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We apply the methods recently developed for computation of type IIA disk instantons using
mirror symmetry to a large class of D-branes wrapped over Lagrangian cycles of non-compact
Calabi-Yau 3-folds. Along the way we clarify the notion of “flat coordinates” for the boundary
theory. We also discover an integer IR ambiguity needed to define the quantum theory of D-branes
wrapped over non-compact Lagrangian submanifolds. In the [&rgeial Chern-Simons theory,
this ambiguity is mapped to the UV choice of the framing of the knot. In a type |IB dual description
involving (p, ¢) 5-branes, disk instantons of type IIA get mappedtoy) string instantons. The
M-theory lift of these results lead to computation of superpotential terms generated by M2 brane
instantons wrapped over 3-cycles of certain manifoldéxdiolonomy.
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1. Introduction classical considerations of the worldsheet theory. In a
recent paper [6] it was shown how one can use mirror
D-branes wrapped over non-trivial cycles of aymmetry in an effective way to transform the type
Calabi-Yau threefold provide an interesting class afA computation of disk instantons to classical com-
theories with 4 supercharges (suchMs= 1 super- putations in the context of a mirror brane on a mirror
symmetric theories id = 4). As such, they do allow CY for type IIB strings. The main goal of this paper is
the generation of a superpotential on their worldvoko extend this method to more non-trivial Calabi-Yau
ume. This superpotential depends holomorphically gjeometries.
the chiral fields which parameterize normal deforma- One important obstacle to overcome in generaliz-
tions of the wrapped D-brane. ing [6] is a better understanding of “flat coordinates”
On the other hand, F-terms are captured by topassociated with the boundary theory, which we re-
logical string amplitudes [1], and in particular thesolve by identifying it with BPS tension of associated
superpotential is computed by topological strings atomain walls. We also uncover a generic IR ambiguity
the level of the disk amplitude [1 - 4]. More generallygiven by an integer in defining a guantum Lagrangian
the topological string amplitude at gengswith 2 D-brane. We relate this ambiguity to the choice of the
holes computes superpotential corrections involvinggularizations of the worldsheet theory associated to
the gaugino superfield” and theN = 2 graviphoton the boundaries of moduli space of Riemann surfaces
multiplet W given byh [ d?0(Tr W?2)"~1(W?)¢ [5].  with holes (the simplest one being two disks con-
So the issue of computation of topological string amaected by an infinite strip). In the context of the Large
plitudes becomes very relevant for this class of supe Chern-Simons dual [7] applied to Wilson Loop
symmetric theories. observables [4] this ambiguity turns out to be related
In the context of type IIA superstrings such disko the UV choice of the framing of the knot, which
amplitudes are given by non-trivial worldsheet instaris needed for defining the Wilson loop observable by
tons, which are holomorphic maps from the disk to thgoint splitting [8].
CY with the boundary ending on the D-brane. Such Along the way, for gaining further insight, we con-
computations are in general rather difficult. The samgder other equivalent dual theories, including the lift
guestions in the context of type IIB strings involveo M-theory, involving M-theory in &, holonomy
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background. In this context we are able to transformvherea = 1, . .. k, and dividing byG

the generation of superpotential by Euclidean M2 _ . _

branes (with the topology 0$%) to disk instantons X' — el (2.2)

of type 11A® for M-theory onG, holonomy manifolds o )

and use mirror symmetry to compute them! We alsbhec1(X) = 0 condition is equivalent t_, Qf = 0.

relate this theory to another dual type 1IB theory inf he Kahler structure is encoded in terms of tife

a web of @7 q) 5-branes in the presence of ALF_”keand Varying them Changes the sizes of various 2 and 4

geometries. cycles. In the linear sigma model realization [9] this
The organization of this paper is as follows: IriS realized as a (2,2) supersymmetti¢1)" gauge

Sect. 2 we review the basic setup of [6]. In Sect. 3 wideory with 3 +k matter fieldsX* with charges given

consider the lift of these theories to M-theory in th®y @7, and withk Fl terms for the7(1)* gauge group

context ofG» holonomy manifolds, as well as to typediven by o

1B theory with aweb of §, ¢) 5-branesinan ALF-like  The mirror theory is given in terms of + & dual

background. In Sect. 4 we identify the flat coordinates” fieldsY™ [10], where

for boundary fields by computing the BPS tension of » o

D4 brane domain walls ending on D6 branes wrap- Re(™) = —[X| (2.3)

ping Lagrangian submanifolds. In Sect. 5 we discuss. o : .

the integral ambiguity in the computation of topologV!th the periodicityy’* ~ ¥ +2mi. The D-term equa-

ical string amplitudes and its physical meaning. Thidon (2.1) is mirrored by

is discussed both in the context of Large N Chern-

Simons / topological string duality, as well as in the

context of the type IIB theory with a web 0p(q) \yheret® = ¢ +i6* andf® denotes thé-angles of

5—bra_nes. Ip Sect. 6 we present a large class of exajqa U(1)* gauge group. Note that (2.4) has a three-
ples, involving non-compact CY 3-folds where the D&yimensional family of solutions. One parameter is
brane wraps a non-compact Lagrangian submanifolgh .- and is given byY® — Y’ +c. Let us pick

In appendix A we perform some of the computationg 5 rameterization of the two non-trivial solutions
relevant for the framing dependence for the unkn _
and verify that in the largeV' dual description this “1he mirror theory can be represented as a theory of

UV choice maps to the integral IR ambiguity we have 4 iations of complex structures of a hypersurface
discovered for the quantum Lagrangian D-brane.

QY +Q3Y?+... Q5. Y =", (24)

) ) pr=eV @) 4 eV ) = P(u,v),(2.5)
2. Review of Mirror Symmetry for D-branes

] ) ) ) where
In this section we briefly recall the mirror sym-

metry construction for non-compact toric Calabi-Yau Y'(u,v) = a'u +b'v +t(t) (2.6)

manifolds (specializing to the case of threefolds), in-

cluding the mirror of some particular class of (speciaiy a solution to (2.4) (in obtaining this form, roughly

Lagrangian D-branes on them. speaking the trivial solution of shifting of all thg?
Toric Calabi-Yau threefolds arise as symplectibas been replaced hy, = whose product is given

quotient spaceX’ = C3**//G, for G = U(1)*. The by the above equation). We choose the solutions so

quotient is obtained by imposing tiieD-term con- that the periodicity condition of th&* ~ Y* + 27

straints are consistent with those af v and that it forms a
fundamental domain for the solution. Note that this
D® = QX2+ Q5| X22 +. .. Q5| X3F 2 —po in particular requirea’, b° to be integers. Even after
taking these constrains into account there still is an
=0, (2.1) SL(2 z) group action on the space of solutions via

IMore generally we can map the generation of superpotential-
like terms associated to topological strings at genwith 2 bound-
aries to Euclidean M2 brane instantons on a closed 3-manifold with
by =29 +h— 1. v — cu+dv.

u — au + bv,
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Note that the holomorphic 3-form for CY is given by Under mirror symmetry, the A-brane maps to a
holomorphic submanifold of th& given by
0= dz du dv

x x=0=P(u,v) = Y )y gV ), (2.9)

and is invariant under the SL(ZZ) action.

The mirror brane is one-complex dimensional, and is
parameterized by. Its moduli space is one complex
dimensional parameterized by a point on a Riemann
surfaceP(u, v) = 0. The choice of the point depends

In [6] a family of special Lagrangian submanifold<2" ¢* and the Wilson line around® and it is possi-

of the A-model geometry was studied, characterizedl€ t0 read it off in the weak coupling limit of large
by two chargeg® withi = 1,....k + 3 anda = 1,2 volume of Calabi-Yau and large parametefs as

subject to discussed in [6].

2.1. Special Lagrangian Submanifolds
and Mirror Branes

Z ¢ = 2.2. Example

For illustration consideX = O(-1) ¢ O(-1) —
and in terms of which the Lagrangian submanifold ig**, which is also called small resolution of conifold.
given by three constrains. Two of them are given byThis sigma model is realized by(1) gauge theory

with 4 chiral fields, with charge® = (1,1, -1, —1).
S @IxXiRE = (2.7) The D-term potential vanishes dix!|? + | X?|? —
|X3? — |X%? = r, and X is a quotient of this by
and the third iSy" 6% = 0, where?’ denotes the phase U(1)- The D-term equations can be regarded as lin-
of X, The worldsheet boundary theory for this clasgar equations by projecting® — | X*|, and solved
of theories has been further studied in [11]. graphically in the positive octant dt* (see Fig. 1).
The submanifolds in question project to the one X is fibered over this base with a fiber which is
dimensional subspaces of the toric base (taking interus of phases af*’s moduloU(1), 73 = T*/U(1).

account the constrains (2.1), (2.7)), Note that- is the size of aminima@l at X3 = 0 = X*.
o : Consider a special Lagrangian D-brane in this
|X**=r+b (2.8)  background withy, = (1,0,0,—1), ¢ = (0,0, 1, —1).

o _ o This gives the two constrain&’*|? — | X 4> = ¢; and
for some fixedd’ (depending orc®,r%) andr € %X3|2_ |X#|? = ¢, in the base which determine a two

R™. In order to get a smooth Lagrangian subma imensional family of Lagrangians, but D-branes of
ifold one has to double this space (by including y grang ’

3" 6* = ). The topology of the Lagrangian submani-
foldis R x S*x S1. Thereis, however, a special choice
of ¢ which makes the Lagrangian submanifold pass
through the intersection line of two faces of the toric
base. The topology of the Lagrangian submanifold
will be different in this limit. It corresponds to having x=0
one of theS? cycles pinched at a point @t in the La-
grangian submanifold. This is topologically the same
as two copies o€ x S?* touching at the origin o€.

In this limit we view the Lagrangian submanifold as
being made ofwo distinct ones intersecting over ANy 1. X = O(—1) @& O(—1) — P viewed asatoric fibra-
S1. We can now have a deformation, which movestr@on. The base is (| X2, | X 32, | X*[?) as generic solution
two Lagrangian submanifoldsidependently, where  to the vanishing of the D-term potential, but is bounded by
the end point of each one should be a point (not neghe | X?2 > 0 hyperplane. Over the faces of the bounding

essarily the same) on the base of the toric geometryperplanes some cycles of the fiber shrink. For example,
(see the example below). thereisaminimal P* in X which lies over the finite edge.
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b

Fig. 3. Riemann surface X : P(u,v) = 0 corresponding to
themirror of X = O(—1)&0(—1) — P! Yisrelatedtothe
toric diagram of X by thickening out the one-dimensional
edges of the basein Figure 1.

topology C x S* arefurther constrained to live on the
one dimensional faces of the base. For this we need
for example c; = 0, and ¢; arbitrary but in the (0, r)
interval. As discussed above, this can be viewed as
coming from the deformation of a Lagrangian sub-
manifold which splits to two when it intersects the
edges of the toric geometry and move them indepen-
dently on the edge. See Figure 2. Typically wewould
be interested in varying the position of one brane,
keeping the other brane fixed (or taken to infinity
aong an edge).

