
Disk-Enabled Authenticated Encryption
Kevin Butler, Stephen McLaughlin, and Patrick McDaniel

Penn State University, University Park PA 16802
Email: {butler,smclaugh,mcdaniel}@cse.psu.edu

Abstract—Storage is increasingly becoming a vector for data
compromise. Solutions for protecting on-disk data confidentiality
and integrity to date have been limited in their effectiveness.
Providing authenticated encryption, or simultaneous encryption
with integrity information, is important to protect data at rest.
In this paper, we propose that disks augmented with non-volatile
storage (e.g., hybrid hard disks) and cryptographic processors
(e.g., FDE drives) may provide a solution for authenticated
encryption, storing security metadata within the drive itself to
eliminate dependences on other parts of the system. We augment
the DiskSim simulator with a flash simulator to evaluate the
costs associated with managing operational overheads. These
experiments show that proper tuning of system parameters can
eliminate many of the costs associated with managing security
metadata, with less than a 2% decrease in IOPS versus regular
disks.

I. INTRODUCTION

Storage has become a central conduit for data loss and com-
promise. Reports of data exposed through lost or stolen laptops
and disks occur on an almost daily basis. As just one example,
laptops containing the mental health histories of over 300,000
people, and the full names and social security numbers for
almost 2,000 people, were stolen from the Pennsylvania Public
Welfare Department [19].

While solutions such as full disk encryption (FDE) and
volume encryption mitigate some of these issues, they do
not facilitate the protection of data integrity on the disk. The
attacker may modify the contents of the disk in arbitrary
ways, e.g., by overwriting the encrypted blocks. Depending
on the encryption algorithm in use, the attacker may be able
to replace encrypted sectors with known ones (e.g., changing
a sector containing a database field with a “yes” value to one
with a “no”), or may simply overwrite the blocks of interest
with random data to block their retrieval. As a result, even if a
stolen laptop is recovered, the data could have been tampered
with in undetectable ways.

A promising means of providing data integrity in addi-
tion to confidentiality is authenticated encryption (AE). AE
schemes, however, are not length-preserving: validating the
data integrity requires an authentication tag (i.e., HMAC) to
be appended to the calculated value. The question of where
disks should store this information has been, to this point,
unanswered. Storing it in a set location on the disk could yield
potentially expensive seek times, while storing extra data in
a sector hidden to the user could require large amounts of
additional on-disk metadata and more importantly, potentially
expensive changes to platter manufacturing and servowriters to

ensure that tracks are not misaligned. In addition, because cer-
tain AE schemes are parallelizable, there may be performance
benefits to accessing tags in parallel with data.

In this paper, we describe how a disk-based solution can
leverage non-volatile memory within the drive enclosure (as
found in hybrid hard drives) in conjunction with an ASIC
that supplies cryptographic functions (as with FDE drives)
in order to provide authenticated encryption services. By
storing the metadata within the drive itself, we alleviate the
need for external metadata servers (required in proposals such
as NASD [8] and Ceph [29]), which may be a source of
compromise.

We model access costs and emulate workloads to evaluate
the trade-offs between disk performance and flash memory
storage. Because of the high storage overhead of storing an
authentication tag with every disk sector, we collate multiple
disk sectors into integrity sets over which a tag is calculated. In
support of this evaluation, we develop a generic block driver
used to drive live workloads to the DiskSim simulator. We
augment DiskSim with a flash simulator that implements a
detailed model of non-volatile memory. Our preliminary re-
sults show that security guarantees such as confidentiality and
integrity can be implemented with surprisingly little overhead;
our measurements indicate as little as 2% percent reduction in
IOPS in a mail-server workload.

Section II describes the challenges of providing authen-
ticated encryption. Section III describes how we simulate
authenticated encryption operations. Section IV evaluates per-
formance under a number of differing workloads. Section V
examines related work, while Section VI concludes.

