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0. Summary. The objects of ergodic theory -measure  spaces with mea- 

sure-preserving transformation groups-wil l  be called processes, those of 

topological dynamics-compact  metric spaces with groups of homeomor- 

phisms-will  be called flows. We shall be concerned with what may be 

termed the "arithmetic" of these classes of objects. One may form products 
of processes and of flows, and one may also speak of factor processes and 

factor flows. By analogy with the integers, we may say that two processes are 

relatively prime if they have no non-trivial factors in common. An alterna- 

tive condition is that whenever the two processes appear as factors of a 

third process, then their product too appears as a factor. In our theories 

it is unknown whether these two conditions are equivalent. We choose the 

second of these conditions as the more useful and refer to it as disjointness. 
Our first applications of the concept of disjointness are to the classifica- 

tion of processes and flows. It will appear that certain classes of processes 

(flows) may be characterized by the property of being disjoint from the 

members of other classes of processes (flows). For example the processes 

with entropy 0 are just those which are disjoint from all Bernoulli flows. 

Another application of disjointness of processes is to the following filter- 

ing problem. If  {xn} and {Yn} represent two stationary stochastic processes, 

when can {xn} be filtered perfectly from {Xn + Yn}? We will find (Part I, 

§9) that a sufficient condition is the disjointness of the processes in question. 

For flows the principal application of  disjointness is to the ~tudy of 

properties of minimal sets (Part III). Consider the flow on the unit circle 

K = {z: [zl = 1 } that arises from the transformation z --~ z 2. What can be said 

about the "size" of the minimal sets for this flow, that is, closed subsets of 

K invariant under  z ~ z ~, but not containing proper subsets with these 

properties. Uncountably many such minimal sets exist in K. Writing z = 

exp (2~ri Ean/2n), an = 0, 1, we see that this amounts to studying the mini- 
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mal sets of  the "shift flow" on binary sequences. Most of  the known ex- 

amples o f  minimal sets would lead one to conjecture  that a minimal set A 

is "small" in the sense that its Hausdor f f  d imension vanishes. More  recent  

examples,  however,  show that the Hausdor f f  dimension may be positive. 

We shall show that, nevertheless,  A is small in the sense that it does not  

fo rm a basis for  K. T h a t  is, there  always exist numbers  in K which are not  

fn i t e  products  o f  members  o f  A. 

Ano the r  application is to the following problem. Products  o f  minimal 

flows need no longer  be minimal; are there  any special proper t ies  that are 

nonetheless valid for  such flows? O u r  solution to this problem depends  

upon  the fact that minimal flows are disjoint f rom a class o f  flows that we 

call f*'-flows. In o rd inary  ari thmetic if x and y are relatively pr ime and y is 

a factor o f  xz, then y is already a factor  of  z. T h e  analogue o f  this fact for  

flows is given in Lemma  III .1,  and this provides the key to ou r  analysis. 

T h e  same class Y o f  flows, as well as the notion o f  disjointness, arises in 

connect ion with a problem in Diophant ine  approximat ion  (Part IV). Which 

sets S o f  positive integers have the p roper ty  that for  every irrational a and 

E > 0, there  exists an s E S with Io t -x / s[  < E/s for  some integer  x? A com- 

plete solution may be given in the case that S is a multiplicative semigroup 

of  integers. In that case we find ( T h e o r e m  IV. l )  that S necessarily pos- 

sesses this p roper ty  unless it is contained in the set of  powers o f  a single 

integer  (in which case it does not). 

T h e  in t e rdependence  between the four  parts of  this paper  has been 

kept  to a minimum. As a result it is possible for  a r eade r  interested in 

topological dynamics to omit  Part  I which deals with processes and  to read 

only Parts II and III.  Al though Part  IV is p resented  as an application of  

the notion of  disjointness (and this will be appa ren t  af ter  reading  Part III),  

we have suppressed any explicit d e p e n d e n c e  on the preceding  parts in 

o rde r  to make T h e o r e m  IV. 1 more  readily accessible. 

Part I. Disjoint Processes 

1. Factors and Products of  Processes. Let (~,  ~',/x) denote  a probabil- 

ity triple; that is, 12 is a space, ~- a o--field of  sets in lq, and/~  a probability 

measure  def ined on  sets in ~ .  We say T is a measure-preserv ing  trans- 

format ion  of  f~ if T -1A @ Y whenever  A E ~" and I~(T-IA) = I~(A). In 

this case we say that the quadrup le  (fl, ~-,/x,T) de termines  a process. For a 

precise definition we in t roduce a not ion o f  equivalence o f  quadruples .  We 

say that (f~, ~',/x,T) and (12', ~' , /-~' ,T') are equivalent  if to every class o f  sets 

modulo  null sets in 12 there  cor responds  a similar class in f~', and this cor- 

respondence  carries ~" to P-', ~ t o / z '  and T to T' .  A process is then  an 

equivalence class of  quadruples .  In practice we generally choose a repre-  

sentative quadruple  which we simply re fe r  to as the process in quest ion and 

write X = (12, °J,~,T). I f  the t ransformat ion T is invertible for  some rep- 

resentat ion of  a process, we shall speak of  bilateral process. As a result o f  

this not ion of  equivalence, the na ture  of  the space 12 matters very little and 
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only the o--field Y plays a significant role. For example,  if  I T =  f l x / ,  ~ - '=  

{A x I, A E ~},/z ' (`4 x l )  =/x(`4) and  T'(oJ, t)  = (ToJ,t), then, a l though the 

spaces l~ and l'~' are quite different,  ( f~ ,~ ,~ ,T)  and  (l~' ,~: ' ,Iz ' ,T')  deter- 

mine the same process. We shall always assume that the probability space 

(l~,~,/z) is separable (a countable subset of  ~ is "dense" in ~'). Every 

process may then be represented by a quadruple  (f~,~,/.~,T) where f~ is 

a compact metric space, oj the o--field o f  Borel sets (or its completion with 

respect to/.~),/z a regular  Borel measure,  and T a continuous t ransforma- 

tion. (See the Appendix  to Part I for a p roof  of  this assertion.) When this 

is the case we may suppress the o--field ~- and write X = (f~,/z,T). 

I f  X is a process then  l~x, ~'x, and/Zx will denote  a space, a o--field and 

a measure such that X may be represented by (llx, Yx, izx ,  T) .  The  symbol 

T will denote th roughout  the t ransformat ion defining the process. Its 

domain  will always be clear f rom the context. We shall also denote  by T the 

operator  that  T induces on the class of  functions on ~x. Namely, if qJ(~:) is 

defined for s ¢ E f~x, then T~O will denote  the function defined by Ttk(~:) = 

I f  x0 is a complex-valued measurable function on l~, then the sequence 

of  r andom variables {x,(oJ)} defined by x,(oJ) = xo(T"oJ), or x,  = T"xo, is a 

stationary sequence. Tha t  is, the probability of  an event o f  the form (x,+l(0J), 

x,+z(co), • • • , x,+r(oJ)) E A for  a Borel set .4 in C r is independent  of  n. 

Conversely, every stationary sequence may be realized in this way. A 

stationary sequence is said to be defined for  a process if  it arises in the above 

fashion. Such a sequence also defines the process if the o--field ~ is the smallest 

field with respect to which all the variables x,(oJ) are measurable. It is not  

difficult to see that a stationary sequence defines a unique process (because 

of  the equivalence we have introduced).  Naturally, a stationary sequence 

{x,} defined for ~ < n < co defines a bilateral process. 

Customarily, one refers to a sequence {x,} of  r andom variables ex- 

hibiting the a forement ioned  stationarity property  as a stationary stochastic 

process. For many purposes, one need not distinguish between two station- 

ary sequences that can be defined on the same measure space, e.g., be- 

tween {x,} and {y,}, where y ,  = 2x, + x,+l. For this reason we emphasize 

the notion of  a process in which the variables have been suppressed. 

Let  X and Y be two processes. Suppose ~p is a measurable map f rom l)x 

to ~~v satisfying p.r(A) = IZx(~o-lA) for .4 E ~'y, and T~p(s ¢) = ~0T(s ¢) for 

~ l~x. We then  say that  Yis a factor process of  X and write X ~--> Y. We also 

say that ~0 is a homomorphism of  X onto Y. Briefly, the condit ion on ~0 is that 

it be measure-preserving and commute  with T. For example, if ~" is a T- 

invariant subfield of  ~ and  ~o denotes the identity map of  ~ to f~, then 

(l),~: ' , /z,T) is a factor process o f  (l) ,~' , /z,T). In fact, every factor process 

may be realized in this way. We point out  that the existence of  ~0 for  one 

realization o f  X and Y does not imply its existence for  every representation; 

we nonetheless consider Y a factor process o f  X. When  Y is a factor o f  X, 

then l~x and fly may be chosen as compact  metric spaces in such a way that  
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~0 actually is a continuous onto map. (See the Appendix  to Part I.) 

The  representation of  a homomorph ism ~0 in the form (O,~,/x,T) --~ 

(D, ~-',/.t,T) with ~" a subfield of  ~ shows immediately that any stationary 

sequence defined for a factor process of  X is also defined for X. In general  

if we have ~0:X ~ Y and y is a r andom variable defined on Ov then y o ~0 is 

a r andom variable defined on l~x. We speak of  y o ~0 as a variable defined 

for X which is lifted f rom Y. 

The  product  of  two processes X and Y is defined by letting (Dx×v, Yx×v, 

lXx×v) be the usual product  of  the under ly ing measure spaces of  X and Y, 

and setting T(~:,'O). = (T~,T*I). Ox×v will then be the product  of  Dx and De 

and we shall denote by ¢rx and ~rr the projections of  Oxxv onto its two com- 
fy "try 

ponents. Note that X x Y -~ X and X x Y ~ Y so that every pair o f  processes 

can always be realized as factor processes of  a single process. In this realiza- 

tion the two processes are independent in the sense that any set of  variables 

defined for X when lifted to X × Y is independent  of  any set of  variables 

defined for Y and lifted to X x Y. 

2. Disjointness. Suppose {x.} and {y.} denote two stationary se- 

quences. In general we cannot speak of  the joint  distributions between 

variables x,, and Yn until both sequences are defined simultaneously on the 

same measure space. In particular one may always find a space for which 

{x.) becomes independent  of  {Yn}. It sometimes occurs, however, that 

this is the only manner  in which the two sequences may be combined to 

form a stationary composite sequence {x. ,y.}.  More precisely, let us say 

two stationary sequences {x.} and {x'.} are isomorphic if corresponding 

joint  distributions are identical. We then find that there exist pairs of  

sequences {x~}, {Yn}, such that if {x', ,y' ,) is a stationary sequence with 

{x'n} isomorphic to {x,} and {y',} to {y,}, then {x',} must be independent  

of  {y',}. Let us call this phenomenon  absolute independence. This is a special 

case of  disjointness of processes. 

Definiti t ion 1. Two processes X and Y are disjoint i f  whenever we have homo- 

morphisms Z --% X, Z ~ Y, then there exists a homomorphism Z v_. X x Y such that 

a = ¢rxy, [3 = trey. We denote disjointness by X ± Y. 

An equivalent condition is that whenever Z --% X, Z ~ Ythen the fields 

a -~ ~x  and/3  -1 ~'r are independent  subfields of ~-z. 

The  necessity is obvious since 1rxl~x and ¢ r r~ ' r  are independent  in 

X x Y. The  sufficiency stems f rom the fact that if ot -1 ~ x  and/3 -1 ~'v are in- 

dependent ,  then their composition is a field isomorphic to ~x×r and 

(~'~z,Ot-l,~X U [3-1~r,ld, z ,T )  ~ X X Y. 

Returning to the sequences {x.} and {y.} that were previously con- 

sidered, note that if X is the process defined by {x.} and Y the process 

defined by {y.}, then X and Y are factors of  the process defined by {x'.,y'.}. 

Hence if X and Y are disjoint, all the variables x'.  must be independent  of  

all the variables Y'n. Thus,  if X and Y are disjoint, the stationary sequences 

defined for X and Y respectively are absolutely independent .  In fact, 
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LEMMA 1.1. X and Y are disjoint i f  and only i f  whenever {x.} and {Yn} are 

stationary sequences defined for X and Y respectively, then {x,} and {y,} are 

absolutely independent. 

Proof: It  suffices to show that this condit ion is sufficient. Let  Z --% X and 

Z ~ Y, let zl be a variable def ined on  fiz and  measurable  with respect  to 

a - l ~ x  and let z2 be measurable with respect  to /3-1 aar. T h e  sequences 

{zl(T"~)}, {z2(Tn~)} are def ined for  X and Y respectively, so they are in- 

dependen t ,  and  so a -1 ~'x and/3 -1 ~ 'r  are i ndependen t  fields. Notice that  it 

suffices in fact to have absolute i ndependence  for  stationary sequences 

that take on only the two values 0 and 1. 

An impor tan t  l emma is the following 

LEMMA 1.2. Suppose as in the diagram we are given homomorphisms Xj -~ Y, 

X2 2_~ y. Then there exists a process Z with homomorphisms Z -~ Xi such that al~l = 

~2/32" 

Z 

X I X~, 

Y 

Proof: We assume as we may that fixi and  f i r  are compact  metric spaces 

and that the maps o~ are cont inuous  surjections. We write 11~ for  fix e/zi for  

/Zx r T o  define Z we set 

~'~ = {(O)1,0J2) ~ ~'~1 X ~-~2: O/1(0)1) ~-- 0/2(0.}2)} . 

f i  is a closed subset o f  fi1 )< fi~ and hence is compact .  T is def ined in f i  by 

T(tol,t02) = (Ttol,Tt02). Define/3i: f i  ~ l'l~ by/3i((01,0)2) = (ok. Clearly al/31 = 

a2/32 on fi. It follows that if we find a T-invariant measure  ~ on  f i  satisfying 

/3,(/~) =/x/ ,  then  (fi,/z,T) will define a process Z satisfying the requ i rements  

o f  the lemma. 

Such a measure  ~ represents  a l inear funct ional  L on C(fi)  satisfying 

(i) Lf  >! O if f t> 0 

(ii) L1 = 1 

(iii) L ( T f - - f )  = 0 where  Tf(to) = f ( T t o )  

(iv) L f = 0  i f f ( (o l ,  oJ2) = F (toi), where  f F  (toi)d/z,(toi) = 0. 

Conversely, if  a funct ional  L exists with these propert ies ,  it will de te rmine  

a measure ft as required.  Now condit ions (i), (iii) and (iv) describe elements  
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of C(1~) that must  lie in the half-space L ( f )  I> 0. From the Hahn-Banach 

theorem it follows that L will exist provided these elements be in a proper  

closed convex subset of  the space. This amounts  to the condition that  an 

inequality 

(l) f(t0],tO2) --f(Ttol,Tto2) + Fl(tol) + F2(t02) > C 1 > 0 

cannot be valid th roughout  fL if fFi(toi)dgi(toi) = 0 and f ,  F1, F2 are con- 

tinuous functions. 

Suppose (1) were valid. Apply T, T 2, • • • , T n to (1), and average the 

resulting inequalities. Since f is bounded  we find, for sufficiently large n, 

there exist functions F1 and F2 with 

(2) F,(0~,) + F2(,o~) > C2 > 0, 

where again fF~(o~) dgi(toi) = O. 

Let ~/ E l~r. For i = 1, 2 set Gi(~/) = inf  Fa(oJi), where the inf imum is 

taken over the set of  tat satisfying a~(toi) = ~/. Gi is lower semi-continuous 

and hence Borel measurable. Moreover G~(a,(oJ,)) ~< Fi(to0. Hence 

fGi(~) dgr(7/) ~< 0. On the other  hand,  since (2) is valid for all pairs 

(f.Ol,f.L}2) with al((.01) = C1~2(~02) , we see that GI(~/) + G2(~) /> C2 > 0. Hence 

f [G,('0) + G,,('O)] d/xr(~) ~> C2, which is a contradiction. This proves the 

lemma. 

The  lemma implies the following result for stationary sequences. Let 

{x',,,y',} and {3/',,z",,} denote composite stationary sequences with {y'n} 

isomorphic to {y',,}. Then  there exists a sequence {xn,y,,z,} with {x,,yn} 

isomorphic to {X'n,y',} and {yn,z,} isomorphic to {y",,z'~}. 

The  main application of  the lemma is in the p roof  of  the following 

P R O P O S I T I O N  I. 1. For i = 1, 2 let X~ ~ Y~ denote homomorphisms of proc- 

esses. Then X1 ± X2 implies Y1 ± Y2. 
Proof: It suffices to prove that Y1 and X2 are disjoint, for then, by the 

same token, Y1 and Yz will be disjoint. For this we consider the accompany- 

ing diagram. To  show that Y~ ± X2 we suppose Z is given with homomor-  

YI 

×2 

YI x X 2 
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phisms /31, /32. We wish to show that there exists a homomorph i sm 0: Z --* 

Y1 ~ X2 wi th /3~=  qJi0, the qJi denot ing projections. Apply the lemma to 

X1 --~ Y1 and Z --~ Y1; we obtain a orocess W with homomorphisms  8 and  Yl 
x • , 

such that alyl  =/318. Define T2 =/328. Consider the homomorph l sm W X~ 

and recall that X~ 3_ X2. We thereby obtain a homomorph i sm e with y~ = 

¢r#, the ¢ri denot ing projections. Finally the homomorph i sm ~9 is def ined by 

7/(sr,,s%) = (a~(~:l),S~2). We then find that the 4 triangles and  2 quadri-  

laterals in the diagram are commutative.  We now claim there is a unique 

homomorphism 0: Z -~ Y~ × X2 that  satisfies 08 = "OE. The  uniqueness o f  0 

follows f rom the fact that 8: ~w --* l-/z is onto; hence 0 is de termined by 08. 

For the existence of  0 we must show that if to, to' E ~ ~w and 8(to) = 8(to') 

then age(to) = ~/e(t0'). But any map ~, into l-~y, × f r~  is de termined by qJl~ 

and qJ2~0, and qJiagE =/3~8 by the commutativity of  the diagram. The  same 

a rgument  applied to measures ra ther  than points shows that the map 0 is 

in fact measure-preserving, i.e., a homomorphism.  This gives us the de- 

sired homomorph i sm 0. Namely, as before,/3i are de termined by/3i8, and 

/3i8 = t~iage = t~i08 whence/3i = qJ~0, as was to be shown. 

An immediate  consequence of  this proposition is 

P R O P O S I T I O N  1.2. I f  two processes are disjoint they can have no non- 

trivial factors in common. 

Proof: I f  X~ 3_ X2 and Xi -~ Y, then Y is disjoint f rom itself. This implies 

that Y is trivial, i.e., that f r  may be taken as a one-point  space. For if Y 3_ Y, 

then the identity homomorph i sm Y ~ Y induces a homomorph i sm Y 

Y × Y which maps f / r  onto the diagonal of  f r  × fir- T h e n  the measure 

/£r  × ~£y is concentrated on the diagonal of  ~'~y × ~'~y, which implies tha t /z r  

reduces to a single point mass and Y is trivial. 

Accordingly, a necessary condit ion for disjointness of  two processes is 

that they possess no common factors. It would be important  to know if this 

condition is also sufficient, as it would facilitate a number  o f  the results 

which we shall obtain. A result of  this kind is in fact valid for other  cate- 

gories. For example, we may say that  two groups G~,G2 are disjoint if  when- 

ever there exist epimorphisms ot~:G --~ Gi, then there exists an epimorphism 

T:G ~ G 1 x G 2 with at = ~'iY as before. In this case it is quite easy to show 

that two groups are disjoint if  and only if they have no common factor 

groups. Incidentally, here we must  specify that  the maps are onto, a stipu- 

lation that was not made for processes. The  reason is that  for  processes it 

follows automatically that homomorphisms  are onto f rom the requirement  

that the under ly ing map be measure-preserving. 

The  following two open problems are suggested by this analogy, as 

also by the analogy with ord inary  arithmetic. 

Problem A: I f  two processes have no common non-trivial factors, are 

they disjoint? 

