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DISK ENUMERATION ON THE QUINTIC 3-FOLD

R. PANDHARIPANDE, J. SOLOMON, AND J. WALCHER

0. Introduction

0.1. Complex curve enumeration. Let Q ⊂ CP4 be a nonsingular quintic hy-
persurface. The virtual count nd of rational algebraic curves of degree d > 0 on Q
admits a computation via Gromov-Witten theory and mirror symmetry.

Let Nd denote the genus 0 Gromov-Witten invariant of Q in degree d. The count
nd is defined by the Aspinwall-Morrison formula [1]∑

d>0

Nde
dT =

∑
d>0

∑
k>0

ndk
−3ekdT .

The connection between nd and actual curve counting on Q is discussed in [16].
The mirror symmetry prediction of Candelas, de la Ossa, Green, and Parkes [2]

relates the genus 0 potential

F(T ) =
5
6
T 3 +

∑
d>0

Nde
dT

to hypergeometric series. Let Ii(t) be defined by

(1)
3∑

i=0

IiH
i =

∞∑
d=0

e(H+d)t Π
5d
r=1(5H + r)

Πd
r=1(H + r)5

mod H4.

The functions Ii(t) are a basis of solutions of the Picard-Fuchs differential equation

(2)
( d

dt

)4

I − 5et
(
5

d

dt
+ 1

)(
5

d

dt
+ 2

)(
5

d

dt
+ 3

)(
5

d

dt
+ 4

)
I = 0.

Let the variables T and t be related by T (t) = I1/I0 (t). The prediction,

F(T (t)) =
5
2

(I1

I0
(t)

I2

I0
(t) − I3

I0
(t)

)
,

was later proven via localization on the space of genus 0 stable maps to CP4 [5, 11,
13].
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1170 R. PANDHARIPANDE, J. SOLOMON, AND J. WALCHER

0.2. Disk enumeration. Let Q ⊂ CP4 be a nonsingular quintic hypersurface
defined over R. Let ω be the symplectic form on Q obtained from the Fubini-Study
metric. Complex conjugation determines an anti-holomorphic involution on Q with
fixed locus equal to the set of real points QR. The inclusion

QR ⊂ Q

is Lagrangian with respect to ω.
The enumeration of disks with boundaries in Lagrangian submanifolds plays a

basic role in open string theory and has been studied mathematically in several
contexts. The subject is not a direct extension of the theory of stable maps. New
issues such as orientation play a crucial role. Here we provide a complete calculation
of the disk invariants of Q with boundary in the real Lagrangian QR.

An early treatment of disk enumeration occurs in the construction of the Fukaya
category [3]. Disk enumeration is required to define the differentials of the Floer
complex. However, a symplectic invariant via disk enumeration is not defined in
[3]. Only the cohomology of the Floer complex is invariant.

Symplectic disk invariants have been defined with respect to the real Lagrangian
associated to an anti-holomorphic involution in [19]. A previous definition in the
presence of a torus action preserving the real Lagrangian (not directly applicable
to Q) can be found in [10, 14]. Here we will follow the definitions of [19].

Let Ndisk
d for d odd denote the degree d disk invariant of Q with boundary in QR.

For a discussion of even degree, see Sections 0.4 and 1.5. In fact, Ndisk
d depends

on a choice of a Spin structure on QR. However, changing the Spin structure only
effects the sign of Ndisk

d uniformly for all d. Our conventions are fixed by choosing
Ndisk

1 to be positive. Let Fdisk denote the disk potential,

Fdisk(T ) =
∑

d odd

Ndisk
d edT/2.

Our main result is a calculation of Fdisk. Define

J(t) = 2
∑

d odd

edt/2 (5d)!!
(d!!)5

.

The function J(t) is a solution of the Picard-Fuchs equation (2) with an added
inhomogenous term,( d

dt

)4

J − 5et
(
5

d

dt
+ 1

)(
5

d

dt
+ 2

)(
5

d

dt
+ 3

)(
5

d

dt
+ 4

)
J =

15
8

et/2.

Alternatively, J(t) may be obtained by evaluation at H =1/2 of the (nontruncated)
hypergeometric solution (1) of the homogeneous Picard-Fuchs equation,

J(t) = 30

[ ∞∑
d=0

e(H+d)t Π
5d
r=1(5H + r)

Πd
r=1(H + r)5

]
H= 1

2

.

Theorem 1. Via the mirror map T (t) = I1/I0(t),

Fdisk(T (t)) =
J(t)
I0(t)

.

The disk invariants Ndisk
d are typically fractional. Following the strategy of curve

enumeration, virtual disk counts ndisk
d are defined by the Ooguri-Vafa formula.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DISK ENUMERATION ON THE QUINTIC 3-FOLD 1171

Definition 2. We define the counts ndisk
d by∑

d odd

Ndisk
d edT/2 =

∑
d odd

∑
k odd

ndisk
d/k k−2ekdT/2.

Definition 2 is justified by the multiple cover calculation of Proposition 19 in
Section 6. The contribution of k-fold covers of a disk in the appropriate local
Calabi-Yau geometry is k−2. We conjecture the invariants ndisk

d to be integers.

0.3. Real curve enumeration. Each holomorphic disk with boundary in QR can
be reflected by the Schwartz principle to yield a real rational curve in Q. Conversely,
real curves mapping to Q of odd degree may be halved to yield two disks [19]. The
virtual number of real rational curves of odd degree in Q may be defined by

nreal
d =

1
2
ndisk

d .

Again, nreal
d vanishes for d even. A table of values can be found at the end of the

paper.

0.4. Mirror symmetry. Let L be a U(1) bundle with flat connection A0 over the
Lagrangian submanifold QR ⊂ Q. The triple

O = (QR,L, A0)

determines an object of the Fukaya category of Q. Homological mirror symmetry
[12] predicts the existence of a corresponding object O∨ of the derived category of
coherent sheaves on the mirror quintic Q∨. The holomorphic Chern-Simons func-
tional of O∨ is predicted to be mirror to the standard Chern-Simons functional
of O with corrections from disk instantons [25]. In the following, we briefly ex-
plain how the mirror correspondence between functionals leads to an enumerative
correspondence.

Assume for simplicity that O∨ is a holomorphic vector bundle. Denote the un-
derlying complex vector bundle by V , and let AO∨ be the connection on V defining
the holomorphic structure of O∨. Let t denote the complex moduli parameter of
Q∨, and let Ωt denote the holomorphic 3-form determined by t. The holomorphic
Chern-Simons functional of V depends on a second complex connection on V, which
we denote A. We view A as a connection 1-form relative to AO∨ . Define the holo-
morphic Chern-Simons functional by

L∨(A, t) =
∫

Q∨
Tr

(
A ∧ ∂̄AO∨ A +

2
3
A ∧ A ∧ A

)
∧ Ωt.

Critical points of L∨ are holomorphic connections — complex connections with van-
ishing (0, 2) component of their curvature. L∨ is constant on connected components
of orbits of the complex gauge group of V.

For the Chern-Simons functional with instanton corrections, we will require the
following terminology for holonomy. If

E → B

is a bundle with connection θ, and P is a parametrized path in B, we denote the
holonomy of θ around P by Hol(P, θ). If B ⊂ Q and

f : (D2, ∂D2) → (Q, B),
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1172 R. PANDHARIPANDE, J. SOLOMON, AND J. WALCHER

we write

Pf = {f |∂D2 : ∂D2 → B}.

Moreover, if f is holomorphic, we define ηf to be the sign of f coming from the
determinant line of the Cauchy-Riemann operator.

In defining the Chern-Simons functional with instanton corrections, we will not
try to be entirely precise, but rather give an intuitive picture. Let M ⊂ Q be a
totally real submanifold isotopic to QR, and let C4 be the cobordism traced out by
the isotopy. In particular, ∂C4 = M − QR. Let

LM → M

be a U(1) bundle, and let AM be a connection on LM . Since M is naturally identified
with QR, even though LM may be a different topological bundle than L, we may
consider A0 as a perhaps singular connection on LM . Hence, we may think of AM

as a connection 1-form relative to A0. Moreover, let us choose an embedded disk

(C2, ∂C2) ⊂ (Q, M),

such that ∂C2 represents the Poincaré duals of the difference of first Chern classes
c1(L)− c1(LM ). Choose an extension ÃM of the connection 1-form AM to the disk
C2. Let T denote the complexified Kähler moduli parameter of Q and let ωT denote
the associated complexified Kähler form. Define the Chern-Simons function with
instanton corrections by

L(M, AM , T ) =
∫

M

AM ∧ (dAM − ωT ) +
∫

C2
(ωT + dÃM ) +

∫
C4

ω2
T

+
∑

f :(D2,∂D2)→(Q,M)
∂̄f=0

ηfHol(Pf , AM ) exp
(
−

∫
D2

f∗ωT

)

−
∑

f :(D2,∂D2)→(Q,QR)
∂̄f=0

ηfHol(Pf , A0) exp
(
−

∫
D2

f∗ωT

)

+
∑

f :S2→Q
∂̄f=0, z∈f−1(C4)

ηf exp
(
−

∫
S2

f∗ωT

)
.(3)

A Lagrangian submanifold M with vanishing obstruction chains in the sense of [3]
and a flat connection AM together constitute a critical point of L. L is constant
on orbits of the Hamiltonian symplectomorphism group. The corrections from
closed instantons intersecting C4 are necessary to compensate for codimension one
bubbling where all the energy of a disk instanton is transferred to a sphere bubble
[18].

L and L∨ are Lagrangians defining a pair of dual quantum field theories [25].
Their critical values are physically significant and should be topological invariants.
Via the mirror transformation, which expresses T as a function of t, the value of L at
a critical point should be calculable from the value of L∨ at a mirror critical point.
However, we must find nontrivial choices of critical points A and (M,LM , AM )
corresponding under mirror symmetry for all values of T = T (t).
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DISK ENUMERATION ON THE QUINTIC 3-FOLD 1173

In our case, such (M,LM , AM ) can be found using the geometry of the anti-
holomorphic involution. We choose

M = QR.

Since H1(QR) = Z/2, we can choose (LM , AM ) to be the flat U(1) bundle with mon-
odromy opposite to (L, A0). Since QR is the fixed point set of an anti-holomorphic
involution, QR is a critical point of L with either flat bundle. The mirror to such
a choice of (LM , AM ) should be a unique up to gauge transformation holomorphic
connection A on V not gauge equivalent to AO∨ . In [21], a heuristic argument is
given to show L∨(A, t) is in fact given by J(t). Even after specifying which holo-
morphic structure A induces, L∨(A, t) is only defined up to a period of Ωt. Indeed,
changing the choice of A by a complex gauge transformation not isotopic to the
identity changes L∨(A, t) by a period of Ωt. Therefore, L∨(A, t) should satisfy an
extension of the Picard-Fuchs equation for Q∨. Similarly, changing the choice of C4

in the definition of L changes L by a multiple of the first derivative of F(T ), which
corresponds to a period under the mirror transform. Changing the choice of C2

changes L by a multiple of T, and changing AM by a large gauge transformation
changes L by a multiple of 1, both of which correspond to periods under the mirror
transform.

From the preceding discussion, we see both L and L∨ are essentially relative
functionals, depending either on a pair of connections, A, AO∨ , or a pair of totally
real submanifolds with U(1) bundle, (M,LM ) and (QR,L). Therefore only disks of
odd degree, for which the difference in monodromy of AM and A0 cancels the neg-
ative sign in definition (3), contribute to the physically significant critical value of
L∨. The contributions of even degree disks cancel due to this sign. A priori, some
other physical value may depend on the even degree disks. However, on mathe-
matical grounds, even degree disks appear not to lead to interesting invariants; see
Section 1.5.

0.5. Past and future work. The first number ndisk
1 was calculated in [19]. The-

orem 1 was predicted in [21] via low degree graphs sums and string heuristics. Our
technique of proof uses the fully equivariant mirror correspondence of Givental [5].
A previous application can be found in [7] where disk enumeration for (noncom-
pact) local geometries was considered. The Ooguri-Vafa [15] multiple cover formula
of Definition 2 is by now established in many settings; see [10, 14].

We have chosen the quintic 3-fold as our first case of study, but the methods of
the paper are much more generally applicable. It will be interesting to see which
aspects of the solution persist.

1. Disk invariants

1.1. Overview. We recall the definition of the disk invariant Ndisk
d of the quintic

from [19]. Our conventions for conjugation, real structures, and stable disk maps
are discussed in Section 1.3. The Euler class approach to Ndisk

d is presented in
Section 1.4.

