pushing the interior of $D \cup N(\gamma; F)$ into the interior of C. Suppose that A is incompressible in C and is ∂ -parallel in C. Then D cuts off a solid torus V from C and there is a non-separating essential disk E in $V \subset C$ with $E \cap D = \emptyset$ and $|E \cap \gamma| = 1$.

Proof. Recall that since a ∂ -parallel surface in a 3-manifold is separating, we see that A is separating in C. Hence D is separating in C. If D does not cut off a solid torus from C, then A cannot also cut off

a solid torus. This contradicts that A is ∂ -parallel. Hence D cuts off a solid torus V from C. Let D' be a copy of D in ∂V . Note that γ is an arc properly embedded in $\operatorname{cl}(\partial V \setminus D')$. Since A is incompressible in C, each component of $\partial A'$ does not bound a disk in V, where A' is a copy of A in ∂V . Let δ be a ∂ -compression disk of A such that $\delta \cap N(\gamma; F)$ is an arc intersecting γ in a single point and that $\delta \cap A =: \gamma_{\delta}$ is an essential arc in A. Recall that A cuts off $A \times [0,1] \subset V$ from C. Set $E = \delta \cup \gamma_{\delta} \times [0,1]$. Then E is the desired disk.

We say that $(C_1, C_2; F)$ is a Heegaard splitting of a 3-manifold M if each of C_i (i = 1, 2) is a compression body, $M = C_1 \cup C_2$ and $C_1 \cap C_2 = \partial_+ C_1 = \partial_+ C_2 = F$. The surface F is called a Heegaard surface of M and the genus of F is called the genus of the Heegaard splitting. We say that $(C_1, C_2; F)$ is stabilized if there are essential disks D_i (i = 1, 2) in C_i with $|\partial D_1 \cap \partial D_2| = 1$. It is well-known that if a genus $g \geq 2$ Heegaard splitting is stabilized, then the splitting is reducible.

DEFINITION 2.2. Let $(C_1, C_2; F)$ be a Heegaard splitting of a compact orientable 3-manifold.

- 1. The splitting $(C_1, C_2; F)$ admits the disjoint (A^2, D^2) -pair property if there are an essential annulus A_i normally embedded in C_i and an essential disk D_j in C_j ((i, j) = (1, 2) or (2, 1)) such that ∂A_i is disjoint from ∂D_j .
- 2. The splitting $(C_1, C_2; F)$ admits the joined (A^2, A^2) -pair property if there are an essential annuli A_i (i = 1, 2) normally embedded in C_i such that one of the components of ∂A_1 is isotopic to one of the components of ∂A_2 and that the other components are mutually disjoint.
- 3. The splitting $(C_1, C_2; F)$ admits the disjoint (A^2, A^2) -pair property if there are an essential annuli A_i (i = 1, 2) normally embedded in C_i with $\partial A_i \cap \partial A_j = \emptyset$.

It is an easy observation that if a Heegaard splitting admits the joined (A^2, A^2) -pair property, then the splitting admits the disjoint (A^2, A^2) -pair property. If a Heegaard splitting is weakly reducible, then it admits the disjoint (A^2, D^2) -pair property and if a Heegaard splitting admits the disjoint (A^2, D^2) -pair property, then it admits the disjoint curve property (see Lemma 3.1). Similarly, if a Heegaard splitting is weakly reducible, then it admits the joined (A^2, A^2) -pair property and if a Heegaard splitting admits the joined (A^2, A^2) -pair property, then it admits the disjoint curve property (see Lemma 3.2). See Figure 1.

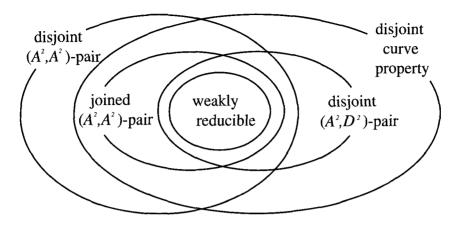


FIGURE 1

If one follows the point of view in Definition 2.2, the irreducibility of Heegaard splittings can be also called the *joined* (D^2, D^2) -pair property and the weak reducibility can be also called the disjoint (D^2, D^2) -pair property. Similarly, one can also define the joined (A^2, D^2) -pair property. Namely, a Heegaard splitting $(C_1, C_2; F)$ admits the joined (A^2, D^2) -pair property if there are an essential annulus A_i normally embedded in C_i and an essential disk D_j in C_j ((i,j)=(1,2) or (2,1)) with $\partial D_j \subset \partial A_i$. However, the following lemma implies that an irreducible Heegaard splitting admits the joined (A^2, D^2) -pair property if and only if the splitting is weakly reducible.

LEMMA 2.3. Let $(C_1, C_2; F)$ be a genus $g \geq 2$ Heegaard splitting of a compact orientable 3-manifold. If $(C_1, C_2; F)$ admits the joined (A^2, D^2) -pair property, then the splitting is weakly reducible. Conversely, if $(C_1, C_2; F)$ is weakly reducible, then either the splitting is reducible or the splitting admits the joined (A^2, D^2) -pair property.

Proof. The first conclusion is an easy observation. Let A_i be an essential annulus normally embedded in C_i and D_j an essential disk in C_j ((i,j)=(1,2) or (2,1)) with $\partial D_j \subset \partial A_i$. By changing the subscripts, if necessary, we may assume (i,j)=(1,2). Note that A_1 is ∂ -compressible in C_1 . Hence we obtain an essential disk D_1 in C_1 by ∂ -compression of A_1 . Since ∂D_1 is disjoint from ∂A_1 , we see that ∂D_1 is disjoint from ∂D_2 . Hence $(C_1, C_2; F)$ is weakly reducible.

