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The disjunctive kriging method described in this paper produces a nonlinear unbiased estimator with 
the characteristic minimum variance of errors. Disjunctive kriging is as good, or otherwise better than _ 
linear estimators in the sense of reduced kriging variance and exactness of estimation. It does not suffer 
from the difficulties associated with computing the conditional expectation and can be thought of as its 
estimator. Disjunctive kriging also provides an estimate of the conditional probability that a random 
variable located at a point or averaged over a block in two-dimensional space is above some specified 
cutoff or tolerance level and this can be written in terms of the probability distribution or the density 
function. The method has important implications in aiding management decisions by providing a quanti- 
tative input (which is not readily obtained from the linear kriging estimators), based on the available 
data, which is the best nonlinear unbiased estimator short of the conditional expectation. A major 
disadvantage in using disjunctive kriging is the increased computational time. This, however, is mitigated 
by increased information about the estimate. 

INTRODUCTION 

Linear kriging methods such as simple, ordinary and uni- 
versal kriging have been used in soil and water science to 
estimate a spatially distributed random variable at an unsam- 
pled location. The final product of such analyses is often a 
contour map showing the spatial distribution of the property 
of interest. Many examples occur in the literature. For exam- 
ple, Bur•tess and Webster [1980a-I applied punctual kriging to 
three data sets. The first two data sets, which were found to be 
isotropic, were the sodium content and the thickness of cover 
loam. The third data set, which was shown to be anisotropic, 
was the stone content. In two following papers [Burgess and 
Webster, 1980b' Webster and Burgess, 1980] they demon- 
strated the use of block and universal kriging, respectively. 
Warrick et al. [1986] give an example of kriging for the natu- 
ral logarithm of the electrical conductivity for a Typic Hap- 
largid [see Al-Sanabani, 1982] which was randomly sampled 
in a 10 ha field in southwest Arizona. Vieira et al. [1981] 
obtained 1280 measurements of the limiting infiltration rate 
over a 0.9 ha field and showed the correlation between the 

kriged and actual values for various number of sample values 
used in the estimation process. They found that approximately 
'128 samples was sufficient to provide about the same amount 
of information as the original 1280. Vauclin et al. [1983] used 
ordinary kriging to estimate the spatial distribution of the 
available water content and sand content of a Tunisian field. 

They also used cokriging to improve the estimation of the 
available water content by including the sand content in the 
estimation. The improvement results from the added infor- 
mation about the spatial distribution of sand and enters the 
problem via the cross-correlation function. These studies rep- 
resent but a small sample of the works which have used linear 
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kriging estimators in the analysis of the spatial variability of a 
physical property. 

Alternatively, geostatistics can be used to help in planning 
and/or decision making. A few examples include attempts to 
answer questions about the minimum number of samples nec- 
essary to produce a certain level of confidence or accuracy in 
the estimate [Burgess et al., 1981; Vieira et al., 1981]; methods 
directed toward answering questions about the number of 
samples and the placement of the samples in space such that 
the estimation of the variogram is optimized [Russo, 1984] 
and how best to deal with the effects of scale [Burrough, 
1983a, b]. 

To our knowledge, no one in the soil and water sciences has 
attempted to use disjunctive kriging as a management or 
decision-making tool. Through disjunctive kriging one can 
obtain an estimate of the conditional probability (CP) that a 
measured indicator variable goes above some prescribed toler- 
ance level (see Figure 1). With respect to hazardous waste, the 
tolerance level could be a threshold level where leakage of a 
contained material near an impoundment becomes toxic to 
humans. For agriculture, it could be a situation where the 
level of salts in field increases beyond the tolerance level of the 
plants present. Combining a known tolerance level with dis- 
junctive kriging's (DK's) ability to estimate the conditional 
probability (that the indicator variable is greater than the tol- 
erance level) offers a method where management decisions (or 
action) may be based on quantitative information. The two 
examples given above are but a few of numerous possibilities. 
Therefore we define the unit on which management decisions 
are based as the "management unit," which is the smallest unit 
area that can be managed separately from the surrounding 
units. 

