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Abstract11

The rapid computation of re-playable memories within the hippocampus in the form of spike12

sequences is a near computer-like operation. Information can be encoded once during the initial13

experience, and replayed numerous times after in a compressed-time representation [1–8]. Theta14

oscillations, sharp-wave ripples, and attractor dynamics have been posited to collectively play a role15

in the formation and replay of memories. However, the precise interplay between these dynamical16

states remains elusive. Here, we show that the memory formation dynamics and operations of the17

hippocampus are not just computer-like, but map directly onto the dynamics and operations of a18

disk-drive. We constructed a tripartite spiking neural network model where the hippocampus is19

explicitly described as a disk drive with a rotating disk, an actuator arm, and a read/write head.20

In this Neural Disk Drive (NDD) model, hippocampal oscillations map to disk rotations in the21

rotating disk network while attractor dynamics in the actuator arm network point to “tracks” (spike22

assemblies) on the disk. The read/write head then writes information onto these tracks, which have23

temporally-structured spikes. Tracks can be replayed during hippocampal ripples for consolidation.24

We confirmed the existence of interneuron-ring-sequences, predicted by the rotating disk network,25

in experimental data. Our results establish the hippocampus as a brain region displaying explicit,26

computer-like operations. Based on the known interactions between the hippocampus and other27

brain areas, we anticipate that our results may lead to additional models that revisit the hypothesis28

that the brain performs explicit, computer-like operations.29

1 Introduction30

The metaphor that the brain operates as a computer has been pervasive in neuroscience since Jon von31

Neumann’s pioneering work in the 1950’s [9–19]. At the near simultaneous dawn of computer science32

and electrophysiologial-based, computational neuroscience, Von Neumann postulated that the nearly33

discrete action potentials fired by neurons were comparable to the digital binary units or bits in the34

vacuum tubes and transistors of early computers [9]. Such a metaphor, if made into a concrete model,35

could help reach a comprehensive understanding of, and formulate predictions on, the nature of the36

computational operations underlying brain functions.37

Unfortunately, von Neumann’s efforts were limited by the state of knowledge of the brain at the38

time. However, the last decades of neuroscientific work have now shed important insights into the39

cellular substrates and network dynamics at the nexus of brain and behaviour, laying the foundational40

knowledge about how some neuronal regions specialize and adapt to perform specific operations [20–41

24]. Notably, the hippocampus of the mammalian brain holds mnemonic information used to inform42

behaviour [1–8, 20, 25–46]. Likewise, modern computers hold information for further operations using43

dedicated components: Hard Disk Drives (HDDs) [47].44
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Accordingly, we test a more direct version of von Neumann’s “brain-as-a-computer” analogy by45

establishing a theoretical framework where hippocampal operations and dynamics are mapped directly46

onto those of a computer’s disk drive in the Neural Disk Model of Hippocampal Function. The NDD47

model is a tri-partite network where each network maps onto the core components of a disk drive:48

the rotating disk network, the read/write head network, and the actuator arm network. The NDD49

model also successfully maps theta oscillations and sharp-wave ripples to disk-rotations while attractor50

dynamics act as the actuator arm, pointing to individual tracks or cell assemblies. The zoo of observed51

hippocampal replays (forward replay, reverse replay, extended replay, fragmented replay) can inter-52

preted as specific data-accessing events in the NDD model. Finally, we detected the interneuron-ring53

sequences in multi-unit recordings from rats, as predicted by the rotating disk network.54

2 Results55

2.1 Mapping Hippocampal Behaviours to Disk Drive Dynamics56

We start by first describing hippocampal dynamics. The spike times of hippocampal pyramidal cells57

and interneurons are organized on multiple timescales by a collection of network oscillations that are58

observed as rhythmic fluctuations in the local field potentials (LFPs) and correlate with behavioural59

states and memory processing stages (Figure 1A). Sequences of said spikes are observed on two time60

scales: temporally compressed spike sequences during hippocampal sharp-waves ripples (SWRs, Figure61

1A-B) and temporally dilated forms of these spike sequences during hippocampal theta oscillations62

(Figure 1A,C). The SWR LFP event is a 125–250 Hz oscillatory event lasting approximately 100 ms63

and supporting memory consolidation [1–8, 26, 48–53]. The theta oscillation, on the other hand, is a64

5–12 Hz oscillation that dominates hippocampal LFPs, organising temporally structured firing activity65

of pyramidal cells in support of learning during active exploration (Figure 1C) [20, 25, 27, 44, 54, 55].66

During rest/sleep, theta-nested neural patterns are compressed and replayed in sharp wave/ripples67

(SWRs) [1–8,56–62]. The relation between compressed sharp-wave sequences and theta sequences may68

occur through an oscillatory-interference mechanism where one oscillator controls spike times during69

SWRs, and a second oscillator dilates SWR-sequences into theta sequences by creating an interference70

pattern that dilates the sequential content of the carrier waves into the envelope phases (Figure 1C) [63].71

This postulated interference mechanism provides a mechanistic explanation for hippocampal phase72

precession [20,44,64–72], and explicitly links theta sequences during a single cycle of the theta oscillation73

to compressed spike sequences during a SWR [63]. Indeed, spike sequences during a cycle of the theta74

oscillation are also a compressed representation of the firing fields of individual cells, and are known75

to have comparable compression rates to replay sequences in SWRs [48]. Hebbian plasticity allows76

for one-shot learning of new sequences by using existing theta-sequences as a compressible temporal77

backbone (Figure 1D). Different populations of neurons within a theta sequence can be selected by78

biasing currents to store potential information (Figure 1E) allowing for discrete memories to be stored79

in different populations of pyramidal neurons [73].80

We discovered that collectively, these operations could be explicitly mapped onto those performed by81

a computer’s Hard Disk Drive (HDD). To start constructing our brain-machine mapping of hippocampal82

dynamics, we first catalogued the individual components and operations of a disk drive and mapped83

these operations to the hippocampal equivalent (Figure 1F). The central operations of an HDD are84

performed by three components: an Actuator Arm (AA), a Rotating Disk (RD), and a Read/Write head85

(R/W) (Supplementary Material Section 1, Supplementary Figure S1, Supplementary Video 1, Figure86

1E). The actuator arm points to a segment of the disk referred to as a track, which is further subdivided87

into sectors (Figure 1F). The read/write head, which is located on the apex of the actuator arm, writes88

new information in the form of bits, or reads previously stored bits on tracks and sectors. These three89

mechanical components are described by three dynamically evolving parameters that control the disk90

drive: the location of the actuator arm (ψA, A for “Arm”), the disk rotation speed (θS , s for “spinning”)91

and the read/write speed of the head (θR/W , R/W for “read/write”, Figure 1F). As the disk spins in92

a single revolution (θS), a sequence of sectors on a track appears directly beneath the R/W head on93

the actuator arm (Supplementary Video 1, Figure 1G). This sequence appears on the fast, intrinsic94

time-scale of the disk rotation speed (θs). The sequence of sectors can be read from or written to in95
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a single disk rotation (Supplementary Video 2, Supplementary Video 3). This mimics the compressed96

time-scale sequences which occur during hippocampal SWRs [1–8,56,73].97

The sequence of sectors can also be accessed on a slower time-scale, by allowing the disk to perform98

slightly more than a full revolution for each read/write cycle of θR/W (θR/W < θS = θS − ϵθ, Figure99

1H, Supplementary Video 3). In this operating mode, the read/write head accesses each subsequent100

sector on a slower time scale which mimics the dilated or behavioural time-scale sequences that occur101

during hippocampal theta oscillations. Bit-sequences can be written to these sectors during the slower-102

access mode and then rapidly replayed after (Figure 1I, Supplementary Video 2). This is similar to103

the time-compressible, one-shot learning of spike-sequences observed in the hippocampus ( [46, 48]).104

Finally, different tracks are accessible by the actuator arm when the actuator arm changes its location105

(Figure 1J). The location of the actuator arm, ψA behaves similarly to a line attractor. So long as no106

force is impinged on the actuator arm, the location ψA is constant and thus all actuator arm positions107

are stable. For an actual actuator arm, the range on ψA is restricted to some interval within [0, π].108

Applying a force to the actuator arm moves ψA to a new track. This mimics how bias currents within109

the hippocampus, as a result of place, context, or other stimuli, can select different populations of cells110

during replays [73]. These biasing currents may be regulated or produced by attractor dynamics [74–78].111

2.2 Constructing the Rotating Disk, Read/Write Head, and Actuator Arm Networks112

Having qualitatively linked the dynamics of the hippocampus to those of a disk drive, we wondered if113

an explicit neural model could be constructed of the individual disk-drive components. Such a model,114

if constructed, would merge two modelling paradigms into a concrete device: interfering oscillators and115

attractor dynamics (see [79] for a complementary grid-cell model). To that end, we trained recurrent116

spiking neural networks to display the dynamics of a disk drive as a tripartite network with a rotating117

disk network, a read/write head network, and an actuator arm network [63, 80]. We started by mod-118

elling the three networks individually to reproduce disk-drive dynamics constrained to the hippocampal119

parameter ranges.120

First, we considered the rotating disk network (Figure 2A-I). The RD network was trained with121

techniques in machine learning (FORCE training [80, 81]) to cycle in a sequence around a ring with122

frequency θS where θS was 9 Hz. This cyclical behaviour acts as the disk rotation of the NDD model123

with disk rotations mapping to SWRs (Figure 2A). A single isolated cycle around the ring corresponds124

to a single isolated SWR with a duration of approximately 100 ms (θS
−1). This rotational sequence is125

generated by asymmetrically coupling the interneurons in the rotating disk network on the ring while126

the interneurons are receiving a super-threshold excitatory current (Figure 2B). The interneurons that127

are currently firing in the sequence inhibit interneurons that have fired just before, thereby maintaining128

the sequential firing structure on the ring. This interneuron ring serves as the rotator for the entire disk.129