Themirror of X is

- —t—ut
Z‘Z—€u+€v+€ t uv_'_l7

obtained by solving Y1+ Y2 — Y3 — Y4 = —¢ for
Y2, fixing the trivial solution by setting Y* = 0, and
puttingY ! =wand Y3 = v.

Fig. 2. The special Lagrangian sub-
manifold which has the topology R x
T for generic values of ¢; (casea) can
degenerate (case b) and split (case c)
into two Lagrangian submanifolds,
when it approaches aone-dimensional
edge of the toric base. The two re-
sulting components have the topol-
ogy C x S, and can move indepen-
dently, but only along one-dimen-
sional edges.

— infinity

Fig. 4. In the limit in which the size t of the P in X =
O(-1) ¢ O(—1) — P! goesto infinity, the manifold looks
locally like C3, together with a Lagrangian D-brane.

The mirror B-brane propagates on the Riemann
surface 0 = P(u,v) = e¥ +e¥ + e~ =" + 1 shownin
Figure 3.

Note that mirror map (2.3) gives the B-brane at
Re(u) = —c; and Re(v) = 0 whichis on the Riemann
surface in the large radius limit, » > 0 and /2 >
c1 > 0. In other words, in the large radius limit,
classical geometry of the D-brane moduli space is a
good approximation to the quantum geometry given
by X.

We can also construct, as a limit, Lagrangian sub-
manifoldsof C2 by considering thelimitr +if =t —
oo holding ¢; fixed, asshownin Figure 4. In thislimit
the mirror geometry becomes xz = e* + ¢¥ + 1. This
case was studied in detail in [12].

2.3. Disk Amplitude

The disk amplitudes of the topologica A-model
giverise to an N = 1 superpotentia in the corre-
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spondingtypell A superstring theory [1 - 4] wherewe
view the D6 brane as wrapping the Lagrangian sub-
manifold andfilling the spacetime. Thecorresponding
superpotentia for the mirror of the Lagrangian sub-
manifolds we have discussed above was computed in
[6], and is givenin terms of the Abel-Jacobi map

W (u) = / * ou)du, (2.10)

*

where u,. is some fixed point on the Riemann sur-
face P(u,v) = 0 and the line integral is done on this
surface. This defines the superpotential up to an ad-
dition of a constant. More physically, if we construct
the ‘splitting’ of the Lagrangian brane over the toric
edges, we can view u,. as the location of one of the
Lagrangian halves, which we consider fixed.

Note that, if we move the point « on the Riemann
surface over a closed cycle and come back to the
same point, the superpotential (2.10) may change by
an overal shift which depends on the choice of the
cycle as well as the moduli of the Riemann surface
(given by ¢'s). It is natural to ask what is the inter-
pretation of this shift. This shift in superpotential can
be explained both from the viewpoint of type I1A
and type IIB. In the context of type IIA this corre-
spondsto taking the Lagrangian D6 brane over apath
whose internal volume traces a 4-dimensional cycle
Cy of CY (fixing the boundary conditionsat infinity).
By doing so we have come back to the same Brane
configuration, but in the process we have shifted the
RR 2-form flux. The 4-cycle Cy is dua to a 2-form
which we identify with the shift in the RR 2-form
flux. In the type IIA setup this process changes the
superpotential by (the quantum corrected) | kA,
asdiscussedin [13 - 15]. The TypelIB version of this
involvesvarying the D5 brane wrapped over a2-cycle
over apath and bringing it back to the original place.
During this process the brane traces a 3-cycle in the
internal Calabi-Yau which contributes the integral of
the holomorphic 3-form (2 over the 3-cycle to the
superpotential. Thisis interpreted as shifting the RR
flux of H along the dua 3-cycle. Note that we can
use this idea to generate fluxes by bringing in branes
not intersecting the toric edge, to the edges, splitting
them on the edge and bringing it back together and
then moving it off the toric edge. The process leads
to the same CY but with some RR flux shifted.

The superpotential (2.10) isnot invariant under dif-
ferent choices of parameterization of the fundamental

5

domainfor u, v givenby an SL(2, Z) transformation,
but transforms as

W(u) — W(u) + / dlacu?/2 + bdv?/2 — beuv]

=W (u) + acu?/2 + bdv? /2 — beuw,

where v is defined implicitly in terms of u by
P(u,v) = 0. Note that if we added a boundary term
it could have canceled this change in superpotential,
which can be viewed as a choice of boundary con-
dition at infinity on the non-compact brane [6]. Thus
thisIR choiceisneeded for the definition of thebrane,
and as we see it affects the physics by modifying the
superpotential. As discussed in [6] the choice of the
splitting to u, v depends on the boundary conditions
a infinity on the fields normal to the brane. Each
SL(2, Z) actionpicksaparticular choiceof boundary
conditions on the D-brane. Using the mirror symme-
try and what A-model is computing, below wewill be
able tofix acanonical choice, up to an integer, which
wewill interpret physically.

As noted above, in terms of the topological A-
model, superpotential 1V isgenerated by the disk am-
plitudes. The general structure of these amplitudes
has been determined in [4], where it was found that

W=y nisz,mexp(n[ku —m-t]). (2.12)

k,n,m

Here u parameterizes the size of a non-trivial holo-
morphic disk, and where N, , are integers capturing
the number of domain wall D4 branes ending on the
D6 brane, whichwrapthe CY geometry inthe2-cycle
class captured by m, and & denotesthe wrapping num-
ber around the boundary.

In the large volume limit (where the area of 2-
cycles ending or not ending on the D-brane are large)
the A-model picture is accurate enough. In this case
we do not expect a classical superpotential asthereis
a family of special Lagrangian submanifolds. Since
dW/du = v and W should be zero for any moduli
of the brane, we learn that v = 0 on the brane. This
in particular chooses a natural choice of parameteri-
zation of the curve adapted to where the brane is. In
particular the D-brane is attached to the line which is
classically specified by v = 0 (which can always be
done). u should be chosen to correspond to the area
of abasic disk instanton. However this can be donein
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many ways. In particular, suppose we have one choice
of such u. Then

U — u+nv

isan equally good choice, because v vanishes on the
Lagrangian submanifoldintheclassical limit. So even
though this ambiguity by an integer is irrelevant in
the classical limit, in the quantum theory, since v
is non-vanishing due to worldsheet instanton correc-
tions, this dramatically changes the quantum answer.
Thus we have been ableto fix the u, v coordinates up
to an integer choice n for each particular geometry
of brane. We will discuss further the meaning of the
choice of n in Sect. 3 and 4.

Later we will see that there is a further correction
to what u, v are quantum mechanically. In particular,
aswe will discussin Sect. 3, this arises because the
gquantum area of the disk differs from the classica
computation which gives u. This is similar to what
happens for the closed string theory where the pa-
rameter ¢ which measures the area of the basic sphere
is replaced by the quantum corrected area T'. Thisis
usually referred to as the choice of the “fl at coordi-
nates’ for the Calabi-Yau moduli.

3. G; Holonomy and Type 11B 5-brane Duals

Consider type IlA superstrings on a non-compact
Calabi-Yau threefold X with a special Lagrangian
submanifold L ¢ X. Consider wrapping a D6 brane
around L and filling R*. This theory has N = 1 su-
persymmetry on R* and we have discussed the super-
potential generated for this theory. In this section we
would like to relate thisto other dual geometries.

3.1. M-theory Perspective

D6 branes are interpreted as KK monopoles of M-
theory. Thismeansthat in the context of M-theory the
theories under consideration should become purely
geometric. Thisinfact wasstudiedin[16 - 20], where
it was seen that the M-theory geometry corresponds
to a 7 dimensional manifold with G5 holonomy. In
other words we consider a 7-fold which is roughly
Y ~ X x Stwhere St isfibered over the CY manifold
X and vanishes over the location of the Lagrangian
submanifold L C X. In this context the superpoten-
tials that we have computed must be generated by

S

Fig. 5. We can view S° as an S* x S? fibration over an
interval. Near the ends of the interval it can be viewed as
a complex plane C x S*, where the complex plane is z
at one end and 2, at the other. This gives two inequivalent
descriptions of S° in terms of acircle fibered over adisk.

M2 brane instantons wrapping around non-trivial 3-
cycles. Some examplesof Euclidean M2 braneinstan-
tons for G, holonomy manifolds have been studied
in [21] In fact there is a direct map from the disks
ending on L to a closed 3-cycle with the topology
of S3. In order to explain this we first discuss some
topological facts about S°.
We can view S° as

|21+ |22f? = 1

with z; complex numbers. Let = |z1|2. The range
for = varies from O to 1. There is an S* x S* of
S8 which projects to any fixed = with0 < 2 < 1,
given by the phases of z; and z,. At x = 0, the circle
corresponding to the phase of z; shrinksandat z = 1
the circle corresponding to the phase of 2z, shrinks.
So we can view the S2 as the product of an interval
with two S*'s where one S* shrinks at one end and
the other S* shrinks at the other end. See Figure 5.

We can also view S2 asadisk timesacircle where
the circle vanishes on one boundary —thiscan bedone
in two different ways, as shown in Figure 5.

Now we are ready to return to our case. Consider a
disk of type IlA. The M2 brane Euclidean instanton
can be viewed as the disk times an S*, where the S*
isthe*11-th’ circle. Note that on the boundary of the
disk, which corresponds to the Lagrangian subman-
ifold, the 11-th circle shrinks. Therefore, from our
discussion above, this three dimensional space has
the topology of 3.

We have thus seen that using mirror symmetry,
by mapping the type 1A geometry with a brane to
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an equivalent type 11B with a brane, and computing
the superpotential, in effect we have succeeded in
transforming the question of computation of super-
potentials generated by M2 brane instantons in the
context of G, holonomy manifolds, to an applica
tion of mirror symmetry in the context of D-branes!
More generally, one can in principle compute, using
mirror symmetry [22], a partition function for higher
genus Riemann surfaces with boundaries. This com-
putes F-term corrections to the spacetime theory [5]
givenby h [ d*zd?0F, ,(W2)sTr(W2)" *, where W
isthe gravi-photon multiplet, and W the N = 1 gaug-
ino superfield containing the U (M) field strength on
the worldvolume of M coincident &K K monopoles (if
we wish to get infinitely many such contributions we
need M — o0). It is easy to see that the topology
of the corresponding M2 brane instantonsiis a closed
3-manifold with b; = 2g + h — 1. The case of the
ordinary superpotential is a special case of this with
g=0h=1

3.2. Dual Type I1B Perspective

We have already given one dua type IIB theory
related to our type IIA geometry, and that is given
by the mirror symmetry we have been considering.
However there is another type I1B dual description
which is also rather useful.