We next show the latter conclusion. Suppose that $(C_1, C_2; F)$ is weakly reducible. We may assume that $(C_1, C_2; F)$ is irreducible. Let E_i (i = 1, 2) be essential disks in C_i with $\partial E_1 \cap \partial E_2 = \emptyset$. Let γ be

an arc in F such that γ joins ∂E_1 to ∂E_2 and that the interior of γ is disjoint from $\partial E_1 \cup \partial E_2$. Let A'_1 be an annulus obtained by pushing the interior of $E_1 \cup N(\gamma \cup \partial E_2; F)$ into the interior of C_1 . By assumption that $(C_1, C_2; F)$ is irreducible, ∂E_2 does not bound a disk in C_1 . This implies that A'_1 is incompressible in C_1 . If A'_1 is ∂ -parallel, then it follows from Lemma 2.1 that there is a non-separating essential disk E'_1 in C_1 with $|\partial E'_1 \cap \partial E_2| = 1$. This implies that $(C_1, C_2; F)$ is stabilized and hence reducible, contradicting the assumption that $(C_1, C_2; F)$ is irreducible. Therefore A'_1 is an essential annulus normally embedded in C_1 and $\partial A'_1 \supset \partial E_2$. Hence $(C_1, C_2; F)$ admits the joined (A^2, D^2) -pair property.

3. Fundamental properties

LEMMA 3.1. Let $(C_1, C_2; F)$ be a genus $g \geq 2$ Heegaard splitting of a compact orientable 3-manifold.

- 1. If $(C_1, C_2; F)$ admits the disjoint (A^2, D^2) -pair property, then the splitting admits the disjoint curve property.
- 2. If $(C_1, C_2; F)$ is weakly reducible, then the splitting admits the disjoint (A^2, D^2) -pair property.

Proof. We first prove the conclusion 1. Let A_i be an essential annulus normally embedded in C_i and D_j an essential disk in C_j ((i,j)=(1,2) or (2,1)) such that A_i and D_j give the disjoint (A^2, D^2) -pair property. By changing the subscripts, if necessary, we may assume (i,j)=(1,2), that is, ∂A_1 is disjoint from ∂D_2 in F. Let D_1 be an essential disk in C_1 obtained by ∂ -compression of A_1 . We isotope D_1 so that $\partial D_1 \cap \partial A_1 = \emptyset$. Then we see that each of D_i (i=1,2) is disjoint from ∂A_1 and therefore $(C_1, C_2; F)$ admits the disjoint curve property.

We next show the conclusion 2. If $(C_1, C_2; F)$ is irreducible, then it follows from Lemma 2.3 that the splitting admits the joined (A^2, D^2) -pair property (hence the disjoint (A^2, D^2) -pair property). So we further assume that $(C_1, C_2; F)$ is reducible. Let $E_i \subset C_i$ (i = 1, 2) be essential disks with $\partial E_1 = \partial E_2$. If E_1 does not cut off a solid torus from C_1 , then let α be an essential loop in F such that α does not bound a disk in C_1 and that α is disjoint from $\partial E_1 = \partial E_2$. If E_1 cuts off a solid torus V from C_1 , then we also require that the loop α is not a longitude of V. Let γ be an arc in F such that γ joins ∂E_1 to α and that the interior of γ is disjoint from $\partial E_1 \cup \alpha$. Then we obtain an annulus $A'_1 \subset C_1$ by pushing the interior of $E_1 \cup N(\gamma \cup \alpha; F)$ into the interior of C_1 . Since α does

not bound a disk in C_1 , we see that A'_1 is incompressible in C_1 . Recall that even if E_1 cuts off a solid torus V from C_1 , α is not a longitude of V. Hence it follows from Lemma 2.1 that A'_1 is not ∂ -parallel in C_1 . Therefore A'_1 is an essential annulus normally embedded in C_1 and hence we see that A'_1 and E_2 imply that $(C_1, C_2; F)$ admits the disjoint (A^2, D^2) -pair property.

LEMMA 3.2. Let $(C_1, C_2; F)$ be a genus $g \geq 2$ Heegaard splitting of a compact orientable 3-manifold.

- 1. If $(C_1, C_2; F)$ admits the joined (A^2, A^2) -pair property, then the splitting admits the disjoint curve property.
- 2. If $(C_1, C_2; F)$ is weakly reducible, then the splitting admits the joined (A^2, A^2) -pair property.

Proof. We first prove the conclusion 1. Let $A_i \subset C_i$ (i = 1, 2) be essential annuli which give the joined (A^2, A^2) -pair property. Then $\partial A_1 \cap \partial A_2$ is an essential loop z in F. For each i = 1 and 2, let D_i be an essential disk in C_i obtained by ∂ -compression of A_i . We isotope D_i (i = 1, 2) so that $\partial D_i \cap z = \emptyset$. Then D_1 and D_2 imply that $(C_1, C_2; F)$ admits the disjoint curve property.

We next show the conclusion 2. Let $E_i \subset C_i$ (i = 1, 2) be essential disks in C_i which give the weak reducibility of $(C_1, C_2; F)$.

Case 1. $(C_1, C_2; F)$ is reducible.

We choose E_1 and E_2 so that $\partial E_1 = \partial E_2$. If each of E_i (i = 1, 2) does not cut off a solid torus from C_i , then let α be an essential loop in F such that α does not bound disks both in C_1 and in C_2 , and that α is disjoint from $\partial E_1 = \partial E_2$. If E_i (i = 1 or 2) cuts off a solid torus V_i from C_i , then we also require that the loop α is not a longitude of V_i . Let γ be an arc in F such that γ joins $\partial E_1 = \partial E_2$ to α and that the interior of γ is disjoint from $\partial E_1 = \partial E_2$. Then for each i = 1 and 2, we obtain an annulus $A'_i \subset C_i$ by pushing the interior of $E_i \cup N(\gamma \cup \alpha; F)$ into the interior of C_i . Note that $\partial A'_1 = \partial A'_2$. Since α does not bound disks both in C_1 and in C_2 , we see that each of A'_i (i = 1, 2) is incompressible in C_i . Recall that even if E_i (i = 1 or 2) cuts off a solid torus V_i from C_i , α is not a longitude of V_i . Hence it follows from Lemma 2.1 that each of A'_i (i = 1, 2) is not ∂ -parallel in C_i . Therefore each of A'_i (i = 1, 2) is an essential annulus normally embedded in C_i and hence we see that A'_1 and A'_2 imply that $(C_1, C_2; F)$ admits the joined (A^2, A^2) -pair property.

