
DOCUMENT RESUME

ED 097 019 IR 001 201

AUTHOR Fitzhugh, Robert J.; Pethia, Richard D.
TITLE Disk File Management in a Medium-Scale Time-Sharing

System.
INSTITUTION Pittsburgh Univ., Pa. Learning Research and

Development Center.
SPONS AGENCY National Inst. of Education (DHEW), Washington, D.C.;

National Science Foundation, Washington, D.C.
REPORT NO PU-LRDC-1974-4
PUB DATE 74
NOTE 14p.; Paper presented at the Digital Equipment

Cofporation Users Society Fall Symposium (San
Francisco, California, November, 1973)

EDRS PRICE MF-$0.75 HC -$1.5C PLUS POSTAGE
DESCRIPTORS Computer Programs; *Computers; *Computer Science;

*Computer Storage Devices; Management Systems; *Time
Sharing

IDENTIFIERS ETSS; *Experimental Time Sharing System; Learning
Research and Development Center

ABSTRACT
The paper descibes a compact and highly efficient

disk file management system responsible for the management and
allocation of space on moving head disk drives in a medium-scale
time-sharing system. The disk file management system is a major
component of the Expe_,rimental Time-Snaring System (ETSS) developed at
the Learning Research and Development Center. ETSS has been
successfully operating for nearly two years and is a multilanguage
general-purpose time-sharing system based on Digital Equipment
Coporation's PDP-15. (Author)

LE
A

R
N

IN
G

 R
E

S
E

A
R

C
H

 A
N

D
 D

E
V

E
LO

P
M

E
N

T
 C

E
N

T
E

R

19
74

/4

-A
gr

in
gi

tc
ro

dt
W

ift
ha

tZ
;$

D
IS

K
 F

IL
E

 M
A

N
A

G
E

D
 E

N
T

 IN
 A

 M
E

D
IU

M
-

S
C

A
LE

 T
IM

E
-S

H
A

R
IN

G
 S

Y
S

T
E

M

R
O

B
E

R
T

 J
. F

IT
Z

H
U

G
H

 A
N

D
 R

IC
H

A
R

D
 D

. P
E

T
H

IA

DISK FILE MANAGEMENT IN A MEDIUM-SCALE

TIME-SHARING SYSTEM

Robert J. Fitzhugh and Richard D. Pethia

Learning Research and Development Center
U-Aiversity of Pittsburgh

Paper presented at the Digital Equipment Corporation Users Society
Fall Symposium, San Francisco, California. November 27-30, 1973.

The research reported herein was supported by a grant from the National
Science Foundation (NSF-GJ-540X) and by the Learning Research and
Development Center, supported in part by funds from the National In.-3ti-
tute of Education, United States Department of Health, Education, and
Welfare. The opinions expressed do not necessarily reflect the position
or policy of the sponsoring agencies and no official endorsement should
be inferred.

VAN TiNf NT OF HE Al TN
U11(A HON N WELL ARE

NATIONAL INSTITUTE OF
I. DUCA IION

41 PLO,.
I ! I an I V 14114.

. t.' .,F ,0
r ...4 ' .41' L, 1',1

itI 111

Abstract

This paper describes a compact and highly efficient disk file man-
agement system responsible for the management and allocation of space
on moving head disk drives in a medium-scale time-sharing system.
The disk file management system is a major component of the Experi-
mental Time-Sharing System (ETSS) developed at the Learning Research
and Development Center. ETSS has been successfully operating for
nearly two years and is a multi-language, general-purpose time-sharing
system based on a DEC PDP-15.

DISK FILE MANAGEMENT IN A MEDIUM-SCALE

TIME-SHARING SYSTEM

Robert J. Fitzhugh and Richard D. Pethia

Learning Research and Development Center
University of Pittsburgh

Introduction

Most commercially available smallmachine time-sharing systems
offer rudimentary or special-purpose disk file management software.
Some systems require, the programmer to be aware of the underlying
disk si,ructure and often place the responsibility for record packing
within allocated disk space upon the program. More commonly, the
file management software is special-purpose and is tailored to meet
the requirements of a single language such as BASIC or a special, appli-
cation such as hospital record keeping. The file management system
described in this paper is a demonstration that a powerful, general-
purpose disk file management system offering large system features
and capabilities is possible on a smaller computer with only limited
memory.