Consider M-theory on a non-compact Calabi-Yau
X compactified to 5 dimensions, which admits a 72
action, possibly with fixed points. We can use the du-
ality of M-theory on 7?2 with type 11B on S* [23]
to give a dua type 1B description for this class of
Calabi-Yau manifolds. Note that the complex struc-
ture of the T2 gets mapped to the coupling constant
of type I1B. The non-compact Calabi-Yau manifolds
we have been considering do admit 72 actions and
in thisway they can be mapped to an equivalent type
I1B theory. Thisin fact has been done in [24] where
it was shown that this class of CY gets mapped to
type 11B propagating on the web of (p, ¢) 5-branes
considered in [25]. In this picture the 5-branesfill the
5 dimensional space time and extend along one di-
rection in the internal space, identified with various
edges of the toric diagram. The choice of (p, q) 5-
branes encodes the (p, ¢) cycle of T2 shrinking over
the corresponding edge. The 5-branes are stretched
aong straight lines ending on one another and mak-
ing very specific angles dictated by the supersym-

(€]

(01

(1.0)

Fig. 6. A (p, q) web of 5-branes which is dual to M-theory

on C3. This web is ajunction involving a D5 brane which
has (p,q) = (1,0), an NS5 brane which has (0,1) and a
(1,1) brane.

metry requirement (balancing of the tensions) de-
pending on the value of the type 1B coupling con-
stant 7. In particular each (p, ¢) fivebraneis stretched
along one dimensional line segments on a 2-plane
which is parallel to the complex vector given by
p+q71. An exampleof aconfiguration involving aD5
brane, NS 5 brane and a (1,1) 5-brane is depicted in
Figure 6.

Now werecall from the previous discussion that to
get the G, holonomy manifold we need to consider
an extra S* which is fibered over the corresponding
CY. In other words we are now exchanging the ‘ 5-th’
circle with the *11-th’ circle. So we consider going
down to 4 dimensions on acircle which isvarying in
size depending on the point in Calabi-Yau. In partic-
ular the circle (i. e. the one corresponding to the 5-th
dimension) vanishes over a 2-dimensiona subspace
of 5-dimensiona geometry of type IIB (it vanishes
along the radial direction of the Lagrangian subman-
ifold on the base of the toric geometry as well as on
the S* which is dual to the T2 of M-theory). Indeed
it corresponds to putting the |1B 5-brane web into a
background of ALF geometry dictated by the loca-
tion of the Lagrangian submanifold in the base times
S1, and varying the geometry and splitting the ALF
geometry into two halves, as shown in Figure 2. In
this picture the worldsheet disk instantons of typellA
get mapped to (p, ¢) Euclidean worldsheet instantons,
wrapping the 5-th circle and ending on the 5-branes.
In particular, if wefollow the map of the Euclideanin-
stanton to thisgeometry, it isthe other disk realization
of S° (seeFig. 7).

2Note that aD6 branewrapped around S8 isrealized intype 1B
asan N S 5-branein the z direction, a D5 brane in the y direction
separated in the z direction, and where the 5-th circle vanishes
aong the interval in the > direction joining the two branes.
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I1A Instanton

,,,,,,,

11B Instanton

Fig. 7. The M2 brane instanton with atopology of .S wrap-

ping over a 3-cycle of alocal G> manifold gets mapped to
two alternative disk projections of 5%, depending on which
duality we use. In one case we get the description involving
atype 1A string theory on a CY with the D-brane wrapped
over a Lagrangian submanifold and in the other we get a
web of 11B 5-branesin the presence of ALF like geometries.

4. Choice of Flat Coordinates

In this section we consider the map between the
moduli of the brane between the A- and B-model.

Asdiscussed in Sect. 2, the moduli of the D-branes
in the A-model are labeled by ¢ which measures the
size of the disk instanton ending on the Lagrangian
submanifold. In quantum theory ¢ gets complexified
by the choice of the Wilson line on the brane, and gets
mapped to the choi ce of acomplex point onthe mirror
type 1B geometry. The choiceis characterized by the
choice of a point on a Riemann surface F'(u,v) = 0,
which we choose to be our ‘v’ variable. However it
could be that the ‘size’ of the disk instanton receives
guantum corrections, and this, aswewill now discuss,
isrelevant for finding the natural (“fl at”) coordinates
parameterizing the moduli space of Lagrangian D-
branes.

First we have to discuss what we mean by the“ nat-
ura” choice of coordinate for the A-model. This is
motivated by the integrality structure of the A-model
expansion parameter. Thereisaspecia choice of co-
ordinates[4] onthemoduli space of D-branesinterms
of whichthe A-model disk partition function hasinte-
ger expansion (2.11), and thisisthe coordinate which
measures the tension of the D4 brane domain walls.
There is no reason to expect this to agree with the
classical size of the disk that the B-model coordinate
measures, and in general the two are not the same,
aswe will discuss below. Thisiswhat we take as the
natural coordinates on the A-model side.

The B-model and the A-model are equivalent theo-
ries, and thisdi ctatesthe corresponding flat coordinate
on the B model moduli space. This is the tension of

the domain-wall D-brane which ismirror braneto the
D4 brane of the A-model.

The D4 brane wrapping aminimal disk D is mag-
netically charged under the gauge field on the D6
brane. Consider the domain wall whichin the R3? is
at apointinzz and fillsthe rest of the spacetime. The
Bianchi identity for the gauge field-strength £ on L,
modified by the presence of the D4 brane, says that
if the B is the cycle Poincaré dual to the boundary
of thedisk, 9D C L. Recall that our brane L has the
topology of C x S*, so B can be identified with C.
Then the charge n of the domain wall is measured by

2mn = /BdZZ[F(.Tg =00) — F(r3 = —00)]

= / ds[A(l‘g = OO) — A(x3 = _OO)]
oB

Recall that Im(u) and Im(v) map to the one forms re-
lated tothe S*x S* cyclesof the L agrangian geometry,
viewed asacone over 72, Thus Im(u) isthe mirror of
the Wilson-line [, , ds A, and the Wilson-line around
the dual S = 9B isidentified with Im(v). Thus we
find that v jJumps over the mirror domain wall by

v — v+ 2min.

The case of n = 1lisdepictedin Figure 8.

This allows us to find the tension of the mirror
domain wall as discussed in [6]. The BPS tension of
the domain wall is given by AW, the difference of
the superpotentials on the two sides of the domain
wall. Since W = 5% [* vdu, the tension of the BPS

domainwall issimply theintegral 5%- [, vdu, where

271 .
C,, denotesthe appropriatecycleshiftingv — v+2i,
beginning and ending on a given u. We thus define

the flat coordinate

1
i,y =5 /C v,

To summarize, we predict that the disk partition func-
tion (2.10), expanded in terms of @ = u(u, t), and the
corresponding closed string counterpart #(t)— has the
integral expansion (2.11), the coefficients of which
count the “net number” of D4 brane domain walls
ending on the Lagrangian submanifold L (for amore
precise definition see [4, 26]).

It is not hard to see that « and u as defined above
agree at the classical level and differ by instanton

(4.2)
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generated corrections. In the large radius limit, the
local A-model geometry in the neighborhood of the
disk D isjust C3 —all toric vertices other than the one
supporting D go away to infinity. In this limit, the
equation of the mirror simply becomes P(u,v) —
e“+e’+1,s0

{L:i/ v(u)duﬁi./ [log(1 + e*) +in] du.
2mi C 2mi Cu

This has abranch point in the u—plane around which
v has the monodromy v — v + 2i. The contour C,,
receives a contribution only from the difference of
values of v on the two sides of the cut, and thusfor a
single domain-wall & = u + .

Away from the classical limit we can have sub-
leading corrections to the above relation that can in
principlebesubleadingine=t andine=*. But wewill
now argue that it is of the form

@ =u+const+O0(e™").

In other words, we show that 64 /6w = 1isexact even
away from the classical limit. Thisin fact is obvious
from the definition of (4.1) because as we change u,
the changein (4.1) can be computed from the begin-
ning and the end of the path. But the integrands are
the same except for the shift of v by 274, and there-
fore the differenceisgiven by 6@ = ¢ [ du = du. We
havethus shown that @ differsfrom « by closed string
instanton corrections only. Another way to seethisis
to note that

1 1 1
U= — du = —A I
“ 2mi /(v vau 2mi (uv) 2t Jo,

Noting that A(uv) = 2wiu due to the shift in v, and
using the fact that « is not shifting and that dv is
well defined, we deduce that the — = [, udv = A

udv .

Fig. 8. TheD4 braneending onthe D6
brane is mirrored to adomain wall in
type 1B where v shifts by 277 across
it. This projects to a closed cycle on
the Riemann surface P(u,v) = 0.

isindependent of u, by the deformation of the contour
C., and only depends on the class of the contour C.
It thus depends only on the bulk moduli.

A cautionary remark is in order. We have talked
about the cycle C, on the B-model side as a cycle
on the Riemann surface F'(u,v) = 0. In general the
cycles on the Riemann surface F'(u,v) = 0 can be
divided inthosethat lift to cycleswhere w and v come
back to the original values, or those that shift by an
integer multiple of 27ri. The cyclesthat come back to
themselves without any shiftsin « and v correspond
to closed 3-cyclesin theunderlying CY. Integration of
vdu over those cycles correspond to computation of
electric and magnetic BPS masses for the underlying
N = 2 theory in 4 dimensions (and are relevant for
the computation of the “fl at” coordinate for the bulk
field #(¢)). However, the cycles whose . or v values
shift by an integer multiple of 27 do not giverise to
closed 3-cyclesinthe CY (asthe CY in question does
have non-trivial cycles corresponding to shifting u or
v by integer multiples of 27i). Nevertheless, as we
discussed above such cycles areimportant for finding
the natural coordinatesin the context of D-branes.

Note that closed string periods which determine ¢
can also be expressed in terms of linear combinations
of periods where the u’s and v’s shift. Thus comput-
ing periods where v and v shift are the fundamental
guantities to compute. We will discuss these in the
context of examplesin Section 6.

Just aswe have defined @ as the quantum corrected
tension of adomainwall, we can define v aathe quan-
tum corrected tension of the domain wall associated
with shifting v — u + 27i. Note that in the derivation
of the superpotential [6] «, v are conjugate fields of
the holomorphic Chern-Simons field. Thus replacing
u by @ will require® replacing v by the quantum cor-

3To see this from the target space viewpoint it is natural to
consider the 1+1 realization of this theory as D4 brane wrapped



10 M. Aganagic et al. - Disk Instantons, Mirror Symmetry and the Duality Web

rected conjugate field v, and so the equation satisfied
by the superpotential changesto
ow . ow 5
_ = —_— =
ou ot
which is the equation we will use in Sect. 6 to com-
pute W.