In terms of the management unit, the problem becomes a 
matter of determining when the indicator variable has become 
larger than the allowed tolerance level. To complicate matters, 
sampling may be on one support (i.e., punctual) whereas man- 
agement decisions may be based on another support such as a 
block. An alternative solution would be to extensively sample 
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Fig. 1. Idealized conditional probability density function in terms 
of the transformed variable. The shaded area is the conditional prob- 
ability that the indicator variable is above Yc. 

the indicator variable over the entire region and attempt to 
construct the probability density functions (PDF) for each 
management unit from the samples that fall into each of the 
units. Then one could determine the probability that the block 
is above the cutoff level from the PDF. This is not a practical 
method for routine analysis. A simpler and less costly ap- 
proach would be to estimate the PDF using traditional sam- 
pling and the DK method as an estimator. In either case the 
management decision is based on three inputs, the tolerance 
level and the probability level that will cause an action (which 
are assumed to be prescribed at the onset) and the CP calcu- 
lated for a given data set (i.e., at a given time). With these 
three pieces of information one can make a management de- 
cision which is quantitatively based. Also, since the tolerance 
level and the probability level that will initiate an action are 
generally preset and constant (or known for all stages of in- 
terest such as growth of a plant) only one input, the CP, needs 
to be calculated. 

Compared to a nonlinear estimator the linear kriging esti- 
mator is a compromise. The minimum variance unbiased esti- 
mator of a random variable Y in terms of random variable 

X•, X2 ..... Xn is the conditional expectation of Y given X•, 
X2 ..... Xn. To compute this conditional expectation knowl- 
edge of the joint density of Y, X•, X: ..... X• is required. In 
general, this density is not estimable from data except possibly 
in the multivariate normal case, where the conditional expec- 
tation is a linear function. This is part of the motivation that 
led to the usual (linear) kriging estimator. The conditional 
expectation is a function of n variables, that is, 

Y* = g(X•, X2 .... , X, (1) 

The linear kriging estimator has a special form 

Ys:* -- • 2iXi (2) 
i=l 

which could be viewed as a form of the more general esti- 
mator 

YD•*= Y]fi(Xi) (3) 
i=1 

where each f/is a function of one X variable only. In using 
linear kriging, each f• is a linear function and only the coef- 
ficients need to be determined. For each function, f•, in the 
more general case, as opposed to finding coefficients, the ap- 
propriate functions must be found. This requires a slightly 
stronger hypothesis but has the advantage that the nonlinear 
estimator in (3) will have (in general) a smaller estimation 

variance than (2) and will be easier to determine than the most 
general form given by (1). 

The purpose of the first paper of this series is to review the 
theoretical basis of the (DK) method as it relates to estimating 
the value of a random function at an unsampled location and 
obtaining the conditional probability that the value of a 
random function at a point will be above a given cutoff level. 
Although the information is available in scattered materials, 
to our knowledge a complete derivation using consistent ter- 
minology is not readily available in one location for immedi- 
ate application to soil-water problems. 

The second section of this paper discusses the conditional 
probability which makes use of the DK estimator directly but 
is important in its own right since, for many applications, 
information about the conditional probability may be a more 
important consideration than only obtaining an estimate. 

The second paper in this series [Yates et al., 1986] illus- 
trates the DK method with examples and includes a compari- 
son between DK and ordinary kriging (OK) with respect to 
the accuracy of the estimators and the computational require- 
ments. 

THEORY 

Hermite Polynomials 

Before describing the DK method, it is helpful to describe 
some of the properties of Hermite polynomials. Hermite poly- 
nomials are functions orthogonal with respect to the weight- 
ing function exp f-y:/2] on the interval [-oo, oo]. Many 
functions can be represented by an infinite series of Hermite 
polynomials of the form 

ok(y) = Y] cknk(y) (4) 
k=O 

where the Cn's can be found using the orthogonality proper- 
ties. 

