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Abstract

We consider the following maximum disjoint paths problem (mdpp). We are given
a large network, and pairs of nodes that wish to communicate over paths through the
network — the goal is to simultaneously connect as many of these pairs as possible
in such a way that no two communication paths share an edge in the network. This
classical problem has been brought into focus recently in papers discussing applications
to routing in high-speed networks, where the current lack of understanding of the mdpp

is an obstacle to the design of practical heuristics.
We consider the class of densely embedded, nearly-Eulerian graphs, which includes

the two-dimensional mesh and many other planar and locally planar interconnection
networks. We obtain a constant-factor approximation algorithm for the maximum dis-
joint paths problem for this class of graphs; this improves on an O(log n)-approximation
for the special case of the two-dimensional mesh due to Aumann–Rabani and the au-
thors. For networks that are not explicitly required to be “high-capacity,” this is the
first constant-factor approximation for the mdpp in any class of graphs other than
trees.

We also consider the mdpp in the on-line setting, relevant to applications in which
connection requests arrive over time and must be processed immediately. Here we
obtain an asymptotically optimal O(log n)-competitive on-line algorithm for the same
class of graphs; this improves on an O(log n log log n)-competitive algorithm for the
special case of the mesh due to Awerbuch, Gawlick, Leighton, and Rabani.

1 Introduction

We consider the following maximum disjoint paths problem (mdpp). We are given a large
network, and pairs of nodes that wish to communicate over paths through the network —
the goal is to simultaneously connect as many of these pairs as possible in such a way that
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no two communication paths share an edge in the network. This problem is well-known to
be computationally difficult. Deciding whether all pairs can be so connected is one of Karp’s
original NP-complete problems [12]; it remains NP-complete even when the underlying graph
is the two-dimensional mesh [15].

Our interest in this problem comes from two main sources. First, establishing disjoint
paths is fundamental to routing in high-speed networks (see for example the applications
mentioned in [6, 8, 21], as well as applications to optical routing in [1, 3, 24]). Although the
types of routing problems that arise in such settings tend to have additional side constraints
(e.g. connections have limited duration and can bring varying amounts of “profit”), the
formulation described in the first paragraph contains the essence of virtually all such real-
life routing problems in which each connection consumes a large fraction of the bandwidth
on a link. As such, the current lack of understanding of the disjoint paths problem is a
major obstacle to the design of practical heuristics. Indeed, [6] notes that in practice, the
greedy algorithm tends to be used for routing, despite its bad performance on a number
of very common interconnection patterns. Moreover, robust ways are known for converting
algorithms for the mdpp into algorithms that can handle connections of limited duration or
variable value [5]; thus, the difficulties contained in these more elaborate routing problems
seem to stem mainly from the intractability of the mdpp.

This problem is also of basic interest in algorithmic graph theory. A lot of work has
been done on identifying special cases of the disjoint paths problem that can be solved in
polynomial time, or for which simple min-max conditions can be stated; see the survey by
Frank [10]. Much less work has been done, however, on approximation algorithms for the
mdpp; we are interested in extending the classes of graphs for which good approximations
can be obtained.

1.1 Our Results

To be precise, let G = (V,E) be a graph on n vertices and T = {(s1, t1), . . . , (sk, tk)} a
collection of terminal pairs — pairs of vertices of G. We say that T is realizable in G if
there exist mutually edge-disjoint si-ti paths, for i = 1, . . . , k. The problem is then to find a
realizable subset of T of maximum cardinality.

Our first main result is a constant-factor approximation for the maximum disjoint paths
problem in the class of densely embedded, nearly-Eulerian graphs (defined below), which
includes many common planar and locally planar interconnection networks. This improves
on an O(logn)-approximation for the case of the two-dimensional mesh due to Aumann and
Rabani [3] and an O(logn)-approximation for a class of planar graphs including the mesh
due to the authors [14]. Our present algorithm makes use of variants of a number of the
techniques developed in our earlier paper [14].

The assumption that we know all the terminal pairs in advance is not reasonable in
situations in which connection requests between pairs of nodes arrive over time and must
be processed immediately. In such a setting, it makes sense to consider on-line routing
algorithms. Such an algorithm is given the graph G, terminal pairs arrive in an arbitrary
order, and for each such pair it must irrevocably reject it, or assign it a path in G. As
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is standard, we refer to the approximation ratio achieved by an on-line algorithm as its
competitive ratio; such an algorithm is said to be c-competitive if its competitive ratio is at
most c.

Our second main result, then, is an O(logn)-competitive randomized on-line algorithm for
the mdpp in densely embedded, nearly-Eulerian graphs. This improves on anO(logn log log n)-
competitive algorithm for the special case of the two-dimensional mesh due to Awerbuch,
Gawlick, Leighton, and Rabani [6]; moreover, [6] proves that no randomized on-line algo-
rithm for the two-dimensional mesh can be better than Ω(log n)-competitive, implying that
our algorithm is asymptotically optimal.

We feel that an important feature of our algorithms, in addition to the improved bounds,
is that they are not specific to the mesh; the advantage of developing algorithms that work
on the somewhat larger class of “densely embedded graphs” is that are not sensitive to small
variations in the structure of the underlying graph. This could be of value in the context of
network routing, where the underlying network may have a “mesh-like” topology, but lack
the completely regular structure of the mesh. In contrast, previous algorithms such as [6, 3]
could not be applied to any network other than the mesh itself, since they required its fixed
row/column structure.

The size of the constants in our algorithms as presented here, while not astronomical,
pushes them outside the range of immediate practical utility. However, the previous best
bounds — both off-line and on-line — for the two-dimensional mesh [3, 6, 14] involve similarly
large constants inside the O(·) notation. Moreover, despite the large constants, some of the
ideas used by the algorithms here may be of use in suggesting practical heuristics.

The rest of the paper is organized as follows. First, we present some preliminary algo-
rithmic tools that we need in Section 2. Our routing algorithms are simpler to explain in
the special case of the mesh, and we consequently present this case first. This will be done
in Section 3. In Section 4, we then introduce the class of densely embedded graphs, and
we present the algorithms for this class in Section 5. Finally, we show how to extend our
algorithms to a slightly more general class of graphs in Section 6.

1.2 Previous Work

Much of the previous work on this problem has dealt with the case in which each path
consumes only a small fraction of the available bandwidth on an edge; this can be modeled
by requiring Ω(log n) parallel copies of each edge. In this case, the randomized rounding
technique of Raghavan and Thompson [23, 22] can be used to obtain an off-line constant-
factor approximation. Awerbuch, Azar, and Plotkin give an on-line O(logn)-competitive
algorithm for this case [4], which they show is asymptotically tight for deterministic on-line
algorithms.

As noted in [6] however, there are many applications in which each communication path
consumes a large fraction of the available bandwidth on a link; thus it makes sense to con-
sider approximation algorithms for graphs without a large number of parallel edges. The
results here are much more restricted. For trees with parallel edges, Garg, Vazirani, and Yan-
nakakis [11] obtain an off-line 2-approximation (the maximization problem is NP-complete,
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though deciding realizability is easy); Awerbuch et. al. [6] give an O(log d)-competitive ran-
domized on-line algorithm for trees of diameter d, extending an earlier result of Awerbuch
et. al. [5]. Essentially the only approximation results known for graphs other than trees are
those mentioned earlier for the mesh and related planar graphs [3, 6, 14]. Thus our result
here is the first constant-factor approximation for any class of graphs other than trees, when
one does not require Ω(log n) parallel copies of each edge.

A different approach is taken in papers of Peleg and Upfal [21] and Broder, Frieze, and
Upfal [8] (see also Broder et. al. [7]). Here the underlying graph G is assumed to have
strong expansion properties; in this case one can prove that any set of terminal pairs of at
most a given size must be realizable in G, and that corresponding paths can be found in
(randomized) polynomial time. The results in [8] are strong enough that they implicitly
provide a polylogarithmic approximation for the mdpp in sufficiently strong expanders of
bounded degree.

In this context, it is worth mentioning the following closely related routing problem:
one must route all terminal pairs so as to minimize the maximum congestion on any edge;
that is, the maximum number of paths that contain an edge. Deciding whether T can be
routed with congestion equal to 1 is the same as deciding whether T is realizable; but as an
optimization problem, minimizing congestion is much better understood. Aspnes et al. [2]
give an on-line O(logn)-competitive algorithm for the problem; and a randomized rounding
algorithm of Raghavan and Thompson [23] gives a routing off-line with congestion at most
OPT + o(OPT ) +O(logn), where OPT denotes the optimum congestion. This leaves open
the question of whether a constant-factor approximation is achievable also for small values of
OPT . In a companion paper with Satish Rao [13], we give a constant-factor approximation
for densely embedded graphs; it was here that the idea of using a “simulated network” (see
Section 3) was initially developed.

Cases in which the mdpp can be solved in polynomial time are surveyed in [10]; here
we only discuss two specific results that we will use in handling densely embedded graphs.
First, suppose G is planar, the terminals T lie on a single face of G, and the pair (G, T )
satisfies the following parity condition: the augmented graph formed by adding to G the edges
corresponding to T must be Eulerian. In this case, a theorem of Okamura and Seymour [20]
says that the realizability of T in G can be decided in polynomial time; and in fact the
following cut condition is sufficient for realizability: one cannot remove j edges from G and
separate more than j terminal pairs. A linear-time algorithm for this problem has recently
been obtained by Wagner and Weihe [30]. We will use an extension of the Okamura–Seymour,
due to Frank [9], which concerns the case in which the parity condition does need not to
hold on the face containing the terminals.

We also use a theorem of Schrijver [28] that provides an algorithm for finding vertex-
disjoint paths in a graph embedded on a compact surface Σ, such that the paths satisfy given
homotopy constraints.
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2 Preliminary Tools

2.1 The AAP Algorithm

We make use of a variant of an on-line mdpp algorithm of Awerbuch, Azar, and Plotkin [4]. If
H is a graph with n nodes in which each edge has capacity at least log 2n, the algorithm of [4]
achieves a competitive ratio of 2 log 4n. For our purposes, we need to develop a strengthening
of this “AAP algorithm”: we want to be competitive against the fractional optimum; and
when we deal with the more general case of densely embedded graphs, we want only to
require capacities to be ε logn, for an arbitrary ε > 0. Here, we show how to obtain such an
algorithm.

Proposition 2.1 If all edge capacities are at least (ε logn+ 1 + ε), there is a deterministic
on-line mdpp algorithm that is O(21/ε log n)-competitive against the fractional optimum.

Proof. We follow the AAP algorithm and its analysis very closely. We vary a little from
their notation, since we only deal here with routing a maximal number of requests, each of
infinite duration. Thus, the ith request is specified by a pair (si, ti) of terminals. We define
the “profit” of the connection to be n; thus the total profit obtained by the on-line algorithm
is simply n times the number of terminal pairs routed.

Define µ = 21+1/εn, so we have

ε logµ = ε logn+ 1 + ε.

Let ue denote the capacity of edge e; thus we can assume that for all e,

ue ≥ ε logµ.

With this value of µ, we now run the AAP algorithm — for the sake of completeness, we
state this algorithm here.

For j = 1, 2, . . . , k:
Define λje to be the fraction of ue consumed by paths already routed.

Define cje = ue(µ
λj

e − 1).
For a request (si, ti), route it on any path P satisfying

∑

e∈P
1
ue
cje ≤ n.

If no such path is available, then reject the request.

First we argue why the relative load on an edge will never exceed 1. At the moment
before this happened, on edge e say, we had

λje > 1 − 1

ue
≥ 1 − 1

ε logµ
.
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Thus

cje
ue

= µλ
j
e − 1

> µ1− 1
ε log µ − 1

=
µ

21/ε
− 1 = 2n− 1

≥ n.

So we have
cje
ue

> n

and thus the connection could not have used this edge.
Suppose there are a total of k requests. Let A denote the set of requests routed by the

AAP algorithm. Then we show

21+1/ε log µ
∑

j∈A

n ≥
∑

e

ck+1
e . (1)

As in the proof in [4] we show this by induction on the number of admitted requests, via
proving that if the algorithm admits the jth request, we have

∑

e

cj+1
e − cje ≤ 21+1/εn logµ.