Problem B: Does X _L Y~, X 3_ II2 imply X 3_ (I"1 × II2)? 
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3. Classes o f  Processes .  We present  a list o f  some major  classes of  proc-  

esses. T h e  list is by no means  exhaustive;  we have given priori ty to those 

classes o f  processes to which the concept  o f  disjointness may  be fruitfully 

applied.  In  the sequel, if cg denotes  a class of  processes,  cg~ will denote  the 

class of  all processes disjoint f r o m  all the processes o f  cg. 

(A) Bernoulli  Processes. X is a Bernoull i  process, or  X E ~ ,  if  X is the 

process def ined by a s tat ionary sequence x,  whose variables are  i ndepend-  

ent. A Bernoull i  process may  always be r ep resen ted  by f o r m i n g  the in- 

finite p roduc t  o f  a measu re  space (A,~C,v) with itself, 1"1 = A x A x A x • . • 

and  setting T(~,~,2,~3, • • ") : (~2,)~3,X4, • • "). A bilateral Bernoull i  process 

may be obta ined similarly by sett ing l-I . . . .  x A × A x A x • • • . 

(B) P inske r  Processes .  T h e  class ~ is conta ined  in the class o f  Kolmo-  

gorov processes. We 'shall have no th ing  to say r ega rd ing  these, so we r e fe r  

the r eade r  to [13] for  their  definition. (In Rokhlin 's  terminology,  one 

speaks of  Bernoull i  automorphisms and Ko lmogorov  automorphisms.) This  

class in turn  is conta ined  in a class, also def ined  in [13],  whose m e m b e r s  

we shall call Pinsker processes. In  [ 13] they are r e f e r r ed  to as a u t o m o r p h i s m s  

o f  completely positive entropy. O u r  definition, however ,  makes  no re fe rence  

to the notion of  en t ropy.  

Defini t ion 2. A stationary sequence {xn} is determinis t ic  i f  xl  is measurable 

with respect to the o'-field generated by the variables x2,x3,x4, • " • • 

In  general  a process will possess determinis t ic  s tat ionary sequences.  For  

example ,  suppose  {y,,, - ~ < n < 00} is a s ta t ionary sequence def ined for  a 

bilateral process X such that  y,  takes on only the values 0 and  1. Let x,, = 

X~y,_j2 -j-1. T h e n  x,  is the fractional  par t  o f  2x0+1 so that  {x,} is de te rmin-  

istic. However ,  f in i te-valued determinis t ic  s tat ionary sequences need  not 

always exist. 

We now say that  X is a Pinsker process, X E ~ ,  if a s ta t ionary finite- 

valued sequence def ined for  X mus t  be  trivial (i.e., x,, = const  with prob-  

ability 1) if  it is deterministic.  I t  will develop  present ly  that  ~ C ~', i.e., 

that  Bernoull i  processes have this p roper ty .  In  o the r  words,  if  {x,} is a 

s tat ionary sequence o f  i n d e p e n d e n t  variables and  the sequence {Yn} is 

obta ined by sett ing y,, = f (. • • ,x,,,x,+~, • • .) for  some measurab le  funct ion 

f w i t h  a finite range,  then  {y,} is not determinis t ic  and  a re la t ionship o f  the 

f o r m  y,  = F (y,+l,yn+2, " " " )  cannot  subsist. 

(C) De te rmin i s t i c  Processes .  On  the opposi te  end  of  the spec t rum are 

processes with the p rope r ty  that  every s ta t ionary sequence def ined for  t hem 

is deterministic.  ( I f  this is t rue  for  all f inite-valued sequences,  it is also t rue  

for  all sequences.) We call such processes deterministic and designate  the 

class o f  all determinis t ic  processes by ~.  Clearly ~ f3 ~ consists o f  the 

trivial process. 

(D) Ergodic  Processes .  ~ will designate  the class o f  all ergodic  proc- 

esses. We recall that  X is ergodic  if  the condit ion TA C A for  A @ ~-x im- 

plies I.~x(A) = 0 or  1. We recognize readily that  ~ C ~ and  ~' C 4. 
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(E) Mix ing  Processes.  T h e  following fou r  proper t ies  o f  a process X 

are equivalent: 

(i) T h e  equat ion Tx = kx with x measurable  over  ~ x  has only the solu- 

tions )t = 1, x = const, or  x = 0. 

(ii) X x X  E 4. 

(iii) X x 4  C 4. 

(iv) I f  tk,~0 E L2(Ox, Yx,iZx) then for  each ~ > 0, the sequence {nk} for  

which I ( ~ l , T n k ~ o )  - -  (~b, 1 ) ( 1 40)1 > E satisfies nk/k --> ~. 

I f  X satisfies any o f  these proper t ies  it is called weakly mixing. We then  

say X ~ ~ .  

T h e  equivalence o f  (i), (ii) and (iv) is well known (see [0]) and clearly 

(iii) implies (ii). It is apparent ly  not  well known that the usual definit ion of  

weak mixing implies (iii), so let us give a p roo f  that (iv) implies (iii). 

P R O P O S I T I O N  1.3. I f  X satisfies (iv) and Y is ergodic, then X x Y is ergodic. 

Proof: Since (B) shows that Z = X x Y is ergodic,  it suffices to show that 

if z is an LZ-variable def ined for  Z, then  (N +4)-1  Eu  T"z converges weakly 

to a constant. T o  show this fo r  all such z it suffices to consider  z o f  the for  m 

z(~,B) = x(~)y(ag). Fur the rmore ,  in proving weak convergence,  it suffices 

to consider  inner  products  with functions o f  the same form.  Thus ,  what  is 

to be shown is that 

1 x 
(3) N +  1 ~] (T"x , x ' ) (T"y , y ' )  ~ ( x ,1 ) (1 , x ' ) ( y ,1 ) (1 , y ' )  . 

o 

I f  we could replace (T"x,x ' )  by (x ,1) (1 ,x ' )  in the left side o f  (3), then  the 

result would be immediate ,  since (N + 1)-1 E Tny ~ (y,1) by ergodicity o f  

Y. However ,  according to (iv), the e r ro r  in this rep lacement  tends to 0 as 

N ~ ~. This  proves the proposit ion.  

We ment ion in passing that ~ contains the class o f  strongly mixing 

processes which in tu rn  contain those that are strongly mixing of every order. 

T h e  definitions may be found  in [13].  It is also known that the processes 

in 9 and ~ are strongly mixing o f  every order .  In part icular  9 , ~  e ~t. 

T h a t  9 C ~ may be seen as follows. It is clear that 9 x 9 C 9 .  Since 9 C 4, 

it follows that for  X E 9 ,  X x X E 4 and so X E ~ by (ii). It is also quite 

easy to show, using (i), that  ~ C ~ but  this will also appea r  as a conse- 

quence  then o f  o ther  considerations.  

(F) K r o n e e k e r  P r o c e s s e s .  Let 1"1 be a compact  g roup  and let z E 1~ be 

an e lement  with the p roper ty  that it is not  conta ined in a p r o p e r  closed 

subgroup  o f  I-L Let  ~ deno te  Haa r  measure  on  [1. T h e n  def ining the trans- 

format ion  T on  l-I by To = ~-~0, we obtain a process X = (fl,/~,~'). A process 

obta ined in this way will be called a Kronecker process and the class o f  these 

will be deno ted  Y{. Kronecker  processes are never  weakly mixing. For, if 

X is a character  on fl, then T×(oJ) = X(Z)X(oJ). On the o the r  hand,  a Kro- 

necker  process is necessarily ergodic.  For, if E exx is the expansion o f  an 

invariant  L2-function, then e x = x('r)e×. Hence  c x ~ 0 implies X(~-) = 1. But  

{¢o:X(tO) = 1} is a closed subgroup,  so that c x # 0 implies X -= 1. 
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(G) Weyl  Processes.  Kronecker  processes are special cases o f  Weft 

processes. T o  define the latter we require  the notion o f  a g roup  extension. 

Defini t ion 3: Let  G be a g roup  of  measure-preserv ing  t ransformat ions  

o f  the under ly ing  measure  space (l-~x, ~x,iZx) of  a process X. Denote  the 

action o f  G by ~: --> ~¢g, and assume that G commutes  with T so that (T~)g = 

T (~:g). We suppose that (~:,g) ---> ~:g de termines  a measurable map  f rom 

l-Ix × G to l'lx. Let ~ v  deno te  the o--field o f  all G-invariant sets. T h e n  if 

Y = (l-Ix, Yv,tZx), we say that X is a g roup  extension of  Y and we write 

Y = X/G. 

T o  illustrate the notion,  let l-Ix be a 2-dimensional torus: ~x  = { (~1,~2), 

]Ca [ = 1~21 = 1 },/Zx Haar  measure  on fix, and define T by 

where  ~0 denotes  a measurable funct ion f rom the circle to the circle. I f  we 

take G to be the g roup  of  rotations (~1,~) --* (~l,ein~2), then G commutes  

with T. We see that X is a g roup  extension o f  the Kronecker  process in the 

circle def ined by rotat ion by a .  Processes of  this kind were studied in [4]. 

Note that Kronecker  processes are also g roup  extensions o f  the trivial 

process. Conversely, it is easily seen that an ergodic  g roup  extension o f  the 

trivial process is a Kronecker  process. 

We now define the class ~ of  Weyl processes as the smallest class o f  

processes satisfying the following three  conditions: 

(i) T h e  trivial process belongs to ~ .  

(ii) A factor process o f  a process in ~ is again in ~ .  

(iii) An ergodic g roup  extension o f  a process in ~t ~ is in ~F'. 

Ou r  nomencla ture  owes its origin to the fact that a celebrated equidis- 

tr ibution theorem of  Weyl (if p(n)  is a polynomial  in n with an irrational 

coefficient, its values are equidistr ibuted modulo  1) may be deduced  by 

studying a part icular  Weyl process. 

4. Ent ropy .  For  details regard ing  the contents of  this section the r eade r  

is r e f e r r ed  to [ 10]. We shall briefly summarize  the basic results that we 

shall need.  I f  ~ is a finite field o f  measurable sets in a measure  space, it 

possesses a quanti ty of  in format ion  H(~ ' )  def ined by 

1 
H ( ~ )  = Xp~ log - - ,  

pi 

where  the p~ are the probabilities of  the atoms o f  Y. Given two fields we 

find that 

(4) H ( ~ I ) ,  H ( ~ 2 )  ~< H ( Y ,  Y :~2) ~< H ( ~ )  + H ( ~ 2 )  . 

I f  we define H ( ~ 2 / ~ l )  by H ( . ~  V : ~ )  - H ( ~ I ) ,  then 

(5) 0 <~ H ( ~ 2 / ~ 1 )  <~ H(~2)  
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In (4) we can show that equality holds on the left for H(~'I)  only if ~'1 = 

~'1 V Y2, i.e., if ~'a C Yl. Also equality holds on the right only if ~a and 

~z are independent. Thus H(3r2/Yl) = 0 implies ~'2 C ~'1, and H(Y2/~'I) = 

H(~'2) implies ~'2 is independent of  Yl. The function H(~'2/Yx) is mono- 

tonic in both variables, but increases as ~z increases while it decreases if 

~'1 increases. Hence it may be defined for Y~ an arbitrary field, as long as 

:~2 is finite. With these stipulations H(°JZ/Yl) satisfies the foregoing condi- 

tions; it is an increasing function of  Yz, a decreasing function of  ~'1, 

H ( ~ z / ~ I )  vanishes only i f~ 'z  is contained (modulo null sets) in ~'1, and 

H(Y2/~'I) = H(Yz) only if ~'2 is independent of  ~'~. We also have 

(6) H ( . ~ / . ~ I ) , H ( ° - ~ ' ~ [ . ~ g l )  ~< H(~"2 V °.°~'r2/.~l) ~ H(.~/°~'1) -I-H(~"~/.~I) 

Given a set of  random variables in a measure space, there is determined 

a least o'-field with respect to which they are all measurable. If  ~rl is the 

field determined in this manner by {x~} and ~'2 the field determined by 

{YB}, we shall write H ( { y ~ } / { x ~ } )  in place of  H(~-2/P'I). So i f y  is a finite- 

valued random variable, then H ( y / { x ~ } )  is always defined and finite. It will 

vanish only if y is a function of  the x~, and it will equal H ( y )  only if y is 

independent of  the x~. 

Now let {xn} denote a stationary sequence of  finite-valued random vari- 

ables. We define the entropy of the sequence, by 

(7) e({xn}) = H ( x l / x 2 , x 3 , x 4 ,  • • ") 

Note that 

H ( x l ,xz , " " " , x .  ) = H ( x 2  , " " " , x .  ) + H ( X l / X2 , • " • , X n  ) 

I1--1 

= ~ H ( x d x , + l ,  " " " , x , )  + H ( x , )  
1 

n 

= ~ H ( x l l x 2 ,  " • " ,xj) + H ( X l )  
2 

by stationarity. Dividing by n and using the monotonicity of  H ( x l / x 2 ,  " • • ,  x j )  

we find that 

(8) e({x,}) = lim H ( x l , x 2 , ' ' "  , x , )  
n - - ~  a0 n 

By (8) we see that 

(9) E({xn}), ~({yn}) ~< ¢ ( { X n , y n } )  <~ ~({Xn}) + E({yn}) • 

Now let X be a process. We define ~(X) as the l.u.b, of  the entropies of  

all finite-valued stationary sequences defined for X. 
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T h e  following result  is due  to Sinai [ 10]; 

P R O P O S I T I O N  1.4. I f  X is the process defined by a finite-valued stationary 

sequence {x,}, then ~(X) = ~({xn}). 

T h e  notion of  en t ropy  gives a simple characterizat ion o f  the classes 

and ~: 

P R O P O S I T I O N  1.5. X E ~ i f  and only i f  ~(X)  = O, and X E ~ i f  and only 

i f  E(Y) > O f o r  every non-trivial factor process Y of  X .  

Proof" A deterministic finite-valued sequence clearly has en t ropy  0 by 

(7). Conversely, if  a sequence has en t ropy  0, it must be deterministic since, 

as has been remarked ,  H(x l / °S )  = 0 only if xl is measurable with respect  

to ~'. Since a Pinsker process possesses no deterministic finite-valued 

sequences, its en t ropy  must be positive. But a factor process o f  a Pinsker 

process is clearly again a Pinsker process, so the proposi t ion follows. 

An impor tan t  consequence of  Proposit ion 1.4 is that a deterministic 

finite-valued sequence defines a deterministic process. It is not a priori 

clear that if X is the process def ined by a deterministic finite-valued se- 

quence,  then every sequence def ined for  X is deterministic. But, according 

to Proposit ion 1.4, ~(X) = 0, and so E({y,}) = 0 for every {y,} def ined forX.  

5. Entropy and Disjointness 

T H E O R E M  1.1. Two processes with positive entropy cannot be disjoint. 

Proof" By Lemma I. 1, it suffices to prove that two stationary sequences 

with positive en t ropy  cannot  be disjoint. Moreover ,  by the r emark  follow- 

ing Lemma I. 1, it suffices to do this for  stationary 2-valued sequences. So 

suppose {x,}, {y,} have positive en t ropy  and take on only the values 0, I. 

Let us show that we can form a stationary sequence { x * , y * }  with {x*} 

isomorphic to {x,}, {y*} isomorphic  to {y,} but  with {x*} not  independ-  

ent  o f  {y*}. T h e r e  will be no loss of  generality if we suppose that the 

sequences are indexed f o r - w  < n < ~. 

Let  ~2 deno te  the space o f  all binary sequences: ~0 E 1~2 if co = (. • • , 

0J-z,~0_l,0J0) with o~ = 0, 1. Let ~x denote  the measure  on 1~2 represent ing  

the distribution o f  the ~2-valued r a n d o m  variable (- • • ,x-2,x-l,Xo), and 

let ~v denote  the distribution o f  (" • • ,Y-2,Y-I,Yo). Let ( I ,m)  denote  the 

under ly ing  measure  space o f  the Bernoulli  process def ined by a sequence 

tl,t2, • • • when the ti are i ndependen t  and uni formly  distr ibuted in [0, 1]. 

Form the measure  space 

(~t*,/~*) = (D2 x Dz x I,/Xx x / x r  x m) . 

(The  spaces being compact  metric, we have suppressed the o--field.) 

T h e  condit ional probabilities P (Xl = 1/Xo,X-1, " " "), P (yl = 1/yo,y- 1, • " • ) 

are def ined almost everywhere  on (D2,/zx) and (D2,/Xr) respectively. We can 

the re fo re  define the following funct ion on [0, 1] x D2 x D2: 

f l  i f t  < P ( x l  = i /xo,x_, ,  " " ") 

(10) F(t's~'~) = ].0 if t >i P(Xl  1/Xo,X-l, ") , 
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w h e r e  the  cond i t iona l  p robab i l i ty  is to be  e v a l u a t e d  at  ~:. S imi lar ly  we set  

{10 if  t < P ( y l  = 1 / y o , y - l ,  " " ") 

(11) G(t's~'~/) = _ i f t  t-- P ( Y l  = l / y o , y - a ,  ) , 

with the  cond i t i ona l  p robab i l i t y  e v a l u a t e d  at  7/. 

W e  now def ine  a s e q u e n c e  o f  var iab les  on  (l-~*,lx*) which  we d e n o t e  

( x * t , y * ) .  W e  de f ine  the  var iab les  x * , y *  fo r  n ~< 0 by x*(~:, 'q,T) = ~ ,  

y * , , ( ~ , 7 1 , r )  = "q,. Also the  var iab le  tn fo r  n > 0 is d e f i n e d  by  t,(~:,7/,~') = ~-,. 

T o  de f ine  x * , y * ~  we p r o c e e d  induct ively .  N a m e l y ,  we set  

(12) 
3g:~n+l 

Y*n+l ~--- 

F( t ,+ , ;  ( - - - , X n - l , X , , ) ,  ( ' ' "  , y n - l , y , )  ) 

G(t,+~; ( - ' '  , x , , - , , x n ) ,  ( ' ' "  , Y n - l , Y n )  ) .  

W e  cla im tha t  by p r o c e e d i n g  in this m a n n e r  we ob ta in  s equences  {x*} ,  

{y*}  i s o m o r p h i c  to {x,},  {Yn} respect ive ly .  Because  o f  the  s ta t ionar i ty  o f  

the  def in i t ion  (10), it suffices to p r o v e  tha t  {- • • , x _ ~ , X o , X l }  is i s o m o r p h i c  to 

{"  • • , x * - ~ , X * o , X * a } ,  a n d  s imi lar ly  fo r  the  Yn- T o  c o m p u t e  a typical  expec t a -  

t ion invo lv ing  these  var iables ,  it suffices to c o n s i d e r  func t ions  o f  the  f o r m  

x l q J ( X o , X - l ,  " • ") a n d  X * l q J ( X * o , X * - l ,  • • ") = x * l t O ( X o , X - 1 ,  • • " ) .  T h e  expec t a -  

t ion o f  the  f o r m e r  is E [ P ( x ~  = 1 / X o , X - 1 ,  • • " ) ¢ ( X o , X - 1 ,  • • - ) ] ,  a n d  tha t  o f  

the  la t ter  is E [ F ( t l ;  • • • ,x_~,x0, • . .  , y - l , Y o ) q J ( X o , X - a ,  • • ")] .  T h e  var iab le  

ta is i n d e p e n d e n t  o f  all the  o t h e r  var iables ,  a n d  so the  la t ter  e x p e c t a t i o n  

b e c o m e s  

E (t; " " " , x - l , X o ,  • • • , y - l , y o ) q J ( X o , X - l ,  " " " ) d t  

= E [ P ( x ,  = l / x o , x _ , ,  • • ") q J ( X o , X , ,  • • ")  ] , 

by (10). T h e  s a m e  a r g u m e n t  ho lds  fo r  the  y , , ,  a n d  the  i s o m o r p h i s m  be- 

tween  the  s t a r r e d  a n d  u n s t a r r e d  s equences  is es tabl i shed.  

W e  nex t  c la im tha t{x* ,}  a n d  {y*,} a re  no t  i n d e p e n d e n t .  I n  fact ,  were  

they  i n d e p e n d e n t  t h e n  E ( x * ~ y * ~ / x o , Y o , X - l , y - 1 , "  • ") would  be g iven  as the  

product E ( x * l / X o , x _ l ,  • • . ) E ( y * l / y o , Y _ l ,  " • ") : But  

E ( x * l y * J x o , y o , x - l , y - l ,  " " ") = 

E [ F (t; • • • ,x-l ,x0, • • • , y _ i , y o )  G (  t ;  • • • , X - l , x o ,  • • • , y - , , y o )  / X o , Y o ,  • • "] = 

m i n  { P ( x ~  = 1 ] X o , X _ ~ ,  • • . ) ,  P ( y a  = 1 / y o , y _ , ,  • • • ) } .  