II. AUTHENTICATED ENCRYPTION

Storage devices may actively protect the integrity as well
as confidentiality of data at rest through a method of en-
cryption known as authenticated encryption (AE). Several
algorithms are defined for AE, including Galois Counter Mode
(GCM) [6] and Counter Mode with CBC-MAC (CCM) [5].
Both modes provide confidentiality through encryption and
integrity through HMAC calculation, which are stored for
future comparison, When a ciphertext record is read, an
HMAC is calculated for it and compared to the one stored
the last time that record was written, in order to verify the
integrity of the record. For a given plaintext, each of these
modes produces a ciphertext of the same length and an HMAC
of a fixed length, typically 128 bits.

978-1-4244-7153-9/10/$26.00 c© 2010 IEEE

Keys for AE may be stored in a secure portion of the
disk, as with FDE drives. Along with the key matter, disks
enforcing authenticated encryption must also store the HMACs
and initialization vectors used for AE. Storing this information
external to the disk invites tampering from a malicious oper-
ating system, while keeping them on disk requires additional
seeks or platter redesign. We instead propose that HMACs
and IVs used for authenticated encryption be maintained
within a separate store in the disk that can protect them
from tampering and allow them to be accessed efficiently.
Non-volatile RAM provides a good medium for such a store,
allowing the separation of on-disk data from security metadata.
NVRAM may be managed by the disk controller, isolating it
from the operating system, and making it accessible in parallel
with the disk platters.

The length of a unit of ciphertext is an important parameter
in an authenticated encryption scheme as it determines total
number of HMACs that need to be stored for a fully encrypted
volume. If a single disk sector is used as a unit of ciphertext,
the space required for storing MACs and IVs is approximately
5.4% of the size of the entire, disk assuming 512 byte sectors.
Using IEEE P1619.1 [12], a MAC contains 128 bits of output
and requires 96 bit IV. Thus, a 1TB disk would require 54GB
of NVRAM to store the MACs. To mitigate this cost, we
aggregate disk regions using integrity sets–fixed size groups
of adjacent sectors for which a single MAC is calculated
and stored. When a subject writes one or more blocks in
an integrity set, authenticated encryption is performed on the
entire set, and a single MAC and IV stored for the set. When
a subject reads one or more blocks in a set, authenticated
decryption is performed on the whole set. The necessary
blocks are extracted from the ciphertext, and a MAC is
calculated and compared against the one stored in NVRAM.

By controlling the size of integrity sets, we control the
amount of space needed in NVRAM for storing MACs and
IVs. We have shown that the costs of performing the integrity
functions in CCM and GCM increase linearly in the number
of sectors per integrity set [4], implying that the cost of
computing a MAC for a set of n sectors is equal to the cost
of computing n MACs (one for each sector in the set) plus
a constant setup time. Another advantage of using integrity
sets arises from how modern operating systems handle block-
level requests. When a block-level request arrives at the I/O
scheduling layer, requests for adjacent disk blocks are merged
together to reduce the number of requests sent to the disk and
therefore disk seeks. This in turn also minimizes the number
of MAC calculations as the size of an integrity set in sectors
approaches that of the mean number of sectors per request.

III. AUGMENTED DISK EMULATION

For our evaluation of the effects of integrity set size on
performance and storage overhead, we built an emulation
environment for our augmented disk. Our emulator replaces
the disk drive in an otherwise fully functional commodity host
system with the DiskSim [3] software based disk simulator
and Kim’s flash memory simulator described in [11]. The

Host System

genbd

workloadd

DiskSim + AE
Flash Sim

RAM Disk

① ② ③ ④

⑤
Real Time

Simulated Time

Fig. 1. An example of the disk emulator satisfying a block request. genbd
recieves a block request at (1) and forwards it to workloadd in (2). Workloadd
then passes the request to DiskSim and the flash simulator (3), which calculate
the turnaround time for the request. The simulated completion time is returned
to workloadd (4), which then waits for that amount of wall clock time before
satisfying the request from the RAM disk (5).

emulator wraps DiskSim and the flash simulator, connecting
it to both the host operating system and a backing store
implemented in the host machine’s RAM. This allows it to
receive and satisfy block requests, thus maintaining the subtle
interactions between the I/O behaviors of running applications
and the storage device. Such dynamics cannot be captured by
pure simulation and workload replay [27]. Storage emulation
using this method has been shown to provide results that are
comparable in accuracy to full implementation [10].