A sufficient condition for a function, ½b(y), to have a Hermite 
representation (which converges mean-square) is that 

•ooEcb(y)]2 exp (- y2/2) dy (5) 
be finite. In fact it is this condition which allows us to com- 

pute the coefficients, Cn. 
A Hermite polynomial of order k is defined by Rodriques' 

formula [Abramowitz and Ste•tun, 1965] as 

a•,(y) = (-1) •' exp [y2/2]d•'(exp [-y2/2])/dy •' (6) 

and may be evaluated by the recursive relationship 

H•,+ •(y) : yH•,(y) - kH•,_ •(y) (7) 

where Ho = 1 and H• = y. 
The orthogonality relationship for nonnormalized Hermite 

polynomials is 

_•ooHk(y)H•,,(y) exp [--y2/2] dy = 0 k • k' 
(8) 

_•an(y)an,(y) exp [-y2/2] dy = (k !)(2n) •/2 k = k' 
Using the orthogonality relationship, the coefficients Cn can 

be determined by 
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Ck -- c)(y)Hk(y) exp [--y2/2] dy (k!(2n) (9) 

where (p(y) is the function represented by the infinite series of 
Hermite polynomials. Since for DK, (p(y) is not generally 
known, we can not evaluate this integral analytically. Stan- 
dard numerical integration techniques would require knowl- 
edge of qb(yi) for a large number of points y•, Y2 ..... Yn' HOW- 
ever, Hermite integration [Abramowitz and $tegun, 1965] pro- 
vides an alternative method of integration which uses only a 
few special points 

J 

Ck = 1/(k!(2rO •/2) • WiCk(vi)Hk(vi) exp [--vi2/2] (10) 
i=1 

The abscissa's, vi, and weight factors, w•, for Hermite integra- 
tion are given by Abramowitz and $tegun [1965]. 

The Mean and Variance 

If (p(X) is a function of a standard normal random variable 
X, then the mean and variance of Z = (p(X) given by (4) can 
be obtained from the coefficients Ck as 

•,• = tr[4,(X)] = Co (• •) 

and 

Bivariate Densities 

Bivariate densities can be expressed in the form 

f(x, y)= g(x, Y)fx(x)f2(Y) (13) 

where fx and f2 are the marginal densities. In particular, if X 
and Y are bivariate normal with zero mean and unit variance 

then the joint density is given by 

f(x, y)= • (pxr)kHn(x)Hn(y)g(x)g(y)/k! (14) 
k=O 

where Pxr is the correlation coefficient and g is the standard 
normal density function. Given in this form it is easy to com- 
pute the conditional expectation of a function, qb(X), given by 
(4) 

E[ck(X)IY] = • (Pxr)&CkH&(Y) (15) 
k=O 

Recall, however, that bivariate normality for each pair of 
n + 1 variables does not imply n + 1 multivariate normality. 
In the particular case where Y(x) is a stationary random func- 
tion (i.e., each pair Y(xi), Y(xj) has the same bivariate density 
as Y(xi + h), Y(xj + h)), and Y(x) is bivariate normal then the 
correlation coefficient, Po, depends only on the particular pair. 
Generally, the correlation coefficient is given via the covari- 
ance function. 

O'z 2'-- Var [qb(X)] = • k!Ck 2 (12) 
k=l 

where #z is the mean and rrz 2 is the variance of Z. Note that 
the series in (12) begins at k = 1. 

TABLE 1. Ck'S for Exactly Normal and Lognormal Distributions 

Normal Lognormal 
k C k C k 

I 0'2 0'4 0'6 0'8 0'10 0 tt e •' 1 +-•-+-•-+•-•+3---•+3-•+... 

1 • d' a +-•- +-•- + •-• + •-• + ... 

I '2 0'4' 0'6 0'8 0'10 2 o 

3 0 e u •- + ]-• + •-• + •-•-• + ß ß ß 

0.4. •6 •8 •10 4 0 e • •+•+1•+1•+.-- 

0 

6 0 e • 7•+1•+5•+... 