O n  the  o t h e r  h a n d ,  the  p r o d u c t  r e f e r r e d  to is s imply  P ( x l  = l / x o , x - 1 ,  • • ")  x 

P ( Y l  = 1 / Y o ,  Y - l ,  " " " ) .  Set t ing  u = P (xl = 1/xo, x _ ~ ,  • • . ) ,  v = P ( y l  = 1 / Y o ,  Y - l ,  

• • ") we ob ta in ,  a lmos t  e v e r y w h e r e ,  u v  = m i n  {u,v}. S u p p o s e ,  with pos i t ive  

probabi l i ty ,  0 < u < 1, 0 < v < 1; this is i n c o m p a t i b l e  with u v  = rain  {u,v}. 
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Hence  if u is nei ther  0 or  1, then v must  be e i ther  0 or  1. On the o the r  hand,  

u and v are independent ;  hence ei ther  u takes on only the values 0, 1 or v 

takes on only these values. But if, say, u = 0, 1 with probabili ty 1, then  {xn} 

is deterministic. By hypothesis,  E({xa}) > 0 and ~({Yn}) > 0, and so we 

conclude that {x*} and {y*} are not  independent ;  hence {xn} and {Yn}  

are not absolutely independent .  This proves the theorem.  

T h e r e  are concrete  examples o f  processes with positive en t ropy  where  

the conclusion i3f the t heo rem is not  evident. For example,  let A and B be 

respectively m- and n-dimensional  un imodula r  matrices with eigenvalues 

distinct f rom roots o f  unity. T h e n  letting K m and K" deno te  tori o f  di- 

mensions m and n ,  ( K I n , A )  and ( K " , B )  de te rmine  processes o f  positive 

en t ropy  with respect  to Lebesgue measure  (see [ 13]). Hence  they are not  

disjoint, and there  exists a measure  on  K '~+" invariant with respect  to 

A ~ B which projects into m- and n-dimensional Lebesgue measure  u n d e r  

the projections onto  the first n and last n coordinates,  but  which is distinct 

f rom (m + n)-dimensional Lebesgue measure.  It would be o f  interest  to 

construct  such a measure  directly. 

COROLLARY: ~± C 3 a n d  ~ "  C 3 .  

Proof." I f  Y ~ ~ or Y E ~, E(Y) > 0. Hence  i fX  3_ Y, then a(X) = 0, or  

X E 3 .  

6..~_L = 3 .  To  identify ~ l  with 3 we must  still show that ~' and 3 are 

disjoint, i.e., that every Bernoull i  process is disjoint f rom every deter-  

ministic process. By Lemma  I. 1, it suffices to show that every finite-valued 

Bernoull i  sequence is absolutely i ndependen t  o f  every finite-valued 

deterministic sequence. 

Let {x,} deno te  a finite-valued Bernoull i  sequence, {y~} a finite-valued 

deterministic sequence. From §4 (9) we obtain 

(13) e({xn}) ~< e ( { x n , y n } )  ~ e({xn}) + ~({y,}) = e({x,}) , 

since ¢({Yn}) = 0. Also ~({x,}) = H ( x l ) ,  the x,  being independent .  So 

e({x,,yn}) = H ( x O .  By §4 (7), 

( ( x . , y . } )  = H ( x l . y , / x ~ , y 2 , x 3 , y 3 ,  • • ")  , 

so by §4 (6), 

H ( x O  <~ H ( x # x 2 , Y 2 , X 3 , y 3 ,  • • ") + H ( y l / x 2 , y 2 , x 3 , y 3 ,  • • ") • 

Now H ( y l / y 2 , y 3 ,  ' " ") = 0 and, a f o r t i o r i ,  H ( y l / x 2 , y z ,  • • ") = O. Hence  

H ( x l )  <- H ( x , / x e , y 2 , x 3 , y 3 ,  " " ") <~ H ( x , )  

by §4 (5). But  this implies that xl is i ndependen t  o f  the field genera ted  by 

y2,Y3, " " " which is the field genera ted  by all the Yn. Thus  each individual 
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xm is i ndependen t  o f  {Yn}. T h e  same a rgumen t  applied to the sequence o f  

variables ( x l , x 2 , ' ' "  , x r ) ,  (xr+l ,xr+z,"""  ,Xz~), " " • shows that the ent i re  

sequence {x.} is i n d e p e n d e n t  o f  {y.}. We have thereby proved  

T H E O R E M  1.2. :~± = 9 .  

C O R O L L A R Y :  ~ C 9 °. 

P r o o f :  Since ~ 3_ 9 it follows that ~ C 9 ±. We claim that  9 ± C ~. For, 

if X is disjoint f rom all determinist ic processes, it cannot  (by Proposit ion 

I. 1) possess a determinist ic factor  process. So it cannot  possess determinis-  

tic stationary finite-valued sequences since these define determinist ic 

processes (see the end  o f  §4). This  proves the corollary. 

According to Rokhlin [ 13], a result  has been p roved  by Pinsker which 

is t an tamount  to the s ta tement  that ~ 3_ 9 .  This  implies that 9 ± = ~. For  

we saw that 9 ± C P, and  ~ 3- 9 implies that P C 9 ±. We thus have the 

relationships 

(14) ~± = 9 ,  (~±)± = ~ .  

We note  that if  the answer to Problem A in §2 is affirmative, then it is clear 

that  ~ 3_ 9 .  For  factors o f  Pinsker processes are Pinsker processes and 

factor  o f  determinist ic processes are deterministic,  and  we have already 

r emarked  that ~ f] 9 is trivial. 

T h e  result ( ~ ' ) ±  = P suggests ano the r  problem. For  any class cg, ~g±± 

not only contains ~g but  it contains all factors o f  all processes in cg. This  

suggests 

P r o b l e m  C.  Let ~ *  deno te  the class of  all factors o f  Bernoull i  processes. 

T h e n  

~ C ~ * C ~ .  

Are e i ther  or  both o f  these inclusions actually equalities? 

T h e  possibility that ~ = ~ exists only in the bilateral case. T h e  station- 

Markov chain x l , x 2 , x 3 ,  • • • with transition matr ix  t ~ q) ,  

k 

ary 
q P  p + q = l , p #  

V2, de termines  a Pinsker process which is not  a Bernoull i  process. It has not  

been shown that the b i la t e ra l  sequence • • • , x - l , X o , X l ,  • • • does not  define 

a Bernoull i  process. 

7. D i s jo in tnes s  and  Weak ly  M i x i n g  Processes .  

T H E O R E M  1.3. ~ = • ±  N 4. 

P r o o f :  We first show that an ergodic  process which is disjoint f rom all 

Kronecker  processes is weakly mixing. I f X  is not  weakly mixing, there  is a 

measurable  non-trivial solution to T x  = kx on f~x- Inasmuch as T is mea- 

sure-preserving,  i x  and x have the same distribution, so that Ih] = 1. By 

ergodicity Ixl is constant,  and we may assume Ix] = 1. T h e n  x is a measur-  

able map  o f  l lx to the circle K. Let  Y deno te  the process on K def ined by the 
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t ransformat ion ~ ~ h~ and whose measure  is the image u n d e r  x o f  IZx. 

T h e n  X ~ Y. Since Y is ergodic, /~y is e i ther  Lebesgue measure  or  is con- 

cent ra ted  at the vertices o f  a regular  polygon. In  e i ther  case Y is a Kro- 

necker  process and we cannot  have X 3- Y{. 

T o  complete  the p r o o f  o f  the theorem we must  show that  ~g 3- Yr. This  

is a consequence o f  the following s t ronger  result: 

T H E O R E M  1.4. ~g ,L ,~. 

Proof: In §3 (G) we def ined ~F as the smallest class of  processes satis- 

fying (i), (ii), and (iii). T o  prove the theorem it will suffice to prove that 

~ ±  satisfies (i), (ii) and (iii) of  §3 (G). Now (i) and (ii) are satisfied by any 

class of  the fo rm if ' ,  so what remains is showing that ~-L is closed u n d e r  

passage to ergodic  g roup  extensions. Suppose  then  that Y = X/G, that X is 

ergodic,  and that Y 3_ ~ .  We wish to show that  X 3_ ~ .  Choose IV ~ ~ ,  and 

suppose we have Z --%X, Z ~ IV. Define the map  (~ x/3): ~qz---~ l~x x I~w by 

(o~ x / 3 ) ( 0  = ( ~ ( ~ ) , , ~ ( ~ ) )  • 

Now zrx(ct x/3)  = a,  zrw(ol X/3) =/3;  hence in o rde r  to prove  that X _L W, 

it suffices to show that a x /3  defines a h o m o m o r p h i s m  of  Z on X x IV. For  

this it is only necessary to show that (or x fl)(iZz) = I.tx x P.w. I f  we let/z* = 

(a  x fl) (/Zz), t hen /z*  is a measure  on  ~x  x ~w satisfying 

(a) f f (e,o,) dlz*(~,oJ)= f f(e,o,) dlzx( ) d/xw(tO), 

where  f(-,o~) is measurable with respect  to f ' r ,  and  

(b) T/x* =/z* .  

T h e  reason that (a) is satisfied is that Y 3- IV. Hence /z*  when restricted to 

functions on f i r  x flw reduces to a p roduc t  measure.  We wish to show that 

/Xx ×/Xw is the only measure  satisfying (a) and (b). 

For  any measu re / z  on ~x  × f~w and g E G, let/zg deno te  the measure  

satisfying 

f f (~,oJ) dlzg(~,oJ)= f f (eg,o ) dlz( ,oJ) . 

Let qJ(g) deno te  b o u n d e d  measurable funct ion on G, t h e n / ~  will be de- 

fined by 

(15) f f (¢,o,) = f. f f 

C l e a r l y / 4  is absolutely cont inuous  with respect  to/ .q.  Suppose /z  satisfies 

(a) and (b). We shall show that ix1 coincides with/Xx x/Zw. By (15), 

f f (#,o~) dlz,(~,o~) = f F (#,o~) dt~(~,o~) , 

where F(~:,oJ) = f~f(~g,oJ) dg. Hence  F(~g,o~) = F(~:,o~) for  g ~ G and 
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so F (',ca) is measurable with respect to ~'y. By (a) it follows that/Zl =/~x × 

/~w. Now W E ~ and X C ~'. Hence X × W E g', and (l~x x f~w,/zi,T) is 

ergodic. As we have remarked,  the measures /z ,  are absolutely continuous 

with respect to Wl; since they are also T-invariant by (b), it follows that W = 

( f # ( g )  dg)/zl. This implies that  almost all the measures V.g are identical 

with /zl = /~x  x V,w, and  since the latter is G-invariant we conclude that 

=/Zx × V.w. This completes the p roof  o f  the theorem. 

C O R O L L A R Y  1. Weyl processes are deterministic. 

Proof: By theorem 1.2, 2 = ~ ± .  N o w ~  C J¢ implies t h a t ~  -L C ~ ± = 2 .  

Finally, ~ C ~ implies ~ C 2.  

COROLLARY 2. Pinsker processes are weakly mixing. 

Proof: In the p roof  o f  Theo rem 1.3 we saw that  if an ergodic process 

is not mixing, it has a Kronecker  factor. But YF C ~ C 2 ,  so such a process 

contains a deterministic factor. But a Pinsker process cannot  contain a 

non-trivial deterministic factor; hence ~ C ~ .  

8. Relat ions A m o n g  Classes. For the reader'~ convenience we assemble 

here the relationships between the various classes of  processes we have 

introduced. 

(a) ~ C ~ C ~e C 4; 

(b) x C ~ C 2 ;  

(c) ~'± = 2 ± C ~'; 

(d) x ± N g = ~ ; J 4  ± D ~ ;  

(e) The  classes :~, ~ ,  ~ ,  and 2 satisfy cg × c¢ C (~; 

(f) The  classes ] ,  .g,  ~f, 7¢, 2 ,  ~" are closed unde r  passage to factors. 

All of  these have either been proven or are self-evident with the ex- 

ception of  

(i) ~ × ~ C 7~; (ii) 2 × 2 C 2;  (iii) A factor process of  a Kronecker  

process is a Kronecker  process. 

(i) follows f rom the inductive definition of  ~ .  Namely the class of  

processes X satisfying X × ~ C ~ clearly satisfies the conditions of  §3(G). 

Hence 7¢ is contained in this class. (ii) follows by virtue of  the fact that 

E(X × Y) --- E(X) + E(Y). (iii) follows f rom the characterization of  Kronecker  

processes as ergodic processes with discrete spectrum. 

9. Disjointness and  Filtering. The  problem of  filtering for  stationary 

sequences may be described as follows. We suppose given a composite 

stationary sequence (x.,y.} in the sense that  all the jo in t  distributions be- 

tween all sets of  variables are known. {xn} is to represent  a "signal" and 

{y~} the "noise". The  problem is to find a function of  the sequence (xn + Yn} 

which comes as close as possible to a specified variable xm. In particular we 

may ask under  what conditions is each xm itself a (measurable) function of  

{x. + y.}? In other  words, when will it be the case that the (r-field spanned 

by the variables {x. + yn} contains that spanned by {xn} (and hence also 

that spanned by (y~}, since Yn ---- (x. + y.)  - xn)? 
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Let us reword  this in the terminology o f  processes. Let  U deno te  the 

process def ined by the variables {x, ,y,} and V the process def ined by {v,}, 

where  v, = x,  + y,. Ostensibly V is a factor  process o f  U. We seek conditions 

u n d e r  which the h o m o m o r p h i s m  U ~ V is actually an isomorphism. 

P R O P O S I T I O N  1.6. Let U --% V denote a homomorphism of processes. I f  a 

is not an isomorphism, there exists a process IV and there exist distinct homomor- 

phisms IV ~ U, IV ~-~ U such that a l l  = aft,,. 

W U ; , V  

Proof." We assume (see §1) that l~v, l-Iv are compact  metric spaces and 

that a is a cont inuous map of  f~e onto  flv. Consider  the condit ional expec- 

tation E( ' / a - l (~v ) )  as an opera to r  on b o u n d e d  measurable functions on 

De. It is not  ha rd  to show that this opera to r  has a "kernel".  This means 

there  is a measurable  function/zo~ def ined almost everywhere  on  l~e and 

whose values are themselves measures on Dv such that 

<16) E ( f / a - ~ ( / v ) )  (co) = f f ( co ' )  dt*+(co') 

almost everywhere.  T h e  funct ion has the following propert ies:  

(a) /-~,o is a probability measure  with suppor t  in the set of  co' satisfying 

a(~o')  = a(0~) ,  

(b) ~T,~ = T/-t<o, 

(c) (16) is satisfied whenever  f(oJ ' )  is a cont inuous funct ion on fl~ 

For the construct ion o f  the funct ion/z~ we re fe r  the r eade r  to [4, p. 592]. 

Define f~w to be the closed subset in f ie  × f~v o f  pairs o f  points satisfying 

c~(c01) = a(c02). We let tim and f12 denote  the two projections o f  ~w onto  ~u- 

Clearly afli -- aft2. T is def ined in Dw in the usual manner .  A measure/Zw 

is defined by the condit ion 

(17) 
f f  (~o,,oJ2) d/zw(OJ,,Wz) 

for  every cont inuous funct ion f on Dw. By (b) it follows that Tlzw = tZw. 

Thus  (Dw,lzw,T) defines a process W. We claim that fli(W) = U for  i = 1, 2. 

Since f i (~w)  = f~v we need only show that fl~(/Zw) =/zv.  Take  i = 1. What  

has to be shown is that if f =  ~ o fl~ for  ~o ~ C(f~u), then  f f d l z w  = f~p dtzu. 
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But by (17), 

Our  p r o o f  will be complete  if we can show that/31 ~ /32" Suppose  then  that 

/31 =/32. This  means that the measure  Pw on f~e × f~u must  actually concen- 

trate on the diagonal o f  this product .  This  implies that 

Applying (17) and (16), we obtain 

T h e  project ion ~p ~ E(~o/o~-l(~v) ) can be norm-prese rv ing  for  all (or for  a 

dense set of)  ~0 E L2(~u,tXu) only if it is the identity. This  would imply that 

ol-l(Yv) = Yv, which means that ol is an isomorphism.  This  proves the 

proposit ion.  

Let  us now re tu rn  to ou r  filtering problem with U and V as before.  

Suppose the h o m o m o r p h i s m  U -% V is not  an isomorphism; then we con- 

struct the process W with the homomorph i sms  IV -~ U as in the projection.  

Set {x'n,y~} = {x.o f l , ,y ,  o f l ,} ,  {x'~,3/'n} = {xn o fl2,Y~ o f12}. Since U is def ined 

by {xn,y.}, the stipulation that fll and f12 are distinct implies that we cannot  
t¢ t¢ 

have an identity x ' .  = x . ,  y ' .  = y n. On the o ther  h:snd, the variables v. on  

V satisfy v. o a = x.  + y., so that  

We have thereby proved  

P R O P O S I T I O N  1.7. Let {xn,yn} be a stationary sequence with the property 

that i f  {x'n,y'.,x".,y".} is a stationary sequence with {x'n,y'~} and {x"~,y"n} iso- 

morphic to {xn,yn} and with x'n + y'n = x"n + Y"n, then X'n = X"n and y ' .  =3/ ' .  Then 

the o-fields spanned by {x. + Yn} and {Xn,yn} are identical, so that {x.} is a 

"function" of {x .  + y .} .  

We shall say in this case that the sequence {x . , y . }  admits a perfect filter. 

T o  apply the cri ter ion o f  the proposi t ion we shall need  

LEMMA 1.3. Let ul,u2,vl,v2 denote four  integrable random variables with 

each of the us independent of  each of  the vj. Then ul + va = u2 + v2 together with 

E(u l )  = E(u2) implies u~ = u2, vl = v2. 
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Proof: Each u~vj is integrable  because o f  the i ndependence  of  the fac- 

tors. We also have E(ua - u2) = E(v l  - v2) -- 0. But  (ul -- u2) 2 = (ul -- u2) × 

(v2 -- Va), so that  

E (  (u l  - -  u2) ~) = E ( u l  - u 2 ) E ( v 2  - -  v l )  = 0 . 

Hence  ul = u2 and Vl = v2. 

Remark: It  would be o f  interest  to know if the integrabili ty stipulation 

may be omit ted,  replacing the equality o f  the expectat ions o f  u~ and  u2 by 

equality of  their  distributions. T h a t  is to say, u n d e r  these condit ions to- 

ge ther  with the i ndependence  o f  each us of  each v~, does ul + vl = us + v2 

imply u~ = u2, Va = v2? A positive answer  would be implied by an affirma- 

tive answer  to the following "e lementary"  question. 

Problem D: Let z~,z=,wm,W2 be four  r a n d o m  variables with za and  z= having 

the same distr ibution and  with wl and  w2 having the same distr ibution.  

Does the inequality Za + w~ /> z2 + w2 imply that  equality holds with prob-  

ability 1 ? 

Setting z~ = u~vl and w~ = ujv=, we see that  the condit ions o f  this p rob lem 

are met,  and  z~ + w~ = z2 + w2 would imply ui = u2, Vx = v2. 

I f  on the o ther  hand  we stipulate that  each us is i n d e p e n d e n t  of  the 

pair ( vl,v2), then  the desired conclusion follows. For  then  E ( e ~tu') = E ( e itu') x 

E(e  ~t<vl-~2)) and  for  t sufficiently small, E(e  u(vl-~2)) = 1. But  this is known to 

imply that  vl - v2 = 0. 

T h e  main  result  o f  this section is 

T H E O R E M  1.5. Let {x.}, {y.} be two stationary sequences of  integrable ran- 

dom variables, and suppose that the two sequences are absolutely independent (i.e., 

that the processes they determine are disjoint). Then {x. ,y .}  admits a perfect filter. 