Called DFM for Directory File Management, the system is the
successor to two earlier disk file management systems, each based on

inverted list principles and designed for fixed-head disk environments.
The current DFM employs list structures and is designed for moving
head devices although fixed head units can be supported as well. DFM
in its present form has been in use for ten months and is a major com-
ponent of the Experimental Time-Sharing System (ETSS) developed at
the University of Pittsburgh. ETSS has been operational for nearly two

years and is a multi-language, general-purpose time-sharing system

based on a Digital Equipment Corporation PDP-15.

DFM maintains a complete and self-contained directory structure

on each disk unit so that packs may be mounted and dismounted at will

independent of all others. Packs are named providing the programmer

with the option of specifying a pack by name or simply permitting the

file operation to default to the one or more resident system packs. Con-

sistent with the device independent features of ETSS, DFM allows users

to read, write, and manipulate data stored in named datasets with no

regard for the physical properties of the device. Each dataset may con-

tain any number of variable length records separated by any number of

file marks. Datasets may be temporary, or they may be "cataloged"

with protection keys in the user's private directory, in the system

"library" available to all or in the directory of another user if permitted.

Features are provided t: enable multiple users to simultaneously access

and update common datasets without the risk of interference.

Description

Device Characteristics. In the current implementation, DFM

operates on IBM 2314-equivalent disk drives using 2316 or equivalent

disk packs. The hardware established minimum unit of transfer is a

256 18-bit word sector. There are 200 sectors per cylinder and 200

cylinders per pack for a total of 40,000 sectors or 10. 24 million words.

This translates to approximately 25 million characters of storage on

a single pack. The average rotational delay of the unit is 12.5 milli-

seconds, and head seek time:. range from 20-80 milliseconds with an

average of 50 milliseconds.

2

Although DFM was designed for 2314-equivalent units, the specific

device details are important only on the device handler level. A variety
of disks can be supported including fixed head as well as moving head
units.

Space Allocation and Deallocation. It is clear from the device
performance statistics that head movement is a major component of
total transfer time and that excessive or unnecessary head movement
will sharply degrade overall device performance. This is particularly
true for the space allocation and deallocation processes. As a result,
a primary design objective was to minimize the number of head move-
ments required to locate available space and to return space that is no
longer needed. In addition, the allocation algorithm was designed to
allocate space in such a way as to minimize head movement during sub-
sequent file processes.

The minimum unit of allocation and deallocation is an implemen-
tation-defined block which, in the current release of ETSS, is two disk
sectors or 512 18-bit words. Two different types of bit maps are used
to monitor the allocated/unallocated status of the 20,000 blocks on each
pack. A "Cylinder Bit Map" is maintained on each cylinder which reflects

the allocated/unallocated status of each block on that cylinder. As there
are 100 blocks on a cylinder, the bit map requires 100 bits or only six
18-bit words. When a new pack is mounted, each of these cylinder bit
maps is scanned and a memory resident "Bit Map of Bit-Maps" is con-
structed for the pack. Each bit in this memory resident bit map reflects
the status of a cylinder bit map and indicates whether or not there is
unallocated space on the cylinder. Only 12 18-bit words are required
for this bit map.

3

When a disk block is required, an attempt is made to allocate

space from the cylinder on which the disk heads are currently positioned.

If this is not possible and space must be found r . another cylinder, the
memory resident bit map of bit maps is examined to avoid unnecessary

accesses of cylinder bit maps in which there is no unallocated space.
The lowest numbered cylinder with unallocated space is selected, the

heads are moved to that cylinder and the cylinder bit map is read into

memory. The two levels of bit maps ensure that no more than one head
movement is ever required to allocate space. The cylinder selection

strategy eliminates the scattering of allocated blocks and reduces head
movements during subsequent file processes.

Space deallocation is a background process and is permitted to
occur only when no other disk file processes are active., When a block
is to be deallocated, the appropriate cylinder bit map is read into
memory, and the bit corresponding to the block is reset. The bit map

of bit maps is updated also if the cylinder was fully allocated prior to

the deallocation.

Primary Data Structure. The primary and sole data structure on

disk is a noncircular bidirectional list of blocks with each block con-

taining "records" linked in a circular, bidirectional list within the block.
Shown in Figure 1, this data structure is used in both directories and in
datasets and is uniform and consistent on all levels. As a result, DFM
is relatively small in size because only a few, very compact subroutines
are required to create and manage this single data structure.