Case 2. $(C_1, C_2; F)$ is irreducible.

780 Toshio Saito

Let γ' be an arc in F such that γ' joins ∂E_1 to ∂E_2 and that the interior of γ' is disjoint from $\partial E_1 \cup \partial E_2$. For each (i,j)=(1,2) and (2,1), we obtain an annulus $A_i'' \subset C_i$ by pushing the interior of $E_i \cup N(\gamma' \cup \partial E_j; F)$ into the interior of C_i . Since $(C_1, C_2; F)$ is irreducible, we see that each of A_i'' (i=1,2) is incompressible in C_i . If A_1'' is ∂ -parallel, then it follows from Lemma 2.1 that there is a non-separating essential disk E_1' in C_1 which satisfies $|\partial E_1' \cap \partial E_2| = 1$. This implies that $(C_1, C_2; F)$ is stabilized and hence reducible, contradicting the assumption that $(C_1, C_2; F)$ is irreducible. Therefore A_1'' is an essential annulus normally embedded in C_1 . Similarly, we see that A_2'' is an essential annulus normally embedded in C_2 . Therefore A_1'' and A_2'' imply that $(C_1, C_2; F)$ admits the joined (A^2, A^2) -pair property.

LEMMA 3.3. Let $(C_1, C_2; F)$ be a genus $g \geq 2$ Heegaard splitting of a compact orientable 3-manifold M. Suppose that there are essential disks $E_i \subset C_i$ (i = 1, 2) with $|\partial E_1 \cap \partial E_2| \leq 2$. Then $(C_1, C_2; F)$ admits both the disjoint (A^2, D^2) -pair property and the joined (A^2, A^2) -pair property.

Proof. If $|\partial E_1 \cap \partial E_2| \leq 1$, then we see that $(C_1, C_2; F)$ is weakly reducible. It follows from Lemmas 3.1 and 3.2 that $(C_1, C_2; F)$ admits both the disjoint (A^2, D^2) -pair property and the joined (A^2, A^2) -pair property. Hence we may assume that $(C_1, C_2; F)$ is strongly irreducible, that is, the (minimal) geometric intersection number between ∂E_1 and ∂E_2 is equal to two. Let γ_i and γ'_i (i = 1, 2) be the arcs obtained by cutting ∂E_i along the two points $\partial E_1 \cap \partial E_2$.

Claim 1. We may assume $\langle \partial E_1, \partial E_2 \rangle = 0$. Here, \langle , \rangle denotes the algebraic intersection number.

Suppose $\langle \partial E_1, \partial E_2 \rangle \neq 0$. Then each of E_i (i = 1, 2) must be a non-separating disk in C_i . Let D_1 be a separating essential disk in C_1 bounded by $\partial N(\partial E_1 \cup \gamma_2; F)$. Recall that the geometric intersection number between ∂D_1 and ∂E_2 is equal to two. Since D_1 is separating in C_1 , we see that $\langle \partial D_1, \partial E_2 \rangle = 0$. By replacing E_1 to D_1 , we have Claim 1.

By Claim 1, we obtain an annulus A_1 in C_1 by pushing the interior of $E_1 \cup N(\gamma_2; F)$ into the interior of C_1 . Similarly, we also obtain an annulus A_2 in C_2 by pushing the interior of $E_2 \cup N(\gamma_1; F)$ into the interior of C_2 . Since the (minimal) geometric intersection number between ∂E_1 and ∂E_2 is equal to two, each component of ∂A_i (i = 1, 2) is essential in F.

Claim 2. Each of A_i (i = 1, 2) is essential in C_i .

If A_1 is compressible in C_1 , then we see that $\gamma_1 \cup \gamma_2$ bounds an essential disk E_1' in C_1 . Hence E_1' and E_2 imply that $(C_1, C_2; F)$ is weakly reducible, a contradiction. Therefore A_1 is incompressible in C_1 . Suppose that A_1 is ∂ -parallel in C_1 . Then it follows from Lemma 2.1 that E_1 cuts off a solid torus V_1 from C_1 and that there is an essential disk E_1'' in V_1 with $|\partial E_1'' \cap \gamma_2| = 1$. Since $|\partial E_1 \cap \partial E_2| = 2$, we see that $\partial E_2 \cap \partial V_1 = \gamma_2$. This implies that $|\partial E_1'' \cap \partial E_2| = 1$ and hence $(C_1, C_2; F)$ is stabilized, a contradiction. Hence we see that A_1 is essential in C_1 . Similarly, we can show that A_2 is also essential in C_2 and therefore we have Claim 2.

Hence A_1 and E_2 imply that $(C_1, C_2; F)$ admits the disjoint (A^2, D^2) -pair property. Note that a component of ∂A_1 is isotopic to $\gamma_1 \cup \gamma_2$ and the other is isotopic to $\gamma_1' \cup \gamma_2$. Note also that a component of ∂A_2 is isotopic to $\gamma_1 \cup \gamma_2$ and the other is isotopic to $\gamma_1 \cup \gamma_2'$. Therefore we see that $(C_1, C_2; F)$ also admits the joined (A^2, A^2) -pair property. \square

LEMMA 3.4. Let $(C_1, C_2; F)$ be a genus $g \geq 2$ Heegaard splitting of a compact orientable 3-manifold M. Suppose that $(C_1, C_2; F)$ admits the disjoint (A^2, D^2) -pair property. Let A_i be an essential annulus normally embedded in C_i and D_j an essential disk in C_j ((i, j) = (1, 2) or (2, 1)) such that A_i and D_j give the disjoint (A^2, D^2) -pair property. Then one of the following holds.