So consider edge e on the jth path used by the AAP algorithm. We have

cj+1
e − cje = ue

(

µλ
j
e(2(log µ)/ue − 1)

)

.

Now the exponent on the 2 is at most 1/ε, and for x ∈ [0, 1/ε] we clearly have 2x−1 ≤ 21/ε ·x.
Thus

cj+1
e − cje ≤ ue · µλ

j
e · 21/ε · (log µ)/ue

= µλ
j
e · 21/ε · logµ

= 21/ε · log µ ·
[

cje
ue

+ 1

]

.

Summing over all edges gives the desired bound.
Finally, we show that the expression

∑

e

ck+1
e (2)

is an upper bound on the profit of the fractional optimum minus the profit of the on-line
algorithm. ([4] shows this for the integer optimum, but the proof is essentially the same.)
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Let Q denote the set of indices which were rejected by the on-line algorithm but for
which a positive fraction of the demand was routed by the optimum. For j ∈ Q, suppose
that the fractional optimum uses paths P 1

j , . . . , P
z
j , with weights γ1

j , . . . , γ
z
j . Then since j

was rejected by the on-line algorithm, and the costs are monotonic in the indices, we must
have

n ≤
∑

e∈P i
j

ck+1
e

ue

for any i, j. Then for any edge e we have

∑

i,j:e∈P i
j

γij
ue

≤ 1,

and hence we have

∑

j

∑

i

γijn ≤
∑

j

∑

i

∑

e∈P i
j

γijc
k+1
e

ue

≤
∑

e

ck+1
e ·

∑

i,j:e∈P i
j

γij
ue

≤
∑

e

ck+1
e .

Combining the bounds in Equations (1) and (2), we obtain the claimed competitive ratio.

A lower bound of [4] implies that the factor of 21/ε is unavoidable for deterministic on-line
algorithms.

2.2 Combining On-Line Algorithms

In routing connections on-line, we will adopt an approach in which the decision whether to
accept a given connection is made by a combination of several algorithms — the connection
is accepted if each of the individual algorithms accepts it. From the competitive ratios of
these individual algorithms one can infer a competitive ratio for this combined algorithm; in
this section we show how this can be done.

Let U denote a finite set, with S1, . . . , Sn subsets of U such that U = ∪iSi. Let Fi denote
a collection of subsets of Si closed with respect to inclusion, and let

F = {C : ∀i (C ∩ Si) ∈ Fi}.

Given a set U ′ ⊂ U , define µ(U ′) to be the maximum size of a member of F contained in U ′.
We wish to design an algorithm for the following on-line maximization problem with respect
to U and F . Elements of some U ′ ⊆ U arrive in an arbitrary order, and on each element our
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algorithm either accepts or rejects it; the goal is to accept a subset of these elements that is
in F and as large as possible relative to µ(U ′). Our algorithm will be called c-competitive if
it always accepts a set of size at least 1

c
µ(U ′).

We can define the corresponding on-line maximization problems with respect to Si and
Fi, for each i = 1, . . . , n, in exactly the same way. Say that for each i, we are given an
algorithm Ai which is ci-competitive for the problem associated with Si and Fi. Moreover,
we assume that the state of Ai is completely determined by the set of elements it has accepted
so far. We then define our “combined algorithm” A = ∧ni=1Ai for the on-line maximization
problem with respect to U and F as follows. As each u ∈ U ′ is presented to A, it accepts u
iff for each i such that u ∈ Si, Ai accepts u. The total set accepted so far, intersected with
Si, serves as the state for Ai. Let c∗ denote the maximum competitive ratio of any of the
algorithms Ai, and suppose each element of U appears in at most d of the Si.

Proposition 2.2 A is c∗d-competitive.

Proof. Assume the algorithm A was presented with a set U ′ and it returned X. Let Y denote
a member of F contained in U ′ of maximum size; we show that |Y | ≤ c∗d|X|. Let R′

i denote
the elements of Y \X that were rejected by algorithm Ai, Ji = X ∩ Y ∩ Si the elements of
Si accepted by both A and the optimal solution Y , and Ri = Ji ∪ R′

i. Note that Y = ∪iRi,
and Ri ⊂ Y ∩ Si ∈ Fi.

We want to prove that |Ri| ≤ c∗|X ∩ Si| (i = 1, . . . , n). Set U ′

i = (X ∩Si)∪Ri; these are
the elements of U ′ ∩Si either accepted by A or rejected by Ai. Order U ′

i as it appears in U ′,
and present it as input to Ai. Then as in the running of the combined algorithm A, Ai will
accept precisely the set X ∩ Si. Since Ai is c∗-competitive, and Ri ∈ Fi, we have

|Ri| ≤ c∗|X ∩ Si|.

We also have |Y | ≤ ∑

i |Ri|, and by the definition of d we have
∑

i |X ∩ Si| ≤ d|X|. Thus

|Y | ≤
∑

i

|Ri| ≤ c∗
∑

i

|X ∩ Si| ≤ c∗d|X|.

In the natural way, one can define a fractional version of this model; one then shows the
following by a minor modification of the proof above.

Proposition 2.3 If each Ai is c∗-competitive against the fractional optimum, then A is
c∗d-competitive against the fractional optimum.

3 The Two-Dimensional Mesh

In this section, let G = (V,E) denote the n×n mesh. A very rough sketch of the algorithms
is as follows. Since much stronger results are known for cases in which edges have capacity
Ω(log n), we want to model G by a high-capacity “simulated network” N . To do this we
choose, for a constant γ, a maximal set of γ log n × γ log n subsqures of G subject to the
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condition that the distance between subsquares is at least 2γ log n. These will serve as the
nodes of N . We now label some pairs of subsquares as “neighbors” and connect them with
Ω(log n) parallel edges; these are the high-capacity edges of N .

On this network N we run the algorithm of Awerbuch, Azar, and Plotkin [4] in the
on-line case, and the algorithm of Raghavan and Thompson [23] in the off-line case. The al-
gorithms running in N will return routes consisting of a sequence of neighboring subsquares.
To convert such a route into a path in G, we construct disjoint paths between neighboring
subsquares. We link a sequence of neighboring pairs together by the natural crossbar struc-
tures surrounding each subsquare. This leaves us with the problem of routing from each
original terminal to the boundary of its subsquare. In the on-line case we will route at most
one terminal in each subsquare, and hence routing out of a subsquare will be easy. In the
off-line case we use network flow techniques to route the appropriate subset of terminals to
the boundary of the subsquare. Finally, to prove the approximation ratios, we argue that
the number of pairs routed by the optimum in G is upper-bounded by the maximum number
of pairs that can be routed in a copy of N in which all edges have capacity O(logn).

When G denotes the two-dimensional mesh, let G[i, j] denote the vertex with row number
i and column number j, and G[i : i′, j : j′] the subsquare

{G[p, q] : i ≤ p ≤ i′, j ≤ q ≤ j′}.

Let d(u, v) denote the least number of edges in a u-v path. By the L∞ distance between
vertices G[i, j] and G[i′, j′], we mean L∞(G[i, j], G[i′, j′]) = max(|i− i′|, |j − j′|).

3.1 Building the Simulated Network

We choose a constant γ > 1 (any constant will do; it will have an influence on the approx-
imation ratio we obtain). Our first goal is to choose a maximal set of “mutually distant”
vertices around which to grow nodes of the simulated network. We divide the the mesh into
γ logn by γ log n subsquares as follows.

Definition 3.1 A subsquare of V is called a γ-block if for some natural numbers i and j,
it is equal to the set

G[(i− 1)γ log n : iγ logn, (j − 1)γ log n : jγ log n].

If X is a γ-block with associated natural numbers i and j, then the vertex

v = G[(i− 1

2
)γ log n, (j − 1

2
)γ logn]

will be called the center of the γ-block, and we will denote X by Cv. A boundary vertex of X
is one with maximal or minimal row or column number. We use X∗ to denote the union of
X with the (at most) eight other γ-blocks that share boundary vertices with X.
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Figure 1: A cluster and its surroundings

By a wall of X, we mean a maximal set of boundary vertices having the same row or
column number. A vertex of X is internal if it is not a boundary vertex.

Let V ′ denote the set of all centers of γ-blocks. We build a graph G′ on V ′ by joining
u, v ∈ V ′ if the corresponding sets C∗

u and C∗

v intersect at an internal vertex. We now run a
randomized version of Luby’s maximal independent set algorithm [17] on this graph. That
is, each vertex picks a random number between 1 and j, where j is large enough that the
probability of ties is small. If v has a number higher than any of its neighbors’, it enters the
mis and its neighbors drop out. We then iterate.

Let M ⊂ V ′ denote the resulting mis. For any v ∈ V ′, C∗

v intersects C∗

u internally for at
most 24 other vertices u ∈ V ′; thus with probability 1

25
− o(1), v will enter M on the first

iteration. Moreover, if u, v ∈ V ′ are at a distance of at least 11γ log n from each other, then
they have no common neighbors in G′, and so these events are independent. Thus,

Lemma 3.2 Let u, v ∈ V ′ be such that d(u, v) ≥ 11γ log n. Then with constant probability,
both u and v belong to the set M constructed above.

If v ∈ M , we will call Cv a cluster. We now want to construct internally disjoint enclosures
Dv around each C∗

v , for v ∈ M , such that every vertex of G belongs to some enclosure and
such that each Dv is a union of γ-blocks. The sets C∗

v are disjoint and are unions of γ-blocks,
but they do not cover all of G. However, by the maximality of M , any γ-block X that does
not belong to C∗

v for some v ∈ M must share a boundary vertex with such a C∗

v . For each
such X, we pick such a C∗

v arbitrarily and add X to Dv. Thus the Dv now form a partition
of G, and each Dv is a union of γ-blocks.

We now define N to be the graph on vertex set M , with u and v joined by an edge if
some γ-block of Du shares a wall with a γ-block of Dv. As argued above, any γ-block in Dv

must belong to the 5 × 5 set of γ-blocks centered at Cv, and from this it is easy to argue
that at most 20 γ-blocks not contained in Dv can share a wall with a γ-block of Dv. Thus
we have

Lemma 3.3 The degree of a vertex in N is at most 20.

If we were to contract each enclosure Dv, the resulting graph would contain all the edges
of N with multiplicity Θ(logn) — enough to run a “high-bandwidth” algorithm. But given
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a routing in N , we then run into the following problem: we need to convert the sequence of
neighboring clusters connecting the clusters of si and ti in the contracted graph back to a
routing in G. For this we use the natural “crossbar” structures in the mesh in the on-line
case, with additional flow techniques in the off-line case.

We start by developing the “crossbar” structures we use.

Definition 3.4 A v-ring is a subgraph G[X], where X is the set of vertices at L∞ distance
exactly r from v, for some r between 1

2
γ log n and γ logn. Thus a v-ring is either a cycle or

a path, depending on whether Cv has a wall on the boundary of G. If R and R′ are v-rings,
we say that R is inside (resp. outside) R′ if the distance from R to v is less than (resp.
greater than) the distance from R′ to v.

Note that the set of v-rings are the 1
2
γ log n disjoint cycles around v right outside the bound-

ary of Cv, in the “inner half” of C∗

v \ Cv.
At this point we will need some additional notation: If X ⊂ V , let δ(X) denote the set

of edges leaving S, and π(X) the set of vertices of X incident to an edge of δ(X). For two
sets X, Y ⊂ V , let δ(X, Y ) denote the set of edges crossing from X to Y .

For each pair (v, w) that is an edge of N , we choose, for a sufficiently small constant ρ,
a set τv,w of ρ log n edges in δ(Dv, Dw). Let τ ′v denote the set of all vertices in Dv that are
incident to an edge in some τv,w. We also choose a set σ′

v of ρ log n vertices evenly spaced
on the outer boundary of Cv. Now by Lemma 3.3, we can choose ρ small enough that
|τ ′v ∪ σ′

v| ≤ 1
2
γ log n, and hence we can associate a different v-ring to each vertex in τ ′v ∪ σ′

v.
Moreover, in a straightforward fashion we can construct edge-disjoint paths from each such
vertex to its associated ring. We assign the outermost ρ log n rings to the vertices of σ′

v. For
u ∈ τ ′v ∪ σ′

v, let Y u
v denote the union of the ring associated with u with the path from u to

this ring. Then we have

Lemma 3.5 The (non-simple) paths Y u
v are mutually edge-disjoint, and each pair meets at

some vertex of C∗

v \ Cv.