Subsets of pyramidal neurons serve as individual tracks in the rotating disk network. If the collection130

of neurons within a track receive enough excitation, they can fire unique sequences, commonly elicited131

during hippocampal SWRs (Figure 2C-D). The excitation comes from recurrent coupling between the132

pyramidal neurons with a strongly coupled subset of track initiators (Materials and Methods). The133

initiator neurons bind the subset of pyramidal neurons into a track and are activated stochastically134

(consistent with [82]) while the sequences within a track are regulated by the interneuron rotator. These135

initiators may be related to high-firing rate, low spatial specificity CA1 pyramidal neurons [83,84].136

Next, we found that pyramidal cells in the rotating disk network that constitute at track can be137

exposed sector(s)-at-a-time when a second oscillation with a slower frequency (θR/W = 8 Hz) is applied138

to the interneurons in the rotating disk network (Figure 2E). This frequency difference creates an inter-139

ference that activates subsets of the full SWR-sequence of spikes (a track) in the rotating disk network140

but as subsets of a theta-sequence (Figure 2G-H). This is the slower operating mode where sectors can141

be accessed for reading/writing on a slower time-scale (Supplementary Video 3, Supplementary Video142

4). We further observed that the interference between the θS and θR/W oscillations manifests as an143

interference pattern in the voltage of individual neurons (Figure 2) [85] and the interference produces144

internally generated theta sequences [25, 86, 87]. These internally generated theta sequences are used145

for reading or writing to tracks. Therefore, the rotating disk network accurately mimics both the oper-146

ations of a spinning disk and the hippocampus as it consists of a series of pyramidal neurons arranged147
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into tracks and sectors, which could be accessed on slow (behavioural) or fast (neural) time scales, and148

an interneuron ring which “spins” the entire disk as the rotator thereby forming spike sequences.149

With the rotating disk network constructed, we then focused on modelling the actuator arm (Figure150

2J-L). The actuator arm of a conventional disk drive operates much like a continuous line attractor. The151

actuator itself produces a physical force that moves the arm to a specified position, thereby selecting152

a track (Figure 2J). Once the force on the arm stops, the arm stays in its new position over the track153

and is stable. In that way, all possible positions of the actuator arm are stable while an applied force154

can rapidly switch the arm’s position, thereby forming a continuous line attractor.155

Given the correspondence between an actuator arm and an attractor network, we trained a recurrent156

spiking network with FORCE training [80,81] to mimic the dynamics of a line attractor [88] to serve as157

the actuator arm network (Supplementary Figure S2, Figure 2K). The actuator arm network receives158

two inputs: the desired position (ψA) and velocity (dψA
dt ) of the actuator arm. We trained the actuator159

arm network to integrate the velocity-like input to estimate the desired position (ψ̂A). During training,160

the desired position, ψA was dropped during random periods to force the actuator arm network to161

produce a position estimate with integration alone (Supplementary Figure S2). After training, we162

found that the resulting actuator arm network produced isolated firing fields of pyramidal neurons,163

consistent with observed hippocampal place fields (Figure 2K-L, Supplementary Figure S3). However,164

here ψ̂A refers to the estimated position of the actuator arm on the disk, rather than the estimated165

position of an animal in physical space per se. Further, we observed that pyramidal neurons in the166

actuator arm network exhibited bumps of activity, reporting the dynamics of an attractor network167

(Figure 2L) [85]. Finally, we tested the line-attractor nature of the trained actuator arm network.168

When no velocity inputs and position inputs are applied, the actuator network retains its last known169

position as a stable state, similar to how a physical actuator arm stays in the last position on a real170

HDD if the actuator no longer provides a force on the arm (Supplementary Figure S4). Thus, the171

actuator arm network behaves as both a line-attractor network, and the actuator arm of a disk drive,172

while simultaneously producing hippocampal features such as place-field like firing in the individual173

cells.174

Next, we wondered how the actuator arm network displayed its line attractor dynamics. To inves-175

tigate this, we sorted all neurons (pyramidal and interneuron) according to their place (ψA) preference176

(Supplementary Figure S3, Figure 2K). After sorting, we found that the actuator arm network main-177

tained stable states through a self-disinhibitory motif. Pyramidal neurons with similar actuator arm178

position preferences excited both themselves and interneurons with similar ψA preferences. The in-179

terneurons then inhibited pyramidal neurons with dissimilar ψA preferences.180

With the rotating disk and actuator arm networks created, we next investigated how information181

is written onto, and read from the hippocampal ”tracks” in the rotating disk network network. For a182

physical disk drive, the read/write head on the actuator arm reads and writes bits of data (0’s or 1’s)183

on individual tracks as different magnetic field directions (e.g. ↑ or ↓) on a ferromagnetic material. We184

thus sought to identify how the read/write head network could ”write” bits of information.185

We thus mapped the functional capability of a R/W head in a disk drive to a plausible biological186

candidate: Hebbian plasticity (Figure 2D). We constructed a R/W spiking neural network that contains187

plastic excitatory synaptic weights from all pyramidal neurons in the RD network and uses these plastic188

weights to encode bits of information (Figure 2M). If enough excitatory weights from a track/sector189

connect onto a neuron in the R/W head, then that neuron spikes. The spiking of neurons in the190

read/write head (post-synaptic) paired with Hebbian plasticity to spikes in the rotating disk network191

(pre-synaptic) is how the read/write head network reads or writes bits of information.192

Bits of information are sent to the R/W network from external sources for encoding, causing spiking193

in R/W pyramidal neurons. When the R/W neural spiking coincides with spiking from the active track194

in the RD network, Hebbian plasticity encodes bits of information in the AA�R/W pathway. The195

bits of information are written when the spinning disk continuously cycles (θS), and the read/write196

oscillation (θR/W ) is active. As these oscillations sequentially expose the sectors of an individual track,197

bits are written discretely to isolated sectors (Figure 2N, Supplementary Video 3). We found that this198

discretization is visible as discrete assemblies when the information is subsequently replayed either when199

θR/W is active or in full disk rotations (Figure 2N-O, Supplementary Video 4) during SWRs, and in fact200

corresponds to the discrete sectors exposed during the theta-oscillation. This discretization of replays201
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may be linked to the observation that replays can also ”jump” from location to location discretely [89].202

This result shows that the read/write head in the Neural Disk Drive Model can use Hebbian plasticity203

in a similar fashion to the read/write head on a physical HDD to encode bits of information onto a204

plastic medium. Finally, we remark that it may also be possible that different phases of the θR/W205

oscillation are used separately for the reading and writing of bits [90–93].206

2.3 The Tri-Partite Neural Disk Drive Model207

Next, we investigated if the rotating disk, Actuator Arm, and read/write head networks that we con-208

structed separately could be assembled together and function synergistically to store information as209

the final Neural Disk Drive (Figure 3). We simulated these three constituent networks coupled with210

three sets of cross-network synaptic weights (Figure 3A). The first set of (AA�RD) connections link211

the actuator arm and rotating disk networks, selecting tracks and thus subsets of pyramidal neurons212

to access. The second set of (RD�R/W) connections associated the RD network to the R/W head213

network, and act as the storage media to store bits of information (Figure 3B). The third set of214

(AA�R/W) connections, from the AA network to the R/W network, triggers synfire-chain like spiking215

in the R/W network. This sequence of spikes represents the information to be acquired during the216

writing state/theta oscillation, and replayed during the reading stage/SWR. These three (AA, RD and217

R/W) networks acting together collectively operate as the hippocampal Neural Disk Drive (Figure 3C-218

F). The R/W head network served to record/replay information as spike sequences; that is, leveraging219

the computer analogy, sequences of bits are written/read onto a track (Figure 3C). The track is rotated220

by the ring of interneurons that mediates the disk dynamics (Figure 3D). The actuator arm network221

serves to perform path-integration and selects the specific track on the rotating disk network.222

Together, these networks operate synergistically. For example, we found that the AA network can223

create (theta) sequences longer than those contained within a single track by switching between tracks224

(Supplementary Figure S5). The AA network can also bias which track becomes replayed during disk225

rotation (Supplementary Figure S5). Finally, the zoo of hippocampal data-accessing events are well226

explained by a disk-drive model of hippocampal operations. By disabling the rotating disk network227

interneurons, replays can be converted into sequence-less reactivations [94] (Supplementary Figure S6).228

Pre-plays, where the sequences during SWRs are observed before navigation [49–53,95], are pre-existing229

or old data written to tracks before they are accessed during Reading/Writing phases (Supplementary230

Figure S6). Fragmented replays [6], where replay trajectories jump in state-space correspond to mis-231

alignment between the initial phase of the disk and the start of a bit sequence (Supplementary Figure232