- 1. $(C_1, C_2; F)$ admits the disjoint (A^2, A^2) -pair property.
- 2. g = 2, C_j is a genus two handlebody, D_j cuts C_j into two solid tori and each component of ∂A_i is a longitude of one of the solid tori.

Proof. If a component of ∂A_i bounds a disk in C_j , then $(C_1, C_2; F)$ admits the joined (A^2, D^2) -pair property. Hence it follows from Lemma 2.3 that $(C_1, C_2; F)$ is weakly reducible. By Lemma 3.3, we see that $(C_1, C_2; F)$ admits the joined (A^2, A^2) -pair property. This implies that $(C_1, C_2; F)$ admits the disjoint (A^2, A^2) -pair property. Hence we may assume that ∂A_i does not bound a disk in C_j .

Case 1. D_i is non-separating in C_j .

Let γ be an arc in F such that γ joins ∂D_j to one of the components of ∂A_i and that the interior of γ is disjoint from $\partial A_i \cup \partial D_j$. Then we obtain an annulus A_j by pushing the interior of $D_j \cup N(\alpha \cup \gamma; F)$ into the interior of C_j . Since ∂A_i does not bound a disk in C_j , we see that A_j is incompressible in C_j . Note that A_j is non-separating in

 C_j . It follows that A_j is not ∂ -parallel in C_j . Hence A_j is essential in C_j and therefore A_i and A_j imply that $(C_1, C_2; F)$ admits the joined (A^2, A^2) -pair property. This implies that $(C_1, C_2; F)$ admits the disjoint (A^2, A^2) -pair property.

Case 2. D_i is separating in C_i .

Subcase 2.1. $g \ge 3$.

Let α be an essential loop in F such that α does not bound disks both in C_1 and in C_2 , and that α is disjoint from $\partial A_i \cup \partial D_j$. If D_j cuts off a solid torus V_j from C_j , then we further require that the loop α is not a longitude of V_j . Note that since $g \geq 3$ and $\partial A_i \cup \partial D_j$ consists of at most three components, we can always find such a loop α . Hence by an argument similar to the proof of Lemma 3.2, we can obtain an essential annulus normally embedded in C_j whose boundary is disjoint from ∂A_i . Hence $(C_1, C_2; F)$ admits the disjoint (A^2, A^2) -pair property.

Subcase 2.2. g = 2.

Suppose that C_j is not a handlebody. Then D_j cuts C_j into two compression bodies V and V'. We may assume that $V \cong T^2 \times [0,1]$, where T^2 is a torus. Set $T = \partial V \cap F$. Note that $\partial T = \partial D_j$. If $T \cap \partial A_i \neq \emptyset$, then let α be a component of $T \cap \partial A_i$. Otherwise, let α be an essential loop in T. Let γ be an arc in T such that γ joins α to ∂T and that the interior of γ is disjoint from α . Then we obtain an annulus A'_j in C_j by pushing the interior of $D_j \cup N(\alpha \cup \gamma; F)$ into the interior of C_j . The construction of A'_j assures that A'_j is essential in C_j . Therefore we see that A_i and A'_j imply that $(C_1, C_2; F)$ admits the disjoint (A^2, A^2) -pair property.

Hence we assume that C_j is a genus two handlebody. Let V'_j and V''_j be solid tori obtained by cutting C_j along D_j . If a component of ∂A_i is a longitude neither of V'_j nor of V''_j , then by an argument similar to that in Case 1, we see that $(C_1, C_2; F)$ admits the joined (A^2, A^2) -pair property. The other cases are included in the conclusion 2 of Lemma 3.4.

REMARK 3.5. The conclusion 2 of Lemma 3.4 can be happened in case of the exceptional splittings of orientable Seifert fibered spaces. For details, see Section 6.

4. Essential tori and Klein bottles

We divide a proof of Theorem 1.1 into three sections. In this section, we consider Heegaard splittings of compact orientable 3-manifolds containing essential tori or Klein bottles.

LEMMA 4.1. Let $(C_1, C_2; F)$ be a genus $g \geq 2$ strongly irreducible Heegaard splitting of a compact orientable 3-manifold M. Suppose that M contains an essential torus or Klein bottle. Then $(C_1, C_2; F)$ admits the disjoint (A^2, D^2) -pair property.

Proof. Let T be an essential torus or Klein bottle in M. Then by an argument similar to the proof of Lemma 3.6 in [5], we see that each component of $T_i = T \cap C_i$ (i = 1, 2) is an essential annulus or Möbius band in C_i .

Case 1. T is an essential torus.

Recall that an essential annulus normally embedded in a compression body is ∂ -compressible. Let A_2 be an annulus component of T_2 such that a ∂ -compression disk δ of A_2 is disjoint from the other components of T_2 . Then we obtain an essential disk D_2 in C_2 by ∂ -compression of A_2 along δ . Moreover, we can isotope D_2 so that ∂D_2 is disjoint from $T \cap F$. Hence D_2 and a component of T_1 imply that $(C_1, C_2; F)$ admits the disjoint (A^2, D^2) -pair property.

Case 2. T is a Klein bottle.

If each component both of T_1 and of T_2 is an annulus, then we obtain the desired conclusion by an argument similar to that in Case 1. Hence by changing the subscript, if necessary, we may assume that T_1 contains a Möbius band component A_1^m .