Proof. The paths are edge-disjoint by construction. Now suppose u, w ∈ τ ′v, and that the
ring associated with u is inside the ring associated with w. Then the path from u to its ring
must intersect the ring associated with w, and so Y u

v and Y w
v meet at a vertex. The same

argument applies if u, w ∈ σ′

v, and also if u ∈ σ′

v and w ∈ τ ′v because in this case the ring
associated with u lies outside the ring associated with w.

We are now ready to describe and analyze the routing algorithms themselves.

3.2 The On-Line Algorithm

Say that a terminal pair (si, ti) ∈ T is short if d(si, ti) < 16γ log n, and long otherwise. The
on-line algorithm makes an initial random decision whether to accept only short connections
or only long connections; this costs at most a factor of two in the competitive ratio. Below
we give O(logn)-competitive algorithms for handling each type of connection.
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3.2.1 Routing Long Connections

First, we only consider terminal pairs with both ends in sets of the form Cv — denote this
set of terminal pairs by TM . If T ∗ denotes a realizable subset of maximum size, then by
Lemma 3.2, the expected number of terminal pairs in T ∗ that belong to TM is a constant
fraction of |T ∗|. Thus we only lose a constant factor in the competitive ratio by restricting
attention to TM .

Let N (c) denote the graph N in which each edge has been given a capacity of c. We
now define an on-line routing problem in the simulated network N (ρ logn). If si ∈ Cv,
then we define its image in the “simulation” to be ψ(si) = v. The input will simply be the
sequence of terminal pairs (ψ(si), ψ(ti)), where (si, ti) is the sequence of pairs presented to
the algorithm running on G. Our algorithm for the problem in the simulated network is as
follow: we route (v, w) if (i) the AAP algorithm on N (ρ logn) accepts (v, w), and (ii) no
connection with an end equal to either v or w has yet been accepted.

Lemma 3.6 The above algorithm is O(logn)-competitive against the fractional optimum in
N (ρ logn).

Proof. Let (v, w) be a requested connection in N . Following the approach developed in
Section 2.2, we view (v, w) as being “judged” by three on-line algorithms: the AAP algorithm,
an algorithm Av which only permits one connection with an end equal to v, and an algorithm
Aw which only permits one connection with an end equal to w. By Proposition 2.1, the AAP
algorithm is O(logn)-competitive; the algorithms Av and Aw are also O(logn)-competitive
since the maximum fractional weight of connections that the optimum can accept originating
at any one node of N is O(logn). Thus, applying Proposition 2.3 with c∗ = O(logn) and
d = 3, we see that the combined routing algorithm is O(logn)-competitive against the
fractional optimum.

Our on-line algorithm in G simply runs the above simulation; whenever (ψ(si), ψ(ti)) is
accepted, it routes the pair (si, ti) in G using the paths constructed in Lemma 3.5. The
following lemma says that it will not run out of “bandwidth” while doing this.

Lemma 3.7 The algorithm in G can route all the connections accepted by the simulation.

Proof. When the simulation accepts (ψ(si), ψ(ti)), it specifies a sequence of neighboring
clusters Cv1 , Cv2 , . . . , Cvr

, where v1 = ψ(si) and vr = ψ(ti).
The algorithm in G routes (si, ti) by simply moving from one cluster in this sequence

to the next using paths of the form Y u
vi

. More concretely, it first chooses any w ∈ σ′

v1
and

w′ ∈ σ′

vr
and sets Z0 = Y w

v1 and Zr = Y w′

vr
. Then for each j = 1, . . . , r − 1, it chooses any

edge (u, u′) ∈ τvj ,vj+1
that has not yet been used for routing, and sets Zj = Y u

vj
∪Y u′

vj+1
. Since

there are at least ρ log n such edges available, and the simulation accepts at most ρ logn pairs
whose routes use the edge in N from vj to vj+1, this is always possible. Now, by Lemma 3.5,
the union Z0 ∪ · · · ∪Zr contains a path from the boundary of Cv1 to the boundary of Cvr

.

Finally, we have to show that optimum inG is not far from the optimum in the simulation.
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Lemma 3.8 For any realizable subset T ′ of TM , ψ(T ′) can be routed in N (5γ logn).

Proof. For each si-ti path P in the optimal routing, construct the following path for
(ψ(si), ψ(ti)) in N — when P crosses from Dw into Dw′, add an edge from w to w′. Since
|δ(Dw, Dw′)| ≤ 5γ log n, so at most this many paths in the constructed routing will use the
edge (w,w′) in N .

Now, since the on-line algorithm is O(logn)-competitive against the fractional optimum
in N (ρ logn), it is also O(logn)-competitive against the fractional optimum in N (5γ log n),
which by Lemmas 3.2 and 3.8 is at least as large as the maximum realizable subset of T .
Thus we are O(logn)-competitive in routing long connections.

3.2.2 Routing Short Connections

To handle short connections, we require the following two facts.

Proposition 3.9 Let H = (V,E) be an arbitrary graph of diameter d. Then there is a

deterministic on-line mdpp algorithm that is 2 · max(d,
√

|E|)-competitive.

Proof. Let m = |E|. The algorithm maintains a sequence of graphs H1, H2, . . . as follows.
H1 = H . The algorithm always routes the first request on a shortest path P1, and sets
H2 = H1 \ P1. In general, when presented with request (si, ti), the algorithm routes it on a
shortest path Pi in Hi if d(si, ti) ≤

√
m in Hi. It then sets Hi+1 = Hi \ Pi. Let p denote the

total number of paths routed by the algorithm.
Let d′ = max(d,

√
m). Consider any routing for T , consisting of paths Q1, . . . , Qq. At

most d′ of the Qj intersect each Pi, since the Qi are all edge-disjoint and |Pi| ≤ d′. Also,
at most

√
m of the Qj fail to intersect any of the Pi, since the pair (sj , tj) associated with

Qj must have been rejected by the on-line algorithm, and hence |Qj| >
√
m. Thus we have

q ≤ d′p+
√
m ≤ 2d′p.

Lemma 3.10 Let X = G[(i − r) : (i + r), (j − r) : (j + r)] for some natural numbers i, j,
and r; let Y = G[(i− 2r) : (i+ 2r), (j − 2r) : (j + 2r)]; and let T ′ be a set of terminal pairs
with both ends in X. Then the maximum size of a subset of T ′ that is realizable in G[Y ] is
at least 1

4
the maximum size of a subset of T ′ that is realizable in G.

Proof. Let T ′′ ⊂ T ′ denote a realizable set of maximum size, and consider the set of paths
in a routing of T ′′. Consider the set of paths leaving X. Since |δ(X)| ≤ 8r, there are at
most 4r such paths. Delete the portion of each path between its first and last intersection
with δ(X); using the r disjoint rings in G[Y \X] (as defined in the previous section), we can
connect the resulting “breakpoints” of at least r of these paths using edge-disjoint paths in
G[Y \X]. Thus, we are still routing at least 1

4
of T ′′ in G[Y ].

The algorithm for short connections is now as follows. Set r = 32γ log n, and run Luby’s
algorithm to find a subset M ′ of V , maximal subject to the property that L∞(u, v) ≥ 4r for
u, v ∈ M ′. For u ∈ M ′, define Xu to be the set of all vertices whose L∞ distance from u is
at most r, and Yu to be the set of all vertices whose L∞ distance from u is at most 2r.

13



Lemma 3.11 If (si, ti) is a short connection, then with constant probability there is a u such
that si, ti ∈ Xu.

Proof. A sufficient condition for some Xu containing both si and ti to enter the mis in the
first iteration is that among all vertices within L∞ distance 4r of si, the one that picks the
highest number has L∞ distance at most 1

2
r from si. This happens with constant probability.

Let Tu denote the set of short connections both of whose ends lie in Xu. We now run
the algorithm of Proposition 3.9 on the (disjoint) subgraphs G[Yu] simultaneously, using
the Tu as the sets of terminal pairs. By Proposition 3.9 and Lemma 3.10, we are O(logn)-
competitive in each subgraph. Thus, by Lemma 3.11, we are O(logn)-competitive in routing
short connections. Thus,

Theorem 3.12 The on-line algorithm is O(logn)-competitive in the two-dimensional mesh.

3.3 The Off-Line Algorithm

For the constant-factor off-line approximation, we use a variant of the graph N . In N (γ log n),
for any fixed constant γ, one can obtain a constant-factor approximation to the mdpp by the
following randomized rounding algorithm of Raghavan and Thompson [23, 22]. First we solve
the fractional relaxation of the mdpp instance (this can be done in polynomial time); from
this, we obtain for each terminal pair (si, ti) a collection of paths P 1

i , . . . , P
z
i and associated

weights y1
i , . . . , y

z
i ∈ [0, 1] such that xi =

∑

j y
j
i ∈ [0, 1]. We now pick a scaling factor µ < 1;

independently for each terminal pair (si, ti) we route it on path P j
i with probability µyji , and

don’t route it at all with probability 1 − µxi. If we do route it, we say that (si, ti) has been
rounded up. In [23, 22], it is shown that with constant probability, no capacity is violated
by the selected paths, and the number of pairs that are rounded up is a constant fraction of
the fractional optimum.

In particular, we require the following theorem from [22].

Theorem 3.13 (Raghavan) Let X1, X2, . . . , Xr be independent Bernoulli trials with EXj =
pj and Ψ =

∑

iXi; so EΨ = m =
∑

i pi. Then for δ > 0 we have

Pr[Ψ > (1 + δ)m] <

[

eδ

(1 + δ)(1+δ)

]m

.

We specialize this to the form in which we will use it as follows.

Corollary 3.14 Let 0 < µ < 1, and p1, . . . , pr ∈ [0, 1]. Let X ′

1, X
′

2, . . . , X
′

r be independent
Bernoulli trials with EX ′

j = µpj and Ψ′ =
∑

iX
′

i. Let m =
∑

i pi. Then

Pr[Ψ′ > m] < (eµ)m.
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Proof. Apply the bound of Theorem 3.13 with m set to µm and δ set to µ−1 − 1.

Let us consider how to use this randomized rounding approach in routing long connections
off-line. In the high-capacity network N , this rounding approach is fine; but to get a constant-
factor approximation we also have to be within a constant factor of the optimum in routing
terminals out of the clusters (in the on-line algorithm it was enough to route only one).
To this end, we build the following more complicated network N ′. Let zv denote the node
representing v ∈ M in the network N ; we construct N ′ by attaching Cv to zv via an edge
from zv to each node in π(Cv). Let N ′(γ) denote the network N ′ in which each edge between
nodes of the subgraph N has capacity γ, and all other edges have unit capacity.

Let f ∗ denote the value of the fractional optimum solution to the mdpp in N ′(ρ log n).
We now run the randomized rounding algorithm on N ′(ρ log n). With high probability the
parts of all selected paths lying in the subgraph N (ρ logn), taken together, do not violate
any capacity constraint; and the number of pairs that are rounded up is within a constant
factor of the fractional optimum f ∗. We now must convert the selected paths in N ′(ρ log n)
into si-ti paths in G. We can use the technique of the previous section to produce, for
each selected pair (si, ti), a “global” path Pi that begins at τ ′ψ(si)

⊂ π(Dψ(si)) and ends at
τ ′ψ(ti)

⊂ π(Dψ(ti)).
The real problem is how to find paths within the clusters such that each si (resp. ti)

that has been rounded up can reach the endpoint of this associated global path on τ ′ψ(si)

(resp. τ ′ψ(ti)
). For this, the paths returned by the randomized rounding are of no value, since

the edges of N ′ within the clusters Cv have only unit capacity. Instead we argue as follows.
Let Sv denote the set of terminals in Cv that are rounded up. Each is trying to “get

out” to its associated path that begins at τ ′v. Given the crossbar in C∗

v \ Cv, it is sufficient
to route each terminal in Sv to any vertex in σ′

v.
So this leaves us with the following escape problem. We are given the set Sv of terminals

that have been rounded up, and we want to route a large fraction of them to σ′

v. The
following lemma, whose proof contains the central step of the algorithm, says that this can
be done.