S6, Supplementary Video 5). Reverse replays based on dedicated sequence-reversion pools of interneu-233

rons were previously considered [63]. In this scenario, the disk spins backwards to reverse the order of234

bit/spike sequences (Supplementary Video 6). Replays of trajectories that were not previously experi-235

enced by an animal ( [96, 97]) can also be constructed by reading out multiple tracks that were never236

sequentially accessed during the writing phase. These tracks can also be individually reversed within a237

multiple-track replay event [96,97].238

Thus, the Actuator Arm, rotating disk, and read/write head networks work synergistically to record239

information in a tripartite Neural Disk Drive, with core features of the hippocampal network being240

mapped to well-defined operations and components of a HDD.241

2.4 Detecting the Interneuron Ring Sequences Predicted by the NDD Model242

This Neural Disk Drive model proposes that the hippocampus uses both network oscillations and243

attractor dynamics to implement the operations performed by the rotating disk and the actuator arm of244

a computer disk drive. Thus, we tested this theoretical prediction using empirical data, probing evidence245

for one of the dynamical hallmarks of the NDD model: interneurons serving as the rotational backbone246

of neural firing patterns. To proceed, we first considered in vivo hippocampal ensemble recordings247

performed from rats trained to learn and remember three reward locations on a cheeseboard maze248

(Materials and Methods, Figure 4A). On each day of this memory task, animals develop an effective249

navigation path to reach the reward locations throughout the learning trials (Figure 4B). We used these250

animal trajectories to analyze hippocampal patterns formed by sequences of spikes (Figure 4C-D) with a251

Maximal Likelihood Estimation (MLE) based alignment algorithm (see Supplementary materials). The252
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MLE algorithm aligns the repeating firing fields internally to each other across learning trials (rather253

than to place) by applying time-shifts across trials through each firing field (Figure 4D, Supplementary254

Figure S7). The time shifts are then used to optimize an objective function, the maximum-likelihood255

estimator for the spike density parameterized by said time shifts. We found that aligning a single256

neuron simultaneously aligns an entire community of neurons within the learning session (Figure 4E).257

This included both pyramidal neurons and interneurons (Figure 4F), unveiling a repeating interneuron258

sequence that appeared to be stable across learning trials (Figure 4G, Supplementary Figure S7).259

Interneurons in both mice and rats are known to have differing phase preferences with respect to the260

theta oscillation in the LFP. Indeed, we found a similar result (Figure 4H-K) with interneurons spanning261

the [0, 2π] range in both rats (Figure 4H-I) and mice (Figure 4J-K). However, phase preference firing of262

bursts in interneurons during theta oscillations, which has been previously reported ( [98–100]) does not263

generate ring-sequences alone. Indeed, stochastic simulations of neurons with phase preferential firing264

of bursts in a population will not generate a ring sequence (Supplementary Figure S8). Our analysis265

shows that that hippocampal interneurons form the neural ring-sequences predicted by the NDD model266

across species and tasks.267

3 Discussion268

Analogies and metaphors with devices have been attempted towards obtaining useful descriptions of269

the brain since antiquity [14, 16–18]. Often, these analogies are a product of their times, manifesting270

brain function as a likeness or similarity to the dominant technological innovation of the era. Indeed,271

the computer analogy for brain function was proposed by Von Neumann shortly after both the first272

electronic computer, ENIAC (Electronic Numerical Integrator and Computer), was unveiled [101] and273

Hodgkin and Huxley successfully modeled the squid giant axon [102]. However, these brain analogies are274

often limited to observations of behaviour, and rarely directly linking the computations, components,275

and function of a device to the anatomy and physiology of any particular brain area [15]. This is where276

our contribution differs from the past by leveraging decades of in vivo experiments in the hippocampus.277

We have constructed and simulated a model of hippocampal function as a Neural Disk Drive, by278

merging two prior modelling paradigms, attractors [74–78] and interference models [20] into one singular279

device. The network was constructed and simulated with 3 components: an actuator arm (Attractor),280

a rotating disk (Oscillator) and a read/write Head (for storing memories). This model was sufficient281

to reproduce some of the core behaviours of hippocampal neurons; path-integration and navigation,282

theta sequences and phase precession, compressed sequences and sharp-wave ripples, and the zoo of283

hippocampal replays. Finally, we verified one of the predictions of this model; a rotating ring-sequence284

of interneurons which constitute the rotator of the neural disk drive.285

If the hippocampus does utilize oscillations and attractor dynamics similarly to how these dynamics286

are used in a disk drive, two natural lines of inquiry emerge. The first line of inquiry emerges from the287

saturation of tracks. A track on a physical disk drive can only hold so many bits. In fact, for a sufficiently288

large file, multiple tracks must be used to store the entire file (Supplementary Video 7). Thus, if the289

hippocampus stores information as a disk drive, does multi-track storage also occur? Evidence for290

the affirmative to this hypothesis is present in the literature in the form of so-called extended replays,291

where a trajectory is replayed as multiple, sequential sharp-wave-ripple complexes [28, 29]. These292

ripple complexes are separated by 150 ms intervals, with an inter-sharpwave-interval distribution293

displaying prominent peaks at multiples of 150 ms, hinting at a disk-rotation mechanism controlling294

SWR generation [63].295

The second line of inquiry consists of the total storage space of the hippocampus, if it does indeed296

operate as a disk drive. In the NDD model, the storage medium used to write bits onto the RD network297

are the synaptic weights coupling the RD network onto the R/W head. Anatomically, these weights298

may be the Schaeffer Collateral connections linking CA3 to CA1, which constitutes a matrix containing299

at most NCA3NCA1 connections, where NCA3, NCA1 are the number of neurons in CA3, CA1. If we300

think of the weights as entirely binary, and consider reasonable values of NCA3 = NCA1 = O(105) [103],301

we arrive at ≈ O(109) bytes or O(1) GB of storage as an upper-bound for rats. Human estimates302

for NCA3 and NCA1 are larger (O(106)), leaving O(102) GB [104]. Thus, if the hippocampus does303

act as a disk drive, it is one of fairly limited storage, as 100 GB translates into roughly 100 hours304
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of video and audio with 720p resolution. Additionally, these were upper bounds that were derived305

assuming all CA3 and CA1 neurons and that the neurons operate perfectly to transmit and store bits306

without redundancy. Given the low values of even these optimistic bounds, the neural disk drive model307

suggests that the hippocampus is limited in the amount of data it can store, possibly hinting that308

the hippocampus stores some type of data-compressed representation of complex memories [105–109].309

Alternatively, it is also possible that the low amounts of storage are only used to store recent events,310

prior to consolidation [110–112].311
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Figure 1
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Figure 2
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Figure 3
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Figure 4
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List of Supplementary Videos312

To dynamically describe both the function of disk drives and the relation between hippocampal dy-313

namics and disk drives, a series of animations were prepared (see below). All animations can be viewed314

and downloaded from https://www.nicolacomputationalneurosciencelab.com/publications.315

Supplementary Video 1: The Components and Operations of a Disk Drive. A supple-316

mentary video that displays how the motions of the read/write head, rotating disk, and actuator arm317

stores and accesses information.318

Supplementary Video 2: Writing on the Slow Time Scale. A supplementary video that319

shows how a disk drive can write with a frequency (θR/W ) that is slightly slower than the disk rotation320

speed (θS). This frequency difference creates hippocampal phase precession in the Neural Disk Drive321

model.322

Supplementary Video 3: Replays via Single Disk Rotations. A supplementary video that323

shows how a trajectory can be replayed in the Neural Disk Drive model with a single disk rotation.324

Supplementary Video 4: Theta Sequences via Multi-Sector Access. A supplementary325

video that shows the emergence of theta-sequences from a tracks worth of data. Here, the read/write326

head accesses multiple sectors in a single disk rotation sequentially, thereby creating theta-sequences327

with phase precessing spikes.328

Supplementary Video 5: Fragmented Replay via Disk-Phase Misalignment. A supple-329

mentary video showing how trajectories can ”jump” via the misalignment of the initial phase or sector330

of the disk with the start of a trajectory.331

Supplementary Video 6: Reverse replay via Counter-Clockwise Disk Rotations. A332

supplementary video showing how trajectories can be replayed backwards through time by spinning333

the disk in the opposite rotation (e.g. counter-clockwise) of the initial recording (e.g. clockwise).334

Supplementary Video 7: Extended Replay via Multi-Track Access. A supplementary335

video showing how long trajectories can be decoded by using multiple tracks, with an actuator arm336

switching between successive tracks.337
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Figure Captions338

Figure 1: The links between hippocampal dynamics and disk drive operations339

(A) The anatomical (CA3, CA1, Dentate Gyrus (DG), and Entorhinal Cortex (EC) sub-regions of the340

hippocanmpus (left) along with observed hippocampal behaviours (right). Sequences of spikes occur on341

short time scales as preplays/replays during hippocampal sharp-wave-ripples (SWRs), and on longer342

time scales as theta sequences. The components of a theta sequence during a theta oscillation are343

subsets of the entire preplay/replay. Preplays occur before the initial observation of a theta sequence,344

while replays occur after the initial observation of a theta sequence. The theta oscillation is an 8-12345