T h e  p r o o f  is immedia te ,  taking into account  Proposi t ion I. 7 and  L e m m a  

1.3. 

T h e  question arises whe the r  the integrabili ty r e q u i r e m e n t  is essential 

for  the conclusion o f  the theorem.  W h e t h e r  or  not  it can be e l iminated 

depends  on the answer  to the quest ion raised in the fo rego ing  Remark .  

T h e  following is an example  where  the integrabili ty r e q u i r e m e n t  may  be 

omitted.  

P R O P O S I T I O N  1.8. I f  {Yn}/s defined for  a Bernoulli process and {x.} de- 

fines a deterministic process, then {x . , y . }  admits a perfect filter. 

Proof: We mus t  show that  x ' .  + y ' .  x .  + y "  implies x ' .  But  

{x'.,x"n} is determinist ic  by {}4 (9), and  so {y'.} is i n d e p e n d e n t  o f  it (recall 

I ~).  T h e  a r g u m e n t  p reced ing  T h e o r e m  1.5 then  shows that  x ' .  = x",,. 

In  case {y.}  is itself a Bernoull i  sequence,  i.e., if  the y.  are independen t ,  

and  if {x.} is determinist ic,  and  if, f u r t h e r m o r e ,  all the variables are 

integrable with E ( y . )  = 0, then  we can exhibit  the "filter" explicitly, 

namely,  

(18) x= = E ( x .  + y . / x . - i  + y,,_,,x=_z + Yn-2, " " " )  • 
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For  the condi t ioning o--field in (18) is the same as that  s p a n n e d  by the 

variables { x . - 1 , y , - l , x . - 2 , y . - z , ' "  "} and  

E ( x n / x n - l , y . - l ,  • • ") + E(yn /xn_ , , y , , _ l ,  • • ") = x .  + E ( y . )  = x .  . 

H e r e  we have used the fact that  x.  is measurab le  with respect  to {x._l,y._x, 

• • . }  and  y;, is i n d e p e n d e n t  of  this field (see §6). 

10. Stochast ic  Sequences  and  Dis jo intness .  In [3, Chap.  1] we de- 

ve loped the not ion o f  a stochastic sequence. Briefly stated, it is a general iza-  

tion o f  the not ion o f  a normal  number .  

Defini t ion 4. Let A be a compac t  metr ic  space and  s ¢ = {~:., n = 1,2, • • • } 

a A-valued sequence.  We say ~ is a stochastic sequence if wheneve r  f is a 

cont inuous  funct ion on some p roduc t  A k, the limit 

lim ~ ~f(4:,,+~,~:,,+2, • • " ,sx.+k) 
"v'---~ 1 

exists. 

s c is a point  o f  the p roduc t  space ~ = A x A x A x • • • . I t  follows f r o m  

the definit ion that  if s ~ is stochastic a n d f  E C(f~), then  

N 
] rt-] lim ~ f ( T  ~ ) = L ( f )  

N~'~ 1 

exists, where  T denotes  the usual shift t rans format ion .  T h e  l inear func-  

tional L ( f )  cor re sponds  to a probabil i ty measure  /~ on f~, and,  since 

L ( T f )  = L ( f ) ,  the triple (D,/.~,T) defines a process X. T h e  point  ~: E 1~ is 

a generic point  in accordance  with the following definition. 

Def ini t ion 5. Let  X be a process and  f~x a compac t  metr ic  realization o f  

the sample  space o f  X. A point  ~: E l lx is generic if  

1- ~f(T"-'¢) ~ ff(to) dt~x(O~) 
N 1 

as N ~ ~, for  e v e r y f  C C(f~x) .  

A stochastic sequence thus de te rmines  a process and  a generic  point  for  

the process. Conversely,  given a process  X, a generic  point  ~ E l~x, and  a 

A-valued cont inuous  funct ion X(t0) on llx, it is easily seen that  

so. = X(T*-'s~) 

represen ts  a stochastic sequence.  

Almost  all points are  gener ic  in the case of  an ergodic  process. Hence  

a lmost  all points lead to stochastic sequences• In  fact, one  can show that  

for  any  s ta t ionary sequence  {x.}, a lmost  all {x.(to)} are  stochastic se- 

quences.  All a lmost  per iodic  sequences are  stochastic. As with a lmost  

periodic sequences,  a cont inuous  funct ion o f  a single stochastic sequence  

{~.} = {f(~:.,s¢.+l, --  -)} is again stochastic. T h e  quest ion arises whe the r  
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functions o f  several stochastic sequences are again stochastic. This  is not  

the case, as the following example  shows. 

Let 0 ,  = (-1)% where  v is the greatest  in teger  in log n. T h e n  {lqn} is not  

stochastic. However ,  if {st,} is generic for  a Bernoull i  process with inde- 

penden t  variables x,  taking on  the values ---+1 with probability 1/2, then it can 

be seen that {~:,,~,,} = {s%,} is again generic for  the same process. This  

means that the p roduc t  {¢,~:',} = {~qn} o f  two stochastic sequences need  not  

be stochastic. T h e  same example  shows that their  sum need  also not  be 
1 

stochastic, since "0, = 5( (~:,, + ~:,,,)2 _ 2). 

We have however  the following theorem.  

T H E O R E M  1.6. Let {~:,} and {7,} be stochastic sequences that are generic 

for disjoint processes X and Y respectively. Then the composite sequence {sr,,~,} is 

stochastic and is generic for X x Y. In this case any sequence of the form 

{~,} = {f(~:,,~:,+,, " " " ; "q,,nn+,, " " ")} 

is stochastic if  f is continuous. 

Proof: T h e  last s tatement  of  the theorem follows f rom the preceding  

one  since functions o f  stochastic sequences are stochastic. T o  prove the 

theorem we must  show that (sr,'O) E l)x x f i r  is generic f o r X  x Y, i.e., that 

1 ~f(T"-'f,T"-'~)--> (19) 

1 

as N---~ ~, f o r f  E C(l~x × l~r). 

I f  the sequence in (19) did not converge  to the value indicated, a sub- 

sequence would converge  to some o ther  value. Refining the subsequence,  

we could obtain a limit not  just  for  the f i n  question, but  for  a countable  set 

o f  functions in C(~x x l~r). Choosing this countable set to be dense,  we 

conclude that there  is a sequence {Ark} with 

-~ ~ f ( T"-'~,T"-I~) . ---* L(f) 

for  every f E C(flx x ~~y), and where  the linear functional  L does not  co- 

incide with that given by the r ight  side o f  (19). 

In any case L ( f )  corresponds  to a T-invariant probability measure/~z 

and defines a process Z = (Ox x l-lr,lzz,T). Let rrx and ~rv deno te  the pro- 

jections f rom ~x x ~ r  to fix and l-It respectively. We claim that  ~rxZ = X, 

TI 'yZ  = Y. Now 

fqJoCrx(tO,to') d/xz(tO,to') = lim 1 ~¢ 

Nk f 
= l i m  1 k--,o~ -~k qJ(T"-'~) = O(tn) dlsx(tO) 



Disjoinmess in Ergodic Theory 23 

since ~: is generic forX.  This  means that 7rx(/Zz) =/Zx. Similarly ~'r(/Zz) =/Zy, 

and this proves that Z maps on to  X and Y. Hence  Z = X × Y so that/-~z = 

/Zx ×/-~y. This  contradicts ou r  assumption that L ( f )  is not  given by/Xx × P-r, 

and  this proves the theorem.  

As an application let us prove  that if .a~a2a3... is a normal  n u m b e r  to the 

base r, then  so is every ari thmetic subsequence: .azat+aat+2a . . . .  This  con- 

tains the result  of  Niven and Zuckerman in [11].  T h e  hypothesis  o f  

normali ty  is equivalent to the r equ i r emen t  that {an} is stochastic and 

generic for  a Bernoull i  process {x,}, where  x,, = 0,1,- • •,  r - 1 with equal 

probabilities. T h e  assertion that  every ari thmetic subsequence o f  difference 

d is again normal  can be seen to be equivalent to the condit ion that the 

composi te  sequence {an,e 2~nla} is stochastic and generic for  the process 

de t e rmined  by {xn,yn}, where  Yn is the Kronecker  process def ined  by 

Yn+~ = e2'~njaYn. But this is immediate  since :~ 3_ ~ D X.  

Appendix. Let X and Y denote  processes and suppose there  exists a 

h o m o m o r p h i s m  X --% Y. We wish to show that X and Y can be realized as 

quadruples  (l-lx,°Jx,lzx,T) and (fly,  Yv , t zy ,T)  such that f~x and l-Iv are com- 

pact metric spaces, ~ x  and ~'v are the Borel  fields,/~x a n d / z v  are Borel  

measures  and ot cor responds  to a cont inuous  map o f  l~x onto  l~r. 

We suppose to begin with that X = (1"1, ~',/z,T ) and that Y=  (1~, ~",4z,T ) 

with ~" C ~ .  Choose a countable  dense subset o f  L2(f~,~",/~) and ex t end  

it to a countable  dense subset of  L 2 (1"~, ~ ,~) .  Without  loss of  generali ty we 

may suppose that the functions chosen are bounded .  Extending  the set 

fur ther ,  if necessary, we may suppose that it is invariant with respect  to T. 

Let A deno te  the closure in L°~(l-/,~',k0 o f  the algebra genera ted  by these 

functions and their  conjugates. Let  A' denote  the subalgebra cor respond-  

ing to those functions measurable  with respect  to Y ' .  A and A' are com- 

mutat ive C*-algebras and we may represen t  them as A ~ C ( l~x), A '  ~ C ( l-ly), 

where  f~x,~Y are compact  spaces, and l~y is the image of  l-Ix u n d e r  a con- 

t inuous map a. Since A and A' are  separable, f/x and l~y are metrizable. 

T h e  measure  ~ induces a linear functional  on C(f~x) which in tu rn  deter-  

mines a measure /~x on f/x. In addition, the endomorph i sm  T o f  A with it- 

self induces a cont inuous map T o f  l-/x on to  itself, and similarly for  A' and 

~y. It can be seen that/Zx is invariant  u n d e r  T and that with/~y = ot(/Zx), 

(f ly, tzy,T) defines a factor process o f  ( l lx , tzx,T).  Now the co r respondence  

between functions in A and cont inuous  functions on l-/x induces an isom- 

etry o f  a dense  subset of  L 2 (1~, ~,/z) with a dense subset of  L 2 (~x,lZx). This  

extends  to an isometry o f  the two L 2 spaces. Restricting this isometry to 

indicator  functions o f  measurable  sets in 1~ we find that we have an equiva- 

lence o f  (~ ,~ , /~ ,T)  and (~x,l.Lx,T). Similarly, (l-/,~-',/z,T) is seen to be 

equivalent  to (~y,/~y,T), and one  sees easily that the original h o m o m o r -  

phism restricting to sets in. ~" is given by the map a. 

Part II. Disjoint Flows. 

1. Basic definitions. Af low  is a pair (I~,T), where  1~ is a compact  metric 
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space and T is a cont inuous map of  f i  into fi. When T is one-one  and onto  

it generates a g roup  o f  homeomorph i sms  of  fi, and we speak o f  a bilateral 

flow. I f  co is a point  o f f i ,  the sequence oJ,Tw,T2oj, • • • is r e f e r r ed  to as the 

orbit of  co. 

Let X = ( f ix ,T) ,  Y =  ( f ly ,T) ,  and suppose that ~p is a cont inuous  map o f  

f ix onto [Iv such that T~0(~:) = ~0(T~:), ~: E fix. We then say that Yis a factor 

flow of  X and we write X -~ Y. 

It is also convenient  tO in t roduce  the notion o f  a subflow. We say Y = 

([Iv,T) is a subflow of  X = ( f ix ,T)  if  fly is a closed subset of  Dx and the 

t ransformat ion  T on fig is the restriction o f  the cor responding  t ransforma-  

tion on fix- 

T h e  product of  two flows is def ined by fix×v = fix x fly, T(~O)) = (T~, 

TO). X and Y are both factors o f X  x Y and we will denote  the project ion 
~'X ~Y 

homomorph i sms  by X × Y --> X and X x Y --> Y. 

Definition II.1. Two flows X : ( f ix ,T)  and Y : (fly, T) are disjoint 

whenever there exists a flow Z with Z --% X, Z ~-~ Y, then there also exists a homo- 

morphism Z ~ X x Y with ~ = Zrxy, [3 = 7rvT. We then write X ± Y. 

LEMMA I L l .  X ± Y i f  and only i f  the only closed subset A C fix x f ly satis- 

fying (a) TA C A, (b) ~rxA = fix, (c) ~ryA = {Iv, is A = fix x fly. 

Proof." Suppose the condit ion is fulfilled and Z -% X, Z A> y. Fo rm the 

map 7:fiz ---> fix x l~y def ined by T(~) = (o~(0,/3(~))- We see at once that 

the set A = 7(f iz)  satisfies (a), (b), and (c), and is closed. Hence  7(f iz)  = 

~x  x fly. But  then  7 defines a h o m o m o r p h i s m  of  Z to X x Y, and evidently 

~ ' ~ / =  ~, ~'yT =/3.  

Conversely,  assume tha tX ± Y. Define Z by f i z =  A for  a set A C fix × fly 
Try 

satisfying (a), (b) and (c). T h e n  Z~> X, Z --> Y, and so 7 must exist such that 

Z ~ X x Y with rrx = 7rxy, 7ry = 7ryy. This  means that 7(~:O7) = (~:,~), and 

since T must  be onto,  A must  coincide with fix x fly. 

T h e  following lcmma corresponds  to Lemma  1.2: 

LEMMA II.2. Let X I ~ 2 , Y  denote three flows and suppose there exist homo- 

morphisms X1 ~ Y, X~-~ Y. Then there exists a flow Z and maps Z ~ Xi with 

~ = ~ .  

T h e  p r o o f  o f  this lemma is contained in the p r o o f  o f  the more  difficult 

L e m m a  1.1 to which we re fe r  the reader .  We may also draw f rom this 

lemma the cor responding  conclusion: 

P R O P O S I T I O N  II.1. IfX~ --% Y1 andX2 ~ Y2, thenXa ± X2 implies Y~ ± Ys. 

It is evident  that isomorphic non-trivial flows cannot  be disjoint. For, 

the diagonal  of  fix x fix satisfies (a), (b), and (c) in L e m m a  II.1, and the 

diagonal will not  coincide with fix x fix unless fix reduces  to a single point. 

This implies 

P R O P O S I T I O N  II.2. Two disjoint flows cannot have any common non- 

trivial factors. 
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W h e t h e r  the converse  is t rue  is again  unknown.  

We r e m a r k  that  while a flow cannot  be  disjoint f r o m  a fac tor  flow, it may  

be disjoint f r o m  a subflow. We shall e n c o u n t e r  examples  of  this in Part  I I I .  

I f  X = (I~,T) is a flow, it is always possible to find a probabil i ty  Borel  

m e a s u r e / ~  on f t  which is invar iant  with respect  to T. (Let v be  any prob-  

ability measu re  and  let/.~ be  a weak limit point  o f  n - l ( v  + • • • + Tn-lv).) 

T h e  triple (f~,/, ,T) then  de te rmines  a process which we shall deno te  by 

(X,~). In  genera l  the m e a s u r e  p, is not  uniquely  de t e rmined ,  so that  in the 

above m a n n e r  one  may  obtain a large family o f  processes supported by a 

flow X. 

2. S e q u e n c e s  D e f i n e d  f o r  a Flow. Let  X = (I~,T) be a flow and  suppose  

f E C(I~), that  i s , f  is a con t inuous  complex-va lued  funct ion on l-l. For  any 

oJ E 1~ we may  f o r m  the sequence  {f(T"0J), n = 0,1,2, • • -} which we then  

call a sequence defined for theflow X. More generally,  f may  be a cont inuous  

m a p  o f  1~ into a compac t  metr ic  space A, in which case we speak o f  a A- 

sequence.  Every sequence  with Values in a compac t  metr ic  space is associ- 

a ted with some flow. Namely ,  let s r = {~:(n)}, so that  ~: is a point  o f  the car- 

tesian p roduc t  A × A x A x • - • . Def ining T on A = as the ope ra to r  T(~,I, 

~,2, • " ") = (~,2,~,3, " " "), we find that  (A°~,T) defines a flow and  {¢(n)} is 

a A-sequence def ined for  the flow. 

I t  is evident  that  we need  not  necessarily choose 1~ = A °~ to obtain  the 

sequence  {~:(n) } as a sequence  def ined  for  the flow. Any T-invariant  closed 

subset  to which ~: belongs will do. In  par t icular  we can choose for  11 the 

closure o f  the orbi t  o f  ~: in (A®,T). Th is  subflow (I) ,T) will be r e f e r r e d  to as 

the flow determined by the sequence  {~:(n) }. 

3. Classes  o f  Flows. As in Part  I we shall e n u m e r a t e  various classes o f  

flows with an eye to d e t e r m i n i n g  disjointness relat ions be tween them.  

A m o n g  the classes we shall describe,  the classes of  minimal  and  distal flows 

have a t t racted at tent ion in the l i terature  ( [2] ,  [5] ,  [6]). T h e  o thers  have 

not  been  s tudied extensively and  their  theory  is only lightly touched  upon  

even here.  

(A) Bernou l l i  Flows.  W h e n  the space l~x o f  a flow X has the f o r m  

l~x = A x A x A x • • • (where  A is a compac t  metr ic  space) and  T is the 

shift  t r ans fo rmat ion ,  T(kl,k2,  • • .) = (k2,~3, • • "), then  X is r e f e r r e d  to 

as a Bernoulli flow. T h e  class o f  Bernoull i  flows will be deno t ed  by ~ .  I f  

A is finite, we say that  X is a Bernoull i  flow of finite type. 

Every flow is i somorphic  to a subflow o f  a Bernoull i  flow. In  fact, if  

X = (I~,T),  then  1~ may  be identified with the subset  

~ '  = {(oJl ,oJ2,coa,  • " "): oJ .+ l  = ToJ,,} 

ofF/~° = f l  × ~ × 1~ × • • • , and  s o X  is a subflow o f  ( [ I%T) .  

Defini t ion I I .2 .  A flow is of finite type if it is a subflow of a Bernoulli flow 
of finite type. 
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(B) Ergodic  Flows. We say that a flow X is ergodic if  every  T-invariant 

p rope r  closed subset o f  fix is nowhere  dense. T h e  family o f  ergodic  flows 

will be deno ted  by g. A s t ra ightforward a rgumen t  shows that X is ergodic  

if and only if the set o f  points o f  l'lx whose orbits are not  dense  in fix fo rm 

a set o f  the first category. Ano the r  cri ter ion for  ergodicity is that  fo r  any 

two open  sets A,B  C lIx there  exists a power  T n o f  T with T"A n B non- 

empty.  T h e  analogy with ergodicity in the measure- theoret ic  se tup is 

apparent .  Moreover ,  supposeX suppor ts  an ergodic  process (X,/z) such that  

the suppor t  o f  the measure/1,  is the ent ire  space fix. T h e n  since a closed 

subset o f  fix wi th /z -measure  0 must  be nowhere  dense,  it follows that a 

T-invariant p r o p e r  closed subset o f  f~x must  be nowhere  dense. Hence/~" 

is ergodic  as a flow. This  fact enables us to construct  numerous  ergodic  

flows• In particular,  we recognize that Bernoull i  flows are ergodic,  a fact 

which is also otherwise evident.  

T h e  class ~' is not  closed u n d e r  multiplication but  it is closed u n d e r  

passage to factors. T o  see this, suppose X --% Y and that A, B are open  sets 

in fly. T h e n  t~-l(A) and cFI(B) are open  in fix, and if Tnt~-l(A) n ot-l(B) 

is non-empty ,  so too is T n A n  B. 

(C) Weakly  Mix ing  Flows. We recall f rom Part  I, §3 (E), that there  are 

four  equivalent definitions for  the not ion o f  a weakly mixing process. Two 

of  these are related to ergodicity: X x X E g and X x g C 8'. We choose the 

analogue o f  the first o f  these as the definit ion o f  a weakly mixing flow. 

Precisely, we say X is a weakly mixing flow if X x X is an ergodic  flow. T h e  

class o f  weakly mixing flows will be deno ted  by 7v. We do not  know whether  

the p roduc t  o f  a weakly mixing flow and any ergodic  flow is ergodic. 