Lemma 3.15 For a sufficiently small (constant) value of µ, there is a constant c < 1 so
that we can find sets S ′

v ⊂ Sv, such that
(i) if one end of a pair (si, ti) belongs to ∪vS ′

v then so does the other,
(ii) each set S ′

v can be linked to σ′

v ⊂ π(Cv) via edge-disjoint paths.
(iii) the probability that |∪vS ′

v| > cf ∗ is at least a constant, where the probability is taken
over the randomized rounding that produced the sets Sv.

Proof. We will first construct such a set with condition (iii) weakened to the requirement
that each S ′

v can be linked to π(Cv) via edge-disjoint paths (rather than to the smaller set
σ′

v). This is sufficient to imply the lemma, as follows. Suppose we obtain such sets S ′′

v . For
each s ∈ S ′′

v , identify the vertex in σ′

v closest to s. We now build a graph on the set of
terminal pairs in ∪vS ′′

v , joining two if at either end they have the same closest vertex in some
set σ′

v. We claim this graph has degree at most 8γρ−1; for the spacing between vertices of
σ′

v on the boundary of Cv is 4γρ−1, and so at most twice this number of terminal pairs can

15



compete with some (si, ti) (at either end) for the same vertex of σ′

v. Thus this graph has
an independent set of size at least 1

8γρ−1+1
|∪vS ′′

v |; if we let the terminal pairs in this large
independent set constitute the sets S ′

v, we satisfy the requirements of the lemma.
This allows us to deal with a standard escape problem on a rectangular mesh: each

terminal is allowed to “escape” to any vertex on the boundary. First observe the following
fact: an escape problem on a rectangular mesh is feasible if and only if, for all p, q, any
subrectangle of size p × q contains at most 2(p + q) terminals. To see this, note that we
can reduce the escape problem to a single-source/single-sink maximum flow problem, and
thus only have to verify the cut condition. On a rectangular mesh, the smallest rectangle
enclosing any connected cut has no greater capacity, and contains at least as many terminals,
as the original cut; thus the cut condition holds if and only if it holds for all subrectangles.

This suggests the following algorithm to construct the set S ′′

v . Call a rectangle overfull
if it violates the cut condition; we go through each s ∈ Sv, deleting it if it is contained in
any overfull rectangle — we also then delete its matching terminal in some other cluster.
This results in a set S ′′

v , which by the argument of the previous paragraph can be completely
routed to π(Cv) on edge-disjoint paths.

It remains to lower-bound the expected size of ∪vS ′′

v . Say that a terminal s survives if
(i) it is initially rounded up, and hence included in a set Sv, and
(ii) it is not deleted because it or its matching terminal is contained in an overfull rect-

angle.
So what is the probability that a terminal s, which is given weight fs ∈ [0, 1] by the

fractional optimum, survives? First we consider the probability that s is contained in a fixed
overfull p× q rectangle R, given that s has been rounded up. In order for this rectangle R to
become overfull, it must be that at least 2(p+ q) terminals in R other than s were rounded
up. But since the un-scaled fractional flow was feasible, the total fractional weight contained
in R is at most 2µ(p + q). Thus, setting y = (eµ)2, the probability that the rectangle R
becomes overfull after rounding, given that s is rounded up, is at most yp+q.

Now, since s is contained in at most pq rectangles of dimensions p × q, the probability
that s is contained in any overfull rectangle after rounding, given that it is rounded up, is
clearly bounded by the infinite sum

∑

p

∑

q

pqyp+q =
y2

(1 − y)4
.

s can also be deleted if its matching terminal is contained in an overfull rectangle, so the
probability of s being deleted, after having been rounded up, is at most 2y2

(1−y)4
. By taking µ

small enough, we can make this last expression a constant less than 1
2
.

Finally, the probability that s survives is equal to the probability that it is rounded up,
which is µfs, times the probability that it is not deleted after being rounded up, which is at
least 1

2
. Thus, the expected size of ∪vS ′′

v is at least 1
2
µf ∗, for a small enough constant value

of µ. So by Markov’s inequality, the probability that |∪vS ′′

v | ≥ 1
4
µf ∗ is at least an absolute

constant; and the lemma follows.
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To turn the above lemma from a statement holding with constant probability to one
with high probability, we repeat the randomized rounding O(logn) times and take the best
routing obtained. A single run of randomized rounding fails if one of the following two bad
events happens: (1) one of the high capacity edges of the simulated network is used by too
many selected paths, or (2) the set ∪vS ′

v selected by Lemma 3.15 is too small. The first event
has inverse polynomially small probability, and the probability of the second is bounded by
a constant, so the total probability of any bad event is bounded by a constant less than 1.
This implies that out of the O(logn) tries, one must succeed with high probability.

This gives a constant-factor approximation for long connections: if (si, ti) is rounded up,
and si, ti ∈ ∪vS ′

v, then we concatenate the paths from si to π(Cψ(si)) (given by Lemma 3.15)
to π(Dψ(si)) (given by the crossbar in C∗

v \ Cv) to π(Dψ(ti)) (given by the edges of the path
in N (ρ logn), joined together with crossbars as in Lemma 3.7), and now symmetrically to
π(Cψ(ti)) and to ti.

We handle short connections as in Section 3.2.2. That is, we use a randomized algorithm
to construct subsquares Xu ⊂ Yu, with all Yu disjoint, and only handle short connections
both of whose ends lie in a single Xu. In this case, however, we now run the above algorithm
recursively on each G[Yu].

Call a connection “medium” if it is now a long connection in this recursive call, and
“small” otherwise. Medium connections are handled as described above. Small connections
take place within clusters of size O(log log n) and therefore can be simply solved to optimality
by brute force. We can then take the largest realizable set we find among the long, medium,
and small connections, obtaining

Theorem 3.16 There is a randomized (off-line) mdpp algorithm in the two-dimensional
mesh that produces a constant-factor approximation with high probability.

4 Densely Embedded Graphs: Definition and Proper-

ties

We now want to extend the above algorithm to any graph that is sufficiently “mesh-like.” We
define the class of graphs here; in the following section we show how to extend the routing
algorithms to this class.

We will need some additional notation and definitions: Recall that for u, v ∈ V , d(u, v)
denotes the least number of edges in a u-v path. Let Br(v) = {u : d(u, v) ≤ r}. Also recall
that δ(X) and π(X) denote the set of edges leaving X and the set of vertices of X incident to
edges in δ(X). We write Xo = S \ π(X). Observe that removing π(X) from X disconnects
it from the rest of the graph, and π(Br(v)) consists of vertices at exactly distance r from
v. If C is a connected subset of G \ X, we use Γ(X,C) to denote the (unique) connected
component of G \ X containing C. The set of vertices in π(X) which have a neighbor in
Γ(X,C) will be called the segment of π(X) bordering C and denoted σ(X,C). We say that
a set X ⊂ V is simple if G \X is connected.
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Definition 4.1 A graph H is an α-semi-expander if for every X ⊂ V (H) for which |X| ≤
1
2
|V (H)|, we have |δ(X)| ≥ α

√

|X|.

Since our goal is to generalize the two-dimensional mesh, let us note the following prop-
erties of the mesh.

(i) It is a planar graph with bounded degree, and (aside from one “exceptional face”) it
is Eulerian and has bounded face size.

(ii) It is an α-semi-expander, for a constant α > 0 based on the ratio of the two side
lengths of the mesh.

(iii) Square sub-meshes of the mesh satisfy (i) and (ii).
In the arguments to follow, it is quite cumbersome — though not technically difficult —

to deal with “exceptional faces” of the type in (i). Thus, in the following section we will
work with the more restricted class of uniformly densely embedded graphs, where all faces
have bounded size; and we will assume further assume that G is Eulerian. In Section 6.2,
we show how to handle graphs with an exceptional face; in this way, our class of graphs will
include the two-dimensional mesh.

First we need some preliminary topological definitions. Let Σ denote a compact orientable
surface; it is well-known (see e.g. [18]) that Σ may be obtained from the 2-sphere by attaching
a finite number of handles. By a disc we mean a set homeomorphic to the closed unit ball in
R2, and by Σ-disc, we mean a subset of Σ homeomorphic to a disc. Our definition of graph
embedding is standard; a face of an embedded graph G is a connected component of Σ \G,
and we say G is strongly embedded if the closure of each face is a Σ-disc, and each face is
bounded by a simple cycle of G. Finally, we also use the the terms curve (continuous image
of [0, 1]) and closed curve (continuous image of S1).

Our class of graphs is defined to satisfy analogues of properties (i), (ii), and (iii) locally.

Definition 4.2 A graph G = (V,E) is uniformly densely embedded with parameters α, λ,
∆, and ℓ if:

(i) G is strongly embedded on a compact orientable surface Σ, it has maximum degree ∆,
and each face is bounded by at most ℓ edges.

(ii) For each r ≤ λ logn and each v ∈ V , the drawing of G[Br(v)] is contained in a
Σ-disc.

(iii) For each r ≤ λ logn and each v ∈ V , the graph G[Br(v)] is an α-semi-expander.

Thus, for the remainder of the paper aside from Section 6.2, we will assume that G is a
simple Eulerian graph that is uniformly densely embedded on a surface Σ with parameters α,
λ, ∆, and ℓ. In Section 6.2, we show how our algorithms can be adapted to handle graphs
satisfying the following weaker definition; it is the same as the definition above, except that
we allow an exceptional face.

Definition 4.3 A graph G = (V,E) is densely embedded and nearly-Eulerian with param-
eters α, λ, ∆, and ℓ if:

(i) G is strongly embedded on a compact orientable surface Σ and has maximum degree
∆.
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(i)′ G contains a face Φ∗ such that all faces other than Φ∗ are bounded by at most ℓ edges,
and every vertex not incident to Φ∗ has even degree.

(ii) For each r ≤ λ logn and each v ∈ V , the drawing of G[Br(v)] is contained in a
Σ-disc.

(iii) For each r ≤ λ logn and each v ∈ V , the graph G[Br(v)] is an α-semi-expander.

The classes of graphs satisfying these definitions are incomparable to the class considered
in our earlier paper [14]. The semi-expansion condition above will be shown to imply the
uniformly high-diameter condition of [14] (see Lemma 4.4); however, in the current paper, we
only require planarity and semi-expansion locally, and essentially no restrictions are placed
here on the “global” structure of the graph. The examples of uniformly high-diameter graphs
constructed in [14] are densely embedded as well; and in Section 4.2 we will discuss some
related classes of graphs that are densely embedded.

4.1 Some Basic Properties

We now show that our definition implies G has some additional mesh-like properties. First of
all, for any v ∈ V and r ≤ λ logn, the fact that G[Br(v)] is a bounded-degree semi-expander
implies that the set Br(v) has size at least quadratic in r; by also using the planarity of
G[Br(v)], one can show an analogous upper bound. We summarize this as follows.

Lemma 4.4 There are constants ᾱ and β depending only on α and ∆ such that the following
holds. For each r ≤ λ logn and each v ∈ V , we have ᾱr2 ≤ |Br(v)| ≤ βr2.

Proof. Fix r ≤ λ logn and v ∈ V , and let S = Br(v). To see the lower bound, note that for
any i ≤ r, if xi = |Bi(v)|, then by the semi-expansion of H we have

xi ≥ xi−1 +
α

∆ − 1

√
xi−1.

For at least α
√
xi−1 edges leave Bi−1(v), and at most ∆ − 1 are incident to any one vertex.

Let ν = α
∆−1

; now one verifies by induction that xi ≥ 1
16
ν2i2:

xi ≥ 1

16
ν2(i− 1)2 +

1

4
ν2(i− 1)

=
1

16
ν2(i− 1)(i+ 3)

≥ 1

16
ν2i2.