Hz oscillation displayed in the local-field potential (LFP) while SWRs are 150-250 Hz high-frequency346

oscillations in CA1, which coincide with a large-deflection (the sharpwave) in CA3. (B) In a model347

of hippocampal replay, sharp-wave sequences are controlled by an intra-hippocampal oscillation. The348

oscillation is transiently activated for single cycles to trigger SWR replays. (C) By adding a secondary349

oscillation, SWR sequences become temporally dilated into theta sequences via an interference-based350

mechanism. (D) Dilated sharp-wave spike sequences can form a basis to learn new sequences, in351

a one-shot, instantly compressible format. (E) Different sharp-wave sequences can be elicited by a352

biasing current to pools of pyramidal neurons. (F) The hardware components (left) and functional353

parameters (right) of a computer disk drive, which operates by encoding data onto a rapidly spinning354

disk subdivided into tracks and sectors. The read/write head on the apex of the actuator armmoves to355

encode bits onto different tracks. The disk drive has three functional parameters: the Disk Rotation356

speed θS , the read/write speed of the head θR/W , and the actuator armangle ψA.357

Figure 2: Mapping hippocampus circuit components onto hard disk drive components: the rotating358

disk, actuator armand read/write head networks.359

(A) The rotating disk (RD) network contains SWR sequences that instantiate tracks in the Neural360

Disk Drive (NDD) model of the hippocampus function. (B) An asymmetric ring of inhibition induces361

a rotating SWR sequence with rotational speed θS . (C) Different subsets of RD excitatory neurons362

instantiate tracks in the NDD model. (D) The interneuron ring acts as the primary rotator of the NDD,363

while subsets of the RD SWR tracks act as the sectors. (E)The theta oscillations θR/W sequentially364

expose sectors of a track to write-to. This forms theta sequences, which in the NDD model, are365

sequentially exposed tracks of a SPR track. (F) An oscillatory inhibitory signal with a frequency of366

θR/W triggers sector exposure during a theta oscillation. (G) During a RD SWR, all sectors of a367

track are activated without θR/W . During theta oscillations (with θR/W ), the sectors are sequentially368

activated. (H) Zoom of the spike sequences in the RD network overlaid explicitly onto a disk. (I) RD369

dynamics are present as theta oscillations in both the LFPs and in the membrane potential of individual370

pyramidal neurons. (J) The actuator arm(AA) features dynamics of an attractor network. A torque on371

the AA causes it to change angular position ψA, which activates different subsets of AA neurons. This372

forms sequences of instantaneous rates, rather than individual spikes. When the inputs correspond373

to velocity and place, these ongoing firing fields can be interpreted as current place fields. (K) A374

simulation of the FORCE trained AA network with the position and velocity of the animal as inputs375

(below). The AA pyramidal neurons (red) are sorted according to their place preference. (L) The376

voltage traces for 3 randomly selected pyramidal neurons in the AA network. The voltage traces show377

“ramps of activity”, which allows the neurons to modulate their ongoing firing rates to collectively378

encode the position of the actuator arm. The position of the actuator arm can be decoded from a379

linear combination of these rates. (M) Once a track is selected by the AA, the read/write (R/W)380

head can write new sequences onto the track. This corresponds to updating the Schaffer collateral381

weights in the network to store new sequential information. (N) Spike raster plot for the RD and R/W382

head networks. The written sequences become discretized into assemblies of coactive neurons (O) The383

discretized assemblies projected onto the sectors of a disk.384
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Figure 3: Assembling the tripartite Neural Disk Drive model.385

(A) The three constituent (RD, AA, and R/W) networks are connected together to construct a tripar-386

tite network. (B) The RD, AA and R/W networks correspond to discrete regions and pathways within387

the hippocampus circuit. (C) The R/W network is simulated with a writing component consisting of388

theta oscillations (θR/W ) and a reading phase during which SWRs occur (θS). (D) The RD network389

during the writing phase and two disk rotations. The interneuron ring performs the disk rotations in390

both the writing and reading phase. (E) The AA network, with neurons sorted according to place pref-391

erence. The AA transitions from one location to the next. (F) Two zooms of the replayed sequences392

that occurred during RD SWRs.393

Figure 4: Probing the hippocampal in-silico NDD with in-vivo ensemble recordings.394

(A) Schematics of the cheeseboard and the crossword mazes where rodents (rats and mice, respectively)395

learn to navigate to reward locations while hippocampal neuron ensembles and LFPs are recorded.396

(B) Example repeated navigational trajectories (black) used for firing pattern analyses, superimposed397

on animal’s whole path (gray) in these mazes. (C) The trajectories are aligned with a maximum398

likelihood estimation (MLE) algorithm that maximizes the probability of recorded spiking with time-399

shifts to each temporal firing field. (D) The firing fields, temporally unaligned (left) and aligned400

(right). (E) Aligning a single recorded pyramidal neuron produces a global temporal alignment across401

the ensemble of multiple recorded neurons. (F) Zoom of the aligned recorded pyramidal neurons402

(left) and interneurons (right). The black arrow denotes the pyramidal neuron used to align the403

entire population. (G) A sequence of interneuron ring-like spiking. (H) Temporal firing fields for a404

population of interneurons. (I) The phase preference of firing for all interneurons is broadly distributed.405

(J) Similarly, the firing fields for a population of interneurons recorded in mice performing another406

memory task (the crossword maze). (K) The phase preference for all interneurons is once again,407

broadly distributed over [0, 2π].408
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Materials and Methods420

The Actuator Arm Network421

The actuator arm network consists of 2000 excitatory (AAE), and 2000 inhibitory (AAI) leaky-422

integrate-and-fire neurons:423

τm
dv̇AAE
j

dt
= −vAAE

j +RIAAE +R

NAA
E∑
j=1

ωAAE ,AAE
ij rAAE

j (t) +R

NAA
I∑
j=1

ωAAE ,AAI
ij rAAI

j (t)

+ κAAE
j ψA(t) + γAAE

j

dψA(t)

dt
, j = 1, 2, . . . NAAE (1)

τm
dv̇AAI
j

dt
= −vAAI

j +RIAAI +R

NAA
E∑
j=1

ωAAI ,AAE
ij rAAE

j (t) +R

NAA
I∑
j=1

ωAAI ,AAI
ij rAAI

j (t)

+ κAAI
j ψA(t) + γAAI

j

dψA(t)

dt
, j = 1, 2, . . . NAAI (2)

where vAAE and vAAI denotes the voltage for an actuator arm excitatory and actuator arm inhibitory424

neuron, respectively. The parameters for all neurons/synapses can be found in Table 1. Once the425

voltage for a neuron reaches a threshold, vthresh, the voltage is reset to vreset.426

vAAE/I (t−) = vthresh, vAAE/I (t+) = vreset (3)

Every spike is followed by an absolute refractory period, τref during which the neuronal dynamics427

are quenched at the reset value. The parameters IAAE/I , denote the bias currents to the neurons428

in the E/I sub-populations, respectively. The membrane time constant, τm controls the integration429

dynamics of each neuron. The parameter R = 1 · 109 Ω serves as the resistance. The weight matrices430

ωAAE ,AAE ,ωAAE ,AAI ,ωAAI ,AAE , ωAAI ,AAI denote the coupling from E to E, I to E, E to I and I to I431

populations, respectively. These weights are trained with the FORCE algorithm, and described below.432

The inputs ψA(t) and dψA
dt denote the desired position of the actuator arm, and the velocity of the433

desired position of the actuator arm. The inputs are multiplied by a set of input weights, κAAE/I , and434

γAAE/I for the actuator arm position/velocity, respectively.435

The variables rAAE/I are the convolved spike times for the E/I actuator arm neurons:436

ṙ
AAE/I

j = −
r
AAE/I

j

τd
+ h

AAE/I

j (4)

ḣ
AAE/I

j = −
h
AAE/I

j

τr
+

1 · pA ·ms2

τrτd

∑
t
AAE/I
jk <t

δ(t− t
AAE/I

jk ) (5)
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where t
AAE/I

jk denotes the kth spike fired by the jth neuron in the actuator arm excitatory/inhibitory437

sub-population. The parameters τd and τr denote the decay and rise times, respectively of the sub-438

population of neurons. The AA network, and indeed, all networks considered were integrated with a439

simple Forward-Euler method and a step size of dt = 5× 10−5s.440

FORCE Training the Weights of the Actuator Arm Network441

The weight matrices ωAAE ,AAE ,ωAAE ,AAI ,ωAAI ,AAE , ωAAI ,AAI decompose as the sum of a static com-442

ponent, and a learned component:443

ωAAE ,AAE = ωAAE ,AAE
0 + (ηE)+(ϕ

E)+ + (ηE)−(ϕ
E)− (6)

ωAAE ,AAI = ωAAE ,AAI
0 + (ηE)−(ϕ

I)+ + (ηE)+(ϕ
I)− (7)

ωAAI ,AAI = ωAAI ,AAI
0 + (ηI)+(ϕ

I)− + (ηI)−(ϕ
I)+ (8)

ωAAI ,AAE = ωAAI ,AAE
0 + (ηI)+(ϕ

E)+ + (ηI)−(ϕ
E)−. (9)