1.2. Definitions. Fix a symplectic manifold (X, ω) of real dimension less than or
equal to 6 with an anti-symplectic involution φ,

φ∗ω = −ω.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1174 R. PANDHARIPANDE, J. SOLOMON, AND J. WALCHER

The fixed points L = Fix(φ) define a Lagrangian submanifold of X. A Pin structure
and, if L is orientable, an orientation on L induce a natural relative orientation on
the moduli space MD(X/L, β) of stable disk maps to (X, L) of degree β. Since
MD(X/L, β) is an orbifold with corners, the definition of cohomology classes on
the moduli space yielding an analog of Gromov-Witten theory is not immediately
clear. However, using φ, certain corners of MD(X/L, β) may be eliminated.

More precisely, the boundary of MD(X/L, β) consists generically of stable disk
maps with two disk components. Replacing one of the two components by the
image under φ yields another two component map. We define an equivalence rela-
tion ∼ on the boundary of MD(X/L, β) based on this correspondence. For certain
components of the boundary, the relation ∼ preserves orientation. After quotient-
ing by ∼ on these components, we obtain a new moduli space M̃D(X/L, β) with
fewer corners which is still relatively orientable. On M̃D(X/L, β), many interesting
cohomology classes can be defined. Consequently, a set of invariants are obtained
of the triple (X, ω, φ) reminiscent of standard Gromov-Witten invariants in many
respects.

In good situations, the invariants obtained from M̃D(X/L, d) are actually enu-
merative. For example, Welschinger’s signed counts of real curves [22, 23] arise as
specializations of the theory [19].

1.3. Conventions.

1.3.1. Coordinates. Let z0, . . . , z4 be homogeneous coordinates on CP4. The stan-
dard complex conjugation cId on CP4 is

[z0, z1, z2, z3, z4]
cId�→ [z0, z1, z2, z3, z4].

Each g ∈ PGL5 yields an anti-holomorphic involution

cg = g−1 ◦ cId ◦ g : CP4 → CP4

equivalent to cId. In particular, the anti-holomorphic involution c,

(4) [z0, z1, z2, z3, z4]
c�→ [z0, z2, z1, z4, z3],

is associated to the matrix ⎛⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 1 0 0
0 i −i 0 0
0 0 0 1 1
0 0 0 i −i

⎞⎟⎟⎟⎟⎠ .

Let CP4
R
⊂ CP4 denote the fixed points of c. The involution c will be most conve-

nient for our calculation of disk invariants.

1.3.2. Real geometry. A homogeneous polynomial F (z0, z1, z2, z3, z4) on CP4 is de-
fined over R if

F (z) = F (c(z)).

For example,

(5) z1 + z2 and iz1 − iz2

are both real linear polynomials.
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DISK ENUMERATION ON THE QUINTIC 3-FOLD 1175

A subvariety of V ⊂ CP4 is defined over R if the ideal I(V ) is generated by real
homogeneous functions. The lines

L = { [0, z1, z2, 0, 0] | z1, z2 ∈ C },
L′ = { [0, 0, 0, z3, z4] | z3, z4 ∈ C }

are both defined over R.
The involution c lifts canonically to the line bundles

OCP4(k) → CP4.

The linear polynomials (5) are elements of

H0(CP4,OCP4(1))R ⊂ H0(CP4,OCP4(1))C,

the space of real sections.

1.3.3. Maps. Let u, v be homogeneous coordinates on CP1. Let

c : CP1 → CP1

be the anti-holomorphic involution defined by

[u, v] c�→ [v, u].

The c-fixed points, CP1
R
⊂ CP1, form a circle.

A holomorphic disk map

f : (D, ∂D) → (CP4, CP4
R)

can be reflected by the Schwartz principle to yield an algebraic map

f̃ : CP1 → CP4.

By definition, the degree d of the disk map equals the degree of f̃ .
The map f̃ satisfies the following real condition:

(6) f̃ ◦ c = c ◦ f̃ .

Conversely, every algebraic map

f̃ : CP1 → CP4

satisfying (6) yields two disk maps with boundary ∂D equal to CP1
R
. The image of

f̃ is a real subcurve of CP4.
Similarly, a stable holomorphic disk map f reflects to a stable genus 0 map

f̃ satisfying the real condition (6) with respect to the natural extension of c to
degenerations of CP1. In fact, stability for f can be defined by stability for f̃ . We
will also use the notation

f : (D, ∂D) → (CP4, CP4
R)

for the stable case where D and ∂D are possibly reducible. However, ∂D is always
connected.

In the odd degree case, every stable genus 0 map to CP4 defined over R is
obtained by reflection.
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1176 R. PANDHARIPANDE, J. SOLOMON, AND J. WALCHER

1.3.4. Moduli. Let MD(CP4/CP4
R
, d) denote the moduli space of unpointed disk

maps of odd degree d. Reflection yields an étale double cover of smooth orbifolds

ε : MD(CP4/CP4
R, d) → MR(CP4, d)

where MR(CP4, d) denotes the moduli space of unpointed genus 0 algebraic maps
defined over R. The real dimension of MR(CP4, d) is 5d + 1. In fact, ε is an
orientation double cover [19].

Now let MD(CP4/CP4
R
, d) denote the compactification of the moduli space

MD(CP4/CP4
R
, d) by stable disk maps, and let MR(CP4, d) denote the space of un-

pointed genus 0 algebraic stable maps defined over R. The moduli space
MD(CP4/CP4

R
, d) is a smooth orbifold with corners. In fact, ε extends to a finite

smooth map
ε̄ : MD(CP4/CP4

R, d) → MR(CP4, d),
mapping the corners of MD(CP4/CP4

R
, d) to the boundary divisor of MR(CP4, d).

The cardinality of the fiber over a real stable map with no components fixed by c
is 2no .

In Section 1.1, the construction of the closed orbifold

M̃D(CP4/CP4
R, d) = MD(CP4/CP4

R, d)/ ∼
was outlined. A detailed argument is given in Section 5 in the proof of Proposition
11. The equivalence relation ∼ identifies the corners of MD(CP4/CP4

R
, d) in such

a way that the map ε̄ descends to an étale double cover

ε̃ : M̃D(CP4/CP4
R, d) → MR(CP4, d).

There is a natural inclusion

MR(CP4, d) ⊂ MC(CP4, d)

in the space of unpointed stable genus 0 algebraic maps defined over C. The real
dimension of MR(CP4, d) is 5d + 1.

1.4. Euler class formula. Let Q ⊂ CP4 be a nonsingular quintic hypersurface
defined over R with symplectic form obtained from the Fubini-Study metric. An
anti-symplectic involution

φ : Q → Q

is defined by complex conjugation. The Lagrangian Fix(φ) is the real locus QR.
We consider maps from the holomorphic disk D to Q of odd degree with boundary

lying in QR,
MD(Q/QR, d) ⊂ MD(CP4/CP4

R, d).
Since the expected dimension of the moduli space of maps to Q/QR is 0, the relevant
Gromov-Witten invariant Ndisk

d is simply the virtual cardinality.
To calculate Ndisk

d , following [19], we first reformulate Ndisk
d as the integral of

an Euler class of an obstruction bundle over the moduli space M̃D(CP4/CP4
R
, d).

Such integrals may be studied via fixed point localization. A similar approach was
used by Kontsevich [11] in the closed case.

Let F̂d be the real vector bundle over MD(CP4/CP4
R
, d) with fiber

F̂d|[f :(D,∂D)→(CP4,CP4
R
)] = H0(C, f̃∗OCP4(5))R

where
[f̃ : C → CP4] ∈ MR(CP4, d)
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DISK ENUMERATION ON THE QUINTIC 3-FOLD 1177

is the stable rational map obtained from the stable disk map via reflection, and
H0(C, f̃∗OCP4(5))R denotes real sections.

The vector bundle F̂d is of real rank 5d + 1 and is oriented on MD(CP4/CP4
R
, d)

by Lemma 8.7 of [19]. The integral of the Euler class e(F̂d) over MD(CP4/CP4
R
, d) is

not well defined because the space MD(CP4/CP4
R
, d) has nonempty boundary and

F̂d is not trivial near the boundary. However, F̂d naturally descends to a vector
bundle

Fd → M̃D(CP4/CP4
R, d).

Neither Fd nor M̃D(CP4/CP4
R
, d) are orientable. Let L be the local system defined

by the determinant of the tangent bundle of the moduli space M̃D(CP4/CP4
R
, d).

In Lemma 13 of Section 5, we prove

detFd � L
as topological bundles. A Spin structure on QR determines the choice of the iso-
morphism uniquely up to scaling by a positive constant. Hence, the Euler class

e(Fd) ∈ H5d+1(M̃D(CP4/CP4
R, d),L)

is well-defined. Since M̃D(CP4/CP4
R
, d) is a closed orbifold, the integral∫

M̃D(CP4/CP4
R
,d)

e(Fd)

is well-defined. In Section 5, we obtain the following result.

Theorem 3. For d odd,

Ndisk
d =

∫
M̃D(CP4/CP4

R
,d)

e(Fd).

We prove Theorem 3 using the symplectic virtual moduli cycle. The same tech-
nique can be used to prove the analogous well-known result for the closed invariants.

1.5. Ndisk
d Invariant in even degree. A stable disk map of even degree may still

be reflected to obtain an even degree real genus 0 stable map. However, not all
stable genus 0 maps of even degree defined over R are so obtained. Stable maps
defined over R with domains having no real points cannot be halved.

The even disk invariant Ndisk
d is not well-defined without the addition of the

contributions of real curves without real points. If such contributions were incor-
porated, Ndisk

d would be expressible as the Euler class of an odd-dimensional real
bundle and hence would presumably vanish. Hence, the definition Ndisk

d = 0 for d
even.

1.6. Dependence on Q. Our formula for Ndisk
d is independent of the quintic Q ⊂

CP4 defined over R. Since the calculation is done on CP4, some information is
possibly lost. More precisely, let

ε : H1(QR, Z/2Z) → H1(CP4
R, Z/2Z) ∼= Z/2Z.

The invariant Ndisk
d is an integral over all stable disk maps

f : (D, ∂D) → (Q, QR)

of degree d with boundary ∂D determining a class in

ε−1(1) ⊂ H1(QR, Z/2Z).
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1178 R. PANDHARIPANDE, J. SOLOMON, AND J. WALCHER

If ε is an isomorphism, as is the case, for example, for the Fermat quintic

Q = (z5
0 + z5

1 + z5
2 + z5

3 + z5
4),

then there is no loss of information. If, however, ε has a kernel, more refined disk
invariants of (Q, QR) may sometimes be defined for

γ ∈ ε−1(1) ⊂ H1(QR, Z/2Z).

In the latter case,
Ndisk

d =
∑

γ∈ε−1(1)

Ndisk
d,γ .

2. Torus actions

2.1. Tori. Let T denote the complex numbers of unit modulus,

T = {ξ ∈ C | |ξ| = 1}.
The torus T5 acts diagonally on C5. A T5-action on CP4 is obtained by projec-
tivization, and canonical lifts to the line bundles

OCP4(k) → CP4

are obtained. There is a canonically induced translation action of T5 on MC(CP4, d).
Let ζi ∈ CP4 denote the T5-fixed points,

ζ0 = [1, 0, 0, 0, 0], ζ1 = [0, 1, 0, 0, 0], . . . , ζ5 = [0, 0, 0, 0, 1].

The involution c fixes ζ0 and permutes the others:

ζ1
c↔ ζ2, ζ3

c↔ ζ4.

Hence, ζ0 is the unique real T5-fixed point.
Consider the rank 2 subtorus T2 ⊂ T acting by

(ξ1, ξ2) · [z0, z1, z2, z3, z4] = [z0, ξ1z1, ξ1z2, ξ2z3, ξ2z4].

Since T2 preserves CP4
R
, translation defines a T2-action on the moduli spaces

MD(CP4/CP4
R
, d) and M̃D(CP4/CP4

R
, d).

The algebraic torus (C∗)2 acts on CP4 by complexifying the action of T2,

(ξ1, ξ2) · [z0, z1, z2, z3, z4] = [z0, ξ1z1, ξ
−1
1 z2, ξ2z3, ξ

−1
2 z4].

Of course, (C∗)2 acts on MC(CP4, d) by translation.

2.2. Equivariant weights. We follow the equivariant weight conventions of [5, 16]
for the torus T5.

Let λi be the T5-equivariant cohomology class determined by the Chern class of
the restriction of OCP4(1) to ζi:

λi = c1(OCP4(1)ζi
) ∈ H∗

T5(pt).

The classes λi generate
H∗

T5(pt) = Q[λ0, . . . , λ4].
The tangent weights of CP4 at the point ζi are {λi − λj}j �=i.