To see the upper bound, we observe that G[S] is planar and has diameter at most 2r.
Let n = |S|. By the Lipton-Tarjan planar separator theorem [16], there is a set of at most
4r + 1 vertices whose removal breaks H into components each of size at most 2

3
n. Let X be
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a union of these components of size between 1
3
n and 1

2
n. Then

α
√
n√
3

≤ α
√

|X|

≤ |δ(X)|
≤ (∆ − 1)(4r + 1)

from which the result follows.

The following two facts are quite useful; the first essentially relates the size of the “perime-
ter” of a set Br(v) (r ≤ λ logn) to its radius.

Lemma 4.5 Let c > 1 and r a positive integer be such that cr < λ log n. Then for some r′

between r and cr, we have |π(Br′(v))| ≤ β · c2

c−1
· r.

Proof. Since π(Br′(v)) ⊂ {u : d(v, u) = r′}, the sets π(Br(v)), π(Br+1(v)), . . . , π(Bcr(v))
are all disjoint and contained in Bcr(v). Since |Bcr(v)| ≤ βc2r2, one of these sets has size at
most β · c2

c−1
· r.

Using this, we show that we can extend any small enough set U to a simple set with at
most a constant-factor increase in its radius. Recall from the beginning of Section 4 that a
set X is simple if G \X is connected.

Lemma 4.6 There is a constant ξ such that the following holds. Let U ⊂ Br(v), where
r ≤ 1

ξ
λ logn. Then there is a component Γ of G \ U and a planar simple set U ′ such that

U ⊂ U ′ ⊂ Bξr(v), G \ U ′ = Γ, and σ(U,Γ) = σ(U ′,Γ).

Proof. Choose r′ between r and 2r so that |π(Br′(v))| ≤ 4βr. Let U0 = Br′(v), and G \ U0

have components Γ1, . . . ,Γp.
Now set s = 8ᾱ−1/2α−1β∆ and ξ = 2s+ 2. We claim that all but one of the components

Γi are contained in Bξr(v). For suppose not; then for i 6= j there are w ∈ Γi and w′ ∈ Γj
such that w and w′ are each at distance s from U0, Bs(w) ⊂ Γi, and Bs(w

′) ⊂ Γj . Now
consider the edge cut of size at most 4β∆r formed by δ(U0); one of the two spheres Bs(w) and
Bs(w

′), say the latter, is contained in a small component of this cut in G[Bξr(v)]. But then

the semi-expansion of G[Bξr(v)] requires that 4β∆r ≥ α
√

|Bs(w′)|, which is a contradiction

since by Lemma 4.4 we have |Bs(w
′)| ≥ ᾱs2.

So for some i, only Γi is not contained in Bξr(v). Now let Γ′

1, . . . ,Γ
′

q denote the compo-
nents of G \U ; so Γi is contained in one of these, say Γ′

1, and Γ′

2, . . . ,Γ
′

q are all contained in
Bξr(v). Thus we have

U ′ = U ∪
⋃

j>1

Γ′

j ⊆ Bξr(v).

In particular, U ′ is planar since ξr ≤ λ logn, and it is simple since G \ U ′ has only the
component Γ′

1. Thus U ′ satisfies the conditions of the lemma.

Finally, we show a general property of planar graphs H with small face size: if the
distance between two nodes in H is large, than the value of any edge cut which contains
both in the same segment of its boundary must also be relatively large.

20



Lemma 4.7 Let H be a planar graph, with distinguished faces Φ1, . . . ,Φr bounded by cycles
Q1, . . . , Qr respectively. Suppose that all faces other than Φ1, . . . ,Φr are bounded by at most
ℓ edges, and for a constant d′ and all i 6= j we have d(Qi, Qj) ≥ d′.

Let U ⊂ V (H) and v, w ∈ σ(U,C) for some component C of G \ U . Then

|δ(U)| ≥ min(ℓ−1d′, ℓ−1d(v, w)).

Proof. Let S = σ(U,C) ⊂ U . In the graph H [U ], S lies on a single facial cycle Q. Traversing
Q in a clockwise direction starting at v, we encounter faces R1, . . . , Rp whose boundaries
contain vertices both of U and of H \ U .

Suppose that among the {Ri} there are two distinct large faces Φm and Φm′ . Choose
such a pair for which Ra = Φm, Rb = Φm′ , and Rc 6∈ {Φi} for a < c < b. Let P denote the
corresponding maximal subpath of Q whose internal vertices are incident only to faces Rc,
for a < c < b. Then among every ℓ consecutive vertices of P , there must be one incident
to an edge in δ(U); since |P | ≥ d′ by the hypotheses of the lemma, this implies the claimed
bound.

Otherwise, there is a single large face Φm among the {Ri}; note that Φm may appear
several times on the traversal of Q. Now there are two sub-paths of Q from v to w, which
we denote P0 and P1. Since v, w border the same component of H \ U , the face Φm does
not appear in a traversal of one of P0 or P1 — suppose it is P0. So as above, among every
ℓ consecutive vertices of P0, there must be one incident to an edge in δ(U); and we have
|P0| ≥ d(v, w).

4.2 Related Classes of Graphs

In this section, we show a natural construction which produces uniformly densely embedded
graphs; it is an extension of the definition of geometrically well-formed graphs in our earlier
paper [14]. The material in this section is independent of the rest of the paper.

We wish to define a notion of a surface being locally planar, in the following sense. Let
Σ be a compact orientable surface, embedded in R3. For x ∈ Σ, let B′

d(x) denote the set of
all points of Σ whose distance from x (as measured on Σ) is at most d.

Definition 4.8 A set X ⊂ Σ is (γ0, γ1)-flat for some positive constants γ0, γ1, if there is a
Σ-disc D such that

(i) X ⊆ D.
(ii) For all points x ∈ X and s ≥ 0 such that B′

s(x) ⊂ X, the surface area of B′

s(x) is at
least γ0s

2 and at most γ1s
2.

(iii) For all Σ-disc D′ such that D′ ⊆ D, if D′’s boundary has length s, then the surface
area of D′ is at most γ1s

2.
We say that Σ is (r, γ0, γ1)-locally flat if it is orientable, and for all x ∈ Σ the set B′

r(x)
is (γ0, γ1)-flat.
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Of course all these properties hold if Σ, for example, is the unit sphere in R3.
Now we say that a graph is locally well-formed if it is drawn on a locally flat surface, and

each face has geometrically about the same (small) size.

Definition 4.9 A graph H drawn on Σ is locally well-formed with constant parameters
∆, ℓ, γ0, γ1, ρ0, ρ1 if it has maximum degree ∆ and there is an r > 0 such that

(i) Σ is (r log n, γ0, γ1)-locally flat,
(ii) The maximum number of edges on a face in the drawing of H is ℓ, and
(iii) for each face Φ of G there is an x ∈ Σ so that B′

ρ0r
(x) ⊂ Φ ⊂ B′

ρ1r
(x).

We now want to show that every locally well-formed graph is uniformly densely embedded.
To show this, the following routine lemma is useful: in Definition 4.1 it is enough to require
semi-expansion for cuts that produce only two components.

Lemma 4.10 H is an α-semi-expander if and only if the condition of Definition 4.1 holds
for all sets X for which H [X] and H \X are both connected.

Proof. We proceed by induction on the number of connected components of H [X] and H \X.
Assume H [X] is not connected, and let Γ1, . . . ,Γp be components. Then each of the sets
Γ1, . . . ,Γp must satisfy Definition 4.1 by the induction hypothesis. From this we get

|δ(X)| =
∑

i

|δ(Γi)| ≥ α
∑

i

√

|Γi| ≥ α
√

|∪iΓi| = α
√

|X|.

If H connected but H\X is not, and each connected component has size at most 1
2
|V (H)|,

then the above argument applies to the components ofH\X. Otherwise, apply Definition 4.1
to the cut defined by the single large component, both of whose sides are connected.

Proposition 4.11 If G is locally well-formed with parameters ∆, ℓ, γ0, γ1, ρ0, ρ1, then there
are positive constants α and λ such that G is uniformly densely embedded with parameters
α, λ, ∆, and ℓ.

Proof. Let G be locally well-formed with the given parameters. Then for any v ∈ V ,
if s ≤ ρ−1

1 log n, the set Bs(v) is contained in B′

r logn(v) and hence in a Σ-disc. Now let
X ⊂ Bs(v); we wish to show that it satisfies the semi-expansion requirement in G[Bs(v)].
By Lemma 4.10, we may assume that both G[X] and G[Bs(v) \ X] are connected. Thus
δ(X) lies on a single face of G[X]. Let q = |δ(X)|; then there is a closed curve L on Σ of
length at most ρ1rq that bounds a Σ-disc containing X. Thus, X is contained in a disc of
area at most γ1ρ

2
1r

2q2. But each face in G[X] has area at least γ0ρ
2r2, so X has at most

γ1ρ
2
1γ

−1
0 ρ−2

0 q2 faces, and hence at most ℓ times this many vertices.

In a series of papers proving, among other things, that the disjoint paths problem for a
fixed number of terminal pairs is solvable in polynomial time [27], Robertson and Seymour
make use of another notion of “denseness” of surface embeddings — namely representativity.
It turns out that our definition of uniformly densely embedded graphs could also have been
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expressed in these terms. We say that a closed curve on Σ is null-homotopic if it is homotopic
to a point; it is well-known (see e.g. [25]) that a closed curve is null-homotopic if and only if
it is contained in a Σ-disc. Now we say that a drawing of G on Σ is c-representative [25, 26]
if any non-null-homotopic closed curve on Σ meets the drawing of G at least c times.

In this terminology, we could have replaced the condition that each G[Br(v)] (r ≤ λ logn)
be contained in a Σ-disc by the condition that the drawing of G be Ω(log n)-representative.
More precisely,

Proposition 4.12 If G satisfies parts (i) and (iii) of Definition 4.2, and the drawing of
G is (λ logn)-representative, then there is a constant λ′ such that G is uniformly densely
embedded with parameters α, λ′, ∆, and ℓ. Conversely, if G is uniformly densely embedded
with parameters α, λ, ∆, and ℓ, then there is a constant λ′ such that the drawing of G is
(λ′ logn)-representative.

Proof. The converse statement is easier. If G is uniformly densely embedded with parameters
α, λ, ∆, and ℓ, then any closed curve R on Σ meeting G at fewer than ℓ−1λ logn vertices
meets it only at vertices contained in Bλ logn(v) for some v ∈ V . Thus R is contained in a
Σ-disc and is null-homotopic.

Now suppose G satisfies parts (i) and (iii) of Definition 4.2, and the drawing of G is
(λ logn)-representative. We must show that for some λ′, every G[Bλ′ logn(v)] is drawn in a
Σ-disc. Choose λ′ < 1

4
λ and let U = Bλ′ logn(v) for some v ∈ V . We claim that every simple

cycle of G[U ] is null-homotopic in Σ. For suppose not, and choose the shortest non-null-
homotopic cycle Q contained in G[U ]. Say for simplicity that Q contains an even number of
vertices, v0, . . . , vk, . . . , v2k = v0, and let Q0 and Q1 denote the two sub-paths of Q with ends
equal to v0 and vk. Now suppose there were some path P in G[U ] with ends equal to v0 and
vk of length less than k; then one of Q0 ∪ P or Q1 ∪ P would contain a non-null-homotopic
simple cycle of G[U ] of length less than 2k, contradicting our choice of Q. Thus k ≤ 2λ′ log n,
and so |Q| ≤ 4λ′ log n < λ log n. Now since G is strongly embedded, there is a simple closed
curve R on Σ, meeting G at precisely the vertices of Q, that is homotopic to Q in Σ; but
since R meets G fewer than λ logn times, it is null-homotopic in Σ. This contradicts our
assumption that Q is non-null-homotopic.

Thus G[U ] contains only null-homotopic simple cycles. By Theorems (11.2) and (11.10)
of [25], this implies that G[U ] is contained in a Σ-disc.