[ 
G 7 G 9 

7 0 e" • + 1•80 + '" 

8 0 e" + 80640 +"' 

9 0 e • •+... 

Normal or Lognormal Random Variables 

As special cases we could consider qb(Y) to be normally or 
lognormally distributed. For such cases the C•'s for the Her- 
mite expansion can be calculated from the mean and variance 
of qb(Y). The Ck's for these cases are given in Table 1. As an 
alternative to DK for the lognormal case we could use log- 
normal kriging [Journel, 1980; Journel and Huijbregts, 1978]. 

DISJUNCTIVE KRIGING 

Disjunctive kriging represents a form of nonlinear kriging 
(i.e., results in a nonlinear estimator) which in general offers an 
improvement over linear kriging methods, yet doesn't require 
knowledge of the n + 1 joint probability distributions neces- 
sary for the conditional expectation. Matheron [1976] pro- 
posed the disjunctive kriging method as a simplified alter- 
native which only requires that the bivariate distributions for 
the n + 1 variables be known. When a random variable is uni- 

and bivariate normally or lognormally distributed, the linear 
or lognormal kriging estimator for a known mean is identical 
to the DK estimator [Rendu, 1980; Journel and Huijbregts, 
1978]. By adding an additional assumption that the distri- 
bution is multivariate normal, then the linear kriging esti- 
mator and the DK estimator are the same as the conditional 

expectation. 
One assumption implicit in the DK method described here 

is that a gaussian transform, qb(Y), exists, is unique and invert- 
ible. Furthermore, this gaussian transform produces a random 
function which is univariate normal with mean zero and unit 

variance from a random variable of arbitrary distribution. An- 
other assumption is that the random function produced by the 
transform also has a bivariate normal distribution for each 

pair of locations. These assumptions are necessary only in that 
they allow the conditional expectation, E[ck[Y(xo)]lY(x•)], to 
be written in terms of the correlation function. 

The transformation is applied to Z(x) for three reasons: (1) 
the normal distribution is convenient to work with in defining 
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relationships such as the conditional expectation, (2) a trans- 
formation always exists between the arbitrary Z(x) and the 
normally distributed Y(x) [Kirn et el., 1977]; therefore the 
disjunctive kriging method is generalized in the sense that 
only one formulation is necessary for all possible distributions 
of the random variable Z(x), and (3) it eliminates the need for 
a limiting assumption (i.e., that the distribution must be sped- 
fled such as is the case with lognormal kriging). 

Disjunctive Kriging Estimator 

Consider a second-order stationary random function, Z(x), 
which is sampled on a point support at n locations: x•, x2 .... , 
x n where x represents a vector in two-dimensional space. Ap- 
plying the gaussian transform to each Z(xi) produces a stan- 
dard normal random variable Y(xi). The disjunctive kriging 
estimator is made up of a sum of nonlinear functions where 
each function depends on only one normalized sample value, 
Y(xi), 

Zmr*(Xo) = •".f•[Y(xi)] = • •'.fi•,H•,[Y(xi)] (16) 
i= I i= 1 k=0 

where n is the number of samples, f•[Y(xi)] is a function to be 
determined and expressed on the right-hand side of (16) as a 
series of Hermite polynomials where f•n is a constant which 
depends on i and k. (Note this is only one place where Her- 
mite polynomials are used in DK). 

The two conditions imposed to produce the "best" esti- 
mator are unbiasedness and minimum variance of errors: 

E[Z(xo) - ZD•*(Xo)] -- 0 (17) 

and 

Var [Z(xo)- ZDK*(Xo) ] = min (18) 

or 

E[Z(xo)- ZDg*(Xo)] 2 = min (19) 

The minimum for (18) and (19) occurs when Z(xo)- ZDg*(Xo) 
is perpendicular to any function, f[Z(xi)], in the hyper-plane 
defined by the measurable functions fi[Z(xi)] [see Journel and 
Huijbregts, 1978, p. 568] given in (16). Therefore, using the 
perpendicular projection, namely that the vectors Z(xo) 
- Z D•*(Xo) and f[Z(xi)] are orthogonal, we can then write 