Let λ, λ′ be the generators of H∗
T2(pt) defined by the pull-back

ρ∗ : H∗
T5(pt) → H∗

T2(pt)

and the equations

ρ∗(λ1) = −ρ∗(λ2) = λ, ρ∗(λ3) = −ρ∗(λ4) = λ′.
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The pull-back ρ∗(λ0) vanishes. For notational convenience, we will often omit the
pull-back ρ∗ and write

(7) λ0 = 0, λ1 = −λ2 = λ, λ3 = −λ4 = λ′.

2.3. Localization. The genus 0 Gromov-Witten invariants Nd have been calcu-
lated in [5, 11, 13] via localization on MC(CP4, d) with respect to the T5-action.
We will calculate Ndisk

d via localization on M̃D(CP4/CP4
R
, d) with respect to the

T2-action.

3. Localization calculation of Fdisk

3.1. Overview. Let d be odd. The T2-action on the moduli space M̃D(CP4/CP4
R
, d)

lifts canonically to the vector bundle Fd. We calculate the integral

Ndisk
d =

∫
M̃D(CP4/CP4

R
,d)

e(Fd)

by localization with respect to the T2-action.
The localization calculation is similar in flavor to the genus 0 Gromov-Witten

calculation of Q in [11]. However, two new issues arise:

(i) The T2-action has fixed loci in M̃D(CP4/CP4
R
, d) with moving images in

CP4.
(ii) The equivariant restriction of e(Fd) to the T2-fixed locus depends upon the

orientation of Fd.
Issue (i) is handled by identifying the nonrigid contributions with the equivariant
correlators SQ studied by Givental [5, 16]. Issue (ii) requires an explicit evaluation
of the signs occurring in the orientation. The derivation is presented in Section 4.

The sum over T2-fixed point loci required for the localization formula is exe-
cuted in two steps. Subsums with fixed intersection type with CP4

R
are evaluated

using Givental’s equivariant mirror transformation for SQ. Finally, the sum over in-
tersection types is evaluated explicitly after appropriate equivariant specialization.
The interaction of the orientation signs with the localization sum is an interesting
aspect of the calculation. The outcome is a proof of Theorem 1.

3.2. T2 Torus-fixed disk maps. We first study the T2-fixed locus of the moduli
space of stable disk maps. Let

[f : (D, ∂D) → (CP4, CP4
R)] ∈ MD(CP4/CP4

R, d)T
2

be a T2-fixed map.
The boundary ∂D distinguishes a minimal, c-invariant, central curve P ⊂ C of

the domain of the reflected map

[f̃ : C → CP4] ∈ MR(CP4, d)

satisfying ∂D = PR. The central degree of f is the degree of the restriction

f̃P : P → CP4.

The central degree p is positive, odd, and bounded by d. The moduli point

[f̃P ] ∈ MC(CP4, p)

is fixed for the full complexified action of (C∗)2 on CP4.
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Lemma 4. The two lines L, L′ ⊂ CP4 are the only (C∗)2-invariant curves of odd
degree defined over R in CP4.

Proof. A real (C∗)2-invariant subcurve must lie in one of the two planes

{ [z0, z1, z2, 0, 0] | z0, z1, z2 ∈ C },
{ [z0, 0, 0, z3, z4] | z0, z3, z4 ∈ C }.

In the first case, L is the only real (C∗)2-invariant line. Moreover, all nonlinear
(C∗)2-orbits are of degree 2. The argument in the second case is identical. �

A node of PR must map via f̃ to the unique real fixed point ζ0 ∈ CP4. Since
f̃(P ) must equal either L or L′, f̃(P ) cannot contain ζ0. Hence, PR cannot contain
a node. We obtain the following result.

Lemma 5. The central curve P is CP1 and

f̃P : P → L or L′

is a Galois cover of odd degree p.

The original disk map f is obtained from one half of f̃ . Hence one half of P is
selected by D. A half of P determines a pair (ζ, p) where

ζ ∈ {ζ1, ζ2, ζ3, ζ4}
is a nonreal fixed point and p is the central degree.

The data (ζ, p) is the termed the intersection type of f with the real Lagrangian
CP4

R
⊂ CP4. The half of P selected by D is the intersection disk.

While we have analyzed MD(CP4/CP4
R
, d)T

2
, we are actually interested in

M̃D(CP4/CP4
R
, d)T

2
. If fact, we have proven

MD(CP4/CP4
R, d)T

2
= M̃D(CP4/CP4

R, d)T
2

since the T2-fixed maps are not corner points of MD(CP4/CP4
R
, d).

3.3. Intersection disk term. The localization calculation of

Ndisk
d =

∫
M̃D(CP4/CP4

R
,d)

e(Fd)

is the sum over the contributions of the T2-fixed loci. We may separate the contri-
butions by intersection type:

Ndisk
d =

4∑
i=1

∑
p odd

Cont(ζi,p)(Ndisk
d ).

The intersection disk term I(ζi, p) of Cont(ζi,p)(Ndisk
d ) is the contribution of the

unique T2-fixed map
f : (D, ∂D) → (CP4, CP4

R)
incident to ζi with central degree p and domain consisting only of the intersection
disk.

Define the rational function Cp(λ, λ′) of degree 0 by the following formula:

Cp(λ, λ′) =
(−1)

p−1
2

p

2λ

p

(5p)!!
p!p!! ( λ

2p )p∏(p−1)/2
i=0 ((1 − 2i

p )λ − λ′)((1 − 2i
p )λ + λ′)

.
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Lemma 6. For an appropriate choice of Spin structure on QR, we have

I(ζ1, p) = I(ζ2, p) = Cp(λ, λ′), I(ζ3, p) = I(ζ4, p) = Cp(λ′, λ).

Changing the Spin structure changes the formulas by −1 for all p.

The proof of Lemma 6 is given in Section 4. The most interesting aspect is the
calculation of the prefactor (−1)

p−1
2 obtained from the orientations of the moduli

space MD(CP4/CP4
R
, p) and the bundle Fp.

3.4. Givental’s correlator SQ. Let M0,2(CP4, r) be the moduli space of 2-pointed
stable complex algebraic maps to CP4 of genus 0 and degree r. Let

ei : M0,2(CP4, r) → CP4

be the evaluation at the ith marking, and let ψi denote the Chern class of the ith

cotangent line. Let
Er → M0,2(CP4, r)

be the complex vector bundle with fiber

Er|[f :C→CP4] = H0(C, f̃∗OCP4(5))C.

Following the notation of Section 2.2 of [16], Givental’s equivariant correlator
SQ for the torus T2 is defined by

(8) SQ(T, �) =
1

5H

∑
r≥0

e(H/�+r)T e2∗(
ctop(Er)
� − ψ2

) ∈ H∗
T2(CP4),

where H is the hyperplane class,

H = c1(OCP4(1)) ∈ H∗
T2(CP4).

The sum in (8) is over all nonnegative integers r. The unstable degree 0 term is
defined by

1
5H

e2∗(
ctop(E0)
� − ψ2

) = 1.

Let [ζi] ∈ H∗
T2(CP4) denote the Poincaré dual of the class of the fixed point. For

classes µ, ν ∈ H∗
T5(CP4), let

〈µ, ν〉 ∈ Q[λ, λ′]

denote the equivariant intersection pairing. For example,

〈H, [ζi]〉 = λi,

following convention (7).
The intersection pair of the equivariant correlator will arise in the localization

analysis:

〈SQ(T, �), [ζi]〉 =
1

5λi

∑
r≥0

e(λi/�+r)T

∫
M0,2(CP4,r)

ctop(Er)
� − ψ2

e∗2([ζi])

=
�−1

5λi

∑
r≥0

e(λi/�+r)T

∫
M0,1(CP4,r)

ctop(Er)
� − ψ1

e∗1([ζi])

where the string equation is used in the second line. In degree 0, the unstable
1-pointed term is defined by the second equality.
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3.5. Contributions of type (ζi, p). The T2-fixed loci of the moduli space
M̃D(CP4/CP4

R
, d) of type (ζi, p) may be quite complicated. However, every map

[f ] ∈ M̃D(CP4/CP4
R, d)T

2

of type (ζi, p) ends in the same intersection disk. By expanding the localization
formula, the intersection disk term I(ζi, p) can be factored out of Cont(ζi,p)(Ndisk

d )
by removing the intersection disk from f .

What remains after the intersection disk is removed from f? In fact, every genus
0 stable complex map

[f ′] ∈ e−1
1 (ζi) ⊂ M0,1(CP4, r)(C

∗)2

can be found. The stable disk map f is obtained by attaching the (ζi, p)-intersection
disk to f ′ at the marking.

A direct unraveling of the localization formulas yields the following fundamental
result. Let

Cont(ζi,p)(Fdisk) =
∑

d odd

edT/2Cont(ζi,p)(Ndisk
d ).

Lemma 7. We have

Cont(ζi,p)(Fdisk) = 〈SQ(T,
2
p
λi), [ζi]〉 · I(ζi, p)

for 1 ≤ i ≤ 4.

Proof. The sum on left side can be indexed more conveniently as

Cont(ζi,p)(Fdisk) =
∑
r≥0

e( p
2 +r)T Cont(ζi,p)(Ndisk

p+2r).

The right side of the equality may be expanded as∑
r≥0

e( p
2 +r)T

∫
M0,1(CP4,r)

ctop(Er)
2
pλi − ψ1

e∗1([ζi]) ·
I(ζi, p)

(5λi)( 2
pλi)

.

The lemma is obtained from the equality

(9) Cont(ζi,p)(Ndisk
p+2r) =

∫
M0,1(CP4,r)

ctop(Er)
2
pλi − ψ1

e∗1([ζi]) ·
I(ζi, p)

(5λi)( 2
pλi)

.

To prove (9), we apply T2-localization to the integral on the right. We do
not fully expand the T2-localization formula. As was previously discussed, un-
derstanding the geometry of the individual T2-fixed loci is difficult, as there are
positive-dimensional families of T2-fixed curves. However, (9) has a much simpler
proof. Since both sides are expressed as T2-residue integrals by localization, we
need only match the geometries.

First, the T2-fixed loci of the two sides of (9) are in bijective correspondence.
Given a T2-fixed locus on the right, the addition of the intersection disk I(ζi, p)
at the marking 1 yields a T2-fixed locus of the right side. The reverse direction is
obtained by stripping the intersection disk.

Second, since the T2-fixed loci on the left and right are both nonsingular, the
correspondence induces an isomorphism of T2-fixed loci up to the automorphism
factor of the intersection disk.

Finally, we must match the T2-fixed obstruction theories. Let

[fD : D = C ∪ I(ζi, p) → CP4] ∈ M̃D(CP4/CP4
R, p + 2r)T

2
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be a map with

[fC : C → CP4] ∈ ev−1
1 (ζi) ⊂ M0,1(CP4, r)T

2
.

By the normalization sequence,

0 → Fp+2r|[fD] → Er|[fC ] ⊕ Fp|[I(ζi,p)] → OCP4(5)|ζi
→ 0.

Hence, the numerator in the residue integral on the left of (9) is

(10) e(Fp+2r) = ctop(Er) ·
e(Fp)
5λi

.

Similarly, the denominator of the residue integral on the left of (9) is

(11)
1

e(Nor[fD])
=

1
ctop(Nor[fC ])

ctop(Tanζi
)

( 2
pλi − ψ1)( 2

pλi)
1

e(Nor[I(ζi,p)])
.

The middle terms are obtained from tangent bundle, node smoothing, and auto-
morphism factors. Putting (10) and (11) together, we obtain the exact matching
needed for (9).

The factorization of (9) properly reflects the orientation on the moduli space
M̃D(CP4/CP4

R
, d). The orientation factorization is easily obtained from [24]. �

Such arguments form the geometric basis of [5, 16]. Though the T2-action on
M̃D(CP4/CP4

R
, d) has fixed loci corresponding to moving maps, the issue is com-

pletely avoided by the lemma.

3.6. Mirror transforms. We review the mirror transforms relating SQ(T, �) to

S∗
Q(t, �) =

1
5H

∑
r≥0

e( H
�

+r)t Π5r
s=0(5H + s�)

Π4
j=0Π

r
s=1(H − λj + s�)

following Section 4.4 of [16].
The mirror map T (t) = I1/I0(t) discussed in Section 0.1 can be written explicitly.

Let

F (q) =
∞∑

r=0

qr (5r)!
(r!)5

, Gl(q) =
∞∑

r=1

qr (5r)!
(r!)5

( lr∑
s=1

1
s

)
.