The flow of a block I/O request through the emulator is
shown in figure 1. The two main components are genbd, a
generic block device that interfaces with the host OS and
workloadd, which marshals block requests to DiskSim and
the flash simulator and satisfies them using a RAM disk. The
key step in device emulation is the translation of the simulated
completion time for a block request to a wall-clock completion
time. This causes the host system to “feel” the delay from disk.
In the case of write requests, the HMACs for any integrity
sets containing modified blocks will have to be recalculated.
Workloadd generates read requests for the blocks in these
integrity sets and passes them to DiskSim. The completion
times for these requests are added to the total wait time before
satisfying the request from the RAM disk. We describe the
specific additions made to DiskSim to simulate authenticated
encryption and flash memory access in the following sections.

A. Modeling Augmented Disks

To simulate security operations and flash memory access,
we placed a hook in the DiskSim disk controller code that
is called once for each block request. This hook calculates
the overhead created by these operations, and adds it to the
total time for the disk access. We modeled these operations as
follows.

• T (f): The time to complete the function f in floating
point milliseconds.

• ISet(o, n): Returns the integrity sets containing the re-
quest with offset o and number of sectors n.

• SpannedSets(o, n): The number of integrity sets con-
taining all or part of the block request with offset o and
number of sectors n.

• RD(s); WD(s): Reads or writes the contiguous set of
sectors s to the disk. This operation is simulated by
DiskSim.

• RF (o, n); WF (o, n): Reads or writes the block request
with offset o and number of sectors n. This operation
is performed by the flash simulator, as described in
section III-B.

• AE(n): Perform authenticated encryption on n contigu-
ous disk sectors as described in Section II.

• RAD(o, n); WAD(o, n): Reads or writes the block re-
quest with offset o and number of sectors n to an
augmented disk. This operation is a composition of the
above functions.

We can thus model completion times with the following
equations. The time for a read to the augmented disk is

T (RAD(o, n)) = T (RD(ISet(o, n))) + T (AE(n))
+ T (RF (o, SpannedSets(o, n)))

The corresponding time for a write can be modeled as

T (WAD(o, n)) = T (WD(o, n)) + T (AE(n))
+ T (WF (o, SpannedSets(o, n)))
+ T (RAD(o, n))

Note that writes include the time for a read to the augmented
disk over the set of specified blocks. When a write occurs,
the HMAC of the integrity sets corresponding to the modified
blocks must be recalculated and the new result stored to reflect
the changes made.

B. Flash Memory Emulator

To support the experiments detailed in the following sec-
tions, we designed and implemented a simple flash memory
disk emulator. Integrated into DiskSim [3], the resulting driver
is comparable in behavior and operation to SanDisk’s SSD
Solid-State Drive and BiTMICRO’s E-Disks [2], [25]. A flash
memory based solid-state disk operates substantially similarly
to a conventional block device/hard drive, except that the
storage media is non-volatile memory.

Our emulator is composed of three software components: an
I/O device driver, an address mapping module, and a flash core
engine. All requests are queued by the I/O device driver and
issued to the flash memory in order. We use the Flash Trans-
lation Layer (FTL) [16] for address mapping. The emulator
supports read, program and erase operations corresponding
to conventional disk I/O read and write operations with two-
level mapping tables. Every request is serialized over a single
memory channel (as in current flash drives). Interested readers
are directed to the relevant literature for details on these
operations [7], [20]. The emulated flash memory models a
large block NAND flash memory containing 2 KB pages, each
comprised of four 512-byte sectors. A block consists of 64
pages. Read and program operations are performed in units of
pages, while the erase erase operation is performed units of

blocks. We use Kang et al.’s [14] performance measurements
to model each NVRAM operation, i.e., 0.027320 us per page
read, 0.196370 us per page write, and 1.5 ms per block erase.

Each page must be erased before it is reused. Thus, a
garbage collector is needed to select an appropriate block
for erasure when no “fresh” page is available. When the
garbage collector is called, a candidate block is selected based
on the ratio of the number of invalid pages to valid pages.
Consequently, the need for erasure on certain writes can induce
significant variance in the write delay.