5. Quantum Ambiguity for Lagrangian
Submanifold

We have seen that the choiceof flat coordinates nat-
urally adapted to the A-model Lagrangian D-branes
are fixed up to an integer choice. In particular we
found that if «, v are complex coordinates satisfying
P(u,v) =0, and if the brane is denoted in the classi-
cal limit by v = 0 and « classically measures the size
of the disk instanton, then we can consider a new u
given by

U — ut+tnv

for any n, which classicaly still corresponds to the
disk instanton action. In this section we explain why
fixingthearbitrary choiceisindeed needed for aquan-
tum definition of the A-model Lagrangian D-brane.
In particular specifying the A-model Lagrangian D-
brane just by specifying it as a classical subspace
of the CY does not uniquely fix the quantum theory,
given by string perturbation theory. The choice of n
reflects choices to be made in the quantum theory,
which has no classical counterpart. In this section we
show how this works in two different ways: First we
map thisambiguity to an UV Chern-Simons ambigu-
ity related to framing of the Wilson Loop observables.
Secondly we relate it to the choice of the Calabi-Yau
geometry at infinity, and for this we use the type 11B
5-brane web dual, discussed in Section 3.

5.1. Framing Choices for the Knot

To see how thisworksit is simplest to consider the
case where the D-brane topological amplitudes were

over the Lagrangian submanifold. Then, as discussed in [4] the
disk amplitude computes S = [ d2xd20(dW/dX) % for the U (1)
gauge theory in 1 + 1 dimension, where X is the twisted chiral
gauge field strength multiplet whose bottom component is . In
this formulation the domain wall associated with shifting of X to
X + 27 isredlized by v — u + 274, whose BPS mass we have
denoted by o. From S, the change in the value of the superpotential
under shifting X' is given by diW/da which leads to the statement
that diW/da = 5. This provides an aternative, and more physical
derivation of the main formula we use for the computation of W'.

computed using the observables of the Chern-Simons
theory [4, 26, 27] These were obtained by considering
expectation valuesfor Wilson loop observablesin the
large N Chern-Simons theory, in the context of the
large N duality of Chern-Simons / closed topologi-
cal strings proposed in [28]. Let us briefly recall this
setup.

Consider the SU(N') Chern-Simons theory on SC.
As was shown in [29], if we consider the topolog-
ica A-model on the conifold, which has the same
symplectic structure as T+ S%, and consider wrapping
N D3 branes on S2, the open string field theory liv-
ing on the D3 brane is SU(/N) Chern-Simons the-
ory where the level of the Chern-Simons theory (up
to a shift by N, i.e, g, = 2ri/(k + N)) is identi-
fied with the inverse of the string coupling constant.
The large N duality proposed in [28] states that this
topological string theory is equivalent to topological
strings propagating on the non-compact CY 3-fold
O(—1) ® O(-1) — P, whichisthe resolution of the
conifold, where the complexified Kahler class on P*
hasthesizet = Ng,. In[4] it was shown how to use
this duality to compute Wilson loop observables. The
ideaisthat for every knoty C S oneconsidersanon-
compact Lagrangian submanifold L, C 7*S% such
that L, N S® = ~. We wrap M D3 branes over L.,
which givesrise to an SU(M) Chern-Simons gauge
theory on L.,. In addition, bi-fundamental fields on
transforming as (IV, M) arise from open strings with
oneend onthe D-braneswrapped over S2 and withthe
other end on D-branes wrapped over L.,. Integrating
out these fields giverise to the insertion of

(o 255)

n

where U and V' denote the holonomies of the SU (V)
and SU(M) gauge groups around ~ respectively.
Considering the SU (M) gauge theory as a specta
tor, we can compute the correlations of the SU(N)
Chern-Simons theory and obtain

(oo ST ) ) = em-F(Vi0) (5

n

n

It was shown in [4] that the right-hand side can be
interpreted as the topological string amplitude in the
large N gravitational dual, where the N D-branes
have disappeared and are replaced by S2. In this dual
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geometry the M non-compact D-branes are |eft-over
and wrapped over some Lagrangian submanifold in
O(—=1)®0(—1) — P ThisLagrangian submanifold
was constructed for the case of the unknot explicitly
in[4] and extended to algebraic knotsin [26] (thislat-
ter construction has been recently generalized to all
knots [30]). Moreover F'(V,t, g,) denotes the topo-
logical string amplitude in the presence of the M
D-branes wrapped over some particular Lagrangian
submanifold in O(—1) & O(-1) — P! with a non-
trivial S* cycle. Note that a term in F(V,t, g,) of
the form ]’_, trV’* comes from a worldsheet with
b boundaries, where the i-th boundary of the world-
sheet wraps the S* of the Lagrangian submanifold k;
times.

The left-hand side of (5.1) is computable by the
methodsinitiatedin[8], and in thisway givesusaway
to compute the open string topol ogical amplitudesfor
this class of D-branes. Notein particular that the disk
amplitude correspondstothel/g, termin F(V ¢, ;).
A particular case of the brane we have considered in
O(-1) @ O(-1) — P* corresponds to the unknot.
Thisis depicted in the toric Figure 2.

The match between the computation in this case
using mirror symmetry, and the result expected from
the Chern-Simons theory was demonstrated in [6].
However as we have discussed here the disk ampli-
tudes have an integer ambiguity when we use mirror
symmetry for their computation. Thus apparently the
right hand side of (5.1) is defined once we pick an
integer related to the boundary conditions at infinity
ontheB-braneinthetypellB mirror. If theright hand
sideof (5.1) isambiguous, then so should theleft hand
side. In fact the computation of Wilson loop observ-
ables aso has an ambiguity given by an integer! In
particular we have to choose a framing on the knot
to make the computation well defined in the quantum
theory [8]. A framing isthe choice of anormal vector

Fig. 9. The Wilson loop observables arise
from worldsheet diagrams where some
boundaries end on L, and N branes wrap-
ping S°. Inthelarge V limit the holes end-
ing on S° get “filled” and we end up with a
Riemann surface which hasonly the bound-
ariesassociated with L. . Intheabovefigure
the outer holeisthe only oneending on L,.

All of the interior holes end on $® and dis-
appear inthe large N limit, leaving uswith
adisk.

field on the knot ~, which is non-vanishing every-
whereon theknot. Notethat if weare givenaframing
of the knot, any other topologically distinct framing
is parameterized by an integer, given by the class of
the map S* — S, where the domain S* parameter-
izes v and the range denotes the relative choice of
the framing which is classified by the direction of the
vector field on the normal planeto the direction along
the knot. The framing of the knot enters the gauge
theory computation by resolving UV divergencies of
the Chern-Simons theory in the presence of Wilson
loops. It arises when we take the Greens function for
the gauge field coming from the same point on the
knot. The framing of the knot allows a point splitting
definition of the Greens function.

We have thus seen that both sides of (5.1) have a
guantum ambiguity that can be resolved by a choice
of an integer. On the left hand side the ambiguity
arises from the UV. On the right hand side the ambi-
guity arises from the IR (i.e. boundary conditions on
the brane at infinity). We have checked that the two
ambiguitiesmatch for the case of the unknot, by com-
paring the disk amplitudes on both sides (using CS
computation of the framing dependence of the knot
ontheleft and comparing it with the mirror symmetry
computation of the knot on the right). Some aspects
of this computation are presented in the Appendix A.
The computation of the disk amplitude for this case,
using mirror symmetry, is presented in Section 6.

Here let us discuss further how this match arises.
Consider thedisk amplitudeat large N corresponding
to agiven knot. In the gauge theory side the compu-
tation arises from open string diagrams of a planar
diagram with the outer hole on the Lagrangian sub-
manifold L.,, and the rest of the holes ending on D-
branes wrapping the S2, as shown in Figure 9. In the
large N limit, the interior holes get “filled” and we
get the topology of the disk.



12

Short Propagator
(UV Region)

IR Region

Fig. 11. Other examples of the large IV limit of UV diver-
gencies of Wilson loop observables.

Now consider where the UV divergencies of the
gauge theory would arise. They would arise from
Feynman diagrams where the Schwinger parameter
for the gauge field goes to zero—an example of thisis
depictedin Figure 10a. Notethat thetwo end points of
the short propagator will be mapped to the same point
on the knot  in the limit of zero length propagator.
Inthelarge N limit, where the disk getsfilled, these
get mapped to configurations such as that shown in
Figure 10b. In this dual description by a conformal
transformation the worldsheet can be viewed as that
depictedin Figure 10c. In other words, we haveinthe

M. Aganagic et al. - Disk Instantons, Mirror Symmetry and the Duality Web

Fig. 10. The Wilson loop observable has
UV divergencies which need to be reg-
ulated, coming from points along the
knot where the gauge boson propaga
tor is of zero size (8). In the large N
limit these map to disks touching at a
point (b), which can beviewed viaacon-
formal transformation as a long propa-
gator (c). Notethat the boundaries of the
long propagator are on the Lagrangian
submanifold L, (or more precisely its
large N dual) and correspond to an open
string propagating on it. Thus the UV
framing choice of CS gets mapped to
the choice of large distance (IR) physics
of modes on the brane.

dual channel along Schwinger time of an open string
ending on L.,. Thismeans that the issue of ambiguity
is mapped to an IR behaviour of fields living on L.,
and that is exactly where we found the ambiguity in
the computation of the superpotential in the context
of mirror symmetry.

Other examples of thelarge N limit of UV regions
for the computation of the Wilson loop observable
along the knot get mapped to disks shown in Fig. 11,
and look like branched trees of disks.

5.2. Calabi-Yau Geometry, 5-brane Perspective
and the Integral Ambiguity

Asdiscussed in Sect. 3, we have dual descriptions
of type 1A geometry with D6 branes wrapped over
Lagrangian submanifoldsin termsof M-theory on G,
holonomy manifolds (viewed as circle fibration over
CY manifolds) or intermsof typelIB web of 5 branes
in an ALF-like background in RS. To be precise, the
M-theory on T"?/typelIB on S* dudity relatesthe cou-
pling constant of type 1B to the complex structure of
the T°2. Fibering this duality gives rise to the duality
just mentioned. However, in the type 11B picture we
typically fix the type IIB coupling at infinity. This
meansthat, by this chain of duality, the G2 holonomy
manifold is a circle fibration over the CY where the
complex structure of the 7?2 fibration of CY is fixed
at infinity. Turning this around, this duality predicts
the existence of a particular class of CY and G, holo-
nomy metricswith aparticular behaviour of themetric
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1.1

0.1)

(1.0)

(1,n+1)

(Ln)

Fig. 12. In the weak coupling limit, we consider an NS (0, 1) 5-brane with an ALF like space ending on it. If thisis
connected to (1, 0) and (1, 1) 5-branesin ajunction, the only instantons allowed involve the worldsheet instanton stretched
along the interval shown on the |eft-hand side of the figure above, times the 5-th circle which shrinks at the attachment
point of the ALF space. There is no other instanton allowed in this geometry. However if an NS (0, 1) 5-brane is attached
to (1, n) and (1, n + 1) 5-branes, the geometry of the intersection dramatically changes (aslong asn # 0, —1) and now we
can have many more allowed configurations for the worldsheet (p, q) instantons. Thisis depicted on the right hand side of

the above figure.