(Later we shall see that a special case of  this is true:  T h e  p roduc t  o f  a mini- 

mal flow and a weakly mixing flow is ergodic.)  Nevertheless we have 

P R O P O S I T I O N  II.3. I f  X is weakly mixing, then any power X x X x X x 

• • • x X is ergodic. 

Proof: X as a factor  process o f  X x X is ergodic.  Let  N(A ,B)  denote  the 

set of  positive integers n for  which TnA n B is non-empty ,  where  A and B 

denote  open  subsets o f  ~x. By the ergodicity of  X, N(A ,B)  is always non- 

empty.  We shall show that, in fact, if  A,B,C,D are open  subsets o f  ~x,  then 

there  exist open  sets E,F C f ix  with N(A,B)  n N(C,D)  D N ( E , F ) .  This  is 

a consequence of  the weak mixing proper ty .  Namely,  since X x X is ergodic,  

there  exists a k /> 0 such that Tk(A x B) n (C x D) is non-empty.  T h a t  

means t h a t ( A X B )  n T - k ( C x D ) ~ O , o r A  n T - k C ~ Q ~ a n d B n  T -~D 

O. These  sets are non-empty  and open;  call them E and F respectively. I f  

n E N ( E , F ) , t h e n A  n T-kC n Tn(B n T-kD) # Q~. But  thenA n T n B ¢ O ,  

T-kC n Tn(T-kD) ~ Q3. T h e  second of  these implies C n TnD ~ 0 and so 

N ( E , F )  C N(A,B)  n N(C,D) .  As a result  o f  this, n N(Ai,Bi) ~ 0 for  any 

finite collection o f  open  sets A1, • • • ,An, B1, • • • ,Bn. This,  however,  yields 

N ( . 4 1  X • • " X An, B1 x • • • × B,) ~ 0 which implies that the n-fold p roduc t  

X × • • • x X is ergodic. 
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Suppose  the flow X can be equ ipped  with a T-invariant measure  IZ 

whose suppor t  is all o f  l~x, and  such that  the process (X,/z) is a weakly mix- 

ing process. T h e n  (X × X,tz × tz) is an ergodic  process; hence  X × X is an 

ergodic  flow, and X itself is weakly mixing. 

This  condi t ion again allows one  to construct  a wide class o f  examples  o f  

weakly mixing flows. For  example ,  let G be a compact  abelian g roup  and 

suppose that  T is an e n d o m o r p h i s m  o f  G. Denote  by T* the adjoint  endo-  

morph i sm o f  the dual  g roup  G. Harmon ic  analysis on  G shows (see [8]) 

that if  mc denotes  Haa r  measure  on  G, then  (G,raa,T) is a weakly mixing 

process if  and only if  T* has no  finite orbit  in G. ( I f  G is a torus, then  T is 

r ep resen ted  by an in teger  matr ix  and  the condit ion is that no root  o f  unity 

occur  among  its eigenvalues.) With this condit ion,  then,  it follows that 

(G,T) is a weakly mixing flow. 

(D) :~-flows. We say that a flow X = (I'~,T) belongs to the class ~ (for 

"fixed point"),  o r  that X is an ~-flow, if it satisfies the two conditions: 

(i) Each o f  the flows (I~,T m) , m  = 1,2,3, • • • is ergodic;  

(ii) T h e  totality o f  all fixed points o f  all the powers T m (i.e., {oJ: for  some 

m, T"oJ = co}) is dense  in 1"~. 

Note t h a t g  C ~'. For, i f ( ~ , T )  E ~ ,  then,  as one  sees readily, (II,T m) E 

:~. Hence  all (~ ,T  m) are  ergodic.  Secondly, a periodic sequence in ~ = A ® 

is a fixed point  o f  some power  o f  T, and the periodic sequences are dense 

in 1-1. 

Ano the r  class o f  examples  o f  :~-flows are flows o f  the fo rm (G,T), 

where,  as in the p reced ing  paragraph ,  T is an e n d o m o r p h i s m  o f  the abelian 

g roup  G. This  time, in addit ion to the condit ion that T* have no finite 

orbit,  we  assume that G is a torus. By the first condit ion (G,T) is ergodic,  

and,  since (G,T m) satisfies the same condit ion,  each (G,T m) is ergodic. Sup- 

pose G is an r-dimensional  torus,  so that T is given by an r × r in teger  ma- 

trix T - (at). Let  (a0 deno te  a point  o f  G with rational coordinates.  We can 

write ai = pi/q with pl,  " " " ,pr,q integers. (or0 is a fixed point  o f  T m i f  

Tm(p~) = (Pi) (mod q). T h e  condit ion that  such an in teger  m exist is that  

det  (at) be relatively prime to q. (Then  T E GL(r,Z/qZ) which is finite, and 

some power  T m is the identity.) T h e  set o f  q which are relatively pr ime to 

det  (ao) is infinite, which implies that  in G the set o f  all fixed points o f  all 

powers o f  T is dense. 

T h e  simplest cases in this last category are obta ined by taking G = R/Z, 

the circle g roup  writ ten additively, and  setting Tx = tx for  some in teger  

t ~ 0. T h e  flow is almost identical with the Bernoull i  flow obtained by set- 

t ing A = {0,1, • • • ,t -- 1}, since 

t ~ ajt -j = • a~+,t -~ (mod 1) 
1 

where  a~ E A. T h e  flows are  not  quite identical, since A = is d isconnected 

and R]Z is connected.  
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(E) Minimal  Flows. I f  a flow contains no proper  subflows, it is called 

minimal (see [6]). The  class of  minimal fows will be denoted  by ~ .  The  

closure of  the orbit of  a point in f~x is always a T-invariant subset. I f  X is 

minimal, it must  coincide with l~x. Hence a flow is minimal if  and only if  

every point has a dense orbit. In particular, 

P R O P O S I T I O N  II.4. A minimal f low is ergodic. 

Every flow possesses minimal subflows. I f  (I~,T) is a flow, the closed 

T-invariant subsets A C 1) with the property  that (A,T) is minimal are 

called minimal sets. Since every flow is a subflow of  a Bernoulli  flow, to study 

minimal flows, it suffices to study the minimal sets for all Bernoulli  flows. 

We shall study a restricted version of  this problem in Part III.  

Products of  minimal flows need not be minimal. In fact, if  X is a non- 

trivial minimal flow, then X × X cannot  be minimal inasmuch as the diag- 

onal of  l~x × l-Ix is T-invariant. On the other  hand,  a factor of  a minimal flow 

is minimal. This follows immediately f rom the definition. It is also true that 

limits of  inverse systems (or "inverse limits") of  minimal flows are minimal. 

Suppose we have a system of  minimal flows {X~} indexed by a partially 

ordered  set {a} and maps X B ~ X~ for fl > a. Write X~ = (l-Is,T) ; then 

lim X~ = (lira ~ , , ,T) ,where  lim g~ is the subset o f  1 ~ , ,  of  points & = {co~} 

satisfying ~rfoJ~ = co~. There  is a natural  map lrn: lim 1"1~ ~ 1~. One can 

show that a sequence {~,} in lim ~ is dense if and only if  {1r~(~,)} is 

dense in 1)~ for  each ft. From this it follows that  each orbit in lim X~ is dense 

if  and only if  this is so in each X~. Hence the inverse limit of  minimal flows 

is minimal. 

(F) Semi-simple Flows. Let X = (f l ,T)  be a flow. I f  1~ is the union of  

all the minimal sets of  X, then we say that X is semi-simple. In other  words, 

X is semi-simple if 1~ = Ut 1~,, where the 1)~ are non-overlapping T-invariant 
Ot 

closed sets such that (I~,,,T) is minimal for  each o~. An example of  a flow 

that is not semi-simple is ([0,1],T) where Tx = x 2. The  only minimal sets 

for this flow are {0}, { 1 }. We denote  the family of  semi-simple flows by 5 ~. 

In [6] this property  is referred to as pointwise almost periodicity of  T. As with 

minimality it is clear that  factors of  semi-simple flows are semi-simple. 

P R O P O S I T I O N  II.5. I f  a f low is semi-simple and ergodic it is minimal. In  

symbols, 5 p f3 ~ = ~ .  

Proof: I f  l'lx decomposes into more than one minimal set then no orbit 

can be dense. 

One reason for s tudying semi-simple flows is that they give rise to a 

class of  sequences that possess a proper ty  that we shall call recurrence. This 

property is a natural  generalization of  (Bohr) almost periodicity. 

In the following A is a compact metric space. 

Def in i t ion  II.3. Let {~:(n)} be a A-sequence defined fo r  n = 1,2, • • • .  For 

any open set V C A k, where k is some positive integer, fo rm the sequence nl (V) < 

n2(V) < • " • < n j (V)  < "  " (which may be empty) o f  values of  n f o r  which 
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( ~ ( n + l ) , ~ ( n + 2 ) , . . . , ~ ( n + k ) )  G V.  

The sequence {~(n)} is recurrent  i f  for  each V, the sequence {n~(V)} /s either 

empty or else it satisfies 

(1) n~+~ (V) - n~ (V) < K(V)  < 

A sequence of  integers satisfying (1) is said to be relatively dense. Loosely 

speaking, we say that  a A-sequence {~:(n)} is recurrent  if everything that 

occurs once in the sequence occurs for  a relatively dense set o f  times. 

We leave to the reader  the p roof  o f  the following proposition. 

P R O P O S I T I O N  II.6. A sequence defined for  a semi-simple flow is recurrent. 

On the other hand, the flow defined by a recurrent sequence is minimal. 

(G) Distal Flows. We refer  the reader  to [2] and [5] for the details 

concerning distal flows. We shall content  ourselves with a rapid outline 

of  the theory. 

A flow X = (I],T) is distal if  the relationships lim T"% ¢ = ~, lira T"i~ = ~, 

for ~,~,~ ~ 1"1, imply ~ = ~. Equivalently, X is distal if  ~ # ~ implies that 

inf  D(T"~,Tn~q) > 0, where D(. , . )  denotes a metric on 1~. We denote  the 

class of  distal flows by ~.  

The  powers {T", n />  0} form a subsemigroup of  the semigroup f~n of  

all maps (continuous or  not) o f  f~ ~ ~.  With the product  topology, 12 n 

becomes a compact  topological space. Let F be the closure o f  {T"} in this 

compact space. In general  F may be shown to be a semigroup. When  the 

flow is distal, it is easy to see that YYl = yY2, for Y,Ya,Y2 E F, implies yl = Y2. 

For a compact semigroup,  this condit ion implies it is a group. This shows, 

among other  things, that T is invertible, T -a E F, and i n fD(T"~ ,Tn~)  = 
n~O 

inf  D(T"~,T"'q). Hence a distal flow is bilateral. (In particular, the theory 
--e~<n<00 

of  [5] which is stated for groups of  t ransformations applies.) 

One consequence of  the fact that F is a group is 

P R O P O S I T I O N  11.7. ~ C 50. 

Proof." Let X = (I~,T) ~ ~ .  In each ~ E ~ ,  F~ is the closure o f  the orbit 

of  ~. Now suppose ~9 E Fe; then  77 = y~: for y E F, and so ~ = y- l~  E F,7. It 

follows that Fe is a minimal set for (fLT).  Since each ~: E Fe, l~ is a union 

of  minimal sets. 

From the definition o f  distal flows we conclude easily that ~ × ~ C ~.  

In particular X × X is semi-simple whenever  X is distal. Conversely, if 

X × X is semi-simple, X must  be distal. For the diagonal of  f~x × l~x is T- 

invariant and can intersect a minimal set only if it contains the set. I f  we had 

T"i (~:,~9) ~ (£,~), then  the minimal set to which (~:,~) belongs must be con- 

tained in the diagonal; hence ~: = ~. This shows that X is distal. Thus  ~ = 

{X: X × X ~ 5e}. We shall presently establish still another  characterization: 

~ =  { X : X x ~  c ~e}. 
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(Note that these two characterizations relate ~ to 5: in the same way that 

the weakly mixing processes were related to ergodic  processes in Part  I, 

§3. N a m e l y , ~ = { X : X x X E  ~ } =  {X:X × ~ C 4 } . )  

Factors o f  distal flows are distal. In fact, i fX  -~ Y and X × X E Y, then  

Y × Y is a factor  o f  a semi-simple flow, so it belongs to 5:. U n d e r  certain 

circumstances we can argue  in the opposite  direct ion and conclude that if 

X -% Y and Y is distal, then X is distal. This  is in the case o f  a group extension. 

Defini t ion II.4. Let X = (I ) ,T)  be a flow and suppose G operates on 12 in 

such a way that (to,g) ~ tog defines a continuous map from 1-1 x G ~ ~ with the 

property that i f  tog = to for some to E ~,  then g is the identity. Assume, in addition, 

that the action o f F  commutes with that ofT:  T ( tog) = ( Tto ) g. Then the orbit space 

~/G determines a flow Y = X/G = (I~/G,T), where T(toG) = (Tto)G. Y is then a 

factor of X and we say that X is a group  extension of Y. 

P R O P O S I T I O N  II.8. A group extension of a distal flow is distal. 

Proof: Suppose T"~:I ~ ~, T*i~:2 ~ ~, with ~:1,~:2,~ E ft. We consider  two 

cases. Supoose first that for  some g, ~:2 = ~:lg. T h e n ,  by continuity,  ~ = ~g and 

g must be the identity, which implies ~:1 = ¢2. I f  this is not  the case, then 

~:IG # ~:2G. Let  a deno te  the map  ~ ~ ~G ~ I~/G. I f  Y is distal, then since 

a(~l) -~ 0t(~2), lim Tniol(~l) # lim Tniot(~2). But both limits are a(~) since a 

is a cont inuous map.  This  contradict ion proves that ~:~ = ¢2. Hence  X is 

distal. 

Ano the r  opera t ion  preserving distality is passage to inverse limits. This  

is immedia te  f rom the definition. In  fact, an inverse limit o f  flows is a sub- 

flow of  the p roduc t  flow. But  distality is preserved both for  products  and 

for  subflows. 

Recapitulating, the class ~ is closed u n d e r  passage to products ,  sub- 

flows, factor flows, inverse limits, and  g roup  extensions. T h e  main result 

of  [5] is a restricted converse to this. We restate it he re  in a weaker  fo rm 

that is still sufficiently precise for  ou r  purpose.  Note  that since distal flows 

are semi-simple, they decompose  into minimal flows, and the latter, as 

subflows, are again distal. In a certain sense, therefore ,  it suffices for  the 

study of  ~ to consider  ~ fq ,g. 

P R O P O S I T I O N  II.9. The class ~ N ,g of minimal distal flows coincides 

with the smallest class <g of flows satisfying 

(a) The trivial (one point)flow is in ~. 

(b) Factors of flows in cg are in cg. 

(c) A group extension of a flow in E is in ~ provided it is minimal. 

(d) Inverse limits of flows in ~ are in g'. 

As one application of  this proposi t ion let us prove:  

P R O P O S I T I O N  II . lO.  ~ x J C J .  

Proof." Clearly it suffices to show that  the p roduc t  o f  a minimal distal 

flow and a semi-simple flow is semi-simple. So let cg, = {X: X x 5: C 5°}. 
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One sees readily that c~, satisfies condit ions (a), (b) and (d). Let us show that  

it satisfies (c). This  will prove the proposi t ion,  for  it will show that  <g' D 

n ~ a n d h e n c e ~  n 2g × 5 :  C 5:. 

Suppose  then  that Y = X/G and  that  Y × 5: C 5:. Let  Z be a par t icular  

flow in 5:; we would like to show that X × Z is semi-simple. Now X × Z is 

clearly a g roup  extension o f  Y x Z, and by hypothesis,  Y x Z is semi-simple. 

It suffices the re fo re  to show that a g roup  extension o f  a semi-simple flow 

is semi-simple. For  this it is clearly sufficient to show that a g roup  extension 

of  a minimal flow is semi-simple. Suppose  then  that U = V/G, where  U is 

minimal. Let  A be a minimal set in f~v- One  such minimal set certainly 

exists. Clearly each o f  the sets Ag is again minimal. Let  a deno te  the map  

f rom l)v to l~v sending to into toG. Clearly a(A) is a T-invariant closed sub- 

set o f  f~v. Hence  by the minimality o f  U, a(h)  = ~u. But  this means that, for  

every to E flv, tog intersects A. In o the r  words 

~ v =  U Ag 
g~G 

and each point  o f  ~v  belongs to a minimal set. This  proves the proposit ion.  

(H) K r o n e c k e r  Flows. Let  G be a compact  abelian group,  r an e lement  

o f  G whose powers are dense in G. Defining T by Tg = ¢g we obtain a flow 

(G,T). A flow obtained in this m a n n e r  is called a Kronecker flow, and the 

class o f  these is deno ted  by ~ .  

C ~ .  In fact a flow in ~ is a g roup  extension o f  the trivial flow. 

Conversely, every minimal g roup  extension o f  the trivial flow is a Kro- 

necker  flow. 

A sequence def ined for  a Kronecker  flow is easily seen to be (Bohr) 

almost periodic. Conversely,  the flow def ined by an almost periodic se- 

quence  is a Kronecker  flow. 

At this point  let us summarize  the relationships between the various 

classes o f  flows. We have 

(i) ~ c ~ n : c ~ u : - c ~ ;  
(ii) x c ~ n . , ¢  c ~ u ~ c s e ;  

(iii) ~ = {X:X x ~ C 4} = {X:X x X E g'}; 

(iv) ~ = {X:X x 5: C ,,¢} = {X:X x X ~ 5~}; 

(v) 5e n ~ = , ¢ ;  

(vi) ~ n ~ = ~ o ~ = {trivial flow}. 

We have proven  all but  (vi). Suppose  X is distal and weakly mixing. 

T h e n  X × X is both semi-simple and ergodic. By (v) X × X is minimal, which 

can only occur  if X is trivial. Next  suppose that X is both minimal and an 

Y-flow. As an Y-flow it possesses finite orbits; since there  are dense,  fix 

must be finite. But then an N exists with TNto = to for  each to E l-Ix, and 

(f~x,T u) is not  ergodic unless f~x reduces  to a single point. 

Finally, all the classes o f  flows but  ~ are closed u n d e r  passage to factor  

flows. In addition, 2 ,  ~ and  ~ are closed u n d e r  fo rmat ion  o f  products .  
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4. Disjointness Relations. We begin with an analogue of  Theorem I. 1. 

THEOREM II.  1. I f  two flows are disjoint, one of them mu.~t be minimal. 

Proof: Let X = (~x,T),  Y = (~r ,T)  and suppose A C ~x is T-invariant 

and closed, and B C ~y  is T-invariant and closed. I f  A and B are proper  

subsets, then (.4 × f~y) U (fix × B) is a T-invariant closed subset o f ~ x  × i / r  

which projects onto ~x  and ~y  unde r  the projections 1rx, ~rr. 

The  following result will be referred to repeatedly in Part III.  

THEOREM II.2.  ~ ± ~ .  

Proof: Let X E ~ ,  Y ~ ~ ,  and suppose A C fix × fly is a closed T- 

invariant set satisfying ~rx(A) = fix, try(A) = fly. Consider the flows Yn = 

(~y, Tn). Although I11 = Y is minimal, it is possible that when n > 1, Y~ is 

not minimal. Choose a sequence of  natural  numbers  {nk} such that (a) 

nkInk+l and (b) every integer m divides some nk. An inductive procedure  
enables us to choose a sequence of  subsets { ~ }  of  i /y satisfying: (a) 

~ D fl~+l, (b) ~ is a minimal set for Ynk" The  significance of  the condi- 

tion nklnk+l is that a Tnk-invariant set is also T~k+l-invariant. Hence, given 

~ which is T~k+l-invariant, it is possible to find a subset ~+1  which is - - y  

minimal Tnk+tqnvariant. Finally we set f l F  = A i /~ .  
k=l 

Fix k momentar i ly  and form the sets 

(2) Aki = {~ E i/x: for some ~ E 7 ~ ,  (~,~) E A) 

n k - 1  

where i ranges f rom 0 to nk -- 1. Since T~k~y k C ~yk, i~0 T i ~  is T-invari- 
"= n k _  1 

ant, and hence it is all o f  ~y,  Y being minimal. It follows that U Am --- ~x. 
i=0 

Since each Ak~ is open it follows f rom this that  at least one of  them, say Akj, 

has a non-empty interior. From (2), however, it follows that TnkAe~ C A~j, 

and this contradicts the ergodicity of  (i/x,T TM) (see §3 (D)) unless Aej = ~x. 