Subcase 2.1. There is an annulus component A_2 of T_2 with $\partial A_2 \supset \partial A_1^m$.

Let D_1^m be an essential disk of C_1 by ∂ -compression of A_1^m . Then A_1^m is re-constructed from D_1^m by attaching a band along an appropriate arc γ^m . Let D_1 be a disk obtained by joining two parallel copies of D_1^m with a band along γ^m . Note that D_1 is essential and separating in C_1 . Let A_1 be an annulus obtained by joining D_1 to itself with a band along γ^m (cf. Figure 2). Since each component of ∂A_1 is isotopic to ∂A_1^m , we see that A_1 is essential in C_1 .

Let D_2 be an essential disk in C_2 obtained by ∂ -compression of A_2 . Then we can isotope D_2 so that ∂D_2 is disjoint from ∂A_2 (hence ∂A_1). 784 Toshio Saito

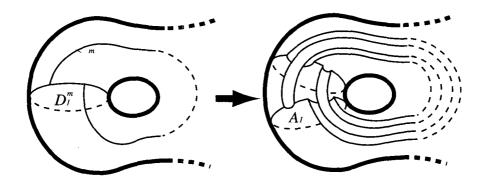


FIGURE 2

Hence A_1 and D_2 imply that $(C_1, C_2; F)$ admits the disjoint (A^2, D^2) -pair property.

Subcase 2.2. ∂A_1^m is the boundary of a Möbius band component A_2^m of T_2 .

Then for each i=1 and 2, T_i consists of a Möbius band in C_i . As we found the annulus A_1 in Subcase 2.1, we can find a separating essential annulus A_1' normally embedded in C_1 . On the other hand, as we found the disk D_1 in Subcase 2.1, we can find a separating essential disk D_2' in C_2 . Note that each component of $\partial A_1'$ is isotopic to ∂A_1^m and that $\partial D_2'$ is disjoint from $\partial A_2^m (= \partial A_1^m)$. This implies that $(C_1, C_2; F)$ admits the disjoint (A^2, D_2) -property.

LEMMA 4.2. Let $(C_1, C_2; F)$ be a genus $g \geq 2$ strongly irreducible Heegaard splitting of a compact orientable 3-manifold M. Suppose that M contains an essential torus or Klein bottle. Then $(C_1, C_2; F)$ admits the joined (A^2, A^2) -pair property.

Proof. Let T be an essential torus or Klein bottle. Then we see that each component of $T_i := T \cap C_i$ (i = 1, 2) is an essential annulus or Möbius band in C_i . If T is a torus, we immediately obtain the desired conclusion. Hence we may assume that T is a Klein bottle.

Case 1. For i = 1 or 2, T_i contains an annulus component.

We may assume that T_1 contains an annulus component A_1 . If a component of ∂A_1 is a boundary component of an annulus component of T_2 , then we are done. Otherwise, there is a Möbius band component A_2^m of T_2 with $\partial A_2^m \subset \partial A_1$. Let D_2^m be an essential disk of C_2 by ∂ -compression of A_2^m . Then A_2^m is re-constructed from D_2^m by attaching

a band along an appropriate arc γ^m . Let D_2 be a disk obtained by joining two parallel copies of D_2^m with a band along γ^m . Note that D_2 is essential and separating in C_2 . Let A_2 be an annulus obtained by joining D_2 to itself with a band along γ^m . Since each component of ∂A_2 is isotopic to ∂A_2^m , we see that A_2 is essential in C_2 . Therefore A_1 and A_2 imply that $(C_1, C_2; F)$ admits the joined (A^2, A^2) -pair property.

Case 2. For i = 1 and 2, T_i does not contain an annulus component.

Then for each i=1 and 2, T_i consists of a Möbius band in C_i . As we found the annulus A_2 in Case 1, we can find a separating essential annulus A_i (i=1,2) in C_i with $\partial A_1 = \partial A_2$. This implies that $(C_1, C_2; F)$ admits the joined (A^2, A^2) -pair property.

We remark that the orientable Seifert fibered spaces over non-orientable base spaces must contain essential tori or Klein bottles. Hence we obtain the following.

COROLLARY 4.3. Let $(C_1, C_2; F)$ be a genus $g \geq 2$ Heegaard splitting of a compact orientable 3-manifold M. Suppose that M is toroidal or a Seifert fibered space over a non-orientable base space. Then $(C_1, C_2; F)$ admits both the disjoint (A^2, D^2) -pair property and the joined (A^2, A^2) -pair property.

5. Vertical splittings of Seifert fibered spaces

Moriah and Schultens[7] proved that every irreducible Heegaard splitting of an orientable Seifert fibered space over an orientable base space is either *vertical* or *horizontal*. In particular, Schultens[9] showed that if the 3-manifold has non-empty boundary, then any irreducible splitting is a vertical splitting.

We briefly recall the definition of a vertical splitting (for a horizontal splitting, see the next section). For convenience of our argument, we shall refer to the definition described as in [5]. Let M be an orientable Seifert fibered space over an orientable base space B and f_1, f_2, \ldots, f_m the singular fibers of M. Set $x_i = p(f_i)$ $(i = 1, 2, \ldots, m)$, where $p: M \to B$ is a projection. Let $\partial_1, \partial_2, \ldots, \partial_n$ be the boundary components of B. Then we have a decomposition $B = D_1 \cup D_2 \cup R$ such that each of D_1 , D_2 and R is a disjoint union of disks or annuli satisfying the following.

1. Each disk component of D_1 (D_2 resp.) contains at most one point of x_i (i = 1, 2, ..., m).

- 2. Each annulus component of D_1 (D_2 resp.) contains no points of x_i (i = 1, 2, ..., m) and has a single component of ∂_j (j = 1, 2, ..., n) as one of the boundary components.
- 3. Each component of R is a rectangle containing no points of x_i (i = 1, 2, ..., m) such that one pair of opposite edges attaches to D_1 and the other pair attaches to D_2 .
- 4. The interiors of D_1 , D_2 and R are mutually disjoint, and $D_1 \cup R$ and $D_2 \cup R$ is connected.