The first two words of each block in a list serve as pointers to the
preceding and following blocks. Bidirectionality enables block lists to

be scanned in either direction and permits validity checks to be per-
formed on all links during normal file operations. To eliminate the

B
l
o
c
k

F
o
r
w
a
r
d

L
i
n
k

B
l
o
c
k

R
e
v
e
r
s
e

L
i
n
k

(
n
o
n
e
)

,

R
e
c
o
r
d

F
o
r
w
a
r
d

L
i
n
k

R
e
c
o
r
d

R
e
v
e
r
s
e

L
i
n
k

R
e
c
o
r
d

R
e
c
o
r
d

F
o
r
w
a
r
d

L
i
n
k

R
e
c
o
r
d

R
e
v
e
r
s
e

L
i
n
k

R
e
c
o
r
d

R
e
c
o
r
d

F
o
r
w
a
r
d

L
i
n
k

R
e
c
o
r
d

R
e
v
e
r
s
e

L
i
n
k

U
n
u
s
e
d

Q
.,

B
l
o
c
k

F
o
r
w
a
r
d

L
i
n
k

B
l
o
c
k

R
e
v
e
r
s
e

L
i
n
k

R
ec

or
d

F
or

w
ar

d
Li

nk

R
ec

or
d

R
ev

er
se

 L
in

k

R
ec

or
d

R
ec

or
d

Li
nk

R
ec

or
d

R
ev

er
se

 L
in

k

R
ec

or
d

R
ec

or
d

F
or

w
ar

d
Li

nk

R
ec

or
d

R
ev

er
se

 L
in

k

U
nu

se
d

M
ir

F
ig

ur
e

1.
P

rim
ar

y
da

ta
 s

tr
uc

tu
re

B
l
o
c
k

F
o
r
w
a
r
d

L
i
n
k

(
n
o
n
e
)

B
lo

ck
 R

ev
er

se
 L

in
k

R
ec

or
d

F
or

w
ar

d
Li

nk

R
ec

or
d

R
ev

er
se

 L
in

k

R
ec

or
d

R
ec

or
d

F
or

w
ar

d
Li

nk

R
ec

or
d

R
ev

er
se

 L
in

k

R
ec

or
d

R
ec

or
d
F
o
r
w
a
r
d

L
i
n
k

R
ec

or
d

R
ev

er
se

 L
in

k

U
nu

se
d

requirement that the backward link of the first block in a list be updated

each time a new block is added to the end of the list, block lists are

noncircular. A null value is used to indicate that a block is either the
first or the last block in a list.

Records within a block are linked in a circular, bidirectional list,
with each record preceded by a pair of list pointers. Circularity is
possible since the entire block is read into, memory and can be examined

and updated at one time. Any unused space within a block appears as

the last record in the list.

Directory Structure. The DFM directory structure consists of
three interlinked levels and is depicted in Figure 2. For each pack,

there is a single "Master Directory" of user ID's and other user specific
information, "User pirectories" of dataset names and other dataset
specific information and "Datasets" containing "records" written to the
disk by user programs. The master directory consists of one or more
linked blocks that contain the identification numbers of all users who

have user directories on the pack, other information about those users
and pointers to each user directory. The ID of a user is added auto-
matically to this master directory when the user catalogs a dataset on
the pack. This ID entry is removed if all the datasets in the associated
user directory are deleted.

A user directory is created when a new user catalogs a dataset
on the pack and is automatically destroyed when all the datasets within

the user directory have been deleted. As with the master directory, a
user directory will expand and contract in size as datasets are cataloged
or deleted. An entry in a user directory consists of a dataset name,
information about the dataset and a pointer to the first block of the data-
set. This entry is removed when the dataset is deleted by the user.

6

1.
0.

23
.4

I.O
. 4

56
31

D
ire

ct
or

y
fo

r
I.O

. 1
23

.4

D
at

as
et

 [l
am

p
1:

 X
Y

Z
F

or
 I.