5 Densely Embedded Graphs: The Routing Algorithms

One encounters a number of difficulties in extending the algorithms of Section 3 to densely
embedded graphs in general. Some of these are easily taken care of — for example, we cannot
define “subsquares” of G anymore; but we can use balls of the form Br(v) instead, and we
have seen above that these behave in much the same way. We similarly may choose a maximal
set of mutually distant balls and grow enclosures around them. The major problems are the
following. (1) We used the natural crossbars inside a mesh for routing; do these enclosures
have similar crossbars inside them? (2) Where is the high-capacity simulated network N ?
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To build crossbars inside the enclosures we use the Okamura-Seymour theorem [20],
analogously to a construction in our earlier paper [14]. To define the high-capacity simulated
network N we want to grow the enclosures out until they touch. However, at this point
their boundaries might not be “smooth” enough to allow us to build crossbars inside them;
additionally, there is no reason for enclosures that do touch to have Ω(log n) edges in their
common boundary.

Nevertheless, it is still possible to build a simulated network N , as follows. We grow
enclosures that have smooth boundaries, and are large enough that they contain large cross-
bars, but we keep them mutually distant from one another. Then we define the notion
of a Voronoi partition of G to allow us to determine which clusters are “neighbors”; we
define the simulated network N by putting Ω(log n) parallel edges between neighboring clus-
ters (whether or not they have that many edges in the common boundary of their Voronoi
regions).

We show that the collection of these parallel edges “represents” the graph G well enough
that it can be used as the network N . In particular, we need to show that all paths accepted
by the simulated network can be routed in G. For this we make use of a theorem of Schrijver
[28]; we show that there exist Ω(log n) paths in G between the neighboring enclosures, such
that all paths between all pairs are mutually disjoint.

We make no attempt to optimize constants here. Set λ0 = λ, and choose positive
constants λ1, λ2, . . . so that λj+1 ≪ λj (the exact relationship between these constants is
easy to determine from the analysis below). A connection (si, ti) is short if d(si, ti) ≤ λ2 log n
and long otherwise. As before, we handle long and short connections separately; for now we
concentrate on pre-processing the graph as described above for handling long connections.

5.1 Building the Simulated Network

5.1.1 Clusters and Enclosures

We wish to choose a maximal set of mutually distant vertices around which to grow clusters.
Let Gr denote the graph obtained from G by joining u and v if d(u, v) ≤ r. We first run
Luby’s randomized maximal independent set algorithm [17] in Gλ3 logn.

Let M denote the resulting mis. For any x ∈ V , some vertex within λ5 logn of it will
enter M on the first iteration if the largest number chosen in B2λ3 logn(x) is chosen by a
vertex in Bλ5 logn(x). This happens with constant probability, by Lemma 4.4. Moreover, if
d(x, y) ≥ λ2 logn, then these events are independent for x and y. Thus,

Lemma 5.1 Let x, y ∈ V be such that d(x, y) ≥ λ2 log n. Then with constant probability
there are u, v ∈M such that d(x, u) ≤ λ5 logn and d(y, v) ≤ λ5 logn.

Around each v ∈ M we now grow a cluster of radius roughly λ5 log n, and an enclosure
around each cluster, with “smooth” boundaries. We need the following facts. Let H denote
an arbitrary graph, and Q a simple cycle of H . For u, v ∈ Q, let dQ(u, v) denote the shortest-
path distance from u to v on Q — that is, the length of the shorter of the two u-v paths on
Q.
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Figure 2: Building the simulated network

Definition 5.2 We say that Q is ε-smooth if for all u, v ∈ Q we have εdQ(u, v) ≤ d(u, v).

Definition 5.3 If U and W are two subsets of V (H), we say that U is ε′-close to W if for
each u ∈ U there is a w ∈W such that d(u, w) ≤ ε′|W |.

The following fact is quite similar to, but more general than, Theorem 4.4 of our earlier
paper [14]; the proof is very similar as well. In effect, it says that given a cycle Q in a
planar graph H that encloses (in the sense of homotopy) the “hole” formed by some internal
face, then for a small ε > 0 we can find a cycle Q′ of no greater length that is ε-close to Q,
Ω(ε)-smooth, and also encloses this hole. See Figure 3.

We will use this theorem to smooth out the boundaries of the clusters and the enclosures
around them.

Theorem 5.4 For each ε > 0 the following holds. Let Σ1 be a compact surface (possibly
with boundary), H a graph embedded on Σ1, and Q a simple cycle of H that is non-null-
homotopic on Σ1. Then in polynomial time one can find an ε

1+ε
-smooth simple cycle Q′ such

that
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outer face

cycle Q

cycle Q′

Figure 3: Smoothing a cycle

(i) |Q′| ≤ |Q|,
(ii) Q′ is ε-close to Q, and
(iii) Q′ is also non-null-homotopic on Σ1.

Proof. For u, v ∈ Q, let [u, v]Q denote the shorter of the two u-v paths contained in Q (ties
broken arbitrarily), and let ε̄ = ε

1+ε
. If Q is not ε̄-smooth, then there are u, v ∈ Q such that

ε̄dQ(u, v) > d(u, v). (3)

Moreover, we can efficiently find such a u and v so that there is a shortest u-v path Puv in
H that is vertex-disjoint from Q (for example, the pair u, v satisfying (3) for which |Puv| is
minimum).

Now one of the two simple cycles [u, v]Q∪Puv and (Q\ [u, v]Q)∪Puv is not null-homotopic
on Σ1; and each is shorter than Q. We thus update Q, replacing it with the cycle from among
these two that is not null-homotopic.

We now iterate this process of “slicing off” parts of Q using short paths through H . Since
the length of the cycle decreases with each iteration, this process must terminate in a cycle
Q′ that is ε̄-smooth. Moreover, each iteration maintains the invariant that the current cycle
is non-null-homotopic on Σ1. Thus, we only have to verify that the final cycle is ε-close to
Q.
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This is clearly true after the first iteration: since |Puv| < ε̄dQ(u, v) < ε|Q|, every vertex
on the updated cycle can reach a vertex of Q by a path of length at most ε|Q|. Now, let Qi

denote the cycle obtained after i iterations of slicing off. As long as portions of Q remain
on Qi, we say that we are in the “first phase”; other phases will be defined below. In the
first phase, Qi consists of alternating intervals Qi1, Pi1, Qi2, . . . , Qir, Pir, where Qij ⊂ Q, and
the interval Q′

ij of Q lying between Qij and Qi,j+1 has been sliced off by Pij. We can show

by induction on the number of iterations that |Pij | ≤ ε̄
∣

∣

∣Q′

ij

∣

∣

∣ — as was true after the first
iteration.

This is done by the following case analysis. In the (i+ 1)st iteration, we find a new path;
there are three cases to consider.

1. One end of P lies on Qij and the other on Qik, where possibly j = k. Then the
property clearly continues to hold, since |P | is at most ε̄ times the number of current
cycle vertices cut off, which is in turn at most the number of original vertices of Q
between the endpoints of P .

2. One end of P lies on Pij and the other on Qik (so Pij is lengthened). Suppose that the
amount of original cycle cut off in addition to Q′

ij is equal to x, and the amount of Pij
that is cut off by P is y. Then if Pi+1,j denotes Pij after this iteration, we have

|Pij | ≤ ε̄
∣

∣

∣Q′

ij

∣

∣

∣

|P | ≤ ε̄(x+ y)

|Pi+1,j | = |Pij | + |P | − y

≤ ε̄(
∣

∣

∣Q′

ij

∣

∣

∣ + x+ y) − y

≤ ε̄(
∣

∣

∣Q′

ij

∣

∣

∣ + x)

3. One end of P lies on Pij and the other lies on Pik (so P glues some of the new paths
together). There are two subcases.

(i) j = k. Then |Pij | goes down while |Qij | is not affected, so the property still holds.

(ii) j 6= k. Again suppose that the amount of original cycle cut off in addition to Q′

ij

and Q′

ik is equal to x, the amount of Pij cut off by P is y, the amount of Pik cut
off by P is z, and the new interval is denoted Pi+1,j. Then

|Pij| ≤ ε̄
∣

∣

∣Q′

ij

∣

∣

∣

|Pik| ≤ ε̄|Q′

ik|
|P | ≤ ε̄(x+ y + z)

|Pi+1,j| = |Pij | + |P | + |Pik| − y − z

≤ ε̄(
∣

∣

∣Q′

ij

∣

∣

∣ + x+ y + z + |Q′

ik|) − y − z

≤ ε̄(
∣

∣

∣Q′

ij

∣

∣

∣ + x+ |Q′

ik|)
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If the iterations come to an end before the end of the first phase, then indeed Q′ is ε-close
to Q — any vertex on Pij can reach Q by a path of length at most ε̄

∣

∣

∣Q′

ij

∣

∣

∣ ≤ ε̄|Q|. Otherwise,
consider the iteration in which the first phase comes to an end. By analogous arguments,
we obtain a cycle Q1 such that |Q1| ≤ ε̄|Q| and every vertex on Q1 can reach Q by a path
of length at most ε̄|Q|.

Each phase now proceeds exactly like the previous one, except that it begins with a cycle
whose length has been reduced by at least a factor of ε̄. Thus when the process terminates,
all vertices on Q′ will be able to reach Q by a path of length at most

|Q| ·
∞
∑

i=1

ε̄i = ε|Q|.

Thus Q′ is ε-close to Q.

We use the following procedure to build the clusters and the enclosures around each node
v in M . Let Kv = Bλ5 logn(v).

(i) Choose a radius r between 2λ5 log n and 3λ5 log n so that |π(Br(v))| ≤ 9βλ5 logn. Set
Cv = Br(v).

(ii) Now extend Cv to a simple set as in Lemma 4.6; since λ3 > 2cλ5, no Cv is grown
enough that it overlaps any other by this process.

(iii) We now apply the ε-smoothing algorithm of Theorem 5.4 to the facial cycle Qv of
G[Cv] containing π(Cv). Here Hv = G[Bλ3 logn(v)] \Ko

v plays the role of H , and the cylinder
formed by removing the portions of Σ on which G[Ko

v ] and G \ Bλ3 logn(v) are drawn plays
the role of Σ1. Now for a constant ε the resulting cycle Q′

v is ε-smooth in this subgraph Hv

of G, and it is also ε
1−ε

-close to Qv. If we choose ε < 1
18β+1

, then since Qv is initially at least
1
9β
|Qv| away from Kv, we know that any path with both ends on Q′

v that passes through Kv

must have length at least 1
9β
|Qv| ≥ 1

9β
|Q′

v|. Thus, there are no “short cuts” between vertices
of Q′

v that make use of Kv; hence Q′

v is in fact ε-smooth in G.
The smooth cycle Q′

v encloses a set S of vertices containing Kv. Update Cv to be this
set S.

We now grow an enclosure Dv ⊃ Cv by the same three-step process, except that we now
use the constant λ4 in place of λ5, and the set Co

v in place of Ko
v Thus, we have clusters

of radius ≈ λ5 logn, enclosures of radius ≈ λ4 log n, and they are separated by a mutual
distance of ≈ λ3 log n.

Following the algorithm of Section 3, we now must build crossbar structures in the en-
closures to replace the natural crossbars of the mesh. We build crossbars using an extension
of the Okamura–Seymour theorem [20] due to Frank [9], along the same lines as was done
in [14]. To be precise,

Definition 5.5 If X ⊂ V , we say a crossbar anchored in X is a set of edge-disjoint paths,
each with at least one end in X, such that every pair of paths meets in at least one vertex.

Let σv = π(Cv), and recall that by Q′

v we mean the facial cycle of G[Cv] containing σv.
Analogously, let τv = π(Dv), and ϕv the facial cycle of G[Dv] containing τv. We wish to
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build a crossbar in G[Dv \ Co
v ], anchored in σv ∪ τv, of size at least a constant fraction of

|σv ∪ τv|. For a large enough constant κ depending on ε, we choose a set σ′

v of |σv|/κ vertices
on σv spaced about κ apart, and a set τ ′v of |τv|/κ on τv spaced about κ apart.

Lemma 5.6 There is a crossbar anchored in σ′

v ∪ τ ′v, such that each vertex of σ′

v ∪ τ ′v is the
endpoint of a distinct path of the crossbar.