Then

T = t +
5(G5(et) − G1(et))

F (et)
is the mirror map. Exponentiating yields

exp(T ) = exp(t) · exp
(

5(G5(et) − G1(et))
F (et)

)
.

The equivariant mirror transformation for the torus T2 is

SQ(T (t), �) =
1

F (et)
S∗

Q(t, �).

Transforms for the equivariant pairings are a direct consequence,

〈SQ(T (t),
2
p
λi), [ζi]〉 =

1
F (et)

〈S∗
Q(t,

2
p
λi), [ζi]〉.
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3.7. Theorem 1. We now complete the calculation of Fdisk,

Fdisk =
4∑

i=1

∑
p odd

Cont(ζi,p)(Fdisk)

=
4∑

i=1

∑
p odd

〈SQ(T,
2
p
λi), [ζi]〉 · I(ζi, p)

=
4∑

i=1

∑
p odd

1
F (et)

〈S∗
Q(t,

2
p
λi), [ζi]〉 · I(ζi, p) .

The i = 1, 2 summands of the last line together yield

4
F (et)

∑
r≥0

∑
p odd

e( p
2 +r)t (−1)

p−1
2

r!(p + r)!p

2−(p+2r) (5p+10r)!!
(p+2r)!!∏

1≤i odd≤p+2r(i − px)(i + px)

written in terms of the homogeneous variable

x =
λ′

λ
.

Similarly, the i = 3, 4 summands together yield

4
F (et)

∑
r≥0

∑
p odd

e( p
2 +r)t (−1)

p−1
2

r!(p + r)!p

2−(p+2r) (5p+10r)!!
(p+2r)!!∏

1≤i odd≤p+2r(i − px−1)(i + px−1)
.

The final step is to observe that the localization calculation of Fdisk is a weight
independent global integral. Hence, we may evaluate the summation in the x → 0
limit. Only the i = 1, 2 terms survive the limit:

Fdisk =
4

F (et)

∑
r≥0

∑
p odd

e( p
2 +r)t (−1)

p−1
2

r!(p + r)!p

2−(p+2r) (5p+10r)!!
(p+2r)!!

(p + 2r)!!(p + 2r)!!
.

The identity for odd d,

(12)
∑

1≤p odd ≤d

(−1)
p−1
2(

d−p
2

)
!(d−p

2 + p)!p
=

2d−1

(d!!)2
,

restated in Lemma 8 below concludes the proof of Theorem 1,

Fdisk(T ) =
2

F (et)

∑
d odd

edt/2 (5d)!!
(d!!)5

.

After regrouping the factors and reindexing the sum, the identity (12) is equiv-
alent to the following result.

Lemma 8. For d odd,
d∑

k=0

(
d

k

)
(−1)k d

d − 2k
= (−1)

d−1
2

22d−1(d−1
d−1
2

) .

Proof. An elementary derivation is left to the reader. A geometric proof is obtained
from the multiple cover calculations in Section 6. �
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4. Intersection disk terms

4.1. Overview. We now derive the signs needed in the localization calculation
and prove Lemma 6. The orientations of the moduli spaces and vector bundles
used to calculate Ndisk

d arise from the natural orientation of the determinant of
the Cauchy-Riemann Pin boundary value problem developed in [19]. Briefly, a
Cauchy-Riemann boundary value problem consists of a topological complex vector
bundle E over a Riemann surface with boundary Σ, a totally real sub-bundle F
over the boundary ∂Σ, and a generalized Cauchy-Riemann operator d′′ on E. Given
a Pin structure on F, and a choice of orientation on F if orientable, one may define
a canonical orientation of the determinant

det(d′′) := Λmax(ker d′′) ⊗ Λmax(coker d′′)∗.

Reversing the Pin structure on F reverses the canonical orientation [19, Lemma
2.10].

For the calculations of weights below, we will only be concerned with the situation
where E → D is the restriction of an algebraic vector bundle Ẽ → CP1 defined over
R. We take F = ẼR, and we take d′′ to be the restriction to D of the ∂̄ operator
defined by the holomorphic structure on Ẽ. The identifications

ker(d′′) = H0(CP1, Ẽ)R, coker(d′′) = H1(CP1, Ẽ)R

are easily obtained. So, an orientation of det(d′′) gives an orientation of the virtual
vector space

H0(CP1, Ẽ)R − H1(CP1, Ẽ)R.

Note, however, the orientation depends on the choice of

D ⊂ CP1 \ CP1
R.

So, we cannot entirely forget the origins of our orientation in a boundary value
problem. For convenience, we introduce the notation

H0(D, Ẽ) := ker(d′′), H1(D, Ẽ) := coker(d′′).

Section 4.2 interprets the symplectic geometric definition of the orientation alge-
braically. Section 4.3 calculates the localization contributions from a fixed point of
the torus action using the combinatorics of exact sequences and the formula for the
tensor product of real representations of S1. The algebraically inclined reader may
safely skip all of Section 4.2 besides the statement of Lemma 9.

4.2. Weights of sections of a line bundle. Let Tn denote the real n-dimensional
torus and let tn denote its Lie algebra. A weight is a homomorphism of real vector
spaces from tn to C. Let V be a 2-dimensional real irreducible oriented representa-
tion of Tn and let ρ be the associated homomorphism

ρ : Tn → GL(V ).

Let h : V → C be an orientation preserving real linear homomorphism such that
the associated homorphism

h̃ : GL(V ) → GL(C)

satisfies
Im(h̃ ◦ ρ) ⊂ AutC(C) � C×.

Note that h is defined by these conditions up to homothety and hence h̃ is unique.
Differentiating h̃ ◦ ρ we obtain the weight of V.
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We denote by Vλ the 2-dimensional real oriented representation of Tn of weight
λ, where λ may be fractional. If λ = 0 we denote by Vλ the trivial 2-dimensional
representation. Suppose V is an oriented real representation of Tn isomorphic to
Vλ. A priori, V consists of two data: a Tn-action on the vector space V and an
orientation of the vector space V. However, except in the case λ = 0, the Tn-action
on V and the knowledge that V � Vλ determine the orientation of V . Indeed, if
λ �= 0, there is a unique up to homothety Tn-equivariant isomorphism

i : V
∼→ Vλ.

The orientation on V must agree with the orientation induced by i.
Let m be a positive odd integer. From [19], in order to define the canonical

orientation of det(d′′) mentioned above, a Pin structure p−1 on O(−1)R → ∂D
must be chosen. We fix such a Pin structure. Set Wλ = Vλ ⊗ C. Choosing a
connected component of the complement of

CP1
R ⊂ CP1 = CP(Wλ)

is equivalent to choosing an orientation on Vλ. The action of Tn on Wλ naturally
induces an action on H0(D,O(m)) when we think of D as the disk that induces
the orientation of Vλ. Indeed, as not oriented vector spaces, clearly

(13) H0(D,O(m)) � Symm(V ∗
λ ).

We only consider the m odd case.
The main goal of this section is to prove the following lemma which examines

when isomorphism (13) preserves orientation. Equip the vector space H0(D,O(m))
with the Tn-action induced from V−λ. Let p be a Pin structure on O(m)R → ∂D.
Since m is odd, O(m)R � O(−1)R as real topological vector bundles.

Lemma 9. Assume that p agrees with p−1. With respect to the canonical orientation
induced by p,

(14) H0(D,O(m)) �
(m−1)/2⊕

i=0

V(2i+1)λ.

Proof. First, the canonical orientation induced by p can be expressed as the complex
orientation induced by an explicit complex structure on H0(D,O(m)). Indeed, by
gluing sections, we have an exact sequence

0 → H0(D,O(m))

g−1

→ H0(D,O(−1)) ⊕ H0(CP1,O((m + 1)/2)) h→ C → 0.(15)

By definition [19, Proposition 2.8], after equipping the latter two terms of the
sequence with the complex orientation, the sequence induces the desired orientation
on the first term. Note that g−1, the inverse of the gluing map, is not canonical,
but the set of all choices is connected. So, the induced orientation is well-defined.
To calculate the orientation, we may fix a particular choice of the gluing map and
calculate the induced complex structure on H0(D,O(m)).

We digress for a moment to explain the relationship between different possible
descriptions of H0(D,O(m)). Let w0, w1 be standard linear coordinates on Wλ such
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that w0, w1 are real precisely on the real locus of Wλ. Then, H0(D,O(m)) may be
identified with the vector space of homogeneous polynomials

p(w0, w1) =
m∑

i=0

aiw
d−j
0 wj

1, ai ∈ R.

Now, we choose new coordinates z0, z1, such that

z0 = w0 − iw1, z1 = w0 + iw1,

w0 =
z0 + z1

2
, w1 = i

z0 − z1

2
.

Then, since p(z0, z1) = p(z̄1, z̄0), we have

p(z0, z1) =
m∑

j=0

biz
d−j
0 zj

1, bj = b̄d−j .

On the other hand, by definition, H0(D,O(m)) is the space of the solutions ξ of
the Cauchy Riemann equations on unit disk

D = {|z| ≤ 1} ⊂ C

satisfying the totally real boundary conditions

ξ(z) ∈ Rzm/2, |z| = 1.

In the future, we refer to these boundary conditions as L(m). Expanding in power
series about z = 0, it is not hard to see that the boundary conditions imply

(16) ξ(z) =
m∑

j=0

biz
i, bj = b̄d−j .

So, solutions ξ arise naturally from homogeneous polynomials p(z0, z1) by trivializ-
ing O(m) over {z0 �= 0} by the section zm

0 and making the identification z = z1/z0.
For the following argument, we view sections ξ ∈ H0(D,O(m)) as in (16). Re-

ferring to the exact sequence (15), we construct a gluing map

g : ker(h) → H0(D,O(m))

as follows. Suppose we identify the point at which we glue sections with ∞ ∈ CP1.
Then, by taking the standard trivialization of the sheaf O((m + 1)/2) over the
standard coordinate chart on CP1 centered at 0, we may identify ker(h) with the
set of polynomials q(z) of degree less than or equal to (m − 1)/2. Let

β : D → R

be a cutoff function depending only on |z| such that β(0) = 1 and β(z) = 0 for
|z| > 1/2. Given a polynomial q, we define a pre-gluing by

q̃(z) = β(z)q(z).

Let
P : C∞((D, ∂D), (C, L(m))) → H0(D,O(m))

denote the L2 projection. We define g by

g(q) = P q̃.

Due to our choice of gluing map, it is easy to calculate that

g(bzj) = b̄zm−j + bzj .
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Let ξ be as in (16) and let I denote the complex structure that g induces on
H0(D,O(m)). It follows that

(Iξ)(z) = i

(m−1)/2∑
j=0

bjz
j − bm−jz

m−j .

Finally, we compute the weights of H0(D,O(m)). Since, by the definition of the
action on H0(D,O(m)), we have identified D with the hemisphere of CP1 inducing
the intrinsic orientation of Vλ, we must have that z transforms by z �→ e−2λz.

Since z = z1
z0

, it follows that in coordinates z0, z1, the action of Tn takes the
form

z0 �→ eiλz0, z1 �→ e−iλz1.

In other words, Tn acts by eI(m−2j)λ on the section

zj
0z

m−j
1 + zm−j

0 zj
1 ∈ H0(D,O(m)).

The decomposition (14) follows. �

4.3. Localization contribution of an isolated fixed point. Let X and Y be
two oriented real vector spaces, and let ei ∈ X and fj ∈ Y be oriented bases. There
are different ways the tensor product X ⊗ Y can inherent an orientation from X
and Y. We use the right-to-left lexicographical ordering convention. We take

e1 ⊗ f1, e2 ⊗ f1, . . . , e1 ⊗ f2, e2 ⊗ f2, . . .

as an oriented basis of X ⊗ Y.
If X is even dimensional, then the orientation of X ⊗ Y is independent of the

orientation of Y, and vice versa.
As before, let Vλ be the 2-dimensional real representation of Tn with weight λ.

The following result is a straightforward linear algebra calculation.

Lemma 10. With respect to the right-to-left lexicographical orientation of the ten-
sor product,

(17) Vα ⊗ Vβ = Vα+β ⊕ Vα−β.

4.4. Proof of Lemma 6. Let

[f : (D, ∂D) → (CP4, CP4
R)] ∈ MD(CP4/CP4

R, d)

denote a T2-fixed disk of type (ζ1, p). After permuting indices, the proof given
below applies to the other possible intersection types as well.

First, we will calculate the equivariant Euler class of the tangent space to
MD(CP4/CP4

R
, d) at [f ] which we denote Nf . We use the deformation exact se-

quence

(18) 0 → Aut(D) → Def(f) → Def(D, f) → 0.