at infinity (we can also fix the areaof 72 at infinity as
that gets mapped to the inverse of the radius of type
[1B S1). We now argue that the choice of the complex
structure of 72, or equivalently the type 1B coupling
constant at infinity, changes the number of Euclidean
M2 branes, exactly as is expected by the ambiguity.
Instead of being general we simply illustrate thisidea
in the context of a simple example, namely the C3
geometry discussed before and represented by Fig.6,
consisting of NS 5-brane (0, 1) and D5-brane (1, 0)
and the (1, 1) 5-brane. We already did show that M2
brane instantons get mapped to worldsheet disk in-
stantons consisting of the (p, ¢) string shownin Fig. 7
timesan extracircle (the‘5-th’ circle) which vanishes
at the position of the ALF space. However now we
consider changing the coupling constant. Then the
angles between the 5-branes will be changed. Beyond
some critical angles we can get new worldsheet in-
stantons. Basically wecan consider theweb of strings,
and the only data that we need to take into account is
that aBPS(p, ¢) stringcanendonly ona(p, ¢) 5-brane
(and perpendicularly). This web of strings, however,
can end onthe projection of the ALF space ontheweb
at any angle, since at that point now the ‘5-th’ circle
is shrinking (again in a perpendicular fashion). To be
concrete, let us consider the limiting choices of the
typel1B coupling constant givenby = — —1/n. This
can be obtained from 7 — ioc by the modular trans-

formation *71 — *71 +n. Said differently, we can take
the weak coupling limit 7 — ioc by considering the
inverse modular transformation where we consider
the 5-brane web given by the NS fivebrane (0, 1) and
thefivebranes(1, n) and (1, n+1). Itiseasy to seethat
this geometry of webshasann — —(n + 1) symme-
try, when we reverse the direction of the handedness
on the D5 brane. Thus, the counting of the worldsheet
instantons here will exhibit thissymmetry. Thisisex-
actly the symmetry we will find for the ambiguity of
the mirror to C3, as discussed in Section 6. Moreover
it is easy to see that except for n = 0, -1, where
there is exactly one choice of disk instanton, for all
other n’s we get a large number of disk instantons,
allowed by the geometry of the 5-branes, as shown
in Figure 12. This is also in line with the result we
find from mirror symmetry in Section 6. Thus as the
geometry of Calabi-Yau changes, we get jumpsinthe
number of instantons as predicted by this picture.
Itisnatural to ask what IR aspect of thetypellA CY
geometry with the brane, this choice of 7 is reflected
in. One's natural guess is that the normalizability of
the 1-form on the brane represented by the Wilson
line vev, which represents the mode corresponding
to moving the brane, is the relevant issue. If thisis
the case the possible choices of metrics for which
a particular 1-form is normalizable will have to be
classified by the integer ambiguity n, whichinturnis
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related to the choice of the CY metric with fixed 7 at
infinity, labeled by n. Similarly, in the M-theory lift
this would be related to the possible choices of nor-
malizable deformations of the G, holonomy metric.
It would be interesting to study these issues further.

6. Examples

In this section we will consider a number of exam-
ples which illustrate the general discussion we have
presented for the computation of disk amplitudes for
D-braneswrapping aL agrangian submanifold of non-
compact CY 3-folds. The examples include consid-
erations of Lagrangian branes in C3, P! x P!, P?
and its blow up at a point F;. In these examples we
consider inequivalent configurations of Lagrangian
branes. For the case of C2 we exhibit the dependence
of the topological string computations on the integer
ambiguity we discussed earlier. For al of these cases
wefind the predicted integrality properties of the disk
amplitudes®. We also consider different Lagrangian
branes (for example ending on the “internal” or “ex-
ternal” edges of the toric diagrams).

As discussed in Sect. 4, a non-trivial part of the
story involvesfinding theflat coordinatesfor the open
string variables. As discussed there, we find the flat
coordinates to be given by

u=u+ At),

where A(¢;) (up to an addition of a constant) is an
exponentially suppressed function of Kahler moduli
of the Calabi-Yau (O(e~*)), and A depends on the
choiceof thebrane. We compute A using the methods
discussed in Sect. 4 for all the examples.

Notethat using 9; W = v(u) and (2.11), we have

0. W = 6(it) = =) kNy mlog(1 — exp[kii—m - ]).
k

So by solving for v in terms of 4 (from P(u,v) =0
and the correction to u,v — ,? due to the mirror
map) we find a prediction of an expansion in terms
of integers N, m. We verify these highly non-trivial
integrality predictions in the examples below which
we now turn to.

4The integrality requirement is highly non-trivial. Originaly,
we experimentally found the highly non-trivial flat coordinates
only by requiring the integrality of the domain wall degeneracies.
Later we showed that they agree with the BPS tension of domain
walls, which is the definition used in this section.

6.1. Aimost C®

We consider the simplest Calabi-Yau X = C3.
It is described by just three chiral fields X* and
no gauge group. The specia Lagrangian D-brane L
we are interested in is given by ¢; = (1,0, —1) and
q2 = (07 17 _1)
|X1|2_ |X3|2:cl |X2|2_ |X3|2=O.
This geometry can be regarded as a local approxi-
mation, in the limit that all radii are large, to a more
involved geometry it is embedded in, for examplethe
one discussed in Section 2. The value of ¢; on the
brane and the Wilson-line around the onefinite circle
on L form one complex modulus « of the A-brane,
which measures the classical BPS tension of the D4
brane domain wall.
The mirror manifold can be written as
rz = Pu,v) =e* +e" + 1, (6.1)
where we have set Y3 to zero, and Y = u, Y2 = v.
Equations (2.3) fix the classical limit of the brane

¢! = Re(u),

so the transverse coordinate to the B-brane is u. In
thislimit, v is zero on the brane corresponding to the
vanishing of the classical superpotential.

The SL(2, Z) group of reparametrizations acts on

(6.1) by linear transformations (%: ) = (i Z)

(g > that leave the holomorphic (3,0) form 2 =

% dudv invariant. The subgroup of SL(2, Z) that pre-
serves the classical limit above consists of transfor-
b\ _ (1 »p
d] —\o 1
result in a family of parameterizations of the mirror
geometry

mations (Z . These transformations
xz = Py(u,v) = """ +e" +1,

and a family of superpotentials obtained by solving
the order p polynomial ine”,

W (w) :/vp(u)du.

To compute the numbers of disk domain walls we
need to know the flat coordinates.
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For p = 0 we have computed in Sect. 4 the BPS
tension of the D-brane in the u-phase and also the
v—phase, by trivia relabeling, to be u,-9 = u +im,
Up=0 = v +im. The knowledge of these suffices to
find the BPS tensions for a different choice of fram-
ing p.

The SL(2, Z) transformationsu. — u + pv, v — v
act on the basis of one-cycles on the Riemann sur-
face that are associated to periodicity of Im(u) and
Im(v). Since A, and A, which provide the quantum
correctionsto v and v

u=u+A,, v=

vt A,,

are obtained by evaluating periods of the one-form
A = vdu over these, changing the basis of one-cycles
by an SL(2, Z) transformation to v’ = au + bv and
v’ = cu + dv actsin an analogous way on the periods,
i.e

Al = aA, +bA,.

Thus, we find that

Up =u+(p+1)ir, v, =v+in.

The equation
P,(%,0) =0=1— PV —¢? (6.2)
is solved _iteratively, using the ansatz e =

Yo are™. Using (Ll ara®)? = 30 gcma™,
where ag = ¢cg = 1 and ¢,, = mzzlzl(kp—m+
k)ayc,, 1, we get immediately a recursive formula
A = =27 Zzz_ll(kp —m+k+ Daga,,_;, for the
coefficients. This can be summed using Stirlings co-
efficients of the first kind (see e.g. [31]), which
aredefinedby z(z — D(x —2)-...- (x —n+1) =

Xm0 S sim =

. Using the relation (T)

— 50 5t~ the result of the sum-
mation is

(6.3)

Solving now for v = 9; W and integrating we get, up
to trivial integration constants, the superpotential

-1

1 g N mu
— | | (mp — j)e

W:me!

m=1 7=1

(6.4)

We can writethisin the general form (2.11). The case
at hand, that isgivenby W = 3° Jz-eb™%, yields
the following integersfor NV,,:

Nl:(_l)p7

p 1-(=1) p
Ne==3""2 "_[E]’
M= - ),

Ne= 2@~ -

No = o (17 plp — (12— 5p+ 2),

1
Ne = 56 - 1)p(36p® — 54p? + 31p — 9),

N7 = %( 1Pp(p - 1)

- (343p* — 686p° + 539p% — 196p + 36),

To show integrality for agiven expression N, (p) for
al p € Z, one may factorize the denominator into
I, p} with p, prime and check that one can factor
pr from the numerator for al p = p"n — k; with
ki =1,...,p". That has been checked for m < 50.
Notethat N,, isapolynomial in p of degreem — 1.

Asdiscussedin Sect. 5, the p dependence of the super-
potential for this particular Lagrangian brane (viewed
asalarget limit of the O(—1) @ O(—1) — P! geom-
etry) can be mapped to the framing ambiguity of the
unknot for the Chern-Simons theory. In Appendix A
we discuss this computation and verify that the large
N Chern-Simons computation leads to a polynomial
of degreem — 1inp for N,,. Moreover we have ver-
ified that for V; for i = 1,2, 3 the p dependence of
the framing choice agrees with the above result. We
also have shown from the computation of the framing
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a b.

Fig. 13. The Fig. a. depicts the base of the toric fibration for X = O()X) — P x P* together with a special Lagrangian

branein X . Theminimal disk which ends on the A-branein the figure wraps partly the P over which the braneis. Figureb.
depicts the Riemann surface X of the mirror geometry, and the mirror B-brane as a choice of apoint on X. The D4 brane

wrapping the disk in Fig. a. is mirror to adomain-wall which projects to path C in Figure b.

dependence of the CStheory that for all m the coeffi-
cient of theleading term p™~1 isgiven by m™~2/m!
in agreement with the above result.

Results of the prediction of [4] for the topologi-
cal string amplitudes for the case of the unknot have
recently been verified mathematically using localiza-
tion methodsin [32, 33]. In verifying the predictions
of [4], there were some choices made for the toric
action in these works. The authors of [32] have re-
cently checked and verified that the integer choice of
ambiguity changes the topological string amplitudes
exactly as predicted by the above results®. Moreover
this ambiguity arises from the boundary of moduli
space of Riemann surfaces with holes, as we already
discussed.

6.2. O(K) — P x P

This manifold involves a compact Pt x P! geom-
etry inside a CY 3-fold with a non-compact direc-
tion given by the canonica line bundle. It can be
described by a linear sigma model with G' = U(1)?
and five chiral fields X*, for i = 0, ... 4 with charges
Q'=(-2,1,1,0,0) and Q% = (-2,0,0, 1, 1) which
leads to the D-terms

X2+ | X7 -2 X0 = 7,

SWe are grateful to S. Katz and C.-C. Liu for performing these
computations upon our request. The form we have presented our
answer (6.4) was chosen to simplify the comparison with their
formula.

|X32+ | X412 - 2 X0 = r,.