Proof. Consider the planar graph G[Dv \ Co
v ]. This graph has only two large faces — the

outer face bounded by ϕv, and the inner face left by the deletion of Co
v . We find a shortest

path P ∗ in the planar dual graph whose endpoints are equal to these two large faces, and
we delete the edges used by this path. Denote the resulting graph by Gv; note that it has
only a single large face, bounded by a cycle ϕ′

v which contains σ′

v ∪ τ ′v.
We claim that the cycle ϕ′

v is ε′-smooth in the graph Gv, where

ε′ = min(
1

2
ε, (27βℓ)−1).

To see this, suppose that P is a path in Gv with endpoints u, w ∈ ϕ′

v. If u and w both belong
to Q′

v, or both belong to ϕv, then this follows from the ε-smoothness of these two cycles in
G[Dv \ Co

v ]. If one belongs to each, then |P | ≥ (λ4 − 4λ5) log n, while |ϕ′

v| ≤ 9βℓ(2λ4 + λ5),
and again the bound follows. Finally, if both u and w lie on the short dual path P ∗,
then in fact |P | ≥ dϕ′

v
(u, w), while if exactly one lies on P ∗ then it is easily verified that

|P | ≥ 1
2
εdϕ′

v
(u, w).

Write X = σ′

v ∪ τ ′v. Let us assume for simplicity that |X| is odd. Now for u ∈ X, define
u+ to be the vertex on ϕ′

v that is 1
2
κ steps clockwise from u, and write X+ = {u+ : u ∈ X}.

Now |X ∪X+| is even, so we can pair each u ∈ X ∪ X+ with its unique “antipodal” point
ũ ∈ X ∪ X+ under the clockwise ordering of ϕ′

v. Note that vertices in X are paired with
vertices in X+, and vice versa. We now define a disjoint paths problem in Gv, with the set
of terminal pairs Tv equal to {(u, ũ) : u ∈ X}. Note that all terminals are at least 1

2
κ from

one another on the cycle ϕ′

v.
We now want to show that Tv is realizable in Gv. First, say that a cut is non-trivial if

it separates at least one pair of terminals. We are dealing with a disjoint paths problem
in a planar graph with all terminals on the outer face. Moreover, every node of Gv not on
the outer face has even degree. In such a case, Frank’s extension of the Okamura-Seymour
theorem [9, 20] says that following strict cut condition is sufficient for the realizability of Tv
— every non-trivial cut has more capacity than the number of terminal pairs it separates.

It is enough to consider non-trivial cuts of the form δ(U) with both Gv[U ] and Gv \ U
connected. For such a set U , there must be two vertices v, w ∈ π(U) such that v, w ∈ ϕ′

v.
Suppose that the distance from v to w in Gv is d; then by Lemma 4.7, we have |δ(U)| ≥ ℓ−1d.
Since the facial cycle ϕv is ε′-smooth, the number of terminal pairs disconnected by δ(U)
is at most 2ε′−1d/κ. Thus taking κ > 2ℓε′−1 ensures that the strict cut condition will be
satisfied.

Finally, observe that the edge-disjoint paths in a realization of Tv provide the crossbar
required by the lemma, since each pair of paths must meet at some vertex of Gv.
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In the crossbar just constructed, let Y u
v denote the path with an endpoint equal to u,

where u ∈ σ′

v ∪ τ ′v.

5.1.2 The simulated network N
We now construct the simulated network; the nodes of this network are the clusters, which we
represent by the vertices in M . We define a neighbor relation on the clusters using the notion
of a Voronoi partition; two clusters will be joined by an edge in N if they are neighbors in
this sense.

Let H be a graph and S ⊂ V (H). We fix a lexicographic ordering � on the elements of
S. For s ∈ S, let

Us = {v ∈ G : ∀s′ ∈ S : d(v, s) ≤ d(v, s′) and ∀s′ � s : d(v, s) < d(v, s′)}.

That is, Us is the set of vertices that are at least as close to s as to any other s′, with ties
broken based on �.

Definition 5.7 The Voronoi partition V(H,S) of H with respect to S is the partition {Us :
s ∈ S}.

The following fact is immediate.

Lemma 5.8 For each s ∈ S, H [Us] is connected.

Proof. Suppose v ∈ Us; we claim that any shortest s-v path P is contained in Us. For
suppose not, and let v′ ∈ P be the closest vertex to s that lies in Us′ for some s′ 6= s.
Then d(s′, v) ≤ d(s, v), and in fact d(s′, v) < d(s, v) if s � s′. It follows that v ∈ Us′, a
contradiction.

We can now build a graph N (H,S) on the vertices in S, joining two if their Voronoi cells
share an edge.

Definition 5.9 The neighborhood graph of S in H, denoted N (H,S), is the graph with
vertex set S, and an edge (s, s′) iff there is an edge of H with endpoints in Us and Us′.

The simulated graph we use will be the neighborhood graph N (G,M) with every edge
given capacity ≈ λ6 log n. Let V and N denote V(G,M) and N (G,M) respectively, and
N (γ) the graph N in which each edge is given capacity γ.

The following two facts about N are easy to establish. First, by the maximality of M ,
we have

Lemma 5.10 For all v ∈M , Uv ⊂ Bλ3 logn(v).

Proof. Suppose u ∈ Uv but d(v, u) > λ3 logn. Then d(v′, u) > λ3 log n for all v′ ∈ M ; this
contradicts the fact that M is a maximal independent set in Gλ3 logn.

This, along with Lemma 4.4, implies
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Lemma 5.11 The degree of a vertex in N is at most ∆′ ≤ 16ᾱ−1β.

Proof. Let U denote the neighbors of v in N , including v itself. Then by Lemma 5.10,

⋃

u∈U

Uu ⊂ B2λ3 logn(v),

and hence
∑

u∈U

|Uu| ≤ 4βλ2
3 log2 n.

But around each u ∈ U there is a disjoint ball of radius 1
2
λ3 log n, which contains at least

ᾱλ2
3 log2 n/4 vertices. Thus |U | ≤ 16ᾱ−1β.

5.1.3 Inter-Cluster Paths

The goal of this part is, for a constant λ6, to construct λ6 log n disjoint paths between each
pair of enclosures Dv, Dw where (v, w) is an edge in N . This will allow us to convert a
routing in the simulated network N (λ6 log n) into actual disjoint paths in G. Recall that the
outer facial cycle of G[Dv] is denoted ϕv, and it contains a set τ ′v of vertices evenly spaced
at distance κ.

Theorem 5.12 There exist vertex-disjoint paths in G, each with ends in sets τ ′v and oth-
erwise disjoint from all Dv, such that for (v, w) ∈ N , there are at least λ6 log n such paths
with one end in τ ′v and the other in τ ′w.

Proof. The proof is based on the following theorem of Schrijver [28]. Let Σ1 be a surface
(possibly with boundary), H a graph embedded on Σ1, and {Ai : i = 1, . . . , k} a set of
disjoint curves on Σ1 each of which is either closed or anchored at vertices of H on the
boundary of Σ1. The problem is to find vertex-disjoint paths and cycles {P i} in G so that
P i is homotopic to Ai for each i.

Call a collection of curves R on Σ1 essential if it consists either of a single closed curve
that is not null-homotopic, or it is a finite union of curves each with endpoints on the
boundary of Σ1. Schrijver [28] proves that such vertex-disjoint paths and cycles exist if for
each essential collection of curves R, there are curves {Bi}, where Bi is homotopic to Ai,
such that R intersects the drawing of H more than it intersects the curves {Bi}. (The main
result of [28] is in fact a necessary and sufficient condition; this weaker statement suffices for
our purposes. Additionally, [28] is stated for the special case of surfaces without boundary,
but the extension we use here follows immediately from [28].)

Say that a curve is G-normal if it meets the drawing of G only at vertices, and define its
G-length to be the number of times it meets the drawing. For each v, v′ that are neighbors
in N , we draw a G-normal arc Avv′ on Σ with endpoints v and v′. We can ensure that all
these arcs are disjoint, since each Uv is connected, and for each (v, v′) ∈ E(N ), there is at
least one edge of G with endpoints in Uv and Uv′ . Choose a small constant λ6 ≤ |τ ′v|/∆′ (say,
less than 1

8
α2ᾱ∆′−2∆−2λ−1

3 λ2
4; the reason for this will become clear below). Now suppose we
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pull out these crossings

R

Auu′

Dv1

Dv2

Dv3

Figure 4: Pulling out a crossing

have in fact λ6 logn copies of each Avv′ , all running “parallel” to one another. By pushing
them apart appropriately, we can assume that each arc runs through a different vertex in τ ′v
and τ ′v′ . Let Auu′ denote the G-normal arc that runs through u ∈ τ ′v and u′ ∈ τ ′v′ .

Define G′ to be the graph obtained by deleting Do
v for each v ∈ M . We now cut Σ

along the facial cycles ϕv to obtain Σ′, a surface with boundary. Note that G′ is properly
embedded on Σ′. The theorem is now a consequence of the following claim.

Claim 5.13 There exist vertex-disjoint paths Puu′ in G′ such that Puu′ is homotopic to Auu′.

Proof. If curves R and R′ are homotopic, we write R ∼ R′. We extend this notation to
finite collections of curves R, R′

in the obvious way. Following notation of Schrijver [28],
the number of crossings of R0 and R1 is denoted cr(R0,R1), and we define

mincr(R0,R1) = min{cr(R′

0,R′

1) : R0 ∼ R′

0,R1 ∼ R′

1}.

By the theorem of Schrijver [28] given above, the desired paths exist if for each essential
collection of curves R on Σ′, one has

cr(R, G′) >
∑

(u,u′)

mincr(R, Auu′). (4)

Note that in verifying this inequality, we may assume R is G′-normal, and that R has no
self-crossings.
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For a collection of curves R, define its index to be

cr(R, G′) −
∑

(u,u′)

mincr(R, Auu′).

So it is enough to consider collections of curves R whose index is minimum in their homotopy
class, and to show that such R in fact have positive index.

Set r = 1
2
∆−1αᾱ1/2λ4 logn. We claim that no G-normal closed curve of G-length less than

2r can enclose a set of the form Dv. For if it did, then Dv could be disconnected by an edge
cut of size less than αᾱ1/2λ4 log n, which is not possible since |Dv| ≥ ᾱλ2

4 log2 n. From this
it follows that any G′-normal closed curve of G′-length less than 2r must be null-homotopic
in Σ′.

Note that we can view the expression cr(R, G′) − ∑

(u,u′) cr(R, Auu′) as a sum over the

finitely many arc-components of R; if the value of this expression is not positive, we show how
modify the curves Auu′ so that it increases. We do this by considering each arc-component
of R in turn. Let R denote a single arc-component of R; we consider two cases, based on
the G′-length of R.

Case 1. cr(R, G′) ≤ r. Then R must have both endpoints on the same facial cycle
(it is too short to touch two such cycles, and if it were a closed curve it would have to be
null-homotopic, by the above argument.) But then it is easy to produce arcs {A′

uu} for which
cr(R, G′) >

∑

(u,u′) cr(R, A′

uu′) since ϕv is ε-smooth.
Case 2. cr(R, G′) > r. Again, we just have to exhibit arcs A′

uu′ ∼ Auu′ lying on Σ′ so
that

cr(R, G′) >
∑

(u,u′)

cr(R, A′

uu′), (5)

without increasing the number of crossings of these arcs with the other components of R. If
the set {Auu′} satisfies (5), we are done; otherwise, we show how to modify this set of arcs
so that it does. See Figure 4.

If the set {Auu′} does not satisfy Inequality (5), then there is some interval R′ of R of
G′-length r for which (5) is violated. Let us consider such an R′.

Observe that each arc Auu′ has G′-length at most 2λ3 logn, and hence at most ∆′2λ6 log n
of these arcs can meet R′, since at most ∆′2 pairs of clusters have at least one end close
enough to R′. Now suppose the total number of crossings of these arcs with R′ exceeds

(2λ3 logn)(∆′2λ6 log n)

r
< cr(R′, G).

Then some arc Auu′ meets R′ more than 2λ3 log n/r times, and hence the interval of Auu′
between some pair of consecutive crossings with R′ has G′-length less than r.