E[{Z(xo)- ZDg*(Xo)}f[Z(xi)]] = 0 (20) 
or 

E[Z(xo)f[Z(xi)]] = E[ZDtr*(Xo)f[Z(xi)]] (21) 

In terms of the conditional expectation (21) can be written as 

E[Z(xo)lZ(x)] -- E[gDg*(Xo)lZ(x)] j -- 1, 2,..., n 

(22) 

The next step in the DK process is to determine the un- 
knowns in (22) (i.e., Z(xo) and f[s which make up ZDg*). Since 
no assumptions have been made about the distribution of Z(x) 
(and in fact if Z(x) is uni- and bivariate normal or lognormal 
there is no advantage in using DK for estimation) a transform 
function, 4•[Y(x)], is necessary to transform Z(x) to a random 
function with a standard normal distribution. Therefore we 

write this function in terms of Hermite polynomials 

&[Y(x)] = Z(x)= 5'. C•,H•,[Y(x)] (23) 
k=O 

where Y(x) is assumed to be bivariate normal and the Ck's are 
the coefficients which are determined by using (9) or (10). 

Incorporating (16) and the left most part of (23) into (22) 
gives 

E[ck[Y(xo)]lY(x)] = • E[fi[Y(xi)]lY(x•)] (24) 
i=1 

j=l, 2 ..... n 

The unknowns are found by applying (15). to (24) and re- 
arranging 

•'. CkHn[Y(x)] (po) • - f•n(pi)n/Ck = 0 (25) 
•=0 i=1 

where the infinite series have been truncated to K terms and 
j=l, 2 .... ,n. 

Defining b•n =•n/Cn and noting that (25) must be satisfied 
for all k gives the DK system (equations (26), (27), and (28)) 

K 

ZD•*(Xo) = • CnHn*[Y(xo)] (26) 
•=0 

where Hn*[Y(xo) ] is the estimated value of Hn[Y(xo)] and is 
written as a weighted sum of Hermite polynomials of the 
sample values 

Hn*[Y(xo)] = • binHn[Y(xi)] (27) 
i=1 

and the weights, b•n, are determined by solving the linear krig- 
ing system 

(po) • = • b•n(po) • j = 1, 2 ..... n (28) 
i=1 

For k = 0, (28) reduces to the unbiasedness condition 
•=• bio = 1 (or ZD•* = Co = •: from (11)). 

Disjunctive Kriging Variance 

The disjunctive kriging variance is found by combining (18) 
and (20) which gives 

Var [Z(xo)- ZD•*(Xo)] - E[Z(xo) 2] - E[Z(xo)ZD•*(Xo)] (29) 

Substituting (11) and (12) into (29), using (13) to determine the 
covariance and rearranging gives 

O'Dt/2= •k!Cn 2 1- bin(poi) • k-- i-- 
(30) 

Block Disjunctive Kriging 

If a block estimate is required, the only necessary modifi- 
cation is to use t5oj in place of Poj on the left-hand side of (28) 
where the bar indicates that the correlation coefficient is 

averaged over the block, V, 

t5oj = (l/V) fv p(x - x) dx (31) 

Several observations about the DK system can be made: (1) 
(28) is in the form of a simple kriging equation (i.e., no La- 
grange multiplier); (2) k = 0 results in the unbiasedness con- 
dition; and (3) as k increases, p--} 0 as well as the weights bin, 
therefore K need not be very large. 
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TI-IE CONDITIONAL PROBABILITY 

Estimating a conditional probability (termed the transfer 
function by Matheron [1976]; Marechal [1976]; Journel and 
Huijbregts [1978]; and Kim et al. [1977]) at a given location 
is possible since the disjunctive kriging estimator is nonlinear. 
The method used here consists of two steps. The first is to find 
the conditional probability that the point value of Z(x) at a 
randomly located point, Xo, inside the block V is above a 
prescribed cutoff value z c. This is called the point transfer 
function. Next, to obtain the conditional probability that the 
block value is above the cutoff value, the probability function 
is then integrated over the entire block. 