D
. 1

23
.4

D
at

as
et

1:
 X

Y
Z

M
A

S
T

E
R

D
IR

E
C

T
O

R
Y D
ire

ct
or

y
fo

r
I.D

. 4
56

.7
8

U
S

E
R

D
IR

E
C

T
O

R
IE

S

U
S

E
R

D
A

T
A

S
E

T
S

V

D
at

as
et

 E
lm

o
2:

A
B

C

D
at

as
et

 L
um

p
2:

 A
B

C
F

or
 I.

0.
 4

56
.7

1

F
ig

ur
e

2.
D

ire
ct

or
y

st
ru

ct
ur

e

4

A dataset consists of a series of variXble length records stored
within blocks. A lthougli a dataset may'contain as many records as can

be stored on a disk pack, no record can be longer than a single block

less the link words. The manner in which records are stored within

blocks is transparent to the user who merely reads and writes records
completely unaware of the underlying block structure of the pack.

Operation

File Processing. When a program indicates that it wishes to

access a cataloged dataset, the master directory of the specified pack

is searched for the appropriate ID. If it is fouild, the pointer to the
associated user directory is retrieved, and the user directory is
searched for the dataset name. If the name appears in the directory,

an entry is created and is added to a memory resident list called the
"Active List." Each entry in the active list contains the name of a
dataset currently being accessed, information about the dataset and the
user accessing it, and a set of values identifying the current position

of the user within the dataset. These include the block numbers of the

prior, current and next blocks in the dataset and the position of the cur-
."rent record within the current block. These values are updated during

normal file processing as the user moves within the dataset through
file manipulation requests or by reading and writing records.

The memory resident active lists enables file requests to be
satisfied quickly without time consuming directory or dataset searches.

'A read request, for example, requires only a single transfer. The

memory resident entry uniquely identifies the disk block where the next

record resides and the position of the record within the block. A write

request usually requires only two transfers, the first to read in the cur-
rent block and the second to rewrite it to disk with the newly added record.

8

Less frequently, When an additional block must be allocated, a write

request will require from three to live transfers depending upon the

cylinder bit map and disk block already in memory.

Dataset Deletion, When a clataset is to be deleted, the user
directory entry for the dataset is removed first. If no names remain

in the user directory,, the complete user directory is deleted as well
as the associated ID in the master directory. The list of blocks con-
taining the dataset is then linked to the end of the disk resident delete

list in preparation for .he background deallocation process. From the
user's point of view, the dataset is effectively deleted at this time, even
though actual deallocation has not yet begun. During intervals in which

no other requests are pending, successive blocks are delinked from the
delete list, and the corresponding bits in the cylinder bit maps are reset.

Directory Integrity Following a Crash. The directory structure
is relatively impervious to the effects of disk failures or system crashes.
All directory creation and modification operations are sequenced so

that an unexpected interruption will not result in directory inconsisten-
cies or doubly allocated space. Fcr example, when a new block must

be allocated for a dataset, the new block is allocated and is written to
disk with the appropriate backward link before the forward link of the

prior block is updated. Were this sequence interrupted, the worst out-
come would be allocated space that is outside the directory structure
and is unaccounted for. The directory structure remains intact.

Although the directory structure could be disrupted by a hardware

or power failure which interrupts an on-piing disk transfer, operating

experience with the current as well as prior versions of DEM has

demonstrated that a well-designed disk structure can be made sub-
stantially crash-proof if directory creation and update operations are

9

properly sequenced. In nearly two years of daily operation, no dataset

or directory has ever been disrupted or lost on ETSS.

Conclusion

DFM is an operating demonstration that a powerful, general-

purpose disk file management system is feasible on a smaller computer

with limited memory. In ten months of extensive use, the file manage-

ment system has met or exceeded all major performance objectives
and is currently managing over 7000 on-line datasets on the resident

system packs. The primary data structure of lists of blocks and lists
of records within blocks have proved to be sound and particularly well-

suited for small-machine operating systems.

10

References

Fitzhugh, R. LRDC experimental time-sharing system reference manual.

Pittsburgh: University of Pittsburgh, Learning Research and
Development Center, 1970. 3 vols.

Fitzhugh, R. A general-purpose time-sharing system for a small- or
medium -scale computer. Pittsburgh: University of Pittsburgh,
Learning Research and Development Center, 1973. Publication

1973/23.

Fitzhugh, R. Laboratory control with a medium scale time-sharing

system. Pittsburgh: University of Pittsburgh, Learning Research
and Development Center, 1973. Publication 1973/25.

11