It follows that Ak0 = i/x- For, T"k-~Ae~ C A~0, so that Ae0 D Tnk-J~x. Now 

since X is an ~'-flow T(l~x) = fix, since all fixed points o f  powers of  T lie in 

T(l'lx). Hence Ae0 = l~x. In other  words, for each ~: ~ ~x, there exists 

~ i / r  ~ with (~:,~) ~ A. Since this is true for each k, we may conclude that, 

for a given ~: ~ l/x, there exists a9 ~ i / F ,  with (~:,ag) ~ A. 

Suppose in the foregoing we choose ~: ~ f/x to be a fixed point of  some 

T ~. Find "q ~ I-IF with (~:,~) ~ A. For k sufficiently large, mine, and T"k¢=¢. 

On the other hand {T~e~} represents the orbit of  9 C g/F C g~r ~ for the 

flow (glre,Tnk), and hence is dense in g/r ~. Since A is invariant under  T~e, 

we find that (~:,a~') ~ A for every ~9' C ~ r  ~. In particular, (~:,~?') ~ A for 

every "O' ~ ~ r  ~. 

Now fix 9' ~ glr ~. We have seen that for each fixed point ~: o f  some T m, 

(¢,9') ~ A. But these are dense in l'lx; hence, 12x × 9'  C A. Now the set of  

~9' with this property is closed and T-invariant. Since Y is minimal, it follows 

that l-Ix × l~r C A which is the conclusion sought after. 
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C O R O L L A R Y :  ~ ±  = ~ l  = ~ .  

Proof: We have just  shown that  ~ C ~±.  On the o the r  hand,  since 

contains non-minimal  flows (in fact all are  non-minimal  by §3 ~H) (vi)), 

~'± must  consist o f  minimal flows. Hence  ~-~- = rig. For  the same reason 

~ "  C ~ .  Since ~ C ~ ,  ~ "  D ~±;  hence s~ ± = ~ .  

5. Weakly  Mix ing  Flows. T h e r e  are two ways o f  defining weak mixing 

in terms o f  ergodicity. We chose the weaker definition: 

= {X: X x X  ~ ~ } .  

It is not  known whether  this implies the s t ronger  proper ty :  ~ × g~ C ~, i.e., 

that  the p roduc t  o f  a weakly mixing flow with any ergodic  flow is ergodic.  

T h e  following proposi t ion shows that this is t rue  at least for  products  o f  

weakly mixing flows with minimal flows. 

P R O P O S I T I O N  I I . l  1. ~ × ~ C ~. 

Proof: Let X E ~ ,  Y E ~ .  T o  prove the ergodicity o f  X x Y we must  

show that for  open  sets .4, .4' C l'lxn, B, B' C [Iv, there  exists an in teger  

n I> 0 with Tn(.4 x B) f3 (.4' x B')  # ~ .  Equivalently n must  be found  with 

Tn.4 rl .4' # ~ and TnB f3 B' # 0 .  By Proposi t ion II.3, X × X × - • • × X is 

ergodic  for  any finite product .  This  implies that for  a finite family o f  open  
• • ! S 

sets .41,.42, • • ¢4m,.4 1,d z , ' ' "  ¢4'm in [ix, there  exists n such that each 

T~.4~ f3 .4'4 # Q~. In particular,  for  arbitrari ly large m, there  exists an n 

with T~.4 f3 .4' # ~ ,  Tn+l.4 f) .4' # Q~, • " " , T~+".4 f3 .4' # O. In o the r  

words, the sequence {n:T~.4 f3 .4' # Q~} has arbitrarily large blocks o f  con- 

secutive integers. T o  prove  the proposi t ion,  it will suffice to show that 

{n:TnB f3 B' # Q~} is relatively dense  (see Definition II.3). But,  in fact, 

for  any ~q E B, {n:TnTI E B'} is relatively dense  by virtue o f  the fact that 

{Tnlq} is r ecu r r en t  (Definition II.3 and Proposi t ion II.6). H e r e  we have 

used the fact that {n:Tn~l E B'} is non-empty ,  which is a consequence  o f  

the fact that {7/:T~'¢/ never  belongs to B'} is a closed T-invariant subset o f  

l~y and Y is minimal. 

T H E O R E M  II .3 .  ~ ± ( ~  n ~ ) .  

Proof." According to Proposi t ion II.9, it will be sufficient to prove  that if  

= {x: X ± ~r} 

then (a) the trivial flow is in if, (b) factors o f  flows in ~g are in cg, (c) a g roup  

extensions o f  a flow in ff is in ~g if it is minimal,  (d) inverse limits o f  flows 

in cg are  in cg. Now (a), (b), and (d) are  always valid for  the class o f  flows 

disjoint f rom an arbi t rary  class. T o  prove  the t heo rem it t he re fo re  suffices 

to show that a g roup  extension o f  a flow disjoint f rom ~ is itself disjoint 

f rom ~ if  it is minimal. 

Suppose  then that W E ~ ,  that  Y ± ~ where  Y = X/G, and that X is a 

minimal flow. We wish to show that X _1_ IV. Let  A C l'lw x l-Ix with A closed, 

TA C A, ~rw(A) = [iw, ~rx(A) = [Ix. Notice that G acts on IV x X in a natural  

way with (t0,~,g) --> (to,srg), and  this defines a cont inuous  map o f  [iw x 
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fix x G ~ fiw x fix. Let a deno te  the natural  m a p  f r o m  fix to f~r = fix/G and  

let a '  be the co r r e spond ing  m a p  f rom fiw × l"~x to f~w × f~Y. T h e  set a ' (A) 

is a T-invariant  closed subset o f  fix × f i r  and  ¢rw(a'(A)) = f~w, ¢rv(a'(A)) = 

a(fix) = l~v. Since Y 3_ W, we have a ' (A)  = fiw × fir .  F rom this it follows 

that  for  every (co,~:) E fiw × fix there  exists g E G with (c0,sCg) E A. This  

means  that  the p roduc t  AG coincides with fiw × f~x. 

We shall show now that  A itself coincides with fiw × fix, and  this will 

comple te  the proof .  Let  V be a closed set in G with n o n - e m p t y  inter ior  and  

consider  the p roduc t  AV. Since G is compac t  there  exist gl, " " • ,gr E G 

with U Vgi  = G. Hence  U AVg~ = AG = fiw x fix. T h e  sets AVgi being closed, 
i = l  i=1 

it follows that  one  o f  them,  and  the re fo re  each o f  them,  has n o n - e m p t y  

interior.  But  AVg~ is T-invariant  since A is T-invariant  and  T c o m m u t e s  

with the action o f  G. However ,  we also know that  W × X is ergodic  by Propo-  

sition II .11;  hence AVg~ = ~w x fix and  so A V =  fiw x f~x. Now we can find 

a decreas ing  sequence o f  closed sets {Vn} each with n o n - e m p t y  inter ior  

and  with D V, = {identity}. Since AV, = f~w x f~x we conclude that  A = 

l~w x fix. This  proves  the theorem.  

We conclude with the s ta tement  o f  two o p e n  problems.  

Problem F: Is it t rue  that  ~ x 8" C ~? 

Problem G: Describe the classes ~ '±  and  2 ±. 

Part III. Properties of  Minimal Sets. 

1. Min ima l  Subsets  o f  Groups .  Let G be a compac t  abelian g r o u p  and 

T an e n d o m o r p h i s m  of  f i  such that  X = (G,T) is an ~-f low. In  Part  I I ,  

§3 (D), we showed that  this is the case if G is a f ini te-dimensional  torus,  and  

T an e n d o m o r p h i s m  o f  G co r r e spond ing  to an in teger  mat r ix  with no roots 

o f  unity a m o n g  its eigenvalues.  I t  will also be the case if G = A x A x A x 

• • • , where  A is a compac t  abelian g r o u p  and  T represen ts  the shift  oper -  

ator.  

With this assumpt ion ,  X 3_ 2t by T h e o r e m  II .2,  and  in part icular ,  X is 

disjoint f r o m  its own minimal  subflows. Using this, we shall be able to show 

that  the minimal  sets in G are  "small" in a certain sense. 

Defini t ion I I I .  1. Let G be a toPological group and T an endomorphism of G. 

A closed T-invariant subset A of G is said to be restr icted i fAB = Gforsome closed 

T-invariant set B C G, implies B = G. 

H e r e  AB is the collection o f  all p roducts  or/3, o~ E A,/3 ~ B. Note  that  

the not ion of  a restr icted subset depends  on the e n d o m o r p h i s m  T and the 

g r o u p  s t ruc ture  o f  G. 

Defini t ion I I I .2 .  ~/ basis of a group G is a set B with the property that each 

element in G is a product of finitely many elements in B. 

LEMMA I I I .  1. Let G be a non-trivial compact metrizable group, and suppose 

that (G,T) is ergodic. Then a restricted set cannot be a basis of G. 



Disjointness in Ergodic Theory 35 

Proof: I f  A is a basis then  OA n = G. T h e n  some A n contains an o p e n  set 

(we assume A is closed) and  since A is T-invariant,  so is A n. By ergodicity,  

A n = G .  But  t h e n A  n - I = G , A  " - 2 = G , . . - , A = G ,  { e } = G ,  a n d s o G i s  

trivial if  A is restricted.  

T h e  main  result  o f  this section is 

T H E O R E M  I I I .1 .  I f  (G,T) is an ~-flow, then every minimal set for  (G,T) 

is restricted. 

T h e  p r o o f  o f  this t h e o r e m  is based on the following lemma.  This  l e m m a  

is reminiscent  o f  the famil iar  fact that  if  a n u m b e r  divides a p r o d u c t  and  

is relatively p r ime  to one  o f  the factors, it necessarily divides the r ema in ing  

factor. 

LEMMA I I I . 2 .  Let X and Y be disjoint flows, and suppose there is a flow Z 

and a homomorphism X × Z -~ Y. Then for each ~ E f~x, the map ~ --~ ar(~, 0 

takes ~z  onto ~v. 
~ W lr  W Ir 

Proof." Let W = X × Z. We have IV ~Y~ X, IV2_~ Z,  and  IV ~ Y. Since 
X _1_ Y, there  mus t  exist a h o m o m o r p h i s m  IV ~ X × Y such that  7rx w = 7rxy, 

and  7r = ~vY- T h e n  y(~:,g) = (~:,~'(~,g)). Now y takes 1) w on to  l)x × l)r ,  so 

for  each (~:,~q) there  is a point  to E l~w with y(to) = (sr,~). But  this means  

that  the equat ion  77 = ~r(~:,g) has a solution for  each pair  (~:,,?). 

Proof of Theorem III.1. Let M be a minimal  set o f  the ~'-flow (G,T).  I f  M 

is not  restr icted,  we may  find a closed T-invariant  set B C G with MB = G 

and  B ~ G. Let X = (M,T) ,  Y = (G,T) ,  and  Z = (B ,T) .  We have a m a p  

~r:M × B --> G def ined  by 7r(/~,fl) = p.fl which takes M × B on to  G. Hence  ~r 

defines a h o m o m o r p h i s m  of  X × Z to Y. But  X _L Y since X is min imal  and  

Y is an ~'-flow. By L e m m a  I I I .2 ,  7r(/z,B) = G, or/ . tB = G for  any /~  E M. 

But  G is a g roup ,  and  this implies that  B = G. 

2. Relat ive Dimens ion ,  Hausdorf f  D i m e n s i o n  and T o p o l o g i c a l  

En t ropy .  Let  A = {0,1, • • • ,  a -- 1}, where a is a positive in teger ,  set [ l  = 

A × A × A × • • • ,  and  let T deno t e  the shift  t r ans fo rma t ion  o f  l) .  A can be 

given a g r o u p  s t ruc ture  in several  ways; for  each o f  these, ~ becomes  a 

g r o u p  and  T an e n d o m o r p h i s m  o f  1). For  each o f  these s t ructures  the re- 

sults o f  the last section app ly  and  a min imal  set for  ( fLT)  will be "re- 

stricted" with respect  to the various g r o u p  s t ructures  on ft. T h e  quest ion 

arises whe the r  it is possible to in t roduce  a quant i ta t ive not ion o f  the size 

o f  sets for  which all minimal  sets will be "small". T h e r e  are  several  notions 

which suggest  themselves,  for  all o f  which it is t rue  that  a "small" set is a 

restr icted set. We shall, however ,  see that  in spite o f  evidence to the con- 

trary,  minimal  sets need  not  be small in any o f  these senses. 

T h e r e  is a co r r e spondence  be tween 1~ and the uni t  interval  which is 

a lmost  one-one .  Namely ,  we associate with the sequence  (tol,to2,toa, " • ") 

the real n u m b e r  ~ tona -n. T h e  o p e r a t o r  T co r re sponds  t o  the o p e r a t o r  
1 

~'a on  [0,1] which is def ined  by TaX = ax m o d u l o  1. ~'a becomes  cont inuous  
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i f  we identify 0 and 1, i.e., if  we take as its domain  the additive g roup  o f  

reals modu lo  one. Calling this g roup  K we obtain a flow (K,%). For  a set 

A C ~ we shall denote  by A* the cor responding  set in K. A T-invariant set 

A in ~ is minimal for  (I~,T) if and only if A* is a minimal set for  (K,%). In 

de te rmin ing  the "size" of  a T-invariant set A C 1~ we may consider  inter- 

changeably proper t ies  o f  A and propert ies  of  A*. 

One  such measure  o f  the size o f  a set in ~ or  in K is given by its Haus- 

dorffdimension. This  exists for  every subset B o f  K and  we deno te  it by D(B) .  

T h e n  0 ~< D(B)  ~< 1. T h e r e  is a related notion which is more  useful for  

certain purposes  and which we_refer to as the relative dimension. Parti t ion 

K into N equal intervals: K = (3 [m/N,(m + 1)/N], and let v(B,N)  be the 
0 

n u m b e r  o f  these that contain points of  B. I f  

(1) lim log v(B,N)  
N-,= log N 

exists, we call it the relative dimension of  B, and deno te  it by d(B) .  It  is easy 

to see that whenever  d(B)  exists, it satisfies d(B)  >! O(B) .  One establishes 

readily the relat ionship 

v( B,N2) 3/2 
v(B,Xl-----~ < 3 + - -  X l  ' 

which shows that if the limit (1) exists for  a subsequence {Nk} satisfying 

N~+t/Nk < M < ~, then the limit exists. In particular,  it suffices to establish 

the existence o f  lim log v(B,g ~) fo r  some integer  g. 
n---~co n 

Finally, there  is a not ion o f  size which is applicable to subsets o f  ft. Let  

.4 C fl  and  denote  by/~(.4,n) the n u m b e r  o f  A-valued n-tuples (al,a2, • • • , 

a~) which coincide with (01,t02, • • •,  oJn) for  some point  ~ = (tol,0J2, • • • , oJn, 

• . - )  E A .  I f  

(2) lim log l~(A,n) 
n ~  ?L 

exists, it is called the topological entropy o f  A and deno ted  g(A) .  I f  A is T- 

invariant,  then  (.4,T) is a flow. In this case g(.4) always exists and it may 

be seen that g(A) coincides with the topological entropy of  the flow (.4,T) 

as def ined in [ 1 ]. 

P R O P O S I T I O N  III .1.  Let A be a T-invariant subset of l'~ and let A* denote 

the corresponding subset of K. Then d(A*) and ~(A)  exist and 

(3) D(.4*) = d(.4*) = ~(.4) 
log a 

Remark: From this proposi t ion it follows that the Hausdor f f  d imension o f  

the classical Cantor  set is log 2/log 3. For, the Cantor  set cor responds  to the 

set o f  sequences in f l  (A = {0,1,2}) in which 1 does not  appear .  This  clearly 

has topological cn t ropy  log 2. 
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Proof:  By the T-invariance of  A, it is clear that i z ( A , n  + m)  <~ I z ( A , n )  × 

I ~ ( A , m ) .  It is well known that this implies the existence o f  the limit in (2); 

hence ~'(A) exists. Consider now v(A* ,a" ) .  The  interval [ m / a " , ( m  + 1)/a"] 

will contain a point o f  .4* if and only if  the a-adic expansion of  m, ra = 

~ b t a  i-1, is such that (bl,b2, • • • ,  b,)  coincides with the initial n-block of  a 

sequence in .4. Hence v ( A * , a  n) = i x ( A , n ) .  Thus  

lim v( .4*,a")  
/-t.--) ~ /'/, 

exists and coincides with g(.4). By our  remarks concerning relative di- 

mension, we conclude that d(.4*) exists and d( .4*)  = g~(.4)/log a. 

We must  still show that the Hausdorf f  dimension of.4* coincides with 

d(.4*).  Since one always has d ( A * )  >I D(.4*) ,  we mus t  show that D(.4*)  

d( .4*).  Recall that D(.4*)  >I 8 if, for every covering of  A* by intervals I, of  

sufficiently small length, ~ l l j l  a > c > O. We claim now that  in applying 

this criterion, it suffices to consider coverings with intervals of  the form 

Ij = [m¢/anJ,(mj + 1)/a"J]. For, as one can see, it is possible to replace an 

arbitrary covering by one with intervals of  this sort, thereby multiplying 

~]ij[8 by no more than 2a 8. It will suffice therefore  to show that if  
d 

4 "  C U [ m j l a " J , ( m j +  ])/a"~] 
j = l  

d 

and 8 < d(`4*),  then ~] a-a"J I> 1. 
I 

We can restate this in terms of  the set .4. We denote  by R'  the collection 

of  all n-tuples of  elements of  A, R i =  ~J A". R'  is a semigroup if we multi- 
1 

ply by juxtaposit ion: (aa, " • " ,  a , ) (b l ,  • • • ,  bm) = (al ,  " • ",a,, ,b~, • • • ,  bin). 

We denote  by R the subset o f  R'  consisting o f  n-tuples which occur as blocks 

in sequences of.4. Thus / z  (.4,n) is the number  o f  elements of  R of  length n. 

Notice that PiP2 E R implies that both pa and P2 belong to R. We shall say 

that  p' is divisible by p if  p' = PPl for some P~ G R'.  Also l(p) will denote  

the length of  P. With these preliminaries we  may restate what must  be 

proved as follows. I f  {Ok} is a finite collection of  elements of  R such that 

each P E R of  sufficiently great length is divisible by some P~, and if  ~ < 

d ( A * ) ,  then ~ a-e~°i ~ >i 1. 

Suppose to the contrary that ~ a-~WP < 1. T h e n  

E a-61(PiaPi2""Pin < ~ 

where the sum is taken over the semigroup generated in R'  by {Pi}. We 

now claim that there is a finite set o f  elements {p'j} such that every p E R 

can be expressed as a product  p = Pi,Pi, " • " Pi,eo'j, for some sequence Pi,, 

• " " ,Ok, in {Ok} and for some p'j. The  reason is that  each p E R is divisible 

by some Ok, P = P~,P' with p' E R, provided l ( p )  is large enough.  But  f rom 
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this it follows that 
E a St(p) ,~ oo 
R 

In other  words ~] l z (A,n)a -Sn < 0o. However if ~ < d(`4*) = g~(`4)/log a, 

then for n sufficiently large, Iz(`4,n) > a ~n and the series in question must  

diverge. This proves the proposition. 

3. Determinist ic  Flows. In [1] the analogy between "entropy" and 

"topological entropy" is developed. For a number  of  flows it may be shown 

that the flow X supports a measure /z  such that the ent ropy of  the process 

(X,/z) equals the topological ent ropy of  X. In any case the former  never 

exceeds the latter. The  topological ent ropy of  a product  is the sum of  the 

topological entropies of  the factors, and the topological ent ropy of  a flow 

is at least as great as that of  any of  its factors. This analogy suggests defin- 

ing a class of  "deterministic" flows by the condition that the topological 

ent ropy vanish. A deterministic f low has the property  that any process 

supported by it is deterministic in the sense of  Part I, §3. It may be that the 

converse is true as well. 