Here, Def(f) denotes the space of first-order deformations of the map f, and
Def(f, D) denotes the first-order deformations of f modulo reparametrization —
the tangent space to MD(CP4/CP4

R
, d) at [f ]. To carry out the corresponding closed

calculation, the weights of each of the first two terms are computed and divided
with cancelling 0-weights. In the open case, more information is needed about the
weight 0 components since isomorphisms of two copies of the trivial real represen-
tation of Tn need not preserve orientation. We will use the real Euler sequence to
linearize the exact sequence (18) to get a better handle on the sign.
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H0(D,OCP1) ��

��

H0(D,OCP1(1) ⊗ U) ��

df̃

��

H0(D, TCP1)

df

��
H0(D, f∗OCP4) ��

��

H0(D, f∗OCP4(1) ⊗ W ) ��

��

H0(D, f∗TCP4)

��
0 �� Def(D, f) �� Def(D, f)

Figure 1

Let X = Vλ1/p and Y = R ⊕ Vλ1 ⊕ Vλ3 . Let

U = X ⊗ C, W = Y ⊗ C.

Let Y ′ ⊂ Y denote the 2-dimensional linear subspace corresponding to Vλ1 and
let Y ′′ denote the Tn-invariant complement. Consider the commutative diagram in
Figure 1. All rows and columns are exact. The rows are the sections functor applied
to the Euler sequence. The rightmost column is obtained from the deformation
exact sequence by the identifications

Aut(D) = H0(D, TCP1), Def(f) = H0(D, f∗TCP4).

In order to discuss the orientations of the vector spaces in Figure 1, we must
digress for a moment on the subject of Pin structures. In the following, p denotes
a Pin structure on CP4

R
, p′ denotes a Pin structure on OCP4(5)R and s denotes a

Spin structure on QR. To define Ndisk
d , a structure s was fixed. By Lemma 12 of

Section 5, any two of p, p′, s naturally determine the third. As explained in the
proof of Lemma 13 of Section 5, the choice of p and p′ compatible with s induces
the isomorphism det(Fd) � L used to determine the sign of e(Fd). In particular,
if we orient Nf and (Fd)f using p and p′ compatible with s, we will be calculating
the weights of the T2-action correctly.

In order to facilitate calculations, we choose p in a convenient way. Then we
let s and p induce p′. Indeed, first choose a Pin structure p̂ on OCP4(1)R. Via the
natural homomorphism,

Pin(1) → Pin(5),

induce a Pin structure p̃ on OCP4(1)R⊗Y. In addition, equip OCP4
R

with the canonical
Spin structure. By [19, Lemma 8.1], via the Euler sequence, p̃ induces a Pin
structure p on TCP4

R
. Since we have chosen Pin structures compatibly, by [19, Lemma

8.4], the middle row of the diagram in Figure 1 respects orientation. The columns
respect orientation by definition.

At this point, we focus our attention on the middle column of Figure 1, which
is the desired linearization of the deformation exact sequence. Because of the way
we have induced p̃ from p̂, by an argument similar to the proof of [19, Lemma 8.4],
we may assume that the natural isomorphism

H0(D, f∗OCP4(1) ⊗ W ) � H0(D, f∗OCP4(1)) ⊗ Y

preserves orientation. Here, we have used the right-to-left lexicographical orienta-
tion of the tensor product. Up to a degree independent sign, we may assume that
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the isomorphism
H0(D,O(1) ⊗ U) � H0(D,O(1)) ⊗ X

also preserves sign. So, it remains to compute the third term of the exact sequence,

(19) 0 → H0(D,O(1)) ⊗ X
df̃→ H0(D,O(p)) ⊗ Y → Def(D, f) → 0,

from the first two.
We assume without loss of generality that the induced T2-action on

H0(D, f∗OCP4(1)) � H0(D,O(p))

has weights
λ1

p
,
3λ1

p
, . . . ,

as opposed to their negatives. That is, we assume that the action on the underlying
vector space considered in Section 4.2 has weight λ = λ1/p. This depends on the
choice of p̂. One way or another, the opposite disk has the opposite sign, so we can
always interchange ζ1 and ζ2 to satisfy our assumption. Note, however, that the
full localization contribution of [f ] including the weights of the obstruction bundle
is invariant under the symmetry

λ1 �→ λ2 = −λ1, λ3 �→ λ4 = −λ3.

Let Y ′ ⊂ Y denote the 2-dimensional linear subspace corresponding to Vλ1 and
let Y ′′ � Vλ3 ⊕ R denote its T2-invariant complement. Note that

Im(df̃) ⊂ H0(D,O(p))⊗ Y ′.

We study the induced morphism,

df̃ ′ : H0(D,O(1)) ⊗ X → H0(D,O(p))⊗ Y ′,

carefully in order to calculate the weights of the cokernel with attention to sign —
necessary because of the trivial representations that occur in the domain and in the
range. Indeed, by formulas (17) and (14), we have

H0(D,O(1)) ⊗ X � V0 ⊕ V2λ1/p,(20)

H0(D,O(p)) ⊗ Y ′ �
(p−1)/2⊕

i=0

V(2i+1+p)λ1/p ⊕
(p−3)/2⊕

i=0

V(2i+1−p)λ1/p ⊕ V0.

The map df̃ ′ is determined up to homothety on the summand V2λ1/p by T2-
equivariance. Since, homotheties of an even-dimensional vector space preserve
orientation, we need calculate no further. However, we need more information
to determine df̃ ′ on the trivial representation summand V0. It is possible to explic-
itly write oriented bases of X and Y ′ and see that df̃ ′ preserves orientation on the
summand V0. However, that would lead to considerable notational complications.
Our strategy is to modify the action of T2 on X and Y ′ so that df̃ is still equivari-
ant, but there are no copies of the trivial representation in the decomposition to
irreducibles. To check equivariance, we may work over the complex numbers, thus
simplifying formulas.

Choose coordinates z1 and z2 on U such that under the action of T2,

z1 �→ eiλ1/pz1, z2 �→ e−iλ1/pz2.
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Then f is given explicitly by

[z1 : z2] �→ [zp
1 : zp

2 : 0 : 0 : 0].

Let e1, e2, be a basis of U, dual to z1, z2. A section

ξ ∈ H0(CP1,O(1) ⊗ U)

takes the form
ξ = ξ1e1 ⊕ ξ2e2,

where ξ1, ξ2, are linear functions on U. Let c1, c2, be the basis of Y ′ corresponding
to e1, e2. Then

df̃ ′(ξ) = ξ1pzp−1
1 c1 + ξ2pzp−1

2 c2.

In the following, we denote by ε a small rational number. If we allow T2 to act
on X by λ1(1/p + ε) and on Y ′ by λ1(1 + ε), then df̃ will remain equivariant.
The summands V0 in decompositions (20) both change to V−λ1ε. Choosing ε small
enough, we may assume that no new trivial summands appear. Since the direct sum
decomposition doesn’t change on the level of vector spaces as we change weights,
we conclude that df̃ ′ maps V0 to V0 preserving orientation. Hence, the cokernel of
df̃ ′ has equivariant Euler class,

e(coker(df̃ ′)) = λp−1
1 p1−p(p + 1)(p + 3) . . . (2p)

× (1 − p)(3 − p) . . . (−4)

= (−1)(p−1)/22p−1p!p1−pλp−1
1 .

Now, H0(D,O(p))⊗Y ′′ contributes directly to Def(D, f) as follows. Decomposing
Y ′′ � Vλ3 ⊕ R, and using formulas (17) and (14), we calculate

e
(
H0(D,O(p))⊗ Vλ3

)
=

(p−1)/2∏
i=0

((
1 − 2i

p

)
λ1 − λ3

)
×

((
1 − 2i

p

)
λ1 + λ3

)
and

e
(
H0(D,O(p)) ⊗ R

)
= p!!p−(p+1)/2λ

(p+1)/2
1 .

In conclusion,

e(Nf ) = (−1)(p−1)/22p−1p−(3p−1)/2p!p!!λ(3p−1)/2
1

×
(p−1)/2∏

i=0

((
1 − 2i

p

)
λ1 − λ3

)((
1 − 2i

p

)
λ1 + λ3

)
.

On the other hand, by (14) the Euler class of the obstruction bundle is just

e ((Fd)f ) = e(H0(D,O(5p))) = (5p)!!p−(5p+1)/2λ
(5p+1)/2
1 .

Here, we are assuming that the Pin structure that p′ induces on

O(5p)R � f∗OCP4(5)R

agrees with p−1. If for a given p′ this is not true, reversing p′ changes the sign of
e ((Fd)f ) by −1 for all p by [19, Lemma 2.10]. So, we reverse s, thus reversing p′.
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Hence, the dependence of the total sign of I(ζ1, p) on s is as claimed. Combining
everything, we obtain

I(ζ1, p) = 4
(−1)

p−1
2

p

(5p)!!
p!p!!

(
λ1
2p

)p+1

∏(p−1)/2
i=0

((
1 − 2i

p

)
λ1 − λ3

) ((
1 − 2i

p

)
λ1 + λ3

) .

The extra factor of 1
p comes from the orbifold structure of the moduli space

M̃D(CP4/CP4
R
, d) at [f ]. �

5. Proof of the Euler class formula

5.1. Construction of M̃D(CP4/CP4
R
, d). A detailed construction was not required

in [19] to prove the invariance of Ndisk
d . However, to apply the Atiyah-Bott local-

ization formula as in the proof of Theorem 1 and Proposition 19, as well as for
the obstruction bundle argument in the proof of Theorem 3, we need the following
result.

Proposition 11. M̃D(CP4/CP4
R
, d) is a smooth closed orbifold and Fd is a smooth

orbibundle.

Proof. First, we give a detailed definition of M̃D(CP4/CP4
R
, d). The moduli space

MD(CP4/CP4
R
, d) is a smooth orbifold with corners. A point in a corner of codi-

mension k corresponds to an open stable map with k + 1 disk components. Such
a stable map may have arbitrarily many sphere components. However, since we
consider open stable maps of genus 0, each sphere component belongs to a tree of
sphere components attached to a unique disk. We define the total degree of a disk
component to be its own degree plus the degree of all attached spheres components.

We classify corners of MD(CP4/CP4
R
, d) by the intersection type I of the open

stable maps. The intersection type I = (TI , �I) of an open stable map f of genus
zero consists of a tree TI and a labelling �I of the vertices of TI by nonnegative
integers. The vertices of the tree correspond to disk maps and the edges correspond
to nodes connecting two disks. The labelling of a vertex is the total degree of the
corresponding disk component. We denote by |I| the number of vertices of TI —
the codimension of the corresponding corner. Let I be an intersection type, and
let e be an edge of TI connecting vertices v1 and v2. Gluing I at e to obtain I ′

means contracting e so that v1 and v2 become a single vertex v of I ′ and defining
�I′(v) = �I(v1) + �I(v2). We define a partial ordering on the set of intersection
types by I1 < I2 if I1 may be obtained from I2 by a sequence of gluings. We
use the notation ∂IMD(CP4/CP4

R
, d) to denote the corner of MD(CP4/CP4

R
, d) of

intersection type I.
We refer to codimension one corners as boundary components. Points of the

boundary correspond to stable maps with two disk components. The intersection
type I, |I| = 2, of such a stable map is essentially an unordered pair {d1, d2}, where
the numbers di are the total degrees of each disk component. Here d1 + d2 = d.
For each possible such I, we define a smooth involution cI of the corresponding
boundary component as follows. Choose a vertex vI of TI . Since the total degree
is odd, vI can be chosen as the unique vertex of odd degree. For

[f ] ∈ ∂IMD(CP4/CP4
R, d),
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define cI(f) to be the open stable map obtained by replacing the disk component
corresponding to vI and all attached sphere maps by their conjugates.

We extend cI to the closure

∂IMD(CP4/CP4
R
, d) =

⋃
I′≥I

∂I′MD(CP4/CP4
R, d)

as follows. Let [f ] ∈ ∂I′MD(CP4/CP4
R
, d) for some I ′ > I. Let {vi

I′} be the set
of vertices of I ′ that glue to form vI . We define cI(f) to be the open stable map
obtained by replacing the disk-maps corresponding to the vi

I′ and all attached
spheres maps by their conjugates.

Next, we define an equivalence relation ∼ on MD(CP4/CP4
R
, d) as follows. Let

[p], [q] ∈ ∂I′MD(CP4/CP4
R
, d). We write p ∼ q if there exists I ≤ I ′ with |I| = 2

such that cI(p) = q. Finally, we can define

M̃D(CP4/CP4
R, d) = MD(CP4/CP4

R, d)/ ∼ .