Set $C_1 = D_1 \times S^1 \cup R \times [0, 1/2]$, $C_2 = D_2 \times S^1 \cup R \times [1/2, 1]$ and $F = C_1 \cap C_2$, where $S^1 = [0, 1]/0 \sim 1$. Then $(C_1, C_2; F)$ is a Heegaard splitting of M. Such a Heegaard splitting is called a *vertical splitting*.

LEMMA 5.1. Let $(C_1, C_2; F)$ be a genus $g \geq 2$ vertical splitting of an orientable Seifert fibered space M. Then $(C_1, C_2; F)$ admits both the disjoint (A^2, D^2) -pair property and the joined (A^2, A^2) -property.

Proof. We use the same notations as above. Let e_i (i=1,2) be arcs in a rectangle component R_0 of R such that each of e_i joins the opposite edges of R_0 containing in D_i and that e_1 meets e_2 in a single point. Set $E_1 = e_1 \times [0,1/2]$ and $E_2 = e_2 \times [1/2,1]$. Then we see that E_i (i=1,2) are essential disks in C_i with $|\partial E_1 \cap \partial E_2| = 2$. Hence we will obtain the desired result by Lemma 3.3.

6. Horizontal splittings of Seifert fibered spaces

We first recall the definition of a horizontal splitting. Let M be a closed orientable Seifert fibered space and f a fiber in M. Suppose that there is a surface $S \neq B^2$ in a fibration of $M_0 := M \setminus N(f; M)$ over S^1 . Let $\phi: S \to S$ be the orientation preserving periodic homeomorphism such that $M_0 = S \times [0,1]/(x,0) \sim (\phi(x),1)$. Note that M is obtained from M_0 by attaching a solid torus V so that a longitude of V is identified with ∂F . Set $C_1 = S \times [0,1/2]$, $C_2 = V \cup (S \times [1/2,1])$ and $F = C_1 \cap C_2$. Then $(C_1,C_2;F)$ is a Heegaard splitting of M. Such a splitting is called a horizontal splitting. Note that the genus of F is equal to twice the genus of S.

Note that lens spaces have no irreducible Heegaard splittings of genus $g \geq 2$. If the base space of M has positive genus or M has more than three singular fibers, then M contains an essential torus. Hence it follows from Lemma 4.1 that any strongly irreducible Heegaard splitting of M

admits both the disjoint (A^2, D^2) -pair property and the joined (A^2, A^2) -property. Therefore in the remainder, we assume that the base space of M is S^2 and M has exactly three singular fibers.

LEMMA 6.1. Let M be an orientable Seifert fibered space satisfying the above assumption. Let $(C_1, C_2; F)$ be a horizontal splitting of M. Let S be as above. Suppose that the genus of S is greater than one. Then $(C_1, C_2; F)$ admits both the disjoint (A^2, D^2) -pair property and the joined (A^2, A^2) -pair property.

Proof. We use the same notations as in the definition of horizontal splittings. We may assume that $(C_1, C_2; F)$ is irreducible by Lemma 3.1. Then by Theorem 3.5 of [5], there is an essential loop α in S with $|\alpha \cap \phi(\alpha)| \leq 1$. Let S' be the 2-manifold obtained by cutting S along $\alpha \cup \phi(\alpha)$. Set $\partial_0 S' = \partial S' \cap \partial S$.

Since the genus of S is greater than one, there is an arc γ in S' such that γ joins $\partial_0 S$ to itself and that γ is essential in S. Set $D_1 = \gamma \times [0, 1/2]$ and $A_2 = \alpha \times [1/2, 1]$. Then D_1 is an essential disk in C_1 and A_2 is an essential annulus in C_2 . Note that $\gamma \times \{1/2\} \cap \alpha \times \{1/2\} = \emptyset$ and $\gamma \times \{0\} \cap \alpha \times \{1\} = \emptyset$. Hence we see that $(C_1, C_2; F)$ admits the disjoint (A^2, D^2) -pair property.

Note that D_1 is non-separating in C_1 . Hence by an argument similar to that in Case 1 of the proof of Lemma 3.2, $(C_1, C_2; F)$ admits the joined (A^2, A^2) -pair property.

In the remainder, we suppose that S is of genus one. Then $(C_1, C_2; F)$ is a genus two Heegaard splitting of M. It is proved in [1] that any genus two Heegaard splitting of an orientable Seifert fibered space M is isotopic to a vertical splitting except for the following cases (cf. 5.7 of [2]).

- 1. M = V(2,3,a) is a 2-fold covering of S^3 branched along the torus knot K_0 of type (3,a) $(a \ge 7)$.
- 2. M = W(2, 4, b) is a 2-fold covering of S^3 branched along the link $K_1 \cup K_2$, where K_1 is the torus knot of type (2, b) $(b \ge 5)$ and K_2 is a core loop of the standard solid torus in S^3 whose boundary includes K_1 .

In each case, the exceptional splittings are obtained as follows. Let L be the 3-bridge link K_0 or $K_1 \cup K_2$ and $(B_1, \tau_1) \cup (B_2, \tau_2)$ is a 3-bridge decomposition of L. For each i=1 and 2, let C_i be the 2-fold covering of B_i branched along three unknotted arcs τ_i . Then C_i (i=1,2) are genus two handlebodies. Set $F = \partial C_1 = \partial C_2$. Then we obtain the desired splitting $(C_1, C_2; F)$. We call such splittings the exceptional splittings of orientable Seifert fibered spaces.