The solutionsto the D-term equation, projected to the
toricbasearegivenin Figure 13. TheFq = P x P! cor-
responds to the divisor class represented by X° = 0
and is visible in Fig. 13 as the minimal parallelo-
gram in the toric base. The fiber O(K) corresponds
to the normal direction. The special Lagrangian D-
branes of the A-model for this Calabi-Yau have in-
equivalent phases, depending on where one puts the
brane, together with a Z-family of choices of fram-
ing in each. The D-brane charge can be taken to be
¢1=(-1,0,1,0,0), ¢ =(—1,0,0,1,0) and so

|X2|2 _ |X0|2 - Cl7 |X3|2 _ |X0|2 - CZ.

The constants ¢; are required to be chosen so that
the Lagrangian D-brane lies on one dimensional toric
edges, and different toric legs give rise to generally
different phases of the theory.

The mirror variables Y satisfy

Yi+y2-2v0=—t, v3+v4_2v%=_g,
wherethereal parts of the complex structure parame-
terst, s measuretheclassical sizes of thetwo minimal
PYsinthetoric base, Re(t) = 7, Re(s) = r,. Themir-
ror manifold is given by

rr=e+e T vl e T+ L
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Fig. 14. The Riemann surface X : P(u,v) = 0 can be viewed as a branched cover of the u-cylinder by two solutions
v1,2(u). The solutions are branched over 4 points ufz, with monodromies 1, which exchanges vy < v, and (1,2 which
take v1,2 — w12 + 277 corresponding to the v-cylinders which glue the two roots on the figure to the right. Monodromies

a2 arise from the periodicity of « itself.

where Y2 = u, Y3 = v, Y9 = 0 and the two holo-
morphic constrains are solved in terms of these. The
Riemann surface X' which is the configuration space
of the mirror B-brane is given by 0 = P(u,v) =
ev+e Tl +e? + 75V + 1, When viewed in terms
of the single valued variables e¢* and e”, X' is re-
|ated to the A-model geometry by “thickening” of the
one-dimensional edges of the toric diagram (or more
precisely, their projection onto the X° = 0 plane). In
thelarge radiuslimit O < ¢, s the A-model geometry
becomesclassical and thelegsof the Riemann surface
of the B-model become long and thin, so the A- and
the B-model can be related aready at the classica
level.

For example, the A-braneon Fig. 13isontheinter-
nal leg whichisgiven by ¢, =0, and ¢; in the [0, r]
interval. Thelargeradiuslimitis, in additiontor, and
r, being large, the limit of large disk size. For exam-
pleintheregimec¢; < r;/2the basic disk is the one
on Fig.13a, and the classical limit corresponds to ¢;
being of order of r; /2. Thesize parameter ¢, together
with the Wilson line uw = ¢; +i [ A, is the classica
tension of the D4 brane domain wall wrapping this
disk and ending on the D6 brane.

In the limit the A-model geometry is classical, it
follows from the mirror map (2.3) that the mirror
B-brane is located in the region on X, where v is
constant, v ~ 0, and u is a parameter which is large,
u ~ t/2. Away from the large radius limit, this de-
forms to aroot of the equation P(u, v) = 0. This has
two solutionsfor v at every value of u,

1+ et + eftfu

v =v12(u) = log 5

V(@ +et+et-1)2 — 4e—s

+
2

+im

and the mirror B-brane propagates along a region of
theroot v = vy(u). Aswe discussed above, the super-
potential on thisleg is given by

W(u) = /vl(u)du.

This vanishes in the classica limit, since 9, W =
v1(u) — 0.
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The flat coordinate computes the tension # of the
D4 brane domain wall wrapped on the basic disk as
in Fig. 13a, and we will compute this by computing
the tension of the mirror B-brane domain wall. As
explained in Sect. 4. the mirror domain wall projects
to the loop C on the Riemann surface which starts at
the location of the B-brane at a fixed u, winds around
v — v+2mi before* attaching” again (seeFig.13b). In
this configuration, the tension is given by a classica
integral on the Riemann surface

= i / v1(u)du.
2mi c

The period integral 5% [, v1(u)du is, as explained
in Sect. 4, the sum of two pieces. Thereistheclassica
contribution to thedomainwall tensionwhichisequal
to %A(vlu) = u, as the initial and final end-point
of C differ by v — v + 27i. The quantum correction
to the BPS mass comes from the “small period”, the
contour integral around the 3; cycle (see Fig. 14) of

ax7 [, udv.

The small periods can be found as follows. Notice
that, since vy + v, = —s + 27i, the sum of two periods
around v — u + 277 is

1 1
%/alvldu+%/azvzdu:3+2mﬂ

On the other hand, the closed string period 3, that
measures the mass of the D4 brane wrapping a P* of
sizer, can also be expressedintermsof small periods
as it is computed along the contour o, = a3 — ap,
(orientations are fixed up to an over-all sign by the
requiring that both v and v have trivial monodromy
around 3,),

1 / q 1
il ondu — ——
21t J o, ! 21t J o,

From thiswe can find for example the small period
aong ay as® <5 +im = 51 [, vidu.

27

6This method of calculating the domain-wall tension gives the
result up to factorsof ix. Thedirect evaluation of the period around
C can be done, and it determines the answer to be the one we
presented above.

Fig. 15. The closed string periods 3, 3 are linear com-
binations of small periods «;, 3; for i = 1,2 which come
from the periodicity of v and v variables.

(/)_‘

Fig. 16. Three phases of the A—braneon O(K) — P x P*.
The phases | and Il are related by the exchange of the two

PYsin the base, and thisisreflected in the disc domain wall
numbers.

For the B-brane at hand we need the small period
around the 3; cycle on the v-leg (Fig. 15), and by a
computation anal ogous to the one we just did,

In fact the small period of «; isthe correction for the
B-brane on the other leg of the Riemann surface —
the leg parameterized by v which corresponds to the
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phasell (see Fig. 16). In this phase we have therefore

$—35
2
According to the discussion in the C2 case, which

carries over here as well, the correction terms we
computed

+ .

v=v+

t—1 -3

Au:T"'iﬂ', Av:%
form a doublet under the SL(2, Z) transformations,
just as u, v do. Consider now an SL(2, Z) group ele-
ment which takes

+im,

u—u =u—v, v—v =0
The new equation of the curve becomes
eu’—v’ +e—t—u'+v’ +ev’ +e—s—v' + 1 - O

This change of coordinates does not change the clas-
sical value of the superpotential in phase | (the phase
originally parameterized by ) since v' = v ~ 0,
but corresponds to a different choice of framing with
n = —1, which changes the fluctuating field on the
brane from u to v’ = u — v. The quantum corrected
domain wall tension is now’

Au’ = Au - Av

For the brane in phase Il it is no longer true that the
classical superpotentia is zero, since ' = u — v is
not zero after the SL(2, Z) transformation.

With this choice of parameterization, consider the
superpotential

W = /u'(v')dv'

with «/(v) obtained by solving P(u',v) = 0. This
superpotential has no classical piece, as v' — oo,
u' ~ OQisonthecurve. Infact, v ~ Oisthe equation
of theouter leg of X' (seeFig. 16), sothiscomputesthe
superpotential of the brane in phase 111. The domain
wall tensioninthe phaselll (the outer leg) isgiven by

55— 5
Ay =A, = ——
v ke 2

7As we will see when we discuss the closed string flat coordi-
natesin more detail below, A, turns out to be zero.

+ .

To compute disk numbersin these various phases, we
need to write the superpotential in each case in terms
of the open and closed string flat coordinates.

The closed string flat coordinates have a com-
plicated dependence on the classical, linear-sigma
model, coordinates ¢. Quite analogoudy to what we
found for the open string, the A-model closed string
amplitudeshaveintegrality propertieswhen expanded
in terms of flat coordinates which measure the BPS
mass of D2-branes wrapped on rational curvesin X.
The corrected quantities are related transcendentally
by the mirror map #; = £,(t;) to the complex structure
variable z; = e~ . In fact, as discussed above, 7 and
5 are among the periods of the Riemann surface X
Alternatively, they can be obtained from the solutions
to Picard-Fuch’'s equations £; f = 0,

o= @)% - I[ @)%,
Q:>0 Qi<0

where 9; = 9/9z". For the O(K) — P! x P! the
linear differential operators £, ; are

(6.5)

L =02 — 22,0, +0.)(20, + 20, + 1)

, (6.6)
L,=02— 22,00, +0,)(20, + 20, + 1),

wheref, ; = z;,,0/9z . Thereisaconstant solution
fo=1, andnear z; = z, = Otherearetwo logarithmic
solutions f1, f». Theflat coordinatest, 5 are given by
linear combinations of ratios of the periods f;/ fo, i =
1, 2 picked by the correct classical behavior

t=t— (22 +22, + 322+ 1222, + 322+ O(2%)),

§=5— (22 + 22, + 322 + 12,2, + 322+ O(2d)).
(6.7)

Notethat the solutionsare symmetricin z, , except for
the logarithmic term. To expand the disk amplitude
in terms of the flat coordinates we need the inverse
relations z; . (¢:..) for ¢; = e * and ¢, = e~*. Thefirst
few terms of the expansion are

2 = qs — 2¢% — 2q,q2 + 3% + 34,47

— 4g% — 4¢3q, — 442 — 4q.¢3 + O(¢°), ©8)
2 =@ — 2q5q; — 297 + 3¢%q, + 3¢
— A¢3q — 44%¢? — 44.q; — Aq} + O(°),

S

where ¢; = e~fand qs = e 5.
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Table 1. The disk domain wall degeneracies for brane | in
the O(K) — P! x P! geometry for m > 0. Exchanging s
with ¢ yields the result for brane 1.

ks — kt —

0 1 2 3 4 5
m =1
0 1 0 0 0 0 0
1 1 2 3 4 5 6
2 1 10 45 140 350 756
3 1 30 300 1776 7650 26532
4 1 70 1332 13400 91070 472368
5 1 140 4590 72856 736270 5437530
m=2:
0 0 0 0 0 0 0
1 1 2 3 4 5 6
2 2 16 62 180 428 896
3 4 70 552 2856 11280 36828
4 6 224 3130 26336 159078 759200
5 9 588 13420 171720 1503135 10016490
m=3:
0 0 0 0 0 0 0
1 1 2 3 4 5 6
2 4 24 85 230 525 1064
3 11 146 977 4542 16644 51420
4 25 618 6975 50912 278134 1231230
5 49 2070 36637 395818 3068331 18655290
m =4
0 0 0 0 0 0 0
1 1 2 3 4 5 6
2 6 34 112 290 638 1260
3 25 276 1645 7040 24246 71400
4 76 1498 14496 94830 476900 1979098
5 196 6248 91935 870220 6103867 34309080
m =5;
0 0 0 0 0 0 0
1 1 2 3 4 5 6
2 9 46 145 360 770 1484
3 49 482 2640 10592 34674 98028
4 196 3270 28240 169402 795998 3126928
5 635 16642 213083 1816038 11729677 61675880
m = 6.
0 0 0 0 0 0 0
1 1 2 3 4 5 6
2 12 60 182 440 918 1736
3 87 790 4060 15478 48600 132732
4 440 6560 51906 290600 1290870 4840248
5 1764 40050 460355 3604656 21737688 107979508

To get the disk numbersthe only remaining task is
to expand W (u) in terms of open and closed string
flat coordinates. The integrality of the disk amplitude
(2.11) impliesthat we write 9; W (u) = v as

[ee]

DWW (@) =~ > mNik,mlog(1— girgftem?).
ks=0,ks=0
m=—ky

Table 2. Disk degeneracies for brane | in the O(K) —
P! x P! geometry for m = —1.

ks - kt -
0 1 2 3 4 5
0 0 -1 0 0 0 0
1 0 -1 —2 -3 —4 -5
2 0 -1 -10 —45 -140 -350
3 0 -1 -30 -300 -1776 —7650
4 0 -1 =70 -1332 —13400 -91070
5 0 -1 -140 —4590 —72856 736270

In phase | we get the values for numbers of primitive
disks Ny, k, m givenin Table 1.