We now prove M̃D(CP4/CP4
R
, d) is a closed orbifold. We refer the reader to

[4, Section 2] for a quick review of orbifolds. We essentially follow the notation
established there. Let

π : MD(CP4/CP4
R, d) → M̃D(CP4/CP4

R, d)

denote the quotient projection. Being a closed orbifold is a local property, so we
restrict our attention to a small neighborhood of a point

[p] ∈ M̃D(CP4/CP4
R, d).

If π−1([p]) lies away from the corners of MD(CP4/CP4
R
, d), there is nothing to prove.

If π−1([p]) meets the corners, we construct an orbifold chart in a neighborhood
of [p] in a canonical way. Let [p̃] ∈ π−1([p]). We assume

[p̃] ∈ ∂Ip
MD(CP4/CP4

R, d), k = |Ip| − 1 ≥ 1.

Let (Vp̃, Γp̃, ψp̃) be an orbifold chart on MD(CP4/CP4
R
, d) at p̃. Here Vp̃ is a neigh-

borhood of 0 in

Rn
+k = {(x1, . . . , xn) ∈ Rn |xi ≥ 0, i = 1, . . . , k},

Γp̃ is a finite group acting on Vp̃, and ψp̃ is a Γp̃ invariant homomorphism from Vp̃ to
a neighborhood of [p̃]. From the definition of the orbifold structure on
MD(CP4/CP4

R
, d), the groups Γp̃ for [p̃] ∈ π−1([p]) are all isomorphic. So, we

may define a group Γ̃p with isomorphisms Γ̃p � Γp̃. We define

∂IVp̃ = ψ−1
p̃

(
∂IMD(CP4/CP4

R, d)
)
.

By definition of an orbifold with corners, ∂IVp̃ is contained in a subset of Rn
+k where

|I| − 1 of the coordinates x1, . . . , xk, are zero. By definition of a smooth map of an
orbifold, possibly shrinking the charts Vp̃, we may assume that cI induces a smooth
Γ̃p equivariant involution of the disjoint union of the corners ∂I′Vp̃, I ′ ≥ I, over all
[p̃] ∈ π−1([p]).

Let I1, . . . , Ik enumerate the set of I ≤ Ip such that |I| = 2, the intersection
types of the boundary components adjacent to p. For a multi-index

E = (ε1, . . . , εk) ∈ (Z/2Z)k,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1194 R. PANDHARIPANDE, J. SOLOMON, AND J. WALCHER

we define an involution cE of ∂Ip
MD(CP4/CP4

R
, d) by

cE =
k∏

j=1

c
εj

Ij
.

So, the group (Z/2Z)k acts on ∂Ip
MD(CP4/CP4

R
, d) and, by definition of π, acts

transitively on π−1([p]). Define

Gp ⊂ (Z/2Z)k

to be the stationary subgroup of [p̃] ∈ π−1([p]). The definition does not depend on
the choice of [p̃] because we are considering a transitive action of an abelian group.
Define

V̂p =
∐

[p̃]∈π−1([p])

Vp̃ × Gp, Vp = V̂p/ ∼∗,

where the equivalence relation ∼∗ is defined as follows. Let

Ej ∈ (Z/2Z)k

denote the multi-index with εi = 0 for i �= j and εj = 1. For

(q, E), (q′, E′) ∈ V̂p

define (q, E) ∼∗ (q′, E′) if q = cIj
(q′) and E = E′ + Ej for some j. Define

Γp = Γ̃p × Gp.

The group Γp acts naturally on Vp. Finally, let ψp be the Γp invariant map from Vp

to M̃D(CP4/CP4
R
, d) naturally induced by the ψp̃. Since Vp is obtained by gluing

together 2k neighborhoods of 0 ∈ Rn
+k on matching corners, Vp is a neighborhood of

0 ∈ Rn. The triple (Vp, Γp, ψp) is easily seen to specify a natural orbifold structure
in a neighborhood of p.

The involutions cI lift naturally to the bundles

F̂d|∂IMD(CP4/CP4
R
,d)

.

Then, the exact same proof extends to construct the structure of an orbibundle on
Fd. �

In the following, p denotes a Pin structure on CP4
R
, p′ denotes a Pin structure

on OCP4(5)R and s denotes a Spin structure on QR.

Lemma 12. Any two of s, p, p′ determines the third.

Proof. By the adjunction formula, the normal bundle NQ of Q in CP4 satisfies
NQ � O(5)|Q. So, the lemma follows from the exact sequence,

0 → TQR → TCP4
R → NQR

→ 0,

and [19, Lemma 8.1]. �

We denote the determinant of the tangent bundle of M̃D(CP4/CP4
R
, d) by L.

Lemma 13. There exists a topological isomorphism detFd � L. Moreover, such
an isomorphism is determined canonically up to homotopy by the choice of a Spin
structure on QR.
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Proof. Choose p and p′ compatible with s. Then p induces an orientation on
MD(CP4/CP4

R
, d) and p′ induces an orientation on F̂d. So, there exists a unique up

to homotopy isomorphism,

det
(
MD(CP4/CP4

R, d)
)
� det(F̂d),

preserving orientation. We must check that the identifications involved in the con-
struction of M̃D(CP4/CP4

R
, d) are compatible with the above isomorphism: the sign

of cI on ∂IMD(CP4/CP4
R
, d) must be the same as the sign of cI on F̂d|∂IMD(CP4/CP4

R
,d).

This follows easily from [19, Lemma 2.12]. �

5.2. Kuranishi structures.1 We denote by MD(Q/QR, d) the moduli space of
open stable maps to (Q, QR). In general, the space MD(Q/QR, d) is a compact
metrizable space. In the following proof, we use the theory of Kuranishi structures
with corners developed in [4, 3] to define intersection theory on MD(Q/QR, d). The
Kuranishi structures used here were shown to exist in [4, 3]. See [19, Appendix
A and Section 7] for a very brief summary of this theory, from which we take
our notational conventions. In the following, unless explicitly noted, all Kuranishi
structures are Kuranishi structures with corners.

We will need the following definition, which is similar to the notion of an in-
volution of a Kuranishi structure [19, Definition 7.1], but without property (E1).
Suppose (X,K) and (X ′,K′) are spaces with Kuranishi structure

K = (Vp, Ep, Γp, sp, ψp, Vpq, hpq, ϕpq, ϕ̂pq),

K′ = (V ′
p , E′

p, Γ
′
p, s

′
p, ψ

′
p, V

′
pq, h

′
pq, ϕ

′
pq, ϕ̂

′
pq).

Let f : X → X ′ be a continuous map.

Definition 14. An extension f̃ of f to a map of spaces with Kuranishi structure
consists of Γp-equivariant maps

fp : Vp → V ′
f(p), f̂p : Ep → E′

f(p)

covering fp such that

(M1) s′f(p) ◦ fp = f̂p ◦ sp.

(M2) ψ′
f(p) ◦ fp|s−1

p (0) = f ◦ ψp.

(M3) fq maps Vpq ⊂ Vq to V ′
f(p)f(q) ⊂ V ′

f(q).

(M4) fp ◦ ϕpq = ϕ′
f(p)f(q) ◦ fq and f̂p ◦ ϕ̂pq = ϕ̂′

f(p)f(q) ◦ f̂ ′
q.

Now, suppose that (X,K) has a tangent bundle given by Φpq and (X ′,K′) has a
tangent bundle given by Φ′

pq. We say that f̃ is smooth if

Φ′
f(p)f(q) ◦ f̂q = f̂p ◦ Φpq.

We say that f̃ is an embedding if fp are all embeddings and f̂p are all injective
bundle maps. The preceding definition of maps of spaces with Kuranishi structure
is very rigid and not likely to make a very nice category. A better definition for a

1Here we use the virtual moduli cycle construction of [3], based on Kuranishi structures. In
Sections 1-5.3, we assume the coordinate transforms and Kuranishi maps are smooth, as explained
in [3, Appendix A1.4]. Alternatively, we could assume only stratified smoothness, as explained in
[20]. We anticipate that with the completion of the generalized Fredholm theory currently being
introduced in [8, 9], the ideas of Sections 1-5.3 will translate into a proof of Theorem 3 based on
that framework.
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general morphism of spaces with Kuranishi structure would be something like the
diagram of Figure 2.

We will also need the notion of vector bundles over a space with Kuranishi
structure and their Euler classes. Vector bundles over a space with Kuranishi
structure were constructed in a very general form in [4, Section 5] so as to include
the tangent bundle to a Kuranishi structure. The bundles we use here correspond
to the special case in which F2 of [4] is taken to have rank 0 everywhere. We let
(X,K) denote a general space with Kuranishi structure as above.

Definition 15. A vector bundle F over (X,K) consists of
(1) For each p ∈ X, a Γp-equivariant vector bundle F p → Vp.
(2) For each p ∈ X and q ∈ Im ψp, an hpq-equivariant vector bundle isomor-

phism ΦF
pq : Fq|Vpq

→ Fp|Im(ϕpq) covering ϕpq.

The Euler class of a vector bundle over a space with Kuranishi structure should
determine a cohomology class in a cohomology theory for Kuranishi spaces. How-
ever, such a theory has not been developed. Since the Euler classes considered here
always have critical dimension, essentially all the information in the Euler class is
contained in a single number: the integral of the Euler class over the fundamental
class. So, we focus on defining the integral of the Euler class.

Let F denote a vector bundle over (X,K) of rank equal to the expected dimension
of (X,K). Let LK denote the determinant of the tangent bundle of (X,K), i.e., the
line bundle over (X,K) determined locally by the line bundles

det(TVp) ⊗ det(Ep)∗ → Vp.

Assume that an isomorphism

(21) det(LK) � det(F )

has been specified. Choose a transverse perturbation of the space with Kuranishi
structure (X,K). See [19, Theorem A.4] for a brief review of notation. Choose multi-
valued sections ξ′p of F ′

p such that the multi-valued section ξ′p + s′p,n of E′
p ⊕ F ′

p is
transverse. Let σ denote the 0-dimensional rational simplicial complex determined
by the vanishing set of ξ′p + s′p,n. The orientation of σ is determined by the isomor-
phism (21). Let |σ| denote the rational weighted cardinality of σ.

Definition 16. We define the Euler class of F by∫
[X,K]

e(F ) = |σ|.

Straightforward cobordism arguments show the definition does not depend on
the choice of section ξ or the perturbation of Kuranishi structure. See [4, Sections
4 and 17].

5.3. Proof of Theorem 3. We continue to employ the notation of the proof of
Proposition 11. Since MD(Q/QR, d) consists of open stable maps, we may define

∂IMD(Q/QR, d) ⊂ MD(Q/QR, d)

to be the subspace consisting of all open stable maps of intersection type I. Sim-
ilarly, we may define the involution cI of the corner of intersection type I ′ for
I ′ ≥ I, and the quotient space M̃D(Q/QR, d). Let KQ be a Kuranishi structure
with corners on MD(Q/QR, d). By the arguments of [19, Section 7], the involutions
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(M̃D(CP 4/CP 4
�
, d), K̃)

(M̃D(CP 4/CP 4
�
, d), K̃0)

�Id
�������������������

(M̃D(Q/Q�, d), K̃Q)

�i
������������������

Figure 2

cI extend smoothly to the Kuranishi structure KQ|∂IMD(Q/QR,d). Recapitulating the

proof of Proposition 11, KQ induces a Kuranishi structure without boundary K̃Q

on M̃D(Q/QR, d). A transverse perturbation of the space with Kuranishi structure,
(M̃D(Q/QR, d), K̃Q), defines a simplicial complex consisting of a finite number of
0-simplices with rational weights. The weighted count of the 0-simplices is Ndisk

d .
While the definition is not exactly the same as the definition given in [19], the
equivalence is not hard to verify.

An orbifold structure is a special case of a Kuranishi structure for which all the
bundles Ep are rank 0. Let K0 denote the Kuranishi structure on MD(CP4/CP4

R
, d)

coming from the orbifold structure, and let K̃0 denote the Kuranishi structure on
M̃D(CP4/CP4

R
, d) coming from the orbifold structure constructed in Proposition 11.

Also, let
i : M̃D(Q/QR, d) → M̃D(CP4/CP4

R, d)

denote the natural inclusion. We would like to construct a Kuranishi structure
K̃ on M̃D(CP4/CP4

R
, d) for which we have the diagram of spaces with Kuranishi

structure shown in Figure 2.
The structure K̃ may be obtained from a Kuranishi structure on MD(CP4/CP4

R
, d)

that admits extensions of the involutions cI for which the diagram of Figure 2 holds
with tildes replaced by bars. For each [p] ∈ MD(Q/QR, d), we extend the Kuranishi
neighborhood

(V Q
p , EQ

p , ΓQ
p , sQ

p , ψQ
p )

given by KQ to a Kuranishi neighborhood (Vp, Ep, Γp, sp, ψp) for the space
MD(CP4/CP4

R
, d). We detail the construction of the extension for p an irreducible

stable map. The construction for p a reducible stable map is similar but notation-
ally more complicated.