C. Experimental Setup

All tests described in the following section were performed
on a 1.86 GHz Intel Core2 CPU with 1GB of RAM, running
Ubuntu Linux with a 2.6.20-16-generic kernel. The filesystem
used for the tests was ext2 with the kernel’s anticipatory
block I/O Scheduler. No actual disk was used, as all block
requests were satisfied from the emulator’s user-space RAM
disk, which was allocated 512 MB of memory using mlock()
to avoid paging. Note that the RAM disk is the backing
store for the experiments and does not act as a cache for the
simulated disk. It is important that the backing store being
available in a fast memory so that the emulated augmented
disk’s performance is not impacted by the choice of backing
storage device.

To simulate disk requests we used the DiskSim 3.0 sim-
ulation environment. and modeled the default Cheetah 4LP
drive, a 4.5 GB, 10,000 RPM SCSI disk with a 512 MB cache.
For authenticated encryption, we assume an AES-128 block
cipher using completion times from ASICs [22]. The cost of
authenticated encryption for a request of n blocks is the cost
of n×32 encryptions, where 32 is the number of cipher blocks
in one disk block. For all experiments, the integrity set size
of 0 blocks represents the baseline configuration consisting of
DiskSim running with no flash or encryption extensions.

We automated the benchmarking process using the Auto-
pilot benchmarking suite [30], which we configured to run
each test a minimum of 20 times, and to compute 95%
confidence intervals for the mean elapsed, system and user
times using the t-distribution. For consistent results, the buffer
cache was cleared before each run.

Two benchmarks were used, PostMark version 1.51 [15] and
a simple in house benchmark. PostMark performs transactions
on a set of many small files. Each transaction consists of
a read or a write and either a creation or a deletion. We
configured PostMark to perform 50,000 transactions on 20,000
files ranging in size from 500B to 20KB, using buffered I/O.
Our in house benchmark does repeated sequential writes and
reads of the entire disk, in order to test the effects of large
sequential accesses on flash memory. We configured it to
perform two write and read pairs on the entire disk.

IV. PRELIMINARY RESULTS

Supporting authenticated encryption requires managing
more metadata than traditional disk services. Hence, an es-
sential issue is cost; how much does the added functionality

 70

 75

 80

 85

 90

 0 50 100 150 200 250

Co
m

pl
et

io
n

tim
e

(s
)

Integrity Set Size

postmark

(a) Average completion times for various
integrity set sizes.

 800

 850

 900

 950

 1000

 1050

 1100

 0 50 100 150 200 250

IO
PS

Integrity Set Size

postmark

(b) Average throughput (in IOPS) for
various integrity set sizes.

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250

Nu
m

be
r o

f S
ec

to
rs

Integrity Set Size

postmark (readSize)
postmark (writeSize)

(c) Average block request size vs
integrity set size

Fig. 2. Postmark benchmarks of completion time and throughput for various integrity set sizes. Figure (c) shows the relationship between block request size
and integrity set size.

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 0 50 100 150 200 250

Co
m

pl
et

io
n

Ti
m

e
(s

)

Integrity Set Size

in-house

(a) Completion times for in-house benchmark.

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250

Th
ro

ug
hp

ut
 (M

B/
s)

Integrity Set Size

in-house (read)
in-house (write)

(b) Read and write throughputs for
in-house benchmark.

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250

Nu
m

be
r o

f S
ec

to
rs

Integrity Set Size

in-house (writeSize)
in-house (readSize)

(c) Average block request size for
in-house benchmark.

Fig. 3. In-house benchmark tests showing completion times, throughputs, and average request sizes.

from a disk augmented to provide authenticated encryption
impede the normal functioning of storage?

The key trade-off parameter of the augmented disk is
integrity disk set size. More specifically, the set size deter-
mines the trade-off between performance and flash memory
requirements. In the following experiments, we observe the
overheads caused by security operations and flash memory
access, as well as disk level statistics which hint at possible
methods for optimization. An integrity set size of zero is the
baseline case in which no security functions are executed (and
no flash memory is accessed).

A. Small Random Access Workload

The completion times for the PostMark tests are shown
in figure 2(a). They increase with an average slope of 0.032
seconds overhead per additional sector in the integrity set size.
Similarly, the IOPS for these test are seen in Figure 2(b). They
decrease with integrity set size at an average rate of 0.4 IOPS
per sector. In both graphs, there is a slope much steeper than
the average between the points with set size zero and eight,
due to the introduction of flash access to the baseline disk. The
decrease in performance w.r.t. integrity set size is due to the
steady increase in modified request sizes, seen in Figure 2(c).