Suppose that this pair of consecutive crossings occurs at vertices w and w′. Let R′′ denote
the G′-normal curve formed from this interval of Auu′ and the portion of R′ between w and
w′. R′′ has G′-length less than 2r, and so it must be null-homotopic by the argument given
above.
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Now, since R has minimum index over all curves in its homotopy class, the portion of
Auu′ between w and w′ meets G′ at least as many times as the portion of R′ between w and
w′. We can therefore modify Auu′ so that it runs along R′ for this interval. This does not
increase the G′-length of Auu′; and it decreases the number of crossings of R — as well as
R (since it has no self-crossings) — with Auu′ .

Thus this process terminates; when it does, we have a set of arcs {A′

uu′} for which
Inequality 5 holds.

Let us denote one such path with ends u and u′ by Zuu′. Moreover, we have u ∈ τ ′v
and u′ ∈ τ ′v′ , and they are ends of paths Y u

v and Y u′

v′ respectively. Denote by Z̄uu′ the
concatenation of the three paths Y u

v , Zuu′, and Y u′

v′ .

5.2 The On-Line Algorithm

With the simulated network N in place, the routing algorithms themselves are essentially
the same as those for the mesh; here we just describe what must be modified.

First of all, the analogue of Lemma 3.10 is the following.

Lemma 5.14 Let r ≤ λ1 logn, U ⊂ Br(v) for some v ∈ V , and T ′ a set of terminal pairs
in U . Then the maximum size of a subset of T ′ that is realizable in B8ξ2r(v) is within a
constant factor of the maximum size of a subset of T ′ that is realizable in G.

Proof. First choose a radius r′ between 2r and 3r for which |π(Br(v)| ≤ 9βr′. Then
construct a simple set extension of Br′(v) as in Lemma 4.6; and ε-smooth its outer facial
cycle to obtain a set U ′ ⊃ U contained in B4ξr(v). Let U ′′ ⊂ B8ξ2r denote a simple set
extension of B8ξr(v), as in Lemma 4.6. For a constant κ′, we can pick a set S of vertices on
the outer facial cycle of U ′ spaced κ′ apart, and use Frank’s theorem [9] as in Lemma 5.6
to construct a set of edge-disjoint paths connecting “antipodal” pairs in S, such that all
paths stay within U ′′ \ U ′. Note that we must take care to ensure that the parity condition
is met, since the outer facial cycle of U ′′ can contain odd-degree vertices. To do this we
remove sub-paths of this cycle between consecutive pairs of the (necessarily even number of)
odd-degree vertices; U ′′ is large enough that the strict cut condition will remain satisfied.

Consider the set of paths in a realization of a maximum-size subset of T ′ in G. Of the
paths that meet π(U ′), we can select a constant fraction of paths such that the the pairs of
first and last intersections with π(U ′) can be connected along the outer facial cycle of U ′ to
different vertices in S. We can then use the crossbar of the previous paragraph to connect all
of these pairs together; the resulting paths are within a constant fraction of the maximum
number achievable in G, and they do not leave U ′′.

The algorithm for short connections is now as follows. We run a randomized version of
Luby’s algorithm, this time in Gλ1 logn. Let M ′ denote the resulting mis. With constant
probability, both ends of a short connection are within 1

16ξ2
λ1 log n of the same v ∈ M ′, as

in Lemmas 3.11 and 5.1. We now let Uv denote Bλ1 logn/16ξ2(v) and only route connections
both of whose ends lie in the same Uv. To route such connections, we run the algorithm of
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Proposition 3.9 in each B 1
2
λ1 logn(v); by Lemma 5.14, this is within O(logn) of optimal in

each Uv.
For long connections, we run the same simulation as in the case of the mesh, this time

in the graph N (λ6 logn). The analogue of Lemma 3.6 holds exactly as before, as does
Lemma 3.7 — making use of the paths Z̄uu′, since all such paths incident to the same
enclosure must cross. Finally, the analogue of Lemma 3.8 is the following.

Lemma 5.15 There is a constant γ such that for any realizable subset T ′ of T , ψ(T ′) can
be routed in N (γ log n).

Proof. Set γ = 9β(∆′3λ5 + λ3). For each si-ti path P in the optimal routing, construct the
following path for (ui, vi) in N — when P crosses from Uw into Uw′, add an edge from w
to w′. Now consider how many paths in our constructed routing use the edge (w,w′). Each
such corresponds to a path in the original routing that used an edge in δ(Uw,Uw′). We can’t
bound the size of this set directly, since it could be quite “meandering.” But consider the
following argument. δ(Uw,Uw′) ⊂ B2λ3 logn(x) for some vertex x ∈ G; thus there is some r
between 2λ3 logn and 3λ3 log n so that |π(Br(x))| ≤ 9βλ3 log n. So at most this many paths
with both ends more than r away from x can use edge in δ(Uw,Uw′). But closer than this,
there are at most ∆′3 clusters, each of which is the origin of at most 9βλ5 logn paths.

Thus the optimum in G is bounded by the fractional optimum in N (γ log n), which is at
most a constant factor more than the fractional optimum in N (λ6 logn), which is at most an
O(logn) factor more than the number of pairs routed by the on-line algorithm in G. Thus
we have

Theorem 5.16 The on-line algorithm is O(logn)-competitive in any uniformly densely em-
bedded Eulerian graph G.

5.3 The Off-Line Algorithm

The off-line algorithm too is essentially the same, now working with the larger simulated
network N ′(λ6 log n). The only change required is in the proof of Lemma 3.15. Here, we are
no longer able to talk about “overfull rectangles”; however, we can define a round cut to be
a set of the form Br(w) ∩Cv. Since a given u ∈ Cv is only contained in O(r2) round cuts of
radius r, the following lemma establishes that round cuts can be used instead of rectangles
in the analogue of Lemma 3.15 for densely embedded graphs.

Lemma 5.17 Let G′

v denote G[Cv] with an additional vertex zv joined by an edge to each
vertex in σ′

v. Then there is a constant ξ1 such that for every U ⊂ G′

v not containing zv, there
is a round cut R ⊇ U satisfying |δ(R)| ≤ ξ1|δ(U)|.

Proof. Set ξ′1 = κ1 + ᾱ−1/2α−1 and ξ1 = 4∆ξ′1(β+ ε−1). Let U ⊂ G′

v be a set not containing
zv, and write p = |δ(U)|; we construct a round cut R containing U for which |δ(R)| ≤ ξ1p.
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Now if we contract G′

v \ U to a single vertex, we obtain a planar graph with maximum
face size κ1 (as opposed to ℓ; this is due to the large spacing of the vertices of σ′

v). So by
Lemma 4.7, the maximum distance between two points on π(U) is at most κ1p.

Next we claim that every vertex in U must be within distance ᾱ−1/2α−1p of π(U). The
reason for this is analogous to the proof of Lemma 4.6 — if not, then U would contain a
ball of more than this radius, which would contain more than α−1p2 vertices; a contradiction
since |δ(U)| = p.

Thus for any u ∈ π(U), we have U ⊂ Br(u), where

r = (κ1 + ᾱ−1/2α−1)p = ξ′1p.

Now by Lemma 4.5, there is an r′ between r and 2r such that

|δ(Br′(u))| ≤ 4β∆ξ′1p.

Now let R ⊃ U denote the round cut Br′(u)∩Cv. Every edge of δ(R) is an edge of either
δ(Br′(u)) or of δ(Cv ∩ R). The former quantity was just shown to be at most 4β∆ξ′1p. To
bound the latter quantity, note that any two vertices in π(Cv ∩ R) are at most 2r′ ≤ 4ξ′1p
apart; since the facial cycle containing π(Cv) is ε-smooth, this means that π(Cv∩R) contains
at most 4ε−1ξ′1p vertices, and hence

|δ(Cv ∩R)| ≤ 4∆ε−1ξ′1p.

The claim now follows since

|δ(R)| ≤ 4∆ξ′1(β + ε−1)p = ξ1p.

Thus we have

Theorem 5.18 There is a randomized (off-line) mdpp algorithm in uniformly densely em-
bedded Eulerian graphs that produces a constant-factor approximation with high probability.

6 Extensions

6.1 Durations and Profits

In the on-line algorithm we assume that (i) all connections have infinite duration, and (ii) all
connections have the same “value” (i.e. our objective function could have been a weighted
sum of the set of pairs we accept, rather than an unweighted sum). However, there are
general transformation techniques due to Awerbuch et. al. [5] that allow us to convert our
results to on-line algorithms that can handle connections of limited duration and variable
value, at the cost of additional logarithmic terms in the competitive ratio. Specifically, we
pay O(logT ) and O(logP ), where T and P are the ratios between the largest and smallest
durations and values respectively.
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6.2 Graphs with an Exceptional Face

In this section, we sketch the extension of our algorithms to densely embedded, nearly-
Eulerian graphs. Recall from Definition 4.3 that such a graph satisfies the properties of a
uniformly densely embedded Eulerian graph, except that it is allowed to contain an “excep-
tional” face Φ∗, with facial cycle Q∗ that may have length greater than ℓ and may contain
vertices not of even degree.

For the remainder of this section, let G denote a densely embedded, nearly-Eulerian
graph with parameters α, λ, ∆, and ℓ. For simplicity, we assume that the facial cycle Q∗ is
sufficiently large that it is not contained in any set Bλ logn(v); it is not difficult to remove
this assumption.

The changes required in the algorithm come from the fact that there can now be a G-
normal curve joining two distant vertices in G that intersects G relatively few times — this
is because it can pass through the large face Φ∗. This has consequences in the proofs of
Lemma 5.6 (and its relatives) and Claim 5.13. However, by requiring the outer cycles of
clusters and enclosures to satisfy a more restrictive notion of ε-smoothness, these facts will
follow as before.

We define our more restrictive type of ε-smoothness as follows. Let G/Q∗ denote the
graph G with a single additional node q∗ joined by length-0 edges to each vertex of the long
facial cycle Q∗. Then a small cut passing through two distant vertices, as described in the
previous paragraph, does correspond to a short path in G/Q∗ — it simply makes use of the
additional node q∗. Now it is straightforward to show that we need only require the outer
cycles of the clusters and enclosures to be ε-smooth in the graph G/Q∗; and this can be
accomplished by running the ε-smoothing algorithm in this graph instead of in G.

This introduces a further difficulty, however. Say that we have just smoothed some cycle
Q, obtaining a cycle Q′. While Q′ will be ε-close to the original cycle Q in G/Q∗, there is
no reason why this means it will be ε-close in G.

To handle this, we strengthen the statement of Theorem 5.4, as follows. For a vertex u,
define the u-restricted distance du(v, w) between two vertices v and w to be the minimum
length of a v-w path avoiding u. From the proof of Theorem 5.4, one sees that we can
always find a short path from the smooth cycle Q′ back to the original cycle Q that avoids
any prescribed vertex; i.e.Q′ is ε-close toQ with respect to any u-restricted distance function.
In particular, Q′ is ε-close to Q in G/Q∗ with respect to the q∗-restricted distance function;
that is, Q′ is ε-close to Q in the original graph G.

Thus, we can obtain clusters and enclosures with boundaries which are ε-smooth inG/Q∗,
and which are not far from the original boundaries in G. The sets τ ′v will now consist of
evenly spaced vertices only on the part of an enclosure’s outer facial cycle that does not lie
on Φ∗. The proof of Lemma 5.6 now follows exactly as before. When we use Schrijver’s
theorem to construct inter-cluster paths, we also cut the surface Σ along the long facial cycle
Q∗ so as to remove Φ∗ from the surface. Now an essential curve can be anchored on the
boundary of Φ∗ as well as on the boundary of an enclosure; but this poses no problem since
the enclosure boundaries are ε-smooth in G/Q∗.

Once the simulated network N has been set up, the on-line and off-line algorithms work

37



exactly as before. (In particular, Lemma 5.17 follows without modification, since the large
face Φ∗ is incorporated into the hypotheses of Lemma 4.7.) Thus we have,

Theorem 6.1 There is an O(logn)-competitive on-line mdpp approximation in any densely
embedded nearly-Eulerian graph.

Theorem 6.2 There is a randomized (off-line) mdpp algorithm in any densely embedded
nearly-Eulerian graph that produces a constant-factor approximation with high probability.
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