The functions

(x)+ =

{
x, x ≥ 0

0, x < 0
, (x)− =

{
x, x ≤ 0

0, x > 0

are applied to the components of the matrices η = [ηE ,ηI ], ϕ = [ϕE ,ϕI ] to enforce Dales Law. The444

matrices η are referred to as the encoders, and help determine the tuning properties of neurons with445

respect to the estimated actuator arm position ψ̂A. For each neuron in the AA network, the encoder446

for that neuron (a row of η), is randomly generated and sparse. The encoder is an N × k matrix where447

nsup is the dimension of the supervisor of the network, likewise for the decoder. The encoder is enforced448

to be sparse: each neuron has a single element in its encoder that is non zero, and randomly set to449

±W , where W = 10pA. The input weights, κψA and κγ were randomly generated with from a uniform450

[−1, 1] distribution, for all neurons in the AA network.451

The decoders, ϕ are learned with FORCE training, which we describe below.452

The Supervisor and Inputs to the Actuator Arm Network453

The input to the actuator arm network is a randomly generated signal, ψA(t), and its derivative, dψA
dt .454

The signal is generated with a bounded, double-filtered noisy process. The first filter corresponds to455

the acceleration a(t) while the second filter corresponds to the velocity ψA(t) :456

τψ
da

dt
= −a+ ζ(t) (10)

τψ
dψA
dt

= −ψA + a(t) (11)

where ψA(t) = ±1 causes a reset, as if colliding with a boundary, to the velocity and acceleration of the457

actuator arm position dψA
dt = 0, a(t) = 0. Further, the velocity of the actuator arm is also limited such458

that if |dψA
dt | ≥ 1, the velocity is fixed to ±1, to prevent arbitrarily fast motion of the actuator arm.459

The variable ζ(t) is a white noise process with mean 0 and standard deviation of 10−3. The actuator460

arm position is unit-less, while the velocity and acceleration are s−1 and s−2.461

The position and velocity inputs (ψA(t),
dψA
dt ) are provided to the actuator arm network during462

training. However, the position component is dropped stochastically (set to 0) for intervals that are463

randomly generated. These intervals are a minimum of 1 second long, and a maximum of 51 seconds464

long, with the interval itself drawn from the uniform distribution U([1, 51]). Once the position dropping465

interval ends, the position is turned back on instantly, for a random period of time. This random interval466

with position is also uniformly generated from the distribution U([1, 51]). In the intervals where the467

position is dropped, the network must rely on velocity and the last known position of the system to468

“integrate” and estimate the desired actuator arm position.469
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The supervisor, s(t) to the actuator arm network is a nsup = 200 dimensional vector that is a470

non-linear transform of the position:471

si(t) = exp

(
−(xi − ψA(t))

2

σx

)
(12)

Each component of the supervisor acts as an activity bump when ψA(t) passes near xi, where xi is472

the center of the bump. The centers are uniformly distributed on the interval [−1, 1]. The variable σx473

controls the width of the bump, with σx = 0.3 used during training. The velocity component is not474

contained in the supervisor in any way.475

Recursive Least Squares476

The decoders, ϕ are determined dynamically to minimize the squared error between the approximant477

and intended dynamics, e(t) = ŝ(t)− s(t). The Recursive Least Squares (RLS) technique updates the478

decoders to solve this problem in real-time:479

ϕ(t) = ϕ(t−∆t)− e(t)P (t−∆t)r(t)

1 + r(t)TP (t−∆t)r(t)
(13)

P (t) = P (t−∆t)− P (t−∆t)r(t)r(t)TP (t−∆t)

1 + r(t)TP (t−∆t)r(t)
(14)

and r(t) = (rAAE (t), rAAI (t))T . The Recursive Least Squares Algorithm and FORCE training is480

described in greater detail in [80, 81]. The actuator arm network is initialized with ϕ(0) = 0, P (0) =481

INλ, where IN is an N -dimensional identity matrix, and λ controls the learning rate of RLS. The value482

λ = 0.5dt was used, where dt = 5 × 10−5s was the simulation integration step size. To implement483

Dale’s law as in equations (6)-(9), we decompose ϕ into ϕE and ϕI with ϕE = (ϕ)+ and ϕI = (ϕ)−.484

The training parameters for the RD network. For the rotating disk network, a value of λ = 0.05dt was485

used.486

The Rotating Disk Network487

The rotating disk network is a modification of the so-called “SHOT-CA3” network from [63]. As in the488

actuator arm network, the rotating disk network consists of coupled leaky integrate-and-fire neurons:489

τmv̇
RDI
i = −vRDI

i +RIRDI +R

NRDI∑
j=1

ωRDI ,RDI
ij rRDI

j (t)

+ RIGABA(1 + cos(2πθRW t)), i = 1, 2, . . . NRDE
(15)

τmv̇
RDE
i = −vRDE

i +RIRDE +R

NRDI∑
j=1

ωRDE ,RDI
ij rRDI

j (t), i = 1, 2, . . . NRDI
(16)

where RDE , RDI denote the excitatory and inhibitory populations of the rotating disk network. The490

neurons receive a constant background current Iα for α = RDE , RDI . The RDI neurons receive an491

oscillatory input where θRW is the input frequency, and κ > 1 determines the tonic level of inhibitory492

drive. The INP-MS has amplitude IGABA = −10 pA for i = 1, 2, . . . NI . The network consists of493

NRDE
= NRDI

spiking neurons.494

The weight matrices ωRDI ,RDI , ωRDE ,RDI , and supervisor used to generate them with FORCE495

training are described in further detail below, and in the specific methods for individual figures. They496

decompose similarly to the actuator arm network weights in equations (6)-(9). The supervisor used to497

train the RD network is a bank of oscillators:498

sRD(t) = cos(2πθSt+ βRDi ) (17)

where ϕi is a uniformly distributed [0, 2π] phase preference for each oscillator. The phase preferences499

βRDi are randomly drawn from a uniform distribution on the interval [0, 2π]. All weight matrices that500

we consider are dimensionless with the units of current (pA) carried by the synaptically filtered spike501

trains r(t) (see Equation (5)).502
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The Read/Write Head Network503

The read/write Head network is a population of leaky integrate-and-fire 2000 inhibitory (RWI) and504

2000 excitatory (RWE) leaky-integrate-and-fire neurons:505

τmv̇
RWI
i = −vRWI

i +RIRWI +R

NRWE∑
j=1

ωRWI ,RWE
ij rRWE

j (t) +Rζi(t), i = 1, 2, . . . NRWI

τmv̇
RWE
i = −vRWE

i +RIRWE +R

NRWI∑
j=1

ωRWE ,RWI
ij rRWI

j (t)

+ R

NRDE∑
j=1

ωRWE ,RDE
ij rRDE

j (t) +RIRWE ,bits
syn,i (t), i = 1, 2, . . . NRWE

where ζi(t) is an independent white noise term with mean 0 and standard deviation σ = 0.2 pA. This506

noise term prevents the pathological synchronization of interneurons. The weight matrices ωRWE ,RWI ,507

ωRWE ,RWI are untrained, and described below. The bits sent to the RWE neurons are expressed as time508

dependent currents IRWE ,bits
i (t). Finally, the weight matrix ωRWE ,RDE . The matrix ωRWE ,RWI is a509

random matrix with each element drawn from a uniform distribution [WRWE ,REI
, 0] whereWRWE ,REI

=510

− 0.04
NRWI

. The matrix ωRWI ,RWE is also randomly generated, on the interval [0,WRWI ,RWE
] where511

WRWI ,RWE
= 25

NRWE
.512

The weights from the rotating disk excitatory neurons to the read/write head excitatory neurons513

are learned with a Hebbian-plasticity based learning rule ( [63]):514

∆ωRWE ,RDE = ϵrRWE(t)
(
rRDE (t)

)T
(18)

For efficiency in the numerical simulations, the update rule (18) is applied every 15 dt time steps, rather515

than every time step. The parameter ϵ acts as a learning rate for the synaptic weight adjustments and516

controls how rapidly the weights are adjusted.517

Maximum Likelihood Alignment518

Identifying Repeating Trajectories519

To maximally align the spike times, we first selected a trajectory component from the rats navigating520

the cheeseboard maze from [38], which was restricted to 4 seconds in duration and contained large, linear521

movements along the maze within those 4 seconds. The initial selected trajectory p0 = (x0(t), y0(t)),522

for t ∈ [t0, t0+4] was then used as a motion template, where other pj = xj(t), yj(t), t ∈ [tj , tj +4] were523

found by proximity to the initial template via the L2 norm:524

dj = F (tj) = ∥pj − p0∥2 (19)

The trajectory components were found by treating tj as a continuous variable, τ and floating τ over525

the entire interval, τ :526

F (τ) =

∫ 4

0

[
(x(t+ τ)− x0(τ))

2 + (y(τ)− y0(τ))
2
]
dt

Then, a peak detector algorithm (findpeaks, MATLAB 2020a), was used to detect local minima in F (τ)527

(maxima in -F (τ)). Only the top 70% of these peaks were used, as F (τ) may contain local minima528

that are dissimilar from the initial trajectory x0. The set of minima of F (τ), correspond to the discrete529

times τ∗1 , τ
∗
2 , . . . τ

∗
m.530
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Parameter Value RD-E RD-I AA-E AA-I R/W-E R/W-I

N 2000 2000 2000 2000 4000 4000

tref 2 ms 2 ms 2 ms 2 ms 2 ms 2 ms

tm 10 ms 10 ms 10 ms 10 ms 10 ms 10 ms

Iα -25 pA/-40 pA -40 pA -40 pA -41 pA/-42 pA -40 pA

vreset -65 mV -65 mV -65 mV -65 mV -65 mV -65 mV

vthreshold -40 mV -40 mV -40 mV -40 mV -40 mV -40 mV

τd 20 ms 20 ms 20 ms 20 ms 20 ms 20 ms

τr 2 ms 2 ms 2 ms 2 ms 2 ms 2 ms

Table 1: The parameters used for the rotating disk (RD), actuator arm (AA) and read/write (R/W)
Head networks, unless otherwise specified by the supplementary methods for each figure. The bias
currents, Iα, α = RD,AA,R/W vary to change the operational modes of the different sub-networks.
Note that the nominal values of the bias currents may differ in specific figures/subfigures.