In general, for workloads that perform small random trans-
actions, disk performance is inversely proportional to integrity
set size by a small constant. This is due to to increased read
request sizes, which increase transfer time. Some of the effects
of the increased sizes are absorbed by a reduction in the
number of flash memory accesses.

B. Large Contiguous Access Workload

The completion times of the in house benchmarks are shown
in figure 3(a). Unlike the random workload, in which perfor-
mance degraded predictably with integrity set size, completion
times oscillate with respect to set size. Similar but smaller
oscillations are seen in the read and write throughputs as
shown in figure 3(b). This is a similar phenomenon to the
track-aligned extents explored by Schindler et al [26]. In our
case, when the integrity set size reaches common block request
sizes, e.g. 64 and 128 blocks, the read overhead incurred
by HMAC recalculation is small or zero. Demonstrated in
Figure 3(c), the same set sizes that have the shorter completion
times and higher throughputs also have smaller average request
sizes due to HMAC recalculation.

These results show that unlike the random workload, there is
no approximately linear relationship between integrity set size
and performance for a contiguous workload with large reads
and writes. An important ramification is that performance is
not proportional to disk size. This is because disk combined
with available flash memory size dictates integrity set size.
This is advantageous as the optimal integrity set size may be
chosen for a random workload, and I/O system parameters
may be tuned to align requests with the chosen set size. Thus,
one initial recommendation for determining integrity set size
is to determine the workload that the disk will primarily be
exposed to. A suitable integrity set size for a system that is
primarily used for small random accesses would be relatively
small, e.g., 32, while for a mix of small and large accesses, a

set size of 128 might be preferable.
Given that our preliminary experiments were done is a

somewhat limited context of a 512 MB storage device, we
wish to extrapolate results for larger disks to guide the
future work described in the following section. Extending our
data with a linear regression model, we found that optimal
performance with a 4.5 GB SCSI driver requires 156 MB of
flash memory, and a 1 TB drive requires 4.5 GB. Given the
availability of SSDs with capacities of 64 and 128 GB, we
believe these requirements to be well within reasonable limits.

V. RELATED WORK

Securing data below the filesystem level has been an area of
focus, particularly with the advent of network-attached disks
that accept direct block reads and writes. Network-attached
secure disks (NASD) [8] sought to replace the block model
with variably-sized objects of variable size that provide greater
semantics for data, and storing object metadata on servers. The
metadata associated with these objects would then be stored
on a metadata server. Similarly, SNAD [18] uses keyed hashes
extensively, calculating either a digital signature or HMAC
value over blocks. The latter scheme is similar in execution
to ours, but relies on the client to perform the cryptographic
operations and store HMACs, rather than the disk, and does
not consider amortizing computation and storage overheads
across multiple blocks. SCARED [24] provides data integrity
but not at the block layer, so operations cannot be performed
by the disk. SNARE [31] shares some similarities to NASD
and SNAD but relies on capabilities and is best suited for
a remote storage system. While our proposed capabilities-
based application shares similarities with the block-based
capabilities work by Aguilera et al. [1], that proposal relies on
access control at a metadata server. By contrast, we consider
enforcement directly within the disk itself. In addition, none of
these schemes consider authenticated encryption using modes
specified by the IEEE P1619.1 standard.

The Venti storage system [23] is an archival system that
relies on write-once access. Their system considers block level
performance, and attempts to optimize storage by seeking
opportunities to compress blocks before adding them to the
archive. Our proposal measures performance characteristics
over multiple blocks but does not consider coalescing multiple
writes to the same block because our solution is not strictly
archival in nature; our goal is to preserve performance while
providing integrity over a variety of potential workloads.
Vilayannur et al. [28] also considered optimizing performance
through tuning of parameters, but make characterizations and
modifications to parallel file systems. By contrast, our ap-
proach works at the block layer and is thus largely independent
of the file system running above it.