Point Conditional Probability 

In terms of a point estimate, the conditional probability 
that Z(xo) is above the cutoff value zc (where y• is the associ- 
ated transformed cutoff value) is 

P[Z(xo) z z•lZ(xi)] = P[Y(xo) z y•lY(xi)] (32) 

and for the probability averaged over a block, the desired 
probability is 

P[Z(xo) > z•lZ(xi)] = 1/V P[Z(x) > zclZ(xi)] dx (33) 

where Z•(Xo) indicates the block averaged value, Xo is the ran- 
domly selected point in the block V, z• is the cutoff value, and 
the Z(xi) for i= 1, 2, 3 ..... n are the data used in the esti- 
mation process (i.e., the conditioning). 

In order to determine the conditional probability using DK, 
the problem must be recast so that the DK estimator, which 
estimates the conditional expectation, will also estimate the 
conditional probability. Therefore, we define an indicator 
function ©yc[Y(xi)] based on the transformed cutoff value, y½, 
as 

Oy,(Y) = 1 Y •- Y• (34) 
O•,(Y) = 0 Y < y• 

This allows (34) to be written as 

P[Y(xo) >_ y•]Y(x•)] - P[O•[Y(xo)] - llY(x•)] (35) 

From (35), the conditional expectation can be written 

E[©•[r(xo)]lr(x,)] = P[©•[r(xo)] = llr(x,)] (36) 

since Oy,(Y)=0 for -oo< Y<yc and 1 for y•< Y<oo. 
Therefore, the conditional probability that Y(x) (or Z(x)) is 
greater than y• (or z•) is given as a conditional expectation of 
the indicator function O•c(Y). Expanding O•,(Y) in terms of an 
infinite series of Hermite polynomials with respect to the 
sample locations gives 

K 

O•,[Y(xo)] = • okmk[Y(xo)] (37) 
k=0 

which is the conditional probability estimator, P*(xo), and the 
0k's are the coefficients in the expansion. Applying orthog- 
onality gives a method for evaluating the 

or 

Ok = •-•ooO•'(u)Hkfu)g(u) du (38) 

Ok=•SHk(u)g(u)du (39) 

where •/(u) is the normal distribution density function and u is 
a dummy variable of integration. Using the definitions for 
Hk(u) and •/(u) in (38) or (39) allows us to calculate the coef- 
ficients. For k = 0, the coefficient is 

0o = 1 -- G(yO (40) 

where G(u) is the cumulative gaussian distribution function of 
•/(u). For k > 0 (note Hk is defined by Rodrigues' formula, 
[Abrarnowitz and Ste•tun, 1965]), the other coefficients are 
given by 

Ok = •](yOHk - • (yO/k ! (41) 

Substituting (40) and (41) into (37) gives the conditional prob- 
ability estimator, P*(xo), in terms of the indicator function, 

K 

Oy•[r(xo)] = 1 - G(y½) + •7(Y½) • Hk-,(y,)Hk[r(xo)]/k! (42) 

The only unknown in (42) is Hk[Y(xo)]. Using the estimator 
for Hk[Y(xo)] in (27) and substituting into (42) gives the point 
conditional probability estimator 

K 

P*(xo) = 1 -- G(y,) + •7(Y½) • Hk-•(y½)Hk*[r(xo)]/k! (43) 
k=l 

The density function for ©•(y) is 

O•c'[u ]: g(u) 1 + • Hk(u)Hk*[Y(xo)]/k! (44) 
k=l 

and gives the probability density as a function of u. Using (44) 
we can write the estimator for the conditional probability esti- 
mator in an alternate form as 

P*[Y(xo)] = O•,'(u) du = O•,[Y(xo)] (45) 
c 

Block Conditional Probability 

In order to obtain estimates of the conditional probability 
for the block, P, we integrate over V 

P[Y(xo) > y, lY(x•)] = 1/V Oyc[Y(x)] dx (46) 