788 Toshio Saito

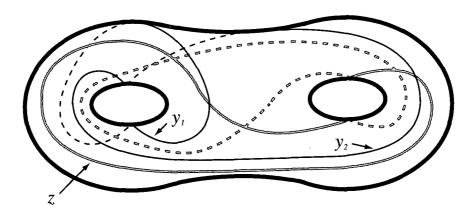


FIGURE 3

LEMMA 6.2. Set M = V(2,3,a) $(a \ge 7)$ or W(2,4,b) $(b \ge 5)$. Let $(C_1,C_2;F)$ be the exceptional splitting of M. Then $(C_1,C_2;F)$ admits the disjoint (A^2,D^2) -pair property.

Proof. We use the same notations as in the definition of horizontal splittings.

Case 1. M = V(2, 3, 3k + 1), where $k \ge 2$ is an integer.

Let y_1 , y_2 and z be the loops on ∂C_1 illustrated in Figure 3. Then we see that each of $\tau_z^k(y_i)$ (i=1,2) bounds a non-separating disk in C_2 , where τ_z is a Dehn twist along z. Let A_1 be the essential annulus normally embedded in C_1 illustrated in Figure 4. Note that ∂A_1 is

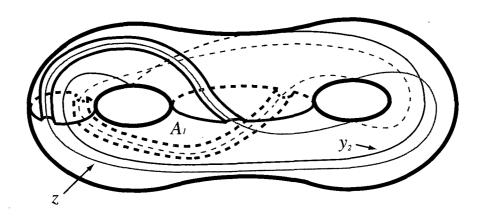


FIGURE 4

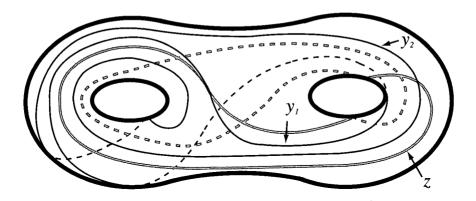


FIGURE 5

disjoint from z and intersects y_2 in a single point. Hence ∂A_1 intersects $\tau_z^k(y_2)$ in a single point. Let α be the component of ∂A_1 intersecting $\tau_z^k(y_2)$ in a single point. Then since $\tau_z^k(y_2)$ bounds a non-separating essential disk in C_2 , $\partial N(\alpha \cup \tau_z^k(y_2), F)$ bounds an essential separating disk D_2 in C_2 . Therefore A_1 and D_2 imply that $(C_1, C_2; F)$ admits the disjoint (A^2, D^2) -pair property.

Case 2. M = V(2,3,3k+2), where $k(\geq 2)$ is an integer.

The argument is similar to that of Case 1. Let y_1 , y_2 and z be the loops on ∂C_1 illustrated in Figure 5. Then we see that each of $\tau_z^k(y_i)$ (i=1,2) bounds a non-separating disk in C_2 . Let A_1 be the essential annulus normally embedded in C_1 illustrated in Figure 6. Note that ∂A_1

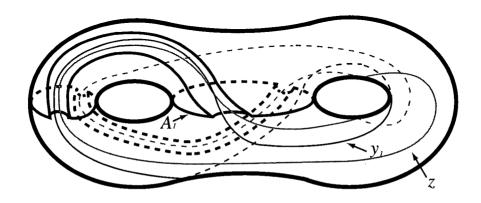


FIGURE 6

790

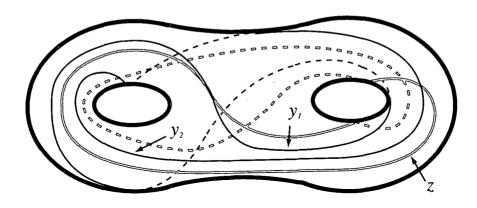


FIGURE 7

is disjoint from z and intersects y_1 in a single point. Hence ∂A_1 intersects $\tau_z^k(y_1)$ in a single point. Let α be the component of ∂A_1 intersecting $\tau_z^k(y_1)$ in a single point. Then $\partial N(\alpha \cup \tau_z^k(y_1), F)$ bounds an essential separating disk D_2 in C_2 . Therefore A_1 and D_2 imply that $(C_1, C_2; F)$ admits the disjoint (A^2, D^2) -pair property.

Case 3. M = V(2, 4, 2k + 1), where $k \ge 2$ is an integer.

Let y_1 , y_2 and z be the loops on ∂C_1 illustrated in Figure 7. Then we see that each of $\tau_z^k(y_i)$ (i=1,2) bounds a non-separating disk in C_2 . Let A_1 be the essential annulus normally embedded in C_1 illustrated in Figure 6. Then we obtain the desired conclusion by the same argument as in Case 2.

By Corollary 4.3, Lemmas 5.1 and 6.1, we have the following.

THEOREM 6.3. Let M be a compact orientable 3-manifold. If M is reducible, Seifert fibered or toroidal, then any genus $g \geq 2$ Heegaard splitting of M other than the exceptional splittings of orientable Seifert fibered spaces admits the joined (A^2, A^2) -pair property.

We do not know whether the exceptional splittings of orientable Seifert fibered spaces admit the disjoint/joined (A^2, A^2) -pair property. However, we would like to expect the following.

Conjecture 6.4. The exceptional splittings of orientable Seifert fibered spaces do not admit the disjoint (A^2, A^2) -pair property.

7. Strong rectangle condition

In this section, we give an example of a Heegaard splitting such that it does not admit the disjoint (A^2, A^2) -pair property, but admits the disjoint curve property. To this end, we will use the concept of the strong rectangle condition defined by Kobayashi[6].

Let S be a genus $g(\geq 2)$ closed orientable surface and each of R_i (i=1,2) a four holed 2-sphere in S with $\partial R_i = l_1^i \cup l_2^i \cup l_3^i \cup l_4^i$. We suppose that ∂R_1 and ∂R_2 intersect transversely. We say that R_1 and R_2 are tight if they satisfy the following.