Let BD(Q/QR, d) and BD(CP4/CP4
R
, d) denote the Banach manifolds of W 1,r

maps
(D, ∂D) → (Q, QR), (D, ∂D) → (CP4, CP4

R),

respectively. Let

EQ → BD(Q/QR, d), E → BD(CP4/CP4
R, d),

be defined fiberwise by

EQ
f = Lr(D, Ω0,1(f∗TQ)), f ∈ BD(Q/QR, d),

Ef = Lr(D, Ω0,1(f∗TCP 4)), f ∈ BD(CP4/CP4
R, d).

Let ∂̄Q (resp. ∂̄) denote the section of EQ (resp. E) given by the nonlinear Cauchy-
Riemann operator on maps to Q (resp. CP4). Let D∂̄Q and D∂̄ denote choices of
the vertical parts of their respective linearizations.
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We briefly outline the construction [4, 3] of the Kuranishi neighborhood (V Q
p , EQ

p ,

ΓQ
p , sQ

p , ψQ
p ) in order to explain how to extend it. First, choose a finite-dimensional

subspace ÊQ
p ⊂ EQ

p so that

D∂̄Q : TpBD(Q/QR, d) → EQ
p /ÊQ

p

is surjective. Extend ÊQ
p to a vector bundle ĚQ

p over a neighborhood of p in
BD(Q/QR, d) by parallel transport. Over a sufficiently small neighborhood of p,
D∂̄Q surjects onto EQ/ĚQ

p . So, we may define a smooth manifold

Ṽ Q
p = (∂̄Q)−1(ĚQ

p ).

We define V Q
p to be an appropriate section of the action of the infinitesimal reparam-

etrization group on Ṽ Q
p . Then, we take EQ

p = ĚQ
p |V Q

p
and

sQ
p (x) = ∂̄Q(x) ∈ EQ

p , x ∈ V Q
p .

The group ΓQ
p arises from the remaining discrete part of the reparametrization

group of p.
To extend the Kuranishi neighborhood (V Q

p , EQ
p , ΓQ

p , sQ
p , ψQ

p ) to a Kuranishi
neighborhood for MD(CP4/CP4

R
, d), we extend ĚQ

p by parallel translation to a vec-
tor bundle Ěp over a neighborhood of p in BD(CP4/CP4

R
, d). Since CP4 is a homoge-

neous space, the operator D∂̄ is surjective onto Ep at every [p] ∈ MD(CP4/CP4
R
, d).

So, we may define a smooth manifold

Ṽp = (∂̄)−1(Ěp).

The definitions of Vp, Ep, sp and Γp are just as before. In the case when p is a
reducible stable map, the extension procedure is similar except for one extra detail:
we must be careful to perform parallel translations using a c-invariant metric so that
the involutions cI extend to the corners of the extended Kuranishi neighborhood.
See [19, Section 7] for a discussion of this issue.

For each point in [p] ∈ MD(Q/QR, d) we have just constructed a Kuranishi
neighborhood (Vp, Ep, Γp, sp, ψp) for MD(CP4/CP4

R
, d). It is straightforward to ex-

tend transition data Vpq, hpq, φpq, φ̂pq to these extended neighborhoods. In order
to complete the construction of K it remains to define Kuranishi neighborhoods of
points

[p] ∈ MD(CP4/CP4
R, d) \ MD(Q/QR, d).

For such points, we take an orbifold coordinate chart as a Kuranishi neighborhood,
letting Ep be a trivial bundle of rank zero. Because the bundles Ep are rank zero,
it is again easy to construct the associated transition data Vpq, hpq, φpq, φ̂pq. The
existence of embeddings as in the diagram of Figure 2 follows immediately from the
construction of K.

We proceed to extend the bundle Fd of Section 1.4 to a bundle F̃d over the space
with Kuranishi structure (M̃D(CP4/CP4

R
, d), K̃). Again, it suffices to construct a

bundle F̌d over the space with Kuranishi structure (MD(CP 4/CP 4
R
, d),K) so that

F̌d admits an extension of the involutions cI . We define the fiber of F̌ p
d at f ∈ Vp as

follows. By construction, f is a W 1,p-stable map satisfying the equation ∂̄f ∈ Ẽp.
Since f may not be holomorphic, we have to be careful how we define the complex
structure on f∗OCP 4(5). Choose a c-invariant metric on OCP 4(5). The associated
complex connection on OCP 4(5) will also be c-invariant. Equip f∗OCP 4(5) with the
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complex structure induced from the (0, 1) part of the pull-back connection. Then,
we define as before,

F̌d|f = H0(D, f∗OCP 4(5)).

The transition functions ΦFd
pq are tautological. Because we used a c-invariant con-

nection to induce the complex structure on f∗OCP 4(5), the involutions cI lift to
involutions of F̌d|∂I′MD(CP 4/CP 4

R
,d) for I ′ ≥ I. Hence, F̌d descends to a bundle F̃d

over (M̃D(CP 4/CP 4
R
, d), K̃). Furthermore, the proof of Lemma 13 shows that the

isomorphism det(Fd) � L extends to an isomorphism det(F̃d) � LK̃.
Let ξ ∈ H0(CP4,OCP4(5)) be the section defining the hypersurface Q ⊂ CP4.

For general f ∈ Vp, the pull-back f−1ξ is not a holomorphic section of f∗OCP 4(5).
Let

Pf : W 1,r(D, f∗OCP4(5)) → H0(D, f∗OCP4(5))

denote the L2 projection with respect to a c-invariant metric. We define a section
ξ̌p of F̌ p

d by

(22) ξ̌p(f) = Pf

(
f−1ξ

)
, f ∈ Vp.

The local sections ξ̌p clearly match under the transition functions ΦFd
pq to define a

global section ξ̌ of F̌d. Since ξ is c-invariant and Pf is defined with respect to a
c-invariant metric, we conclude that ξ̌ is compatible with the involutions cI . So, ξ̌

descends to a section ξ̃ of F̃d.

Lemma 17. If the Kuranishi neighborhoods Vp are chosen sufficiently small, then
the sections ξ̌p vanish precisely on the image of the embedding of spaces with Ku-
ranishi structure

(MD(Q/QR, d),KQ) ĩ→ (MD(CP4/CP4
R, d),K).

Moreover, the sections ξ̌p are transverse to zero.

We postpone the proof of Lemma 17 until we complete the proof of Theorem 3.
Indeed, we calculate ∫

[M̃D(CP4/CP4
R
,d),K̃]

e(F̃d)

in two different ways. On the one hand, we construct a transverse perturbation PQ

of (M̃D(Q/QR, d), K̃Q). Let σQ denote the 0-dimensional simplicial complex defined
by PQ. By definition Ndisk

d = |σQ|. Now, extend PQ to a transverse perturbation
P of (M̃D(CP4/CP4

R
, d), K̃). By Lemma 17, the local sections ξ̃′p + s̃′p,n of F̃ p

d + Ẽp

vanish transversely exactly on σQ. Assuming the following lemma, this implies that

(23)
∫

[M̃D(CP4/CP4
R
,d),K̃]

e(F̃d) = Ndisk
d .

Lemma 18. The orientation induced on each zero simplex in σQ by the Kuranishi
structure K̃Q agrees with the orientation induced by the Kuranishi structure K̃ and
the vector bundle F̃d.

We postpone the proof of Lemma 18 until the end of the section.
On the other hand, the sections s̃p of Ẽp are transverse without any perturbation

since CP4 is convex. So, we may choose a transverse multi-valued section η0 of Fd,
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and extend it to a multi-valued section η̃ of F̃d over (M̃D(CP4/CP4
R
, d), K̃) such

that the local sections η̃p + s̃p will be transverse. This shows that

(24)
∫

[M̃D(CP4/CP4
R
,d),K̃]

e(F̃d) =
∫

M̃D(CP 4/CP 4
R

,d)

e(Fd).

Combining equations (23) and (24), we deduce Theorem 3. �

Proof of Lemma 17. We may focus on ξ̌p for [p] ∈ MD(Q/QR, d). Indeed, for other
p, the Kuranishi neighborhood Vp is just an orbifold chart on MD(CP4/CP4

R
, d).

So, for all f ∈ Vp the pull-back f−1ξ is holomorphic and nonzero. So, ξ̌p(f) is never
zero. In the case

[p] ∈ MD(Q/QR, d),

we need to show that ξ̌p vanishes transversely on

V Q
p ⊂ Vp,

but nowhere else.
First, we establish some notation. Let ∇ denote a complex c-invariant connection

on OCP4(5) and let ∇f denote its pull-back to f∗OCP4(5). Let Y p → Vp and Zp → Vp

denote the Banach space bundles with fibers

Y p
f = W 1,r(D, f∗OCP4(5)), Zp

f = Lr
(
D, Ω0,1(f∗OCP4(5))

)
.

Define a map of Banach-space bundles

d′′ : Y p → Zp

by

d′′f =
(
∇f

)0,1
: W 1,r(D, f∗OCP4(5)) → Lr

(
D, Ω0,1(f∗OCP4(5))

)
.

Since ker(d′′f ) = H0(D, f∗OCP4(5)), and d′′f is surjective for all f, we have a short
exact sequence

0 → F̌ p
d → Y p d′′

→ Zp → 0.

Let
R : Zp → Y p

denote the unique right inverse of d′′ such that the image of Rf is the L2 complement
of ker(d′′f ). Let

P : Y p → F̌ p
d

denote the L2 projection. Define a section ξ̂p of Y p by

ξ̂p(f) = f−1ξ.

Throughout the following, we use ‖ · ‖ to denote a context dependent norm. That
is, for sections of Banach space bundles, ‖ · ‖ is the appropriate Banach space norm
and, for operators, ‖ · ‖ is the appropriate operator norm.

Reformulating the definition of ξ̌p given in (22), we have

ξ̌p = P ξ̂p = ξ̂p − Rf ◦ d′′f (ξ̂p).

We will argue that for f close enough to p, we have

(25) ‖Rf ◦ d′′f (f−1ξ)‖1,r ≤ εdist(f, V Q
p )
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for arbitrary epsilon. Here, dist(·, ·) denotes an arbitrary distance function. Since
ξ vanishes transversely at Q, we know that ξ̂p vanishes transversely on V Q

p . That
is, we know that

‖f−1ξ‖1,r ≥ ε0 dist(f, V Q
p ).

Choosing ε < ε0, estimate (25) shows that after we perturb ξ̂p by Rf ◦ d′′f (ξ̂p) to
obtain ξ̌p, it is still transverse and vanishes only on V Q

p .

In order to prove estimate (25), we calculate d′′f (f−1ξ). Let j denote the complex
structure on D, let J denote the complex structure on CP4 and let I denote the
complex structure on OCP4(5). Assume that

(26) ∂̄f = ηf ∈ (Ěp)f .

We calculate

d′′f (f−1ξ) = ∇f (f−1ξ) + I∇f (f−1ξ) ◦ j(27)

= ∇ξ ◦ du + I(∇ξ ◦ du) ◦ j

= ∇ξ ◦ du + I (∇ξ ◦ (−J ◦ du ◦ j + ηf )) ◦ j

= I∇ξ ◦ ηf ◦ j.

The third equality uses equation (26) and the fourth equality uses the holomor-
phicity of ξ to cancel I and −J.

Composition with ∇ξ defines a linear map

∇ξ◦ : Ep → Zp.

Observe that for f ∈ V Q
p we have

(Ep)f = (EQ
p )f ⊂ EQ

f = Lp
(
D, Ω0,1(f∗TQ)

)
.

Since ξ vanishes on Q, we see that ∇ξ◦ maps (Ep)f to zero for f ∈ V Q
p . By

continuity, we have
‖(∇ξ◦)f‖ ≤ C dist(f, V Q

p ).
So, we infer from calculation (27) that

(28) ‖d′′f (f−1ξ)‖ ≤ C dist(f, V Q
p )‖ηf‖.

Furthermore, we can assume a uniform bound

(29) ‖Rf‖ ≤ C ′

for all f ∈ Vp. For any ε′ > 0, we can choose Vp so small that for all f ∈ Vp we have

(30) ‖ηf‖ ≤ ε′.