Oprea et al. [21] consider an on-disk model for protecting
block integrity using calculated entropy. Their assumption is
of an untrusted disk where the client performs all calculations
and leverage the block’s entropy to make decisions whether
to hash the blocks or not. This scheme yields large reductions
in required storage but requires clients to retrieve their own

integrity information. Using hash constructions for integrity
has been considered in other systems such as SUNDR [17],
Plutus [13] and SiRiUS [9], but these proposals consider
integrity either above the block layer (e.g., file-level validation
in SiRiUS) or cannot be implemented within the disk itself.

VI. CONCLUSION & FUTURE WORK

We present a method of leveraing emerging componentry in
disks, specifically cryptographic processors and non-volatile
memory, to provide authenticated encryption. We developed
an emulator to understand the performance characteristics
of augmented disks, driving live workloads to Disksim and
providing extensions to account for flash memory access as
well as magnetic storage. Our evaluation shows that by tuning
system parameters, much of the overhead of managing security
metadata can be mitigated.

Our future work involves expansion of our simulation envi-
ronment to use DiskSim 4.0 and the more modern disks that
can be modeled, considering alternatives to NVRAM through
on-disk metadata storage and the design challenges involved
with this, and considering how filesystem support for extents
may aid access to integrity metadata and overall performance.
We also plan to consider reliability trade-offs particularly as
they relate to NVRAM durability for writes versus expected
disk lifetimes.

REFERENCES

[1] M. K. Aguilera, M. Ji, M. Lillibridge, J. MacCormick, E. Oertli,
D. Andersen, M. Burrows, T. Mann, and C. A. Thekkath. Block-
Level Security for Network-Attached Disks. In Proceedings of the 2nd
USENIX Conference on File and Storage Technologies (FAST’03), San
Francisco, CA, Apr. 2003.

[2] Bitmicro. http://www.bitmicro.com.
[3] J. S. Bucy and G. R. Ganger. The DiskSim Simulation Environment

Version 3.0 Reference Manual. Technical Report CMU-CS-03-102,
Carnegie Mellon University, Jan. 2003.

[4] K. Butler, S. McLaughlin, and P. McDaniel. High-Performance Disk
Integrity through Block Chaining. Technical Report NAS-TR-0072-
2007, Penn State NSRC, June 2007.

[5] M. Dworkin. Recommendation for Block Cipher Modes of Operation:
The CCM Mode for Authentication and Confidentiality, July 2007. NIST
Special Publication 800-38C.

[6] M. Dworkin. Recommendation for Block Cipher Modes of Operation:
The Galois/Counter Mode (GCM) for Confidentiality and Authentication
& GMAC, Nov. 2007. NIST Special Pub. 800-38D.

[7] E. Gal and S. Toledo. Algorithms and data structures for flash memories.
ACM Comp. Surveys, 37(2):138–163, June 2005.

[8] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, F. W. Chang, H. Gobioff,
C. Hardin, E. Riedel, D. Rochberg, and J. Zelenka. A Cost-Effective,
High-Bandwidth Storage Architecture. In Proceedings of the 8th ACM
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-VIII), San Jose, CA, USA, Oct. 1998.

[9] E.-J. Goh, H. Shacham, N. Modadugu, and D. Boneh. SiRiUS: Securing
Remote Untrusted Storage. In Proceedings of the 10th ISOC Symposium
on Network and Distributed Systems (NDSS’03), San Diego, CA, USA,
Feb. 2003.

[10] J. L. Griffin, J. Schindler, S. W. Schlosser, J. S. Bucy, and G. R. Ganger.
Timing-accurate storage emulation. In Proceedings of the 1st USENIX
Conference on File and Storage Technologies (FAST’02), pages 75–88,
Monterey, CA, USA, Jan. 2002. USENIX Association.

[11] A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: A Flash Translation Layer
Employing Demand-based Selective Caching of Page-level Address
Mappings. In ASPLOS ’09: Proceeding of the 14th international
conference on Architectural support for programming languages and
operating systems, pages 229–240, Washington, DC, USA, Mar. 2009.
ACM.

[12] IEEE. IEEE P1619.1/20 Draft Standard for Authenticated Encryption
with Length Expansion for Storage Devices. http://attachments.
wetpaintserv.us/2Qjro\%24n0iiv7kYZoz4BTmw\%3D\%3D326044,
June 2007.