Let `4 and B denote  ~'a-invariant subsets o f  K, and let A + B denote their 

sum, i.e., the set of  all sums a +/3, a E A, a E B. Evidently, v(A + B,N) <~ 

v (A ,2N)v (B ,2N) .  From this we find that d(A + B) <. d(A)  + d(B) .  

P R O P O S I T I O N  111.2. I f  .4 is a ra-invariant closed subset of K such that 

(.4,ra) is deterministic, then .4 is restricted. 

Proof: I f  (.4,7a) is deterministic, then d(.4) = 0. Hence .4 + B = K im- 

plies d(B)  = 1. Let B correspond to a T-invariant subset B' C 1~. d(B)  = 1 

implies ~(B')  = log a. Now if B' is a proper  subset of  Xq, there is some n- 

tuple, for some n, of  elements o f  A which does not occur in the sequences 

of  B'. But then Iz(B' ,n) ~< a n -- 1 for some n, and so l z (B' ,nm) <~ (an - 1) m, 

whence g~(B') ~< log (an - 1)/n log a < 1. This proves the proposition. 

There  appears to be a certain amount  of  evidence to support  the con-'  

jecture  that minimal flows are deterministic. For one thing, a subset A of  

K is restricted if the flow (A,r~) is either minimal or  deterministic. Secondly 

the class ~± of  flows disjoint f rom Bernoulli  flows coincides with A ,  whereas 

the processes disjoint f rom Bernoulli  processes are precisely the deter- 

ministic processes. Finally, the most familiar examples of  minimal sets do 

correspond to deterministic flows. For instance, the recurrent  sequences 

described by Robbins [ 12 ] lead to deterministic flows, and the minimal set 

described by Gottschalk [7] is deterministic. We shall see however that 

this evidence is misleading and that there exist minimal flows which are 

not deterministic, or, equivalently, minimal sets for (K,za) with positive 

Hausdorff  dimension. 

T H E O R E M  III.2.  There exist minimal sets with positive topological entropy. 

Proof: According to Proposition II.6, the flow defined by a recurrent  

sequence (see Definition II.3) is minimal. Moreover, if {~:(n) } is a A-valued 

sequence, and X is the flow it defines, it is possible to compute  the topo- 
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logical e n t r o p y  o f  X directly f r o m  {~(n)}. Namely ,  if  H ,  is the n u m b e r  o f  

distinct n-tuples o f  symbols  o f  the f o r m  (~(l + 1), • • • ,~( l  + n)) for  some  

1 I> 0, then  #( .4 ,n)  = H, ,  .4 be ing  the subset  o f  [1 def ined  by the flow X. T o  

construct  a minimal  flow with positive en t ropy  we shall const ruct  a recur-  

ren t  sequence  {~(n)} for  which H ,  grows exponent ia l ly  with n. 

Decompose  the na tura l  n u m b e r s  J = { 1,2,3, • • • } into a disjoint un ion  
0o 

of  ar i thmet ic  progressions:  J = U Jr, J r  = cr + dr J ,  J r  N J~ = O for  r # s. 
1 

For  each r choose a n u m b e r  a ( r )  E A, and  define {~(n)} by sett ing~:(n) = 

a ( r )  i f  n ~ Jr. I t  is easily seen that  the  sequence  {~(n)} is r ecur ren t .  In 

fact, each m-tuple  (st(l), ~(2), • • • , ~ (m))  recurs  periodically. 
¢o 

T h e  condi t ion J = U J r  implies that  ~ 1~dr  ~< 1. We would expec t  equal-  
1 

ity, but  one  readily sees that  the  dr may  be chosen to increase as rapidly  as 

we like. Moreover ,  it is not  h a r d  to see that  the  set o f  initial points  {cr} 

may be m a d e  as dense  as we like in J ,  s imply by choos ing  {dr} to be increas- 

ing sufficiently rapidly.  In  part icular ,  we may  choose {Jr} such that  

(4) lim sup  Cr/ r  < 2 . 

For  such m there  will be infinitely m a n y  r such that  cr+m -- cr+l < 2m. Denote  

this set o f  integers  r by Qm. 

Now let {y,} deno t e  a sequence  o f  i n d e p e n d e n t  identically d is t r ibuted 

r a n d o m  variables, each having  for  its value the symbols in A, all occur r ing  

with positive probabili ty.  For any  choice o f  m symbols,  al,a~, • • • , am, the 

probabil i ty  is 0 that  for  each r E Q m ,  (Yr+~ ,Yr+z ,  " " " , Y r + m )  # (a~,a2, • • • ,  

am). I t  follows that  there  exists a sample  sequence {y,} = {'O,} such that  for  

every m and  every m-tuple  ( a ~ , a 2 ,  • • • , a m ) ,  there  is an r E Qm with ('or+l, 

'or+2, • " " ,'or+m) = (al,a~, • • • ,am). 
With this sequence  {'O,} we f o r m  a r e c u r r e n t  sequence  {~:(n)}, set t ing 

s~(n) = "Or for  n ~ Jr- We find that,  for  every m-tuple  ( a l , a ~ ,  • • • ,am), an r 

exists with cr+m -- cr+l < 2m, and  with ~:(cr+j) = a ~ , j  = 1,- • • ,m. This  means  

that  there  is a value o f  n such tha t  in the sequence  s ~ (n + 1), • • • ,  ~:(n + 2m), 

the values al ,  • • • , a m  occur  somewhere  and  in that  o rde r ,  t hough  not  

necessarily consecutively (namely,  take n = Cr+l). Now each fixed block 

~ : (n+  1 ) , - - -  ,~:(n + 2m) can give rise to at most  ( 2 m )  < 4m m-tuples  (al, 

a2, • • • ,a , ) .  I t  follows that  the n u m b e r  H,m for  o u r  sequence  {~:(n)} ex- 

ceeds (a/4) m. As a result ,  if  a > 4, the flow associated with {s~(n)} will have  

positive topological  en t ropy.  This  proves  o u r  theo rem.  

We r e m a r k  that  this t h e o r e m  has also been  p roven  independen t ly  and  

in sha rpe r  f o r m  by F. H a h n  and  Y. Katznelson (as yet unpubl ished) .  T h e y  

show that  the flow X may  be chosen to be  strictly ergodic,  and  such that  i f  

/z is the unique  invar iant  probabi l i ty  measu re  s u p p o r t e d  by X, then  the 

en t ropy  o f  the process (X,/x) is positive. 

4. ~ x ~ ~ 5 p. T h e  class o f  determinis t ic  flows in t roduced  in the last 
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sect ion has  the  p r o p e r t y  tha t  p r o d u c t s  o f  flows in the  class a r e  aga in  in t he  

class a n d  fac tors  o f  flows in the  class a r e  in it. T h e  objec t  o f  the  r e m a i n d e r  

o f  this p a r t  is to c o n s t r u c t  a class with t he  s a m e  p r o p e r t i e s  a n d  c o n t a i n i n g  

the  class o f  m i n i m a l  flows. By T h e o r e m  I I I . 2 ,  the  class o f  de t e rmin i s t i c  

flows does  no t  suffice f o r  this p u r p o s e .  T h e  p r o b l e m  m a y  also be  d e s c r i b e d  

in a n o t h e r  way. I f  we de f ine  a deterministic sequence as o n e  which  is d e f i n e d  

fo r  a de t e rmin i s t i c  flow, t h e n  it is easily seen  tha t  c o n t i n u o u s  func t ions  o f  

finitely m a n y  de t e rmin i s t i c  s equences  [~(n)  = f (~ : l  (n ) ,  ~:2(n), • • • ,set(n) ) ] 

a r e  aga in  de t e rmin i s t i c  sequences .  T h i s  is a d i r ec t  c o n s e q u e n c e  o f  t he  clo- 

su re  p r o p e r t i e s  o f  the  class o f  de t e rmin i s t i c  flows. Since n e i t h e r  ~ n o r  5 e is 

c losed u n d e r  mul t ip l ica t ion ,  t h e r e  will exis t  f u n c t i o n s  o f  r e c u r r e n t  se- 

quences  which  a re  no t  r e c u r r e n t .  T h e  ques t ion  arises,  w h a t  p r o p e r t i e s  a r e  

s h a r e d  by sequences  f o r m e d  in this way? 

T h e  fact  tha t  p r o d u c t s  o f  m i n i m a l  flows n e e d  no t  e v e n  be  semi - s imple ,  

o r  equiva len t ly ,  t ha t  a c o m p o s i t e  s e q u e n c e  {~:1 (n)  ,~:2 (n)  } whose  c o m p o -  

nen t s  a r e  r e c u r r e n t  n e e d  no t  be  r e c u r r e n t ,  m a y  be  seen  as follows. As 

b e f o r e  let 1) be  the  p r o d u c t  A × A × A × • • • ,  with A a finite set. 

P R O P O S I T I O N  I I I . 3 .  Let  X = ( A , T )  be a subflow o f  ( I ) , T )  such that A is 

infinite. Then  X × X is not semi-simple. 

Rem ark :  I n  pa r t i cu la r ,  i f X  is m i n i m a l  a n d  A is no t  finite,  the  h y p o t h e s e s  

a r e  fulfi l led a n d  X x X is a p r o d u c t  o f  m i n i m a l  flows which  is no t  semi-  

s imple .  T h i s  p r o p o s i t i o n  also shows tha t  a flow o f  finite type  c a n n o t  be  

distal  un less  it is per iodic .  F o r  we recal l  f r o m  Par t  I I ,  §3 (G), tha t  X is distal  

i f  a n d  on ly  i f  X × X is semi-s imple .  

Proof." O n  l~, a n d  t h e r e f o r e  on  A, a r e  d e f i n e d  c o o r d i n a t e  func t ions  

x, :  x,(tol,to2, • • ") = to, E A. S u p p o s e  X x X w e r e  semi - s imple .  T h e n  fo r  

any  c o n t i n u o u s  func t ion  9 o n  A × A, the  s e q u e n c e  ~ ( T " t o , T " t o ' )  would  be 

r e c u r r e n t  (P ropos i t i on  II .6) .  U s i n g  this we shall  show tha t  o n  A, xl is a 

c o n t i n u o u s  func t i on  o f  x2,x3,x4, • • • . T o  show this it suffices to show tha t  

i f  tol,to2 E A a n d  i f x , ( t o l )  = x,(to2) fo r  n = 2,3,4, • • • , t h e n x l ( t o 0  =XI(to2). 
But  if  X × X is semi - s imple ,  t h e n  xn(tol) --  x,(to2) r e p r e s e n t s  a r e c u r r e n t  

sequence .  I f  it van i shes  f o r  n = 2,3,4, • • • ,  it m u s t  van ish  f o r  n = 1. T h u s  

we m a y  wri te  x~ ---- F(x2 ,x3 ,x4 ,  • • ") with F a c o n t i n u o u s  func t i on  on  A. N o w  

it is easily seen  tha t  s ince each  xi takes  o n  only  finitely m a n y  var iables ,  

x~ = F (x2,x3, • • • ,  xm). Since A is T- invar ian t ,  we have  x ,  = F (x,+l,x,+~, • • • ,  

Xn+m-,). H o w e v e r ,  t h e r e  exist  on ly  finitely m a n y  sequences  sa t i s fy ing these  

condi t ions ,  a n d  h e n c e  A m u s t  be  finite. T h i s  p r o v e s  the  p ropos i t i on .  

A n  explici t  e x a m p l e  o f  a m i n i m a l  set  o f  f inite type  is 

A = set  o f  s equences  {~:(n) = sgn  sin (ha  + 0)} 

w h e r e  a is f ixed a n d  0 var ies  b e t w e e n  0 a n d  2zr. W h e n  not + 0 = vTr, v an  

in teger ,  we de f ine  sgn sin (not + 0) as e i t he r  +1 o r  - 1 .  T h a t  is, 0 o f  the  f o r m  

v l r - -  kot gives rise to two sequences  {~:(n)}, b o t h  o f  which  a r e  i n c l u d e d  in 

A. We  leave it to the  r e a d e r  to ver i fy  t ha t  ( A , T )  is m in ima l .  T h a t  the  flow 
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is not  distal can be seen directly by considering limits o f  translates o f  

{U-(n) } where 

= ~sgn sin na  n ~ 0 

~ ± ( n )  (-----1 n = 0 . 

The  above example shows directly that sums and products o f  recurrent  

sequence are, in general, not  recurrent .  For ~+(n) -- ~-(n) and ~+(n)~:-(n) 

are evidently not  recurrent .  

5. Binary  Sequence Spaces. Our  object in the next two sections is to 

construct a class o f  flows of  finite type (Part II, §3 (A)), closed unde r  prod- 

ucts and  passage to factor flows (that is, i fX  and Y are of  finite type, X --% Y 

and X is in the class, then Y should also be in the class) and  containing all 

minimal flows of  finite type. It is clear that  what is sought  is a relatively 

restricted class o f  flows; the more restricted this class, the more informa- 

tion is to be had concerning products of  minimal flows. 

As yet we have only been successful in dealing with flows of  finite type, 

but in all likelihood a similar situation will present  itself in the general  case. 

In the present  section, all the flows to be considered are subflows of  

(I)2,T), where li2 is the space o f  all {0,1 }-valued sequences ~ = (~:(1), ~(2), 

• • • ,sO(n), • • .) and T is the shift t ransformation.  It will be convenient  to 

regard l i2as a ring, addition and multiplication o f  sequences being carried 

out  term by term, treating {0,1} as the field with two elements. During the 

remainder  of  this section, the expression "invariant set" will refer  to a 

closed, T-invariant subset o f  li2. A minimal subset Ft2 will also be under-  

stood to be an invariant set which is minimal  for (li2,T). 

By Definition III.1, a subset `4 o f  I~2 is restricted (with respect to the 

additive structure o f  li2) if  A + B = 112 implies B = 112. Here  ,4 and  B are 

invariant sets. It is clear that  the sums of  two restricted sets is restricted. 

We do not know if the product  o f  restricted sets is restricted. Nevertheless, 

we have the following proposition which is a sharpening of  Theorem III.  1: 

P R O P O S I T I O N  III.4.  I f  A is a restricted subset of ~'~2 and M is a minimal 

set in lie, then M`4 is restricted. 

Proof." Suppose B is an invariant set satisfying MA + B = lI, .  We show 

that B -- 1)2. Consider the flows (M,T) ,  ( A , T ) ,  (B ,T) ,  and (li2,T). By 

hypothesis, there is a map ~" o f  M x A × B onto 1~ 2 which defines a homo- 

morphism of  the product  of  the first three fows  onto the last; namely 

7r(/~,a,/3) - - /~a +/3 .  Recalling that (M,T), being minimal, is disjoint f rom 

(lie,T) which is an o~-flow, we are in a position to apply Lemma III.2. We 

conclude that for each ~ ~ M, ¢r(/z,A,B) = li2, or, p.A + B = li2. Fix/z and  

choose to' E l~2 in the form to' = 1 --/z +/xto with to an unspecified element  

of  ~2. For each choice o f  co there must  exist a E A,/3 E B such that 

(5) t~a + B = 1 - t z+ t . t t o .  
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Multiply both  sides by (1 - /~ ) (1  - fl) and recall that for  ~ ~ 1)~, (2 = ~:, o r  

~(1 - ~) = O. We thus have 

(6) (1 - /~ ) (1  - / 3 )  = 0, (1 --/3) = /z (1  - / 3 ) .  

Now multiply both sides o f  (5) by (1 --/3): 

(1 --/3)l~a = (1 --/3)l~tO 

and since (1 --/3)/x = 1 -- fl, 

( 1 --/3)ol = (1 --/3)oJ 

and 

(7) to = a + fl(oJ -- o~) . 

(7) shows that every e lement  in f12 is a sum of  an e lement  o f  A and a mul- 

tiple o f  an e lement  o f  B: 

l~2 = A + B 1 2 2  . 

But B122 is an invariant  set and Aa by hypothesis is restricted. We conclude 

that Bl-b2 = f~2. Now in l~  the unit  e lement  1 has a unique  representa t ion  

as a product :  1 = 1 • 1. It follows that 1 ~ B. We have shown that MA + B = 

1~2 implies tha t  1 E B. But  in addit ion,  MA + (B + C ) =  flz for  any invariant  

set C. It follows that 1 E B + C. T a k e C =  {1}; we conclude that 0 E B. 

Hence  0 E B + C for  any invariant  set C. This  means every invariant  set 

C intersects - B .  Thus  B itself must  intersect every  invariant  set, and 

hence it must  contain every minimal set in f12. So B contains every periodic 

sequence in f12, and since these are dense, we infer  that B = f~2. This  proves 

the proposit ion.  

By repea ted  application o f  this proposi t ion and the fact that  sums o f  

restricted sets are restricted, we conclude that any set in f12 o f  the fo rm 

(8) .4 = ~ MaMi2 " " • Mili 
i=1 

is restricted, the Mo denot ing  minimal sets. 

D e f i n i t i o n  I I I .3 . .4  sequence ~ @ ~2 is restr icted i f  it belongs to a restricted 

set. We denote by R the family of  all restricted sequences. 

R is a T-invariant subset o f  f12, but  it is not  closed. However  if  ~= E R, 

then all limits o f  translates o f  ~ are  in R. It is also clear that  R ~ f12. T o  see 

this, observe that (~z,T) ,  being ergodic,  has dense  orbits. Hence  there  are  

sequences to E 1~ belonging to no invariant  subsets o ther  than D~ itself. 

These  points (which in fact constitute a residual set in l~z) are not  restricted. 

P R O P O S I T I O N  I I I .5 . .4n  invariant set A C ffZ~ is restricted i f  and only i f  

A C R .  

Proof." T h e  necessity is clear, so we tu rn  to the sufficiency. Suppose 

A C R and A + B = R, A and B being invariant  sets. As r emarked  above 

there  exists to G f~z whose orbit  is dense in f~z. Write o~ = a +/3,  a E A, 
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13 E B. Now a E R, hence a ~ A', where A' is a restricted set. Hence 

co E A' + B. The latter set is, however, invariant; hence ~ = A '  + B and so 

B = f12. This proves the proposition. 

THEOREM IIL3. Let Ro denote the subring of  1~2 generated by all recurrent 

binary sequences. Then Ro C R. 

Proof." Every element in R0 is of form 

//1 

i = l  

where the ~ are recurrent sequences. Each ~ belongs to a minimal set 

Mn and hence ~: belongs to a set of  the form (8). It follows that ~: is re- 

stricted. 

R0 is T-invariant and not closed. It also has the property that a limit of  

translates of  an element of  R0 is again in R0. Thus R0 is a union of  closed 

T-invariant sets. 

COROLLARY. Ro is a set of  the first category in ~-~2" R itself may not be a 

ring. By Proposition 111.5, it is an additive subgroup. Also by Proposition 111.4, 

it is a module over the ring Ro. 

6. R0-Flows. The ring R0 of  binary sequences may be identified with a 

ring of  subsets of the natural numbers. The latter ring we denote R*0. We 

shall make use of  R*0 in studying general finite-valued sequences. Let A 

be a finite set and suppose {~(n)} is a A-valued sequence. 

Definition III.4. A sequence ~ is R0-measurable/f the subsets of the form 
{n:((n) E A}, A a subset of A, belong to R*~ 

THEOREM IIL4. (a) I f  a sequence is Ro-measurable, then so are all translates 

and limits of  translates of  the sequence; (b) Any function of finitely many Ro- 

measurable sequences (~(n) = f ( ~ l ( n ) , ' ' "  ,~,n(n))) is Ro-measurable; (c) 

Recurrent sequences are Ro-measurable. 

Proof: (a) and (b) follow by virtue of the fact that R*0 is a ring and R0 

has the invariance properties in question. For (c), suppose that {((n)} is 

recurrent. I f  we let ~(n) = 1 or 0 according as ~(n) E A or not, then 

{~(n)} is a function of  {~(n)} and hence itself recurrent. Hence ~ E R0 

and {~ (n) } is R0-measurable. 

Finally we introduce the flows that correspond to R0-measurable se- 

quences. 

Definition III.5. Let X be a subflow of ( I~,T), where [1 = A x A × A × • • •,  

and A is finite. I f  each sequence of  l'lx is Ro-measurable, then X is said to be an 

Ro-flow. The class of  Ro-flows will be denoted by Ye o. 