Performing the Maximum Likelihood Alignment531

With the trajectory alignment times τ∗j , j = 1, 2, . . .m determined, a single neuron was selected for532

target alignment. The spikes for the m trials of that neuron were selected, and a kernel density533

estimator was constructed, ρner(t),where t ∈ [0, 4]. The bandwidth of the Gaussian kernel was taken534

to be 5 milliseconds. Then, for the m trials, a random m × 1 vector of m time shifts was generation.535

Each scalar component of this vector would would shift all the spikes within one of the j = 1, 2, . . .m536

trials by a constant amount, τ shiftj , j = 1, 2, . . .m. The goal of these random time-shifts is to determine537

the time-shift vector τ which would minimize the following quantity, commonly referred to as the cross538

entropy:539

L(τ shift) =

∫ 4

0
ρner(t) log (ρner(t)) dt (20)

Minimizing the cross entropy is mathematically equivalent to maximizing the log-likelihood-function540

with the vector of shift times τ shift serving as the parameters. This procedure is commonly referred to541

as Maximum-Likelihood Estimation (MLE) of parameters. We remark that alternative methods can542

also be used to align the spike times [113].543

To minimize the cross entropy, we employed an iterative stochastic gradient descent based algorithm.544

At every time point, the best shift vector, τ shiftopt so far is perturbed:545

τ shiftp = τ shiftopt + γ · p (21)

where γ is a variable learning rate, and pn is an m × 1 normally distributed random vector, from a546

standard normal distribution. The optimal time shift is then updated as:547

[
τ shiftopt

]
n+1

=
[
τ shiftopt

]
n
− γ

(
L(τ shiftopt )− L(τ shiftp )

)
p (22)

which serves to estimate the gradient of L as a function of τ shift and descend the gradient in one-step.548

This stochastic gradient algorithm is run for n = 104 iterations for all animals, with an initial γ = 10−1.549

Every 103 time steps, γ is halved. This slows down the learning rate of this stochastic algorithm for550

longer times, and yields more precise solutions to τ shiftopt .551

With the MLE alignment parameters τ shiftopt determined for a single neuron on [tj , tj + 4], for the552

j = 1, 2, . . .m trials, the spike times are then shifted by the j the component τ shiftopt . The τ shiftopt553

determined for aligning a single neuron is used for all neurons in the spike-raster plot with spikes son554

[tj , tj + 4].555
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Specific Methods for Figures/Supplementary Figures556

Figure 2557

In Figure 1E-F, the rotating disk network is simulated for a total time of 10 seconds with the θRW558

oscillator input off. For Figure 1I-K, the θRW oscillatory input is turned on for 2 seconds in the interval559

[3, 5]s. All neurons in the rotating disk network additionally receive a white noise current with mean560

0 and standard deviation 0.5 pA, to mimic the stochastic firing/SWR initiation observed during slow-561

wave sleep. The background currents to all neurons, except to the initiators were -40 pA, while the562

initiator neurons were set to -40.1 pA. Larger or smaller currents to the initiators controls the SWR563

average rate, while larger/smaller currents to the RDI neurons controls both the SWR average rate,564

and the shape of the inter-SWR-interval distributions [63]. For all simulations in Figure 1, the RDE565

neurons were split into two tracks. The tracks were assigned by first constructing a random permutation566

of the rows of ωRDE ,RDI , splitting the permutation into two sets, and then sorting the permutation567

with respect to the θS phase preference. This is mathematically equivalent to splitting the population568

of RDE neurons into two sets, and sorting them on the unit circle. Each track had 50 initiator neurons,569

and 950 neurons representing the sectors (phases) of the disk. The initiators in each track connect to all570

other intra-track initiators with a strong recurrent weight (ωRDinitiator,RDinitiator
i j = 1.1

Nint
), and connect571

to all other excitatory track neurons, and rotating disk neurons with the weight ωRDE ,RDinitiator =572

ωRDI ,RDinitiator = 0.1
Nint

. To implement inter-track competition, the excitatory neurons within a track573

project to rotating disk interneurons with randomly drawn weights from the interval [0, 0.2 1
NAAE

−Nint
].574

In Figure 1I, we biased one of the tracks towards being preferentially activated by increasing the bias575

currents to the track neurons, similarly to the impact the actuator arm network would have. For Figure576

1I, In the reading mode, all initiators in Track 1 had a bias of -40.3 pA, while those in Track 2 had a577

bias of -40.5 pA. All remaining track neurons had a bias of IAAE = −40.25pA and IAAI = −40.5pA.578

All excitatory neurons in all tracks and initiators also have a spike-frequency adaptation variable, ui(t),579

which increases by an amount of d = 18 pA for every spike fired by that neuron and decays with a580

time constant of 50 ms. The adaptation current is negatively weighted, and serves to slow down or581

even eliminate repetitive spiking. This adaptation variable can stop a disk-rotation/sharp-wave-ripple.582

In the writing-mode/theta-oscillation mode, the bias currents for all non-initiator excitatory neurons is583

increased to −6pA. For Figure 1K-L, the total simulation time is 25 seconds, with a non-zero, constant584

velocity (dψA
dt = 0.4 given in the interval [10, 15] seconds. The AAE in Figure 1K neurons were sorted585

according to their phase preference, as determined in Supplementary Figure 3. For clarity, only a subset586

of AAE neurons (10%) are plotted. In Figure 1N, the R/W head network is simulated for 15 seconds,587

with 5.1 seconds in the write mode. The information written to the network is a synfire-chain of spikes588

elicited in the read/write head neurons by an external current. The external current is an additional589

20 pA applied to each neuron for 40 ms, in sequence. In the read/SWR-mode, the bias currents to the590

read/write head neurons are IR/WE = −41pA, IR/WI = −40pA. In the write/theta-oscillation mode,591

the bias currents are unchanged for the R/W neurons, while IRDE = −6pA and IRDI = 15pA. For592

both the read and write modes, the bias current for the initiators was −40.3 pA.593

Figure 3594

The actuator arm, rotating disk, and read/write head networks were combined into a single network with595

a 10 second long simulation time. The actuator arm network was identical to all previously considered596

(Figure 2, supplementary figures) implementations. The signal actuator arm position was generated597

as the integral of a constant signal, ψ̇A = 2
dt(t2−t1) , over the interval [t1, t2] with ψ̇A = 0 outside this598

interval. The desired actuator arm position is initialized with ψA(t) = −1 for t < t1. This initialization599

results in a linearly ramping ψA from −1 to 1 on [t1, t2], and ψA = 1 for t2 > 1. The values t1 = 1,600

and t2 = 2.2 were used. The rotating disk was as in Figure 1, only with a single track and a single601

population of initiators. The intra-initiator weight was also stronger, ωAAinitiator,AAinitiator
i j = 1.4

Nint
,602

which was necessary to generate replays in the read/write head. The adaptation step size was also603

increased to d = 22pA in all rotating disk pyramidal neurons, to terminate sharp-wave bursts. The604

actuator arm projects random, sparse excitatory connections to all non-initiator neurons in the rotating605
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disk network. The weights are drawn from a uniform distribution with mean [0, 0.1√
NAAE

] with probability606

p = 0.1 and 0 otherwise. The actuator arm also projects to a set of 500 leaky-integrate-and-fire neurons607

which act to generate the synfire chain of spikes, which serves as the bits to be written in this example.608

This network has identical parameters as all other neurons, only with a chain of connectivity between609

these neurons to trigger the synfire chain of spiking. Each neuron in the chain is connected to the610

next with a synaptic weight of 0.2. These neurons receive a strong hyperpolarizing bias current of611

−60.09pA. A 20 pA current pushes these cells in the superthreshold firing regime where the current is612

slightly over-threshold (−40.09 pA). All other bias currents are identical to prior implementations in613

Figure 2 for the isolated networks in reading and writing modes. The learning rate, ϵ, was 1.2× 10−5.614

Figure 4615

The spikes in figure 4H-K were mapped onto LFP phases, with the LFP taken as be the channel with616

the most spikes detected. The raw signal was further band-pass filtered with a butterworth filter with617

a [4, 12] Hz window. The phase from the LFP was computed first via a Hilbert transform, and then the618

application of the arctangent function (atan2 in MATLAB 2020a). Only epochs of theta oscillations, as619

defined in [38] were used in our final analysis. All spikes were then transformed into phases via a linear620

interpolant (interp1 in MATLAB 2020a). The spikes were subsequently duplicated from [0, 2π] into621

the intervals [2π, 4π] and [4π, 6π], with a simple histogram with binds of width 6π/100 used to compute622

the spike-base histograms on [0, 6π]. The neurons were subsequently ordered in sequence according to623

increasing mean-phase. An identical protocol was applied to the rat data also.624