There is a symmetry which relates the numbers of
disk instantons with negative m to those above. We
have

0 Ifkt—m<07

—Nlcwktfm,m if k. —m > 0. (69)

Nioky,—m = {
Examples are givenin Table 2.

For the numbers of primitive disksfor thebranelll
see Table 3.

Uptotheinvariant No o1 = 2wehave Ny, m =0
for k; < m andfor k; > m thereisasymmetry
(6.10)

Ni.kyom = Niy—m keatm,ms

which reflects the exchange symmetry of s and ¢ for
thebranein phaselll. Theinstantonswith negativem
are absent for k, < |m| and their numbers are related
to those with positive m by

(6.11)

Nks,k‘,,—m = _Nk_<+m,k,—m,m-

Examplesare givenin Table 4.

6.3. O(—3) — P2

The linear sigma model for this geometry has
G = U(1) and four matter fields with charges Q =
(_37 17 17 1)

IXY2+ X227+ |X32 -3 X2 =r.  (6.12)
The base of the toric fibration is shown in the Fig-
ure17.

The D-brane charge can be taken to be ¢; =
(1,0,-1,0), ¢» = (0,1, —0, —1) (the choiceisunique
inal local models), and so

|X1|2 _ |X0|2 = Cl, |X2|2 _ |X0|2 = CZ.
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Table 3. The disk degeneraciesfor branelll inthe O(K) —  Table 4. The disk degeneraciesfor branelll inthe O(K) —

P! x P! geometry for m > 0. P! x P! geometry for m = —1.
ks —ky — ks — ky—
0 1 2 3 4 5 0 1 2 3 4 5
m =1 0 o0 0 0 0 0 0
o 2 2 2 > > 2 1 =2 ) -2 -2 -2 -2
1 0 2 12 40 100 210 2 -2 -12 -0 -100 210 -392
> 0 2 40 310 1520 5628 3 2 40 310 -1520 5628 —17184
3 0 2 100 1520 12908 76488 4 -2 =100 1520 -12908 —76488 —-353316
4 0o 2 210 5628 91070 680940 5 2 210 -5628 -76488 680940 —4515558
5 0 2 392 17184 353316 4515558
m=2: 11
0 0 0 -2 -4 -8 -12 1
1 0 o0 4 32 -140 —448
2 0 0 -8 -140 -1188 —6580
3 0 0 -12 —448 —6580 -58240 I
4 0 0 28 1176  -27840 —370428
5 0 0 24 2688  -97020  -1859648
m=3:
0 0 © 0 2 10 28
1 0 o0 0 10 100 540
2 0 0 0 28 540 5012 _
3 0 0 0 62 2100 317072  Fig. 17. Three phases of the A—brane on O(—3) — P.
4 0 0 0 120 6600 147420 Phases| and || arerelated by Zs symmetry of the P2.
5 0 © 0 210 17820 576212
. . Phasell : ¢t =0,7, > ¢® > 0,
s — Rt —
0 4 5 6 7 1 L
Phaselll : ¢ =¢%, 0< ¢ (6.13)
m =4
o 0 0 -4 —28 -104 Asthe branesin phases | and Il are related by the
: 8 8 -13?1 _ﬁgg _ﬁégg Z5 symmetry of P2, the special Lagrangian D-branes
3 0 0 _300 _9856 _140040  Of the A-model for this Calabi-Yau have two ineguiv-
4 0 0 -720 36036 -787640  alent phases, together with a Z-family of choices of
5 0 ... 0 —-1540 112112 — 3406480 frami ng in each.
m =5 The mirror B-model geometry (seee. g. [34 - 36])
0 o 0 10 84 396  can bewritten as
1 0 0 84 1176 8736
2 0 0 396 8736 96660 — u g vy —t—u—v
z=e"+e" + +
3 0 0 138 45864 724800 rrme Te e L (6.14)
4 0 0 4004 191100 4273840
5 o ... 0 10090 672672 _  wherewe have“solved” Y1+ Y2 +Y3= —¢+3Y°
m =6 byY?=0,Y'=wu,Y2=vandYs=—t —u —v.
0 0 0 6 64 1504 In terms of thes_ne coordinates, the b_rane in phase |
1 0 0 —264 —4224 _35640  propagateson theinternal leg of the Riemann surface
2 0 0  -1504 35640 -427540  wherev ~ 0 and u large of order —t/2, the branein
2 8 8 ;‘15(2)%2 _Sé%gg —3484800  phasell isonu ~ 0, and v ~ t/2, and the brane on
5 0 0o 61152 - ~ external leg hasu ~ v, both being large.

In the variables of (6.14) the classical superpoten-
tial vanishes in phase | and W (u) = [ v(u)du com-
putes the disk instanton generated superpotential.

To compute disk numbers we need the flat coordi-
nate. According to the discussion in Sect. 5, thisis
Phasel : r, > ¢ >0, ¢?=0, given by the difference of superpotentials on the two

Consider three phases of the A-brane that are visible
classically (see Fig. 17).
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N

Fig. 18. The curve P(u,v) = 0 associated to the mirror of
0(=3) — P2,

sides of the domain wall as computed a ong the con-
tour C' on Figure 18. The non-trivial contribution to
u is the exponentially suppressed shift which comes
from the small period on Fig. 18:

a :/ v(u)du = u + A,.
c

We find, using the same kind of methods discussed
for the P! x P! example, that

A, = — +im,

where ? is the closed string period on the contour oy
in Figure 18.

The closed string period can be computed either
directly by integrationon X, or from the Picard-Fuchs
equation with £ = 63 + 326(30 + 1)(39 + 2), where
f = 20, and z = e~t. The solutions to the Picard-
Fuchs equation can be expressed, e. g., as Mger G-
functions[37] and

S L T
n=1

n )3
Theinverse z(%) relation is

2 = q+6¢%+9¢%+56¢* — 300¢°+3942¢°+. . ., (6.15)
where g = et

After rewriting W (u, t) in terms of the flat coordi-
nates u, ¢, and expanding as in (2.11) we obtain the
integer invariants of Table 5.

Table 5. Disk degeneracies for branel or Il inthe O(K) —
P? geometry.

m —k—
012 3 4 5 6 7 8
5 000 0 0 5 -84 1200 -16854
-4 0 0O 0o 2 28 344 4360 -57760
-3 000 1 -10 102 -1160 14274  -185988
-2 0 0-1 4 32 326 -3708 45722  -598088
-1 0 12 12-104 1085 -12660 159208 -2112456
1 1-1 5 40 399 4524 55771 -—729256 9961800
2 0-1 7 61 648 -7661 97024 —1293185 17921632
3 0-1 9 -93 1070 -13257 173601 —2371088 33470172
4 0 -1 12 —140 1750 —22955 312704 —4396779 63460184
5 0 -1 15 —-206 2821 —-39315 559787 —8136830 120497011

Table 6. Disk degeneracies for brane 11 in the O(K) — P
geometry.

m —k—

2 3 4 5 6 7 8

o
=

|
LN

5 32
-4 21
-3 18
-4 20
-5 26
—7 36
-9 52
-12 76

—286
-180
—-153
-160
-196
—260
-365
—528

3038
1885
1560
1595
1875
2403
3254
4578

-35870
—21952
-17910
-17976
—20644
—25812
—34089
—46812

454880
275481
222588
220371
249120
306095
397194
535639

—6073311
—3650196
—2926959
—2869120
—3205528
—3889116
—4981102
—6627840

O~NOUTAWN R
coocooooo
PRRPRRPRPEN

For the phase |11, to compute the integer invariants
we need to change the parameterization of the curve.
Consider the SL(2, Z) transformation

u—u =u—uv,
v—v =v,

which will allow us to compute the superpotential in
phase [l since in these variables the equation of the
phase Il legis«’ = 0. The equation for X written in
the new variables becomes

e e’ +1+e Wt =, (6.16)

upon trivial multiplication by e*". The good flat coor-
dinate for thisphaseis o' = v’ + A, =o' + 15, For
theinteger invariantsin phaselll weget that dy. ,,, =0
for m < 0 and, for positive m, we obtain the values
of Table 6.

From (6.16) we obtain another description of phase
I, whichisat the classical level equivalent to the one
already given, but differes in the quantum theory by
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Table 7. Disk degeneracies for brane | in the O(K) — P
geometry for various choice of the ambiguity n € Z.

m —k—
01 2 3 4 5 6 7 8
n=-1
5 0 0 0 O 0 40 -1274 27885 528934
-4 0 0 0 0 10 -253 4604 -76068 1214324
-3 0 0 0 3 -54 783 11058 157347 -2274642
-2 0 0 1 13 142 -1657 20785 —-274473 3769424
-1 0 1 -4 29 274 3002 -36144 464522 —6262370
1 1 -1 4 -29 274 -3002 36144 —464522 6262370
2 0 0 -1 13 142 1657 -20785 274473 -3769424
3 0 0 0 -3 54 -783 11058 157347 2274642
4 0 0 0 0 10 253 -4604 76068 —1214324
5 0 0 0 O 0 40 1274 -27885 528934
m —k—
0 1 2 3 4
n=1
-4 0 0 0 0 0
-3 0 0 0 0 -1
-2 0 0 0 -1 7
-1 0 1 -1 5 —40
1 1 -2 12 -104 1085
2 -1 4 -32 326 -3708
3 1 -10 102 -1160 14274
4 -2 28 344 4360 57760
n =2
-3 0 0 0 0 0
-2 0 0 0 -1 13
-1 1 -1 4 -29 274
1 1 -4 29 274 3002
2 1 -13 142 -1657 20785
3 3 54 758 -11058 157347
4 10 —253 4608 —76068 1214324
5 40 -1274 27885 -528934 9380474

the relative framing n = —1. The flat coordinate in
the phase I,,-_1 is

since under the SL(2, Z) transformation A, and A,
cancel off. We have also considered other values of
n, i.e the D-branes with shifted v — v/ = uw + nv as
the dynamical field on the brane. First, note that I,,
and I_,+1y (Where I,, denotes the brane in phase /
and with framing n) are related by v — —v + ¢, with
u fixed. Thus, we expect

N} = +N_ D

k,m T k+m,—m

wherem denotestheisboundary classof thedisk. The
integer invariantsfor n = —1,1, 2, givenin Table 7,
clearly respect this.