THEOREM III.5. (a) All semi-simple flows of  finite type are in ~o; (b) 

Y~o × ~o C ~o; (c) Subflows of  flows in Y~o are in YSo; (d) Factors of  flows in ~o are 

in Y~o provided they are of  finite type; (e) Non-trivial BernouUi flows do not occur 
in ~ 
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Proof" (a), (b) and  (c) are immedia te  f r o m  T h e o r e m  I I I .4 .  T o  p rove  (d) 

assume that  X E ~0 and  that  X ' ~  Y, where  Y is a flow o f  finite type. Wri t ing  

the points o f  fix and  ~ r  as sequences,  a = (al,a2,aa, • • ") E l )x , /3  = (/31,/32, 

/33, • • ") E 12y, we have  

/ 3 .  = ¢ I ' ( ~ . , a . + , ,  " • . )  

for  some cont inuous  funct ion • on  12x. Since bo th  the a ,  and  the/3m are 

finite-valued, • can d e p e n d  only on finitely m a n y  coordinates:  

/ 3 .  = ~ ( a . , ~ . + l ,  " " " , a . + r )  • 

But then if a is R0-measurable,  so is/3, and  so Y E ~0. 

Finally (e) follows f r o m  the fact that  R0 is a p r o p e r  subset o f  122. Now 

the space o f  a Bernoull i  flow consists o f  all A-sequences for  some space A, 

and  the only r ing  with respect  to which all these sequences a re  measurab le  

is the r ing o f  all subsets o f  the natura l  numbers .  This  proves  the theo rem.  

7. A Necessary Condition for an R0-flow. Let  A be an invar iant  subset  

o f  12 = A × A × A × • • • ,  where  A is a finite set. Let  Q be an infinite subset  

o f  the natural  numbers .  We say .4 is free on Q i f  for  any choice o f  n u m b e r s  

ql, " " " ,q~ E Q, and)~l,  • • • ,~,r E A, we can find a sequence ot E ,4 with 

OL01 ~ -  ~k 1 ,  • . . ,OLq  r : ~kr .  

T H E O R E M  I I I .6 .  I f  (,4,T) ~ ~0 then ,4 cannot be free on a relatively dense 

set (see Definition H.3 ). 

Proof" I fA  is f ree  on  Q and i fA '  = {a ' :  a ' ,  = ~0(ot,), a ~ A } for  some func- 

tion ~0 :A ~ A' ,  then  A'  is again f ree  on  Q. Choose ~0 as a two-valued funct ion 

so that  A' C f12. I f  (A ,T)  E ~o then  (A ' ,T )  ~ ~o and  so A'  C R0. We wish 

to show that  if  A'  is f ree  on Q, then  Q canno t  be relatively dense.  

I f /3 E 1"12, then  the set o f n  for  which/3(n)  = 1 will be called thesupport  

of/3 .  With A' as before ,  let B deno te  the set o f  all/3 E 122 such that  A'  is 

f ree  on  the suppo r t  of/3. B is T-invariant,  and  because the not ion o f  be ing  

f ree  d e p e n d e d  on  condit ions r ega rd ing  finitely m a n y  coordinates  at one  

time, B is seen to be closed. Suppose  some/3  ~ B has for  its s u p p o r t  a rela- 

tively dense  set. Clearly all translates o f / 3  have the same p rope r ty  (uni- 

formly) and  so do limits o f  these. T h e  set {T"/3} then  contains a minimal  

set M whose m e m b e r s  have relatively dense  suppor t .  In  par t icular  M does 

not  degene ra t e  to {0}. Let  ~ E M. Since A'  is f ree  on  the suppo r t  o f  p~, we 

can write A ' ~  = D~2p., or  122 = A'  + ( 1 -- ~)122- I f  we set M'  = { 1 - ~:/z ~ M}, 

then afortiori, t 2  = ,4'M'122. Since ,4' is a restr icted set, M'~2  = 1~2. Hence  

1 E M'  and  so 0 E M. But  Mis  minimal  and  we assumed  M ~ {0}. Hence  

no /3  E B has relatively dense suppor t ,  and  this proves  the theorem.  

Combin ing  T h e o r e m s  I I I . 5  and  I I I . 6  we find that,  beg inn ing  with 

semi-simple flows o f  finite type and  f o r m i n g  subflows, factor  flows o f  finite 

type and  p roduc t  flows we always obtain flows satisfying the condit ions o f  

the theorem.  Namely,  the space o f  the flow is a sequence space which can- 

not be f ree  on  a relatively dense set. 
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We note  that  determinist ic flows also satisfy the condit ions o f  T h e o r e m  

III.6. For if a set ,4 is f ree  on a relatively dense  set, it is clear that /z(`4,n)  

increases exponential ly  with n. 

We conclude this par t  by formula t ing  two problems which we have not  

been able to solve: 

Problem H. Is R C 1)2 a ring, and if  so, does it coincide with R0? 

Problem I. Is the condit ion in T h e o r e m  III .6  sufficient as well as neces- 

sary for  an R0-flow? 

Part IV. A Problem in Diophantine Approximation. 

1. Minimal Sets on Tori .  We let K r deno te  the r-dimensional  torus 

considered as an additive group:  K" = Rr/z  r. T h e  endomorph i sms  o f  K" 

co r respond  to r x r integer  matrices, and these fo rm a semigroup  E(r) .  

Each cr ~ E(r)  determines  a flow on K r, and  u n d e r  certain mild conditions, 

(Kr,o ") will be an 3r-flow. T h e o r e m  III.  1 then  gives us certain in format ion  

about  minimal sets o f  (K~,o-): I f  M is minimal and  B is an invariant  set, 

then  M + B = K r implies B = K ~. 

In all this we have been  deal ing exclusively with a "one -pa ramete r "  

semigroup  o f  t ransformations.  It is not  difficult to see that the various 

notions we have used generalize to the situation where  a more  complicated 

semigroup  acts on  the space. Namely,  we can allow flows (I~,E) where  E is 

now not a single t ransformat ion,  but  an abelian semigroup  o f  t ransforma-  

tions. T h e  notions o f  minimal flows, semi-simple flows, Y-flows, and  the 

notion o f  disjointness all generalize to this situation. Developing the 

analogy we may obtain a generalizat ion o f  T h e o r e m  III .  1 to abelian groups  

on which an abelian semigroup o f  endomorph i sms  acts. Specifically, we 

may obtain the following result  whose usefulness will develop presently.  

P R O P O S I T I O N  IV. l .  Let E denote a commutative semigroup of endomor- 

phisms of the r-torus K r. We assume (i) that the adjoint semigroup of endomorphisms 
:¢ r of the dual group Z possesses no finite invariant subset in Z r -- {0}, and (ii) 

that there exists a prime q with the property that all det  o-, o- ~ ~, are relatively 

prime to q. Then i f  M and B are two closed E-invariant subsets of K" and M is 

minimal with respect to these properties, M + B = K ~ implies M = K ". 

Remark: We do not  know whe ther  condit ion (ii) is essential. Condi t ion 

(i) is indispensable because, for  example,  if E were finite, the conclusion 

o f  the proposi t ion would be false. 

In proving this proposi t ion,  we shall, in fact, not  p roceed  in the m a n n e r  

indicated, that is, we shall not  redeve lop  the machinery  al luded to in the 

case o f  flows in the wider sense. Since the results o f  this section may have 

some independen t  interest  we have chosen to present  the p r o o f  in a dis- 

guised form,  avoiding the language o f  flows. 

Proof of Proposition IV.1. Let E ~") deno te  the subsemigroup o f  cr E 2£ for  

which cr = 1 modulo  qn. Each o" ~ E has some power  lying in 2c,). For  with 

respect  to the finite r ing Z/q"Z, det o- is a unit: for  o- E ~. Hence,  modu lo  
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qn, each  00 E £ is inver t ib le ,  a n d  £ t aken  m o d u l o  q" f o r m s  a g r o u p  o f  

matr ices .  

M is a m i n i m a l  set  wi th  r e spec t  to £5 bu t  it m a y  no t  be  m i n i m a l  wi th  

r e spec t  to £ cnJ. Le t  M (") d e n o t e  a subse t  o f  M which  is m i n i m a l  f o r  £¢% 

Clear ly  we m a y  choose  the  s e q u e n c e  M ~") with M ¢n+l) C M¢n). T h e n  M ~ = 

M ¢") is n o n - e m p t y .  
i 

For  a f ixed n, let o"1, • • • ,  00N d e n o t e  a c o m p l e t e  set  o f  r e p r e s e n t a t i v e s  

in £ o f  the  g r o u p  E m o d u l o  q". W e  m a y  s u p p o s e  tha t  001 ~ £ ¢~). W e  c la im 

S 
tha t  kJ 00~M Cn) = M. Fo r  this it suffices to show tha t  the  l e f t -hand  side is £ -  

i=1 

invar ian t ,  s ince it is a c losed set  c o n t a i n e d  in M. Le t  00 C £;  we m u s t  show 

tha t  f o r  each  i, 0000iM <n) C 00.~/¢~) fo r  s o m e j .  C h o o s e j s o  tha t  o05 --  00-004 m o d u l o  

q~. Since bo th  0000iM ~") a n d  00jM Cn) a r e  m i n i m a l  £ - i n v a r i a n t  sets (at this po in t  

we have  p u t  the  c o m m u t a t i v i t y  o f  £ to use),  it suffices to show tha t  they  

in tersect .  For  this it suffices to show tha t  0000~£¢") a n d  00jE (~) in tersect .  C h o o s e  

l such  tha t  00jr E £~nJ. T h e n  0000i00j I ~ 0000i~ (n). Also 0000i00j t-1 - 00jo-j t-1 = 00L - 

1 ( m o d  q"). H e n c e  0000i00j ~ E 00j£<"~ a n d  00o-iE ~"~ N o-j£ ~") # Q.  T h i s  p r o v e s  
N 

t ha t  (.J 00~M ~"~ = M. 
4=1 

C o n s i d e r  n e x t  M <") + B, which  we d e n o t e  K ~"). F r o m  the  f o r e g o i n g  we 
s 

f ind tha t  U o-~K ~n) = K r. T h u s ,  s o m e  00~K ~") has  a n o n - e m p t y  in ter ior .  T h e n  

K c"~ i tself  m u s t  have  a n o n - e m p t y  in te r ior .  N o w  K ~") is i nva r i an t  u n d e r  

£(,), a n d  in pa r t i cu la r ,  it is i n v a r i a n t  u n d e r  each  00 C £~"). N o w  by [8 ] ,  00 

acts e rgodica l ly  o n  ( K ~ , m ) ,  m b e i n g  L e b e s g u e  m e a s u r e  o n  K ~, i f  the  e igen-  

values  o f  00 a re  dis t inct  f r o m  roo t s  o f  uni ty .  H o w e v e r ,  hypo thes i s  (i) en -  

sures  the  ex i s tence  in E o f  an  e n d o m o r p h i s m  with  no  roo t s  o f  un i ty  a m o n g  

its e igenva lues ,  a n d  an  a p p r o p r i a t e  p o w e r  o f  this e n d o m o r p h i s m  lies in 

£~") a n d  still has  no  roo t s  o f  un i ty  a m o n g  its e igenva lues .  Since K <") has  

posi t ive  L e b e s g u e  m e a s u r e ,  it m u s t  have  m e a s u r e  1; h e n c e  K ~") = K ~. W e  

have  thus  s h o w n  tha t  M <") + B = K ~. 

Fix ~: ~ M®; tha t  is, ~:0 be longs  to each  M ~"). C o n s i d e r  a po in t  in K r o f  the  

f o r m  

(1) 0 = ( a l q - n , o a q - n ,  " " " , a r q  - n )  , 

w h e r e  al,a~, • • • , a t  a r e  in tegers .  We  m a y  wri te  0 = / . t  + / 3  w i th /x  ~ M ("), 

/3 ~ B. T h e  c losure  o f  £t")/x is a Etn)-invariant  subse t  o f  M ~"), a n d  since t he  

la t te r  is m i n i m a l  f o r  Y.t=), it fol lows tha t  £~")/~ is d e n s e  in M <~). I n  pa r t i cu la r ,  

~: = l im 00~g f o r  a s e q u e n c e  {00~} in £ Cn~. Since o- 5 ~ £~"~, it is c o n g r u e n t  to the  

iden t i ty  m o d u l o  qn, a n d  so o"50 = 0 fo r  each  0. A p p l y i n g  o- 5 to b o t h  sides o f  

0 = / x  + /3 ,  we f ind t ha t  0 = ~: + / 3 '  f o r  s o m e / 3 '  ~ B. T h u s  ~ + B inc ludes  all 

po in t s  o f  the  f o r m  (1). Bu t  the  la t ter  a r e  d e n s e  in K. H e n c e  ~: + B = K  r, 

w h e n c e  B = K r. T h i s  p r o v e s  the  p ropos i t i on .  

2. S e m i g r o u p s  o f  E n d o m o r p h i s m s  o f  K. I f  the  s e m i g r o u p  E o f  P r o p o -  

si t ion IV.  1 is sufficiently large,  o n e  can  show tha t  a m i n i m a l  set  c a n n o t  be  
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"small" in the sense required by that proposition unless it is finite. When  

r = 1, i.e., for the circle K, this is, in fact, usually the case. For r =  1, E( r ) ,  

the endomorph i sm semigroup of  K, consists of  multiplication by integers. 

may therefore  be identified with a subset of  Z. ~ always contains non- 

negative integers and we denote  this subset by  ~+. 

Definition IV.1. A multiplicative semigroup E o f  integers is lacunary i f  aU 

the members o f  ]£+ are powers o f  a single integer a. Otherwise, E is non-lacunary.  

For example, {aP,ap+l,ap÷2, • • "} is a lacunary semigroup. {2n3m; n , m  = 

1,2,3, • • -} is a non-lacunary semigroup. 

LEMMA IV.I .  Let  E be a non- lacunary  semigroup, and  suppose ~+ = {sl,Sz, 

s3, • • "} with si < si+v Then,  as n --~ ~, 

(2) sn+l ~ 1 . 
Sn 

Proof." This is a consequence of  the following: an additive semigroup 

of  positive real numbers  is either contained in a discrete subgroup,  or  be- 

comes more and more dense as the numbers  tend to ~. Let S be such a 

semigroup; S - S is a group,  and it is not hard  to see that if  S-- Sis a dis- 

crete subgroup, then  S itself is contained in a discrete subgroup. (S - S C 

Zu implies S C Zu + s', and  2 ( n u  + s ' )  = m u  + s ' ,  whence s' ~ Zu; hence 

S C Zu.) Now it is known that a subgroup of  R is either discrete or  dense. 

Hence we may suppose that  S--  S is dense in R. We may still suppose this 

to be the case for a subsemigroup (possibly S itself) of  S which is countably 

generated.  Assume therefore  that S itself is countably generated,  say, by 

a~,a2,a3, • • • . It may be seen that 

(3) S - S = U  ( S - n ( a l + a 2 + . - - - { - a n ) )  , 
n=l 

where the summands  to the right o f  (3) form an increasing sequence. Let 

> 0. Suppose the sets S - -  n ( a l  + a2 + • " • + an) omit ted an interval o f  

length greater  than E somewhere in (0,oo). T h e n  S - -  n(aa + a2 + • • • + an) --  

kna I would omit  an interval o f  length ¢ inside of  (--aa,0) if  kn is appropri-  

ately chosen. Now 

S --  n ( a l  + a2 + • • • + an) --  knal D S --  n(aa + a2 + " • • + an) 

and since the sets S - n (  a~ + a2 + • • • + a , )  become successively more dense, 

this is not  possible. Hence for n sufficiently large, S -  n ( a l  + a2 + • • • + an) 

is ~-dense in (0,00), whence Sis ~-dense in (n(aa + • • • + an) ,oo). This proves 

the assertion regarding additive semigroups. Returning to ]£, we now find 

two alternatives for log E. Suppose log E is contained in a discrete subgroup 

of  R; then for each pair i , j  some power ofsi  must  coincide with some power 

of  s¢. But this implies that  E is lacunary. This leads to the conclusion of  

the lemma. 

LEMMA IV.2. Let  ~ be a non- lacunary  semigroup and  let A be a closed X- 

invar ian t  subset o f  K with the property that 0 is a non-isolated point  o f  A.  Then  

A = K .  
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Proof" Consider  a sequence o f  points an E A with an ~ 0. Fix E > 0 and  

choose nl large enough  so that  sn+a/sn < 1 + E for  n > nl. Next  choose n2 so 

large that  Snx~n~ ~ ~. For  n > n 1 

( s n + l -  s . ) 8 . ,  < EsnSn2 • 

Let n r ange  over  the values for  which Sn~n2 E [e,1]. T h e  distance be tween 

successive values o f  sn~,, does not  exceed E, so that  (snSn2} is E-dense in 

[0,1].  Since ~ is arbi t rary ,  A =  K. 

P R O P O S I T I O N  IV.2. I f  ~ is a non-lacunary semigroup of integers, the only 

minimal sets in K for ~ are finite sets (of rationals). 

Proof" Suppose  that  the proposi t ion  has been  p roved  for  s e m i g r o u p s  

with the p rope r ty  that  some p r ime  n u m b e r  q exists which is relatively 

p r ime  to all n u m b e r s  o f  the semigroup .  I t  then  follows in the genera l  case. 

For  if  ~ is non- lacunary  we can find ~ '  C E which is still non- lacunary  and  

satisfies this condit ion.  A minimal  set for  E contains a minimal  set for  1£'. 

But  if  a minimal  set for  E contains a rat ional  point ,  all its points mus t  be 

rat ional  with the same denomina to r .  T h u s  we may  suppose  that  E satisfies 

the condi t ion in quest ion and  as a result  Proposi t ion IV. 1 applies to mini- 

mal  sets for  ~. Let  M be a minimal  set for  E. M -- M is a E- invar iant  set. If" 

M is infinite then  M - M contains 0 as a non-isolated point.  But  then,  by 

the fo rego ing  lemma,  M - M = K. Now this contradicts  Proposi t ion IV. 1. 

We conclude  that  M is finite. Since E is infinite, a E- invar iant  set can be 

finite only if it consists o f  rationals. This  proves  the proposi t ion.  

T H E O R E M  IV. 1. I f  "Z is a non-lacunary semigroup of integers and a is an 

irrational, then Eot is dense in K. 

Proof" Let A be the closure o f  ~ a  in K. A is a E- invar iant  set and  neces- 

sarily contains a minimal  E- invar iant  set. Hence  A contains a rat ional  p]q. 

~ a  itself consists only o f  irrationals; hence p/q is a non-isolated point  o f A .  

Hence  0 is a non-isolated point  o f  qA. Now qA is itself a E-invariant  closed 

set, so by L e m m a  IV.2, qA = K. This  implies that  

Since these sets are closed, A mus t  have a n o n - e m p t y  interior.  But  then  

sz~ C A for  s > 1 implies A = K. This  proves  the theo rem.  

T h e  conclusion o f  the t h e o r e m  is clearly false for  lacunary  semigroups .  

For, let a be a positive in teger  and  set c~ = ~ a -k'. T h e n  {an~} modu lo  1 has 
1 

only the limit points 0, a -~, a -2, • • • • 

I f  r is a positive integer ,  then  the set o f  r th  powers  {n r} fo rms  a non-  

lacunary semigroup .  As a special case o f  T h e o r e m  IV. 1, we have the result  

o f  H a r d y  and  Littlewood: I f  c~ is irrational,  {nrc~} is dense  m o d u l o  1. (This 

is most  familiar  as a special case of  Weyl's t h e o r e m  on  equidistr ibution.)  

T h e  s emig roup  {2"3 m} co r re sponds  to a subset which is th inner  than  any 

o f  the {n r} and  for  which the same conclusion still holds. 
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We point out that the equidistribution conclusion cannot be made in 

the same generality. If the sequence {2n3"} is arranged in increasing order 

as {s,,}, then {s.a} is not necessarily equidistributed modulo one when a is 

irrational. We mention without proof the fact that if a = X6-"k and n~ is o f  

sufficiently rapid growth, then {s.a} is not equidistributed modulo one. 
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