Combining (43) and (46) gives the block estimator for the 
conditional probability,/•*(Xo) 

P*(xo) = 1IV 1 - G(yc) + 

ß • H k_ x(y,)Hk*[Y(xo)]/k! dx (47) 
k=l 

Since only the b•'s depend on the location x, (47) can be 
rewritten 

K 

P*(Xo) = 1 - G{yc) + a(YO • H•_ •{Yc) • •,•H•[Y{x,)]/k• 
k=l i=1 

{48) 

where the •n denotes that the block average value, •o• (equa- 
tion (31)), is used on the left-hand side of (28). 

Factors Affectin• the Conditional Probability 

Some of the factors that affect the resulting P* include the 
cutoff value y,, the estimated value of H•[Y(xo)], and the cor- 
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Fig. 2. Mapping of arbitrarily distributed Z(x) (dashed curve) into 
normally distributed Y(x)(solid curve). 

relation function. If Yc is large and negative then G(yc) and 
g(Yc) will approach zero. This will result in a P* which ap- 
proaches unity. When Yc is a large positive number, 
approaches unity and g(Yc) zero' this will result in a P* which 
will approach zero. 

The estimated value of Hk[Y(xo)] and the correlation func- 
tion also affect the result but not in a manner easily treated 
analytically. Generally, as the distance between the samples 
and the estimate becomes large (i.e., larger than the range of 
the correlation function) two possibilities arise. The first 
occurs if the distance between all the samples is greater than 
the range. For this case all the bik's for k > 0 are zero and 
P*= 1- G(y O. The alternative is when some (or all) of the 
samples are closer than the range of the correlation function; 
for this case the third term of (48) must be included. 

The effect due to the correlation function is not amenable to 

generalization since the third term in (48) may be positive or 
negative depending on the correlation function and the sample 
values. However, if the correlation function has a long range 
(everything else constant) the importance of the third term will 
tend to increase. 

In summary, (27), (28), and (43) are used for an estimation of 
the conditional probability, P*, that Z(x) at a randomly lo- 
cated point Xo is greater than the cutoff value z c, whereas (27), 
(28), (31), and (48) are used if the conditional probability, P*, 
over the block V is required. 

STEPS FOR A SOLUTION 

The following steps are required to estimate the value of a 
random variable at an unsampled location using the disjunc- 
tive kriging method. Steps 1 through 5 are preliminary to the 
actual estimation process. 

1. Transform the original data, Z(x), into a new variable, 
Y(x), which is assumed uni- and bivariate normal. This map- 
ping is illustrated in Figure 2. One method to approximate 
this function is to place the original data (i.e., Z(x)) in order 
from smallest to largest in magnitude. The cumulative fre- 
quency distribution (while keeping track of the corresponding 
x's) and an approximation for the probability of Z(xi) is used 
to obtain a transformed value of Y(x•). One possibility for 
calculating the probability of Z(x•) is to use P[Z < Zo] • (i 
- 0.5)/n where i is the total number of Z(x•) less than or equal 

to Zo and n is the total number of samples. The associated 
Y(x•) is then calculated by inverting the gaussian probability 
function 

Y(x) = P-•[Z < Zo] (49) 

2. Once the Y(x)'s are known, the coefficients Cn are calcu- 

lated from (9) or (10) where the intermediate values (i.e., the 
v[s in equation (10)) for the transform relationship 
4•[Y(x)] = Z(x) are calculated by linear interpolation, fitting 
an nth order polynomial to the [Z(x), Y(x)] data pairs or 
some other method. The interpolation relationship for the nth 
order polynomial is then ok(x) = ao + a•x + ... + a,x", where 
the a's are determined from the data pairs. 

3. Calculate values of Y(x•) where k - 1, 2 ..... K for each 
sample location (i.e., i= 1, 2, ..., n) by inverting (23). This is 
necessary because in general a truncated series will be used for 
the transform and this step will assure that the DK system will 
interpolate exactly at the sample locations. 