Supplementary Figure 2625

The total simulation time is 400 seconds, with the first second of simulation time used to initialize626

the chaotic spiking neural network. Recursive Least Squares (RLS) is turned on for the next 350627

seconds and subsequently turned off. The last 49 seconds of simulation time are used for testing the628

network performance. The network was initialized in the balanced inhibitory regime: ωAAE ,AAE =629

0,ωAAI ,AAE = 0, that is, all initial excitatory weights were set to 0, and all excitatory weights were630

learned. This initial state lets us constrain the firing rates of pyramidal cells to arbitrarily low rates. The631

bias currents were IAAE = −22pA, and IAAI = −20pA. The initial inhibitory weights were randomly632

generated with exactly 90% sparsity . Each of the inhibitory neurons made 200 connections, with the633

connection strength set to G√
200×0.1

, where G = −0.1. We found that this was sufficient to initialize the634

network into a chaotic spiking (prior to learning), and therefore serve as an adequate reservoir for RLS.635

RLS was only applied every 20 time steps (∆t = 20) for efficiency, as the weight updates in equations636

(13)-(14) are O(N2) in time complexity.637

Supplementary Figure 3638

The trained AA network was simulated for 200 seconds, with a randomly generated actuator arm639

position ψA(t) and ψ̇A(t), generated similarly to the initial training supervisor. The actuator arm signal,640

ψA remained on for all 200 seconds to establish the neural preference of firing to the ψA coordinate.641

The locations corresponding to each spike times were determined with a linear interpolant (interp1,642

MATLAB 2020a). For each neuron, a histogram was constructed with 41 bins of size 0.05, distributed643

uniformly over the [−1, 1], which is the operating range of ψA(t). For each AAE and AAI neuron,644

the maximum of the spike-ψA histogram was determined. The maxima were sorted in ascending order645

(Figure SF 3A), and the AA neurons were re-ordered in an identical fashion to expose the weight646

structures (Figure SF 3B-C). The bias currents were IAAE = −22pA, and IAAI = −20pA.647

Supplementary Figure 4648

The trained AA network was simulated for 50 seconds, with a randomly generated actuator arm position649

ψA(t) and ψ̇A(t), generated similarly to the initial training supervisor. The bias currents were IAAE =650

−22pA, and IAAI = −20pA. The position input ψA was turned off (set to 0) in Figure SF 4D, while651
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the velocity input was turned off in Figure SF4E after 25 seconds. In all three simulations, the same652

random initial seed is used to generate ψA and ψ̇A.653

Supplementary Figure 5654

For both simulations, the rotating disk network was subdivided into two tracks with 50 initiators each.655

In the reading/sharp-wave mode, the bias currents were IAAE = −22pA, and IAAI = −20pA, and656

IRDE = −40.5pA, IRDI = −40pA. The initiators had a bias current of -40.7 pA. In the writing/theta-657

oscillation mode, the BIAS currents were the same for the actuator arm networks, while IRDE =658

−9.5pA, IRDI = 15pA. The initiators in the writing mode were kept off with a hyperpolarizing current659

(−60pA). In the reading mode, the initiators received connections from the AA neurons. The weights660

were given by the scaled, FORCE-trained decoder, ωRDinitiator,AAE = 0.5ϕAA for the actuator arm661

position variables ŝi(t). The first tracks 50 initiators received 10 duplicates of the first 5 components662

of ŝi(t), while the second tracks initiators received 10 duplicates of the last 5 components of ŝi(t).663

In the writing/theta oscillation mode, the track neurons in the rotating disk network received scaled664

decoders as weights, ωRDE ,AAE = 12ϕAA. In this case, the 200 components of ϕ were duplicated 5665

times each, scaled up, and provided to the rotating disk network as inputs from the actuator arm666

excitatory neurons.667

Supplementary Figure 8668

The neuron consisted of 20 Poisson neurons which generate spikes stochastically as part of an inhomo-669

geneous Poisson process. First, in each theta cycle, the individual neurons were modeled as having a670

phase preference in generating bursts with the preference given by:671

ppj(t) =
1

2π
+

1

4π
cos(2πθppt+ ϕppj ), ϕppj = 2πj/19, j = 0, 1, 2, . . . 19, t ∈ [0, 2π] (23)

where θpp = 8Hz. In each cycle, a cell is allowed to fire a single burst with a phase-centre drawn from672

the probability distribution ppj(t). The phase centre for the jth neuron on the ith cycle, χij is then673

used to generate a burst of spikes with probability:674

λj(t) = Gpp

(
exp

(
−(t− χij)

2

σpp

))
, t ∈ [2π(i− 1), 2πi] (24)

where σpp = 0.1 controls the width of a burst, and H(x) is the Heaviside function, and Gpp = 0.4 sets675

the spikes emitted per burst. The value of Gpp was selected so that approximately 10 spikes per burst676

were emitted. As measured empirically, the cells fired on average 13.11 spikes per cycle, which was677

estimated after 2000 cycles of firing.678
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Supplementary Materials679

Supplementary Section S1: Disk Drive Dynamics680

A Hard Disk Drive (HDD) is a computer component dedicated to storing information. The simplest681

type of HDD consists of two primary sub-components: A rotating disk and an actuator arm (Figure682

S1A, [47]). The actuator arm moves across the disk to different regions as the disk is spinning at683

a constant rotational velocity. The disk is spun by a central spindle, which we will refer to as the684

“rotator” in the main text to avoid confusion with sleep spindles. The head of the actuator arm then685

writes information onto the disk by magnetizing a layer of ferromagnetic material. The magnetic field686

imprinted on the disk can be oriented in different directions, such as up or down, thereby allowing the687

encoding of binary information or bits as these magnetic field directions. The head of the actuator arm688

can then read data from the disk after the writing procedure is complete. For a fixed position of the689

actuator arm, the region on the disk that the head can access (through disk rotation) is called a track690

or cylinder (Figure S1A).691

The physical components of the HDD give rise to 3 parameters that describe its function: the disk692

rotation speed θS , the head writing speed θW , and the angle of the actuator arm ψA (Figure S1B).693

The disk rotation speed is the number of revolutions per second that the disk makes, while the heard694

writing speed is the number of bits per second that the disk writes at. Finally, the actuator arm angle695

dictates which track the head writes information to. Thus, disks operations can be summarized by three696

parameters: two oscillation frequencies and a position variable for the actuator arm. These variables697

map nicely onto the dominant models of hippocampal function: dual oscillators and attractor networks.698

For a standard HDD, we expect that the write speed is significantly faster than the disk rotation699

speed (θR/W ≫ θS , Figure S1C). In this regime, each write cycle of θR/W takes place when the disk has700

advanced to the next sector on the track. Thus, the exact sequence of bits is maintained and encoded701

onto the disk on the corresponding sequence of sectors. Then, after writing has concluded, the sequence702

of bits in a single track can be read in a single revolution of the disk (Figure S1D). Thus, hard drives703

preserve the sequence of bits, and maximize the number of bits written to a track by ensuring that the704

write speed is significantly faster than the disk rotation speed. We will refer to this as the Hard Drive705

“nominal” parameter regime, as this is how a typical HDD stores information.706

However, the sequence of bits can still be encoded with slower writing speeds. In particular when707

the disk writing speed (θR/W ) is slightly slower than the disk spinning speed (θS), θR/W = θS − ϵ,708

sequences of bits can still be written to a track (Figure S1E). In this regime, the disk makes slightly709

more than a full revolution in between write cycles. This ensures that the head writes to the next710

sector of the track, even under the constraint that the writing speed and disk rotation speeds are711

similar. Once again, a single revolution of the disk can subsequently read all the information in a track.712

We refer to this operating range, when θR/W = θS − ϵ for a small frequency difference ϵ as the Hard713

Drive “precession” parameter regime. Typical HDDs do not operate in this regime.714

When the writing speed is slightly faster than the rotation speed (θR/W ≈ θR/W +ϵ), the disk makes715

slightly less than a full revolution in between write cycles. This implies that rather than writing to the716

next sector of the track, the head writes the next bit to the previous sector of the track (Figure S1F).717

The effect of this operating regime is to encode information in the reverse order that it was observed.718

A single revolution in a read cycle can then read the entire bit sequence in reverse. We refer to this as719

the Hard Drive “recession” parameter regime. As in the HDD precession regime, typical HDDs do not720

operate in this regime.721

Finally, when the head has saturated a track with a sufficiently long sequence of bits, the only722

recourse to store more information is to change ψA and encode more information onto new tracks723

(Figure S1G). Thus, multiple read cycles are now necessary to read out sequences that can not fit on724

a single track (Figure S1H). In particular, the disk must complete multiple full rotations, with the725

actuator arm switching between tracks in each rotation.726
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Supplementary Figure 1: The Operations of a Hard Disk Drive727