- 1. There is not a bigon B in S such that $\partial B = a \cup b$, where a is a subarc of ∂R_1 and b is a subarc of ∂R_2 .
- 2. For each pair (l_s^1, l_t^1) with $s \neq t$ and (l_p^2, l_q^2) with $p \neq q$, there is a rectangle R embedded in R_1 and R_2 such that the interior of R is disjoint from $\partial R_1 \cup \partial R_2$ and that the edges of R are subarcs of l_s^1 , l_t^1 , l_t^2 and l_q^2 .

Let $(C_1, C_2; F)$ be a genus $g(\geq 2)$ Heegaard splitting of a compact orientable 3-manifold M. For each i=1 and 2, let $\{l_1^i, \ldots, l_{3g-3}^i\}$ be a collection of mutually disjoint, non-isotopic, essential loops in F such that each of l_s^i is either the boundary of a disk in C_i or a boundary component of an incompressible, ∂ -incompressible annulus properly embedded in C_i . For each i=1 and 2, let $P_1^i, \ldots, P_{2g-2}^i$ be three holed 2-spheres by cutting F along $l_1^i \cup \ldots \cup l_{3g-3}^i$. Then for each i=1,2 and $j=1,\ldots,3g-3$, we obtain a four holed 2-sphere $R_j^i:=P_s^i \cup P_t^i$, where P_s^i and P_t^i satisfies that $P_s^i \cap P_t^i = l_j^i$. We say that $(C_1,C_2;F)$ satisfies the strong rectangle condition if for each $s=1,\ldots,3g-3$ and $p=1,\ldots,3g-3$, R_s^1 and R_p^2 are tight.

The following is proved in [6].

LEMMA 7.1. (Theorem 2 of [6]) Suppose that a Heegaard splitting satisfies that the strong rectangle condition. Then the splitting does not satisfy the disjoint (A^2, A^2) -property.

Hence we only have to find an example of a Heegaard splitting satisfying the disjoint curve property and admitting the strong rectangle condition. In fact, Figure 8 will give such an example.

Let F be a genus three closed surface illustrated in Figure 8 and x_1 , x_2 , x_3 , y and z be loops in F as in Figure 8. Set $x_i' = \tau_y^n(x_i)$ (i = 1, 2, 3), where τ_y is a Dehn twist along y. We attach 2-handles to $F \times [0, 1]$ along $x_i \times \{0\}$ and $x_i' \times \{1\}$ (i = 1, 2, 3). Moreover, by capping off 3-balls along the boundary, we obtain a closed 3-manifold M. Note that $F \times \{1/2\}$

792 Toshio Saito

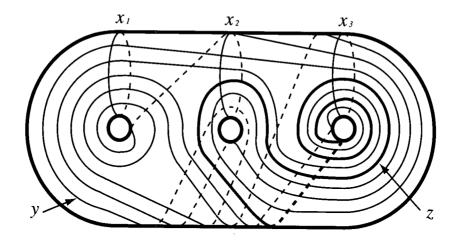


FIGURE 8

decomposes M into two handlebodies C_1 and C_2 . Hence $(C_1, C_2; F)$ is a genus three Heegaard splitting of M. Note that $x_1 \cup x_1'$ is disjoint from z. It follows that $(C_1, C_2; F)$ satisfies the disjoint curve property. Moreover, if n is sufficiently large, then we see that $\{x_1, x_2, x_3\}$ and $\{x_1', x_2', x_3'\}$ give the strong rectangle condition (cf). Section 7 of [6]). Hence by Lemma 7.1, $(C_1, C_2; F)$ does not admit the disjoint (A^2, A^2) -pair property. Moreover, since $(C_1, C_2; F)$ is a genus three splitting, it does not admit the disjoint (A^2, D^2) -pair property (cf). Lemma 3.4).

QUESTION 7.2. Is there a Heegaard splitting such that the splitting admits the disjoint (A^2, A^2) -pair property and that the splitting does not admit the disjoint curve property?

References

- M. Boileau and J. P. Otal, Groupes des difféotopies de certaines varietés de Seifert,
 C. R. Math. Acad. Sci. Paris 303 (1986), 19–22.
- [2] F. Bonahon and J. P. Otal, Scindements de Heegaard des espaces lenticulaires, Ann. Sci. École. Norm. Sup. 16 (1983), 451–466.
- [3] A. Casson and C. McA. Gordon, Reducing Heegaard splittings, Topology Appl. 27 (1987), 275–283.
- [4] W. Haken, Studies in Modern Topology, Prentice Hall, 1968.
- [5] J. Hempel, 3-manifolds as viewed from the curve complex, Topology 40 (2001) 631-657.
- [6] T. Kobayashi, Casson-Gordon's rectangle condition of Heegaard diagrams and incompressible tori in 3-manifolds, Osaka J. Math. 25 (1988), 553-573.

- [7] Y. Moriah and J. Schultens, Irreducible Heegaard splittings of Seifert fibered spaces are either vertical or horizontal, Topology 37 (1998), 1089–1112.
- [8] S. Schleimer, The disjoint curve property, Geom. Topol. 8 (2004), 77–113.
- [9] J. Schultens, The Heegaard splittings of Seifert fibered spaces with boundary, Trans. Amer. Math. Soc. **347** (1995), 2533–2552.
- [10] E. Sedgwick, The irreducibility of Heegaard splittings of Seifert fibered spaces, Pacific J. Math. 190 (1999), 173–199.
- [11] A. Thompson, The disjoint curve property and genus 2 manifolds, Topology Appl. 97 (1999), 273–279.

Department of Mathematics
Graduate School of Science
Osaka University
Machikaneyama-cho 1-16
Toyonaka, Osaka 560-0043, Japan
E-mail: saito@gaia.math.wani.osaka-u.ac.jp