4. Compute the sample mean and variance using (11) and 
(12) to verify that appropriate Cn's in step 2 were calculated 
and to aid in determining the number of k's necessary. The 
•b[Y(x)] function should also be plotted with the original data 
to help to determine the number of Cn's necessary. 

5. Calculate the sample correlation function using the 
transformed data [i.e., Y(x•)]. If the variogram for the Z(x•) is 
available then one can estimate the correlation function using 

p(h) = 1 - y(h)/C(O) (50) 

since to use DK, second-order stationarity must be satisfied 
[Kirn et al., 1977]. 

The remaining steps are required to calculate an estimate at 
each sample location and the entire sequence (steps 6 through 
10) is repeated for each estimate desired. 

6. Set k index to zero. 

7. Calculate Hn*[Y(xo)] in (27) by solving the simple krig- 
ing system given in (28), using the values of Hk[Y(x•)] that 
correspond to the appropriate samples. 

8. Use (27) and (28) to calculate the kth term of (26). 
9. Increment k by 1. 
10. Repeat steps 7 through 10 for all K. Note that as k 

increases, (poi) • goes to 0 and likewise bin goes to zero. There- 
fore, K need not be very large [see Rendu, 1980, Table 3]. 

Once the DK estimator has been obtained it is a simple 
matter to calculate the conditional probability, since G(y0, 
g(y•), and H•-•(yc) in (43) are known. Using the result for 
Hn*[Y(xo) ] from step 7 in (43) completes the calculation. 

Disjunctive kriging uses considerably more computer time 
than ordinary kriging since in general the equations must be 
solved K times for each estimate as well as requiring more 
complex calculations (i.e., calculation of Hermite polynomials 
and taking powers). 

CONCLUSIONS 

The disjunctive kriging (DK) method produces a nonlinear 
estimator which is suitable for estimating a spatially variable 
property. Generally, the DK estimator is better in the sense of 
reduced kriging variance compared to linear kriging esti- 
mators but is not as good as the conditional expectation 
(unless the random variable is multivariate normal). This 
property will be demonstrated in the second paper of this 
series [Yates et al., 1986]. Disjunctive kriging has the advan- 
tage over the conditional expectation in that only the bi- 
variate probability distributions need be known. 

The calculations necessary to make an estimate are basi- 
cally the same as the simple kriging method only performed K 
times per estimate. The other differences are (1) a transform is 
defined by solving for the coefficients Cn which are appropri- 
ate for the data set and (2) Hermite polynomials of order k 
must be calculated for each sample used in the estimation. 
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These latter two steps need only be done once. A third differ- 
ence is that the interpolation is with respect to Hk[Y(x)] for 
DK whereas it is based on Z(x) for ordinary (linear) kriging 
methods. This property is also used in calculation of the con- 
ditional probability. 

Since disjunctive kriging uses considerably more computer 
time than linear kriging, in terms of estimation alone, DK 
may not be justified. However, when information is required 
about the probability distribution of the estimation, DK offers 
an attractive alternative. 

The disjunctive kriging method offers a simple method for 
calculating the conditional probability that the point or block 
value at a randomly located point in V is greater than an 
arbitrarily assigned cutoff value. This is an important result 
since it offers one geostatistical method whereby quantitative 
information is available to aid in management decisions. 

Three requirements are necessary in order to use the 
method described in this paper. The first is that Z(x) must be 
second order stationary. Next, a gaussian transform must 
exist which will transform an arbitrarily distributed Z(x) into 
a normally distributed Y(x). This requirement is easily satis- 
fieds since a gaussian transform has been shown to always 
exists [Kim et al., 1977]. The final requirement is that the 
transformation produce a bivariate distribution that is jointly 
normal in Y(x). This assumption is not required by the 
method in general but is adopted in order to write the con- 
ditional expectation in terms of the correlation function. If 
Z(x) is such that the two marginal densities are normal but 
not jointly normal it is still possible to write the DK equations 
for this situation [see Kim et al., 1977]. The second paper of 
this series will illustrate the DK method with examples. 
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