[13] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu. Plutus:
Scalable Secure File Sharing on Untrusted Storage. In Proceedings of the
2nd USENIX Conference on File and Storage Technologies (FAST’03),
San Francisco, CA, Apr. 2003.

[14] J. Kang, J. Kim, C. Park, H. Park, and J. Lee. A Multi-Channel
Architecture for High-Performance NAND Flash-based Storage System.
Journal of Systems Architecture, 53(9):644–658, September 2007.

[15] J. Katcher. PostMark, A New Filesystem Benchmark. Technical Report
TR3022, Network Appliance, 1997.

[16] J. Kim, J. Kim, S. Noh, S. Min, and Y. Cho. A Space-Efficient Flash
Translation Layer for Compactflash Systems. IEEE Trans. Consumer
Elec., 48(2):366–375, 2002.

[17] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure Untrusted Data
Repository (SUNDR). In Proceedings of the 6th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 2004), San
Francisco, CA, Dec. 2004.

[18] E. L. Miller, W. E. Freeman, D. D. E. Long, and B. C. Reed. Strong
Security for Network-Attached Storage. In Proceedings of the 1st
USENIX Conference on File and Storage Technologies (FAST’02),
Monterey, CA, USA, Jan. 2002.

[19] J. Murphy. Computers stolen from welfare office. Harrisburg Patriot
News, Sep. 11 2007. http://www.pennlive.com/midstate/patriotnews/
article121468.ece.

[20] H. Niijima. Design of a Solid-State File Using Flash EEPROM. IBM
J. Research and Developement, 39(5), 1995.

[21] A. Oprea, M. K. Reiter, and K. Yang. Space-Efficient Block Storage
Integrity. In Proceedings of the 12th ISOC Symposium on Network and
Distributed Systems Security (NDSS’05), San Diego, CA, USA, Feb.
2005.

[22] N. Pramstaller, S. Mangard, S. Dominikus, N. Pramstaller, S. Mangard,
S. Dominikus, and J. Wolkerstorfer. Efficient AES Implementations on
ASICs and FPGAs. In Proceedings of the AES Conference, 2004.

[23] S. Quinlan and S. Dorward. Venti: A New Approach to Archival Storage.
In Proceedings of the 1st USENIX Conference on File and Storage
Technologies (FAST’02), Monterey, CA, USA, Jan. 2002.

[24] B. C. Reed, M. A. Smith, and D. Diklic. Security Considerations When
Designing a Distributed File System Using Object Storage Devices. In
Proceedings of the 1st IEEE Security in Storage Workshop (SISW’02),
Greenbelt, MD, USA, Dec. 2002.

[25] Sandisk. http://www.sandisk.com.
[26] J. Schindler, J. L. Griffin, C. R. Lumb, and G. R. Ganger. Track-

aligned extents: Matching access patterns to disk drive characteristics.
In Proceedings of the 1st USENIX Conference on File and Storage
Technologies (FAST’02), Monterey, CA, USA, Jan. 2002.

[27] A. Traeger, E. Zadok, N. Joukov, and C. P. Wright. A nine year study of
file system and storage benchmarking. ACM Trans. Storage, 4(2):1–56,
2008.

[28] M. Vilayannur, P. Nath, and A. Sivasubramaniam. Providing Tunable
Consistency for a Parallel File Store. In Proceedings of the 4th USENIX
Conference on File and Storage Technologies (FAST’05), San Francisco,
CA, USA, Dec. 2003.

[29] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn.
Ceph: A Scalable, High-Performance Distributed File System. In
Proceedings of the 7th USENIX Symposium on Operating Systems
Design and Implementation (OSDI’06), Seattle, WA, Dec. 2006.

[30] C. P. Wright, N. Joukov, D. Kulkarni, Y. Miretskiy, and E. Zadok. Auto-
pilot: A platform for system software benchmarking. In USENIX Annual
Technical Conference, FREENIX Track, pages 175–188, 2005.

[31] Y. Zhu and Y. Hu. SNARE: A Strong Security System for Network-
Attached Storage. In Proceedings of the 22nd International Symposium
on Reliable Distributed Systems (SRDS’03), Florence, Italy, Oct. 2003.