So, choosing ε′ such that ε′CC ′ < ε and combining estimates (28), (29) and (30),
we conclude estimate (25). This completes the proof of Lemma 17. �

Proof of Lemma 18. The following proof is a generalization of the argument given
in [19, Section 8, Proposition 8.8]. In the following, we will abbreviate

TB := TBD(CP 4/CP 4
R, d), TBQ := TBD(Q/QR, d).

We continue to use the bundles Y and Z introduced in the proof of Lemma 17.
Since V Q

p = ξ̌−1(0) ⊂ Vp, and by Lemma 17, ξ̌ is transverse to 0, we conclude that
dξ̌ induces an isomorphism

det(TV Q
p ) ∼→ det(TVp) ⊗ det(F̌d)∗
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EQ
p

∼ ��

��

Ep
��

��

0

��

T Ṽ Q
p

dsQ
p

������������
��

��

T Ṽp

dsp

�����������
dξ̌ ��

��

F̌p

����������

��

EQ ��

πQ

��

E
dξ ��

π

��

Z

��

TBQ

D∂̄Q

�������������
��

πQ◦D∂̄Q

��

TB

D∂̄

������������ dξ ��

π◦D∂̄

��

Y

d′′
		��������

d′′

��

EQ/EQ
p

�� E/Ep
�� Z

EQ/EQ
p

∼
�����������

�� E/Ep

∼
��									

�� Z

∼


���������

Figure 3

along V Q
p . Using the fact that by construction EQ

p = Ep|V Q
p

, we can tensor the
above isomorphism with det(EQ

p )∗ = det(Ep)∗ to obtain an isomorphism

(31) LKQ
dξ−→ LK ⊗ det(F̌d)∗.

The lemma will follow if we show that isomorphism (31) respects the canonical
orientations of each of the three deteminant bundles LKQ ,LK, and det(F̌d). For
this purpose, we introduce the commutative diagram of vector bundles over Ṽ Q

p

of Figure 3. Here, we implicitly consider the restrictions of TB, TBQ, E , EQ, TVp

and Ep to V Q
p . We denote by π and πQ the canonical projections to the quotient.

In order for all squares in the diagram of Figure 3 to commute, we must choose the
complex connection ∇ on OCP 4(5) carefully. Indeed, dξ|Q induces an isomorphism
of complex vector bundles

dξ|Q : TCP 4|Q/TQ
∼−→ OCP 4(5).

So, we are free to choose ∇ to be the complex connection induced by dξ|Q from
the connection on TCP 4|Q/TQ induced by the Levi-Civita connection of CP 4 with
respect to the standard Kähler metric. This ensures that

d′′ ◦ dξ = dξ ◦ D∂̄,

i.e., that the middle right horizontal square of the diagram commutes. Moreover,
the proof of Lemma 17 implies that

iF ◦ dξ̌ = dξ ◦ i,

i.e., that the front upper right vertical square of the diagram commutes. The
commutativity of the remaining squares is straightforward.

Moreover, all columns and rows of Figure 3 are exact. We think of the diagram
as an exact square of two-step complexes. Applying the determinant functor to
the long exact sequence of a short exact sequence of two step complexes yields an
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ker(dsQ
p ) ��

��

ker(dsp) ��

��

F̌d
δ ��

��
TV Q

p
��

��

TVp
dξ̌ ��

��

F̌d

��
EQ

p
��

��

Ep
��

��

0

��δ �� coker(dsQ
p ) �� coker(dsp) �� 0

Figure 4

LKQ
��

dξ̌

��

det(dsQ
p ) ��

��

det(D∂̄Q)

��
LK ⊗ det(Fd)∗ �� det(dsp) ⊗ det(Fd)∗ �� det(D∂̄) ⊗ det(d′′)

Figure 5

isomorphism of determinant bundles. In particular, the five nontrivial rows and
columns of Figure 3 give isomorphisms

det(dsQ
p ) � det(D∂̄Q), det(dsp) � det(D∂̄), det(F̌d) � det(d′′),

det(D∂̄) � det(D∂̄Q) ⊗ det(d′′)∗, det(dsQ
p ) � det(dsp) ⊗ det(F̌d)∗.(32)

Taking determinants of the rows and columns of the diagram of Figure 4, we obtain
isomorphisms

det(dsQ
p ) � LKQ

, det(dsp) � LK,

LKQ
� LK ⊗ det(F̌d)∗, det(dsQ

p ) � det(dsp) ⊗ det(F̌d)∗.(33)

Clearly the last isomorphism of (32) agrees with the last isomorphism of (33).
Putting all the isomorphisms of (32) and (33) together, we obtain the diagram of
Figure 5. The left square of Figure 5 commutes by the commutativity of Figure 4.
The right square of Figure 5 commutes by the commutativity of Figure 3. The
rows of Figure 5 preserve orientation by definition. The right column of Figure 5
preserves orientation by [19, Section 8, Proposition 8.4] and the compatibility of
s, p, and p′. By commutativity the left column of Figure 5 also preserves orientation,
completing the proof. �

6. Multiple cover formula

6.1. Local CP1. Consider CP1 with the anti-holomorphic involution c defined in
Section 1.3.3. The involution c lifts canonically to OCP1(−1). The total space of
the rank 2 bundle

OCP1(−1) ⊕OCP1(−1) → CP1
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with the associated anti-holomorphic involution may be viewed as a local model for
a rational curve in Q.

The local disk invariants of CP1 are, by definition,

Ldisk
d =

∫
M̃D(CP1/CP1

R
,d)

e(Gd ⊕ Gd),

where Gd is the real vector bundle over M̃D(CP1/CP1
R
, d) with fiber

Gd|[f :(D,∂D)→(CP1,CP1
R
)] = H1(C, f̃∗OCP1(−1))R.

Here,

[f̃ : C → CP1] ∈ MR(CP1, d)

is the stable rational map obtained from the stable disk map via reflection. As
before, we consider only the d odd case.

Proposition 19. For d odd, Ldisk
d = 2d−2.

The factor of 2 on the right occurs since the original CP1 consists of 2 disks.
Hence, Proposition 19 may be viewed as the calculation of twice the multiple cover
contribution of a single disk.

We emphasize that d is the degree of the stable rational map obtained from the
stable disk map by reflection. In particular, the degree of a map f in
M̃D(CP1/CP1

R
, d) restricted to ∂D may be any odd integer less than or equal to d.

This is necessary in order to perform the analogue of the construction of Proposi-
tion 11 for target space CP 1, as the diffeomorphisms cI do not preserve boundary
degree. In this regard, our approach differs from the approach of [10].

6.2. Torus action. Let the torus T act on CP1 by

ξ · [u, v] = [ξu, ξv].

The fixed points are

ζ1 = [1, 0], ζ2 = [0, 1]

with tangent weights 2λ and −2λ, respectively. The T-action preserves CP1
R
,

and therefore it determines a translation action on the moduli space of disks
M̃D(CP1/CP1

R
, d).

The T-action lifts to OCP1(−1) with fiber weights −λ and λ over ζ1 and ζ2,
respectively, the unique lift which respects the real structure on OCP1(−1).

6.3. Proof of Proposition 19. We give two different proofs.

First proof. The invariants Ldisk
d are calculated by T-equivariant localization. Since

the steps are so similar to the proof of Theorem 1, we give an abbreviated account.
As before, to each map [f ] ∈ MD(CP1/CP1

R
, d)T we associate an intersection

disk. The intersection disk terms I(ζ1, p) and I(ζ2, p) are both equal to

(−1)
p−1
2

21−e

p

(p!!)2

p!
.
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The sign (−1)
p−1
2 comes from the normal bundle to the disk map, just as in the proof

of Lemma 6. We do not have to calculate the orientation of H1(C, f̃∗OCP1(−1))R

because it appears twice.
Givental’s equivariant correlator SL for the local geometry is defined by

SL(T, �) =
∑
r≥0

e(H/�+r)T e2∗(
ctop(H1(O(−1)) ⊕ H1(O(−1)))

� − ψ2
) ∈ H∗

T(CP1),

where

e2 : M0,2(CP1, d) → CP1

is the evaluation map. The calculation of SL in [6] is much easier than SQ,

SL(T, �) =
∑
r≥0

erT

∏r−1
s=0(H + s�)2∏r

s=1(H − λ + s�)(H + λ + s�)
.

No mirror transform is needed.
The local disk potential Fdisk

L is defined by summing over odd degrees,

Fdisk
L =

∑
d odd

edT/2Ldisk
d .

As before,

Fdisk
L =

∑
p odd

〈SL(T,
2
p
λ), [ζ1]〉 · I(ζ1, p) +

∑
p odd

〈SL(T,−2
p
λ), [ζ2]〉 · I(ζ2, p).

Evaluation yields

Fdisk
L = 2

∑
r≥0

∑
p odd

e( p
2 +r)T 21−p−2r

(p + 2r)2
(−1)

p−1
2

p

(p!!)2

p!r!

∏r
i=1(p + 2i)2∏r

i=1(p + i)
.

The proof of the proposition is concluded by extracting the edT/2 terms on the right
and executing the sum,

Ldisk
d =

2
d2

∑
1≤p odd ≤d

(d!!)2

2d−1

(−1)
p−1
2(

d−p
2

)
!
(

d−p
2 + p

)
!p

=
2
d2

.

Remarkably, the binomial identity required is exactly (12)! �

Second proof. Although each copy of OCP1(−1) admits a unique real T-action, there
is some freedom in the choice of action on the sum

OCP1(−1) ⊕OCP1(−1).
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Indeed, we can choose the action induced by the isomorphism of vector bundles
with real structure,

(34) OCP1(−1) ⊕OCP1(−1) � OCP1(−1) ⊗C Wλ.

Here, Wλ = Vλ ⊗ C, and Vλ is the real representation of the torus of weight λ.
With the T-action determined by the right side of (34), the localization con-

tribution from any reducible open stable map vanishes. Indeed, we work this out
explicitly for a torus fixed open stable map f with reducible domain D consisting of
one disk component Do and one sphere component Dc. The general case is similar.

Denote the single node of D by z. Consider the exact sequence

0 → H0(z, f∗OCP1(−1) ⊗ Wλ) → H1(D, f∗OCP1(−1) ⊗ Wλ)

→ H1(Do, f
∗OCP1(−1) ⊗ Wλ) ⊕ H1(Dc, f

∗OCP1(−1) ⊗ Wλ) → 0.

We claim that H0(z, f∗OCP1(−1)⊗Wλ) contains a zero weight space, and therefore
so does H1(D, f∗OCP1(−1)⊗Wλ), which immediately implies that the localization
contribution of [f ] vanishes. Indeed,

H0(z, f∗OCP 1(−1) ⊗ Wλ)

is just the fiber of f∗OCP 1(−1) ⊗ Wλ at z. Denoting by Cλ the complex represen-
tation of the torus of weight λ we have

Wλ � Cλ ⊕ C−λ, f∗OCP 1(−1)z � C±λ.

Hence,

H0(z, f∗OCP 1(−1) ⊗ Wλ) = C0 ⊕ C±2λ,

as claimed.
It remains to calculate the localization contribution from the single torus fixed

irreducible open stable map of degree d. This is easily seen to be 2
d2 . �

The two proofs of Proposition 19 together provide a geometric evaluation of the
binomial sum of Lemma 8.

6.4. Integrality. The virtual disk counts ndisk
d of Definition 2 have not yet been

proven to be integers. However, Table 2 in Section 7 provides substantial evidence
for the integrality claim.

7. Tables

Table 1 shows the value of the disk Gromov-Witten invariant Ndisk
d for small d.

Table 2 shows the corresponding virtually enumerative invariants ndisk
d . Recall the

virtual counts nreal
d of real curves in Q differ by a factor of 1/2,

nreal
d =

1
2
ndisk

d .
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Table 1

d Ndisk
d

1 30

3 4600
3

5 5441256
5

7 47823842250
49

9 28973369597500
27

11 160812279574853640
121

13 301152359429255569200
169

15 2528247216911976710478

17 1081454384062665012504422250
289

19 2066166201384849550431238897500
361

21 440336544802747748968402664543390
49

23 7625558614788648016004683159051585650
529

25 2942308498496733293257158606365620128756
125

27 9481608375404186315963625791852891724001750
243

29 55101515400393595065761084565358564820821590000
841

Table 2

d ndisk
d

1 30
3 1530
5 1088250
7 975996780
9 1073087762700
11 1329027103924410
13 1781966623841748930
15 2528247216911976589500
17 3742056692258356444651980
19 5723452081398475208950800270
21 8986460098015260183028517362890
23 14415044640432226873354788580437780
25 23538467987973866346057268850924917500
27 39018964507836157678862657579522297754750
29 65519043282275380577599387116954298241167170
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