(A) A Hard Disk Drive (HDD) schematic with its basic components. The rotating disk is used to store728

information onto tracks, which correspond to a circular segment of the disk. A sector on the disk is a729

wedge shaped region formed by any two radii. The actuator arm points to discrete tracks, which are730

the regions of the disk a stationary actuator arm has access by virtue of disk rotation alone. Bits are731

encoded onto the rotating disk by a read/write head on the apex of the actuator arm. The bits are732

encoded by inducing magnetic fields of different directions onto a ferromagnetic material on the disk733

surface. (B) The functional parameters of an HDD that describe its state: the disk rotation speed734

(θS), the angular position of the actuator arm, ψA, and the head writing speed, θR/W . (C) When the735

write speed θR/W is substantially faster than the disk rotation speed, bits are written continuously as736

the disk spins. (D) Written bits on a single track can be read in a single revolution of the disk by the737

read/write head. (E) Bit sequences can also be written when θR/W = θS − ϵ, where the writing to a738

track corresponds to slightly greater than a full revolution of the disk. The written information can739

be read in a single disk rotation, as in (D). (F) When the disk rotation speed is slightly slower than740

the writing speed, the disk has advanced slightly less than a full revolution when a bit is written. This741

results in the bits being encoded and readout in the reverse order with which they were encoded. (G)742

When a track is saturated with bits, the actuator arm must move to the next track on the disk to write743

additional information. (H) Long sequences of bits must be written to multiple tracks. In order to744

access this information, multiple disk rotations are required with the actuator arm adjusting between745

tracks. This results in multiple read cycles/disk rotations required to readout information.746
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Supplementary Figure 2: FORCE Training the actuator armNetwork747

(A) A network of 2000 leaky integrate-and-fire pyramidal neurons and 2000 leaky-integrate-and-fire748

interneurons is collectively trained to estimate the position of the actuator arm, ψ̂A, on a disk drive. (B)749

The network receives two inputs, a position variable ψA, and a velocity variable ψ̇A. (C) The position750

variable and velocity variables can set the position of the actuator arm in the actuator armnetwork.751

When both inputs are on, the network outputs an actuator arm position (ψ̂A) as determined by its752

position input ψA. When the position input is off, the network is trained to integrate the velocity input753

ψ̇A. (D) The supervisor used to train the actuator arm(AA) network consists of 100 components that754

encode actuator arm position, forming a high-dimensional supervisor [80]. The components are sorted755

according to the supervisor-encoding preferences with respect to the actuator arm position ψA. As a756

result, the supervisor forms a bump of activity, indicating the actuator arm position ψ̂A. The training757

signal is randomly generated, with the actuator arm position being randomly dropped during training.758

FORCE training was as applied for 230 seconds (green), after the first second of simulation time to759

remove any transients. FORCE training was turned off in the last 19 seconds (purple) of the simulation.760

The supervisor (top) and decoded network output (bottom) are shown as heat maps. (E) A subset of761

the decoders, ϕi, i = 1, 2, . . . N during (green) and after (purple) FORCE training. (F) A subset of762

the 100 supervisor components from (A)-(B). The network output is plotted as coloured dashed lines,763

while the supervisor components are in solid black. (G) A 10 second zoom of subset of the supervisor764

and network components while the FORCE training is on. (H) A 10 second zoom of the subset of the765

supervisor and network components while FORCE training is off. (G) The inputs (AA velocity in blue,766

AA position in orange) to the network during training. The red shading denotes the position input767

was turned off during this time period. (H) The inputs (AA velocity in blue, AA position in orange)768

to the network after training. The red shading denotes the position input was turned off during this769

time period.770
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Supplementary Figure 3: Weight Structure of the Force Trained actuator armNetwork771

(A) The 2000 pyramidal neurons (left) and 2000 interneurons (right) are plotted in order of their firing772

preference with respect to the actuator arm position ψA. The preference is estimated by binning the773

spikes into a histogram on the actuator arm range ψA ∈ [−1, 1]. Both interneurons and pyramidal774

neurons display firing preferences with respect to ψA, although the pyramidal neuron preferences are775

narrower. (B) A spike raster plot of the pyramidal neurons sorted according to the firing preference776

in ψA. The position is scaled and overlaid for comparison. (C) The ψA-preference sorted weight777

matrices for the pyramidal and inhibitory neurons. Excitatory connections, which are exclusively made778

by pyramidal neurons are plotted by red, while inhibitory connections, are plotted in blue. All EE,779

EI, II, and IE weight matrices show clear banding along the main diagonal. Note that the green780

vertical band is caused by a sub-population of pyramidal neurons that did not fire strongly during781

navigation, and as a result, do not display strong place-preferences and thus continue the banding782

structure. These neurons were also sorted to the top 400 pyramidal neurons due to the MATLAB783

sort function. (D) The four connection motifs created by FORCE training and shown in the banding784

structure. Pyramidal neurons tend to excite pyramidal neurons with similar ψA preference. Pyramidal785

neurons excite interneurons with similar ψA preference. Interneurons inhibit pyramidal neurons with786

different ψA preference. Interneurons inhibit interneurons with different ψA preference.787
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Supplementary Figure 4: Operating Modes of the actuator armNetwork788

(A) The actuator arm network receives two signals, a velocity signal ψ̇A (orange) and a position signal789

ψA (blue). The position signal denotes the desired position of the actuator arm. The velocity signal is790

randomly generated, while the position signal is the integral of the velocity signal. (B) Under “normal791

operating mode”, the position signal and velocity signal are both applied. (C) The position of the792

actuator arm ψ̂A closely tracks the desired position ψA for a 50 second simulation of the AA network793

(D) In the path integration mode, the position signal ψA is not present. (E) The position signal is794

dropped in the last 25 seconds of simulation. The actuator arm network still tracks the desired position795

of the actuator arm by integrating the velocity signal ψ̇A. (F) In the stationary mode, the velocity796

signal ψ̇A is dropped while the position signal is still applied. (G) The velocity signal is dropped in797

the last 25 seconds of the simulation. The network interprets this drop as a velocity of 0, and as such,798

retains an approximation of the last known position of the actuator arm.799

31

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 7, 2022. ; https://doi.org/10.1101/2022.10.05.511000doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.05.511000
http://creativecommons.org/licenses/by-nc-nd/4.0/


32

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 7, 2022. ; https://doi.org/10.1101/2022.10.05.511000doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.05.511000
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Figure 5: The actuator arm network can select tracks on the rotating disk Network800

(A) The spike raster plot for the excitatory (red) and inhibitory (blue) spikes for the rotating disk801

network while both oscillations θS and θR/W are operating. The rotating disk network is separated802

into two tracks with 950 neurons each. (B) The decoded position of the actuator arm. (C) The spike803

raster plot for the rotating disk network when only the θS oscillation is transiently induced by noise.804

(D) The position of the actuator arm.805
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Supplementary Figure 6: The Zoo of Hippocampal Data Access Methods806

(A) By disabling the rotating disk network interneurons, the spikes in the pyramidal neurons in the807

rotating disk network lose sequential content. (B) The simulated RD/AA network from Supplementary808

Figure 5A with the RD interneurons receiving a strong hyperpolarizing current to stop their recruitment.809

The pyramidal neurons now fire synchronized bursts in an event closer to reactivation rather than replay.810

(C) The position of the actuator arm, which can serve to bias which assembly becomes reactivated. (D)811

If a track already contains pre-written information, then new information can no longer be written to812

this track without the pre-existing information being deleted. Pre-plays may correspond to this scenario813

where tracks (SWRs) contain pre-existing information and are accessed during animal navigation. (E)814

In the NDD model, when information is already stored on a track/SWR, a compressed sequence (blue)815

occurs during a sharp-wave prior to sequential theta sequences during navigation. (F) For every816

sequence written to a track on a disk drive, there is a sequence start and end bit. If the disk rotation817

does not start with the sequence start bit, the sequence is accessed in a fragmented order. (G)818

Simulation of the NDD model with two separate replay events highlighted in blue and green. The first819

sequence, blue, corresponds to activating a track when the sequence starts. The second sequence, in820

green, corresponds to a mismatch between when the learned sequence starts and with which initial821

phase the rotating disk network is activated. (H) The decoded position of a synthetically generated822

animal. Replays are also decoded by a simple linear decoder, with a normal replay on the left (blue),823

and a fragmented replay on the right (green).824
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Supplementary Figure 7: Time-Shift Alignment of Interneurons for 4 Different Animals825

(A) Motion trajectories used for each of the four animals as targets for maximum likelihood estimation826

based alignment of the spikes. (B) The interneurons in the recorded animal. The black interneuron was827

used as the target for alignment, with its determined time-shifts applied to all other interneurons. The828

kernel density estimate of the aligned (blue) and un-aligned (black) spike density for all interneurons is829

show. (C) A zoom of the interneurons during periods of high theta-locking in the spike-density. The830

zoomed segment corresponds to the blue box in (B).831
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Supplementary Figure 8: Preferred-Phase Firing without Interneuron Ring Sequences832

(A) In a theta-modulated poisson-spiking model, each neuron fires a burst of spikes with a theta833

modulated probability. The theta oscillation is used as a clock to force every cell to fire a burst, with834

the bursts elicited with a specific phase preference. (B) Despite phase-preferential firing of the neurons835

in this simulated system, a ring of bursts is not elicited. (C) Despite the lack of a ring of bursting,836

each neuron in the network exhibits phase locking of their spikes onto the theta oscillation. The phase837

locking forms a continuous ring, without interneuron-ring-sequences being elicited.838
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