Integrality of the Bulk Mirror Map

The integrality of mirror map in the bulk, even
though it has been proven in some cases, has not been
physically explained. Here we will connect thisto the
integrality of thenumber of domainwalls Ny, ,,,. Inthe
case I,-_, wecan explicitly show that all coefficients
of theform IV, 1 aredirectly related to the coefficients
of the bulk mirror map and using this relation the
integrality of one follows from the other.

Define the numbers a; by

N [eS)

t—1 -

ez =1+ E a;q°.
i=1

Onecan show theintegrality of a; usingtheintegrality
of the mirror map (6.15). Furthermore one can show,
by explicitly investigating the Taylor series of v(i, ¢),
that

Ny = Pi(ag, ..., ap_1) — ar,

where P, isapolynomial with integer coefficientsin
thea;. E. g. we get

P =-3,
P, =30+ 12a; + a2,

P3 = 420 — 210a4 — 30a§ - af + 12a;, + 2a1ap,
P4 = 6930 + 4200a; + 84042 + 603 + af — 210a;

— 60aiay — 3a§a2 + ag + 12a3 + 2a; a3,

etc.. The proof that all P, are integer polynomialsis
tediousand relieson someformulasfor thederivatives
of v(u, ¢) for this special example. From thisone sees
that theintegrality of N, 1 and a,, are equivalent, and
the integrality of a, follows from the integrality of
themirror mapinthe bulk (6.15), and vice-versa. The
integrality of the mirror map in the bulk had not been
physically explained before. Here, by relating it to the
integrality of numbers of domain walls IV, ; we have
found a physical explanation for it. The integrality of
Ni,m m 7 1 requires special properties of the a; and
seems much more involved.

6.4. O(K) — Fy

Consider a CY geometry containing the blowup
of P? a one point, which we denote by F;. The
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Fig. 19. Toric base of O(K) — F; and the A-brane in
three phases. O(K) — F1 can be viewed as a blowup of
O(—3) — P? at apoint by aP* of sizer,.

charges describing the gauged linear o-model on the
non-compact Calabi-Yau are @, = (—2,0,0,1,1)
and @ = (-1,1,1,-1,0), so the corresponding
D-terms are

X3P+ XY - 21X = 1,

(6.17)
X2+ [ X2 — | X0 — | X3P =1y,
where r, and r; are the areas of the base and the
fiber of the Hirzebruch surface F;. The equations are
“solved” inFigure 19. Thethreefol d hastwo classes of
divisors: H coming from P? itself and the exceptional
divisor E with H2 = 1, F2 = —1and EH = 0.
The charge vectors (or generators of the mori-cone)
correspond to the fiber FF = H — E and the base,
which is E. Note that @, + Q5 = Qpz With Qpz is
thechargefor the O(—3) — P, and correspondingly
E+F=H.
The A-brane charges are again such that the brane
is special Lagrangian, e.g. ¢* = (—1,1,0,0,0) and
¢*> =(—1,0,0,0, 1) which defines the moduli ¢y, c5:

X = X =y,
X4 = X0 = o

Wewill consider the following 3 phases (out of atotal
of 8 possibilities)®

Phasel : (r,+7s)/2>¢1>0c2=0,

Phasell : ¢1=07r,/2> ¢y >0, (6.18)

Phaselll :7;/2>c¢1 >0 ca=7.
Themirror of O(K) — Fy isgivenby

xz=1+e +e "V e Ve e, (6.19)

8We have checked that all other phases also lead to integral
expansions for disk amplitudes.

Table 8. Disk degeneraciesfor branel and Il inthe O(K) —
F1 geometry.

ke —kf—

0 1 2 3 4 5
m = —5:
Phase I1:
5 0 1 -6 14 -14 5
6 0 2 -30 140 -280 252
Phase I:
5 0 0 0 0 0 0
6 0 0 0 0 0 42
m = —4;
Phase I1:
4 0 1 —4 5 -2 0
5 0 2 -20 60 -70 28
6 0 3 -68 400 -936 -344
Phase |:
4 0 0 0 0 -2 0
5 0 0 0 0 -14 28
6 0 0 0 0 52 308
m = =3
Phase I1:
3 0 1 -2 1 0 0
4 0 2 -12 20 -10 0
5 0 3 -45 170 -230 102
6 0 4 -130 958 —2612 2940
Phase I:
3 0 0 0 1 0 0
4 0 0 0 5 -10 0
5 0 0 0 14 -90 102
6 0 0 0 31 —450 1428
m = =2
Phase I1:
2 0 1 -1 0 0 0
3 0 2 -6 4 0 0
4 0 3 -28 57 -32 0
5 0 4 -90 424 —664 326
6 0 5 -237 2172 -6872 8640
Phase |:
2 0 0 -1 0 0 0
3 0 0 -2 4 0 0
4 0 0 —4 28 -32 0
5 0 0 -6 112 -390 326
6 0 0 -9 336 —2500 5638

where z, = e~ z; = 7', and we have solved
the mirror relations in terms of Y = u, Y* = .
with Y0 = 0. The mirror of the brane in phase | has
u ~ (t, +1t5)/2 as a variable with v ~ 0, IT has
v ~ ty/2 as avariable with u ~ 0 on the relevant
leg of thetoric diagram. One finds using the methods
discussed for the P* x P! example, that

Auﬂ, = (tf —’t\f)'i'l.ﬂ'.
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Table 8 (continued). Table 8 (continued).

ks —ky— ks —ky—

0 1 2 3 4 5 0 1 2 3 4 5

m=—1: m=3:

Phase I1: Phase II:

1 A 1 0 0 0 0 0 0 0 0 0 0 0

2 0 2 2 0 0 0 1 0 1 0 0 0 0
3 0 3 -15 12 0 0 2 0 -2 9 0 0 0
4 0 4 80 160 ~104 0 3 0 -3 48 —93 0 0
5 0 5 175 1080 1995 1085 4 0 -4 155 -884 1070 0
Phase |- 5 0 -5 300 4682 15134 -13257

1 0 1 0 0 0 o Phesl

2 0 1 2 0 0 0 0 0 0 0 0 0 0
3 0 1 -10 12 0 0 1 1 -1 0 0 0 0
4 0 1 -30 120 ~104 0 2 4 13 9 0 0 0
5 0 1 -70 648  —1596 1085 3 1 -85 167 -93 0 0
m =1 4 25 382 1555 2268 1070 0
Phase |I- 5 49 1344 9813 27584 32323 13257
0 1 0 0 0 0 0o m=4&

1 0 1 0 0 0 o  Phasell

2 0 -2 5 0 0 0 0 0 0 0 0 0 0
3 0 -3 30 —40 0 0 1 0 1 0 0 0 0
4 0 4 105 432 3099 0 2 0 2 12 0 0 0
5 0 -5 280 -2520 6370 4524 3 0 -3 60 ~140 0 0
Phase |- 4 0 4 188  -1260 1750 0
0 L 0 0 0 0 0 5 0 -5 460 6397 23482 22955
1 1 A 0 0 0 o  Phesel:

2 1 5 5 0 0 0 0 0 0 0 0 0 0
3 1 -20 59 -40 0 0 1 1 -1 0 0 0 0
4 1 50 356 706 399 0 2 6 18 12 0 0 0
5 1 -105 1500 —6244 9372 4524 3 25 155 270 -140 0 0
=2 4 76 -887 3056 -3995 1750 0
Phase |I- 5 196 -3873 23040 56429 60021 22955
0 0 0 0 0 0 0 m=3

1 0 -1 0 0 0 o Phesll

2 0 2 7 0 0 0 0 0 0 0 0 0 0
3 0 -3 38 -61 0 0 1 0 -1 0 0 0 0
4 0 4 128 616 648 0 2 0 2 15 0 0 0
5 0 -5 330 -3420 9744  —7661 3 0 -3 74 —206 0 0
Phase |- 4 0 4 225 1772 2821 0
0 0 0 0 0 0 o Phesl

1 1 -1 0 0 0 0 0 0 0 0 0 0 0
2 2 9 7 0 0 0 1 1 1 0 0 0 0
3 4 43 100 61 0 0 2 9 24 15 0 0 0
4 6 —147 756 -1263 648 0 3 49 264 421 —206 0 0
5 9 406 3920 13122 17260 7661 4 196 1876 5700 6841 2821 0

Thenumbersof primitivedisksin these two phases
arelisted in Tabel 8.

We consider now the phase I11, for which we must
changethe parameterization of thecurveby v — u' =
—t, — u, if we are to have the superpotential which
is zero classicdly. In this phase, v is the transverse

coordinate on the brane. The correction to the flat
coordinate is again found by requiring integrality of
the amplitude, and we find that

f;:v+AU:v+tf—ff.

The disk numbersfollow (Table 9).



26 M. Aganagic et al. - Disk Instantons, Mirror Symmetry and the Duality Web

Table 9. Disk degeneraciesfor branelll inthe O(K) — H.

Table 9 (continued).

ks —kf— ks —kf—
0 1 2 3 4 5 o 1 2 3 4 5

m=1 m =4

0 1 4 0 0 0 0 0 0 -1 4 -5 2 0

1 0 -2 2 0 0 0 1 0 =2 20 —60 70 28

2 0 -3 15 -12 0 0 2 0 -3 68 —400 936 -945

3 0o -4 60 -160 104 0 3 0 -4 180 1912 7910 —15030

4 0 -5 175  -1080 1995 -1085 4 0 5 412 729 49096 -155035

5 0 -6 420 5040 19110 27144 5 0 —6 840 23520 243558  -1185830

6 0 -7 882 18480 124033  —337617 6 0 —7 1576 66660 1015960  —7246659
m =1L m=—4:

0 0 o0 0 0 0 0 0 0 o0 0 0 0 0

1 -1 o0 0 0 0 0 1 0 O 0 0 0 0

2 0 1 0 0 0 0 2 0 0 0 0 0 0

3 0 2 -5 0 0 0 3 0 o0 0 0 0 0

4 0 3 3 40 0 0 4 0 O 0 0 0 0

5 0 4 -105 432 -399 0 5 0 1 0 0 0 0

6 0 5 -280 2520 6370 4524 6 0 2 12 0 0 0
m=2: m =5:

0 0 -1 1 0 0 0 0 0 -1 6 -14 14 -5

1 0 -2 6 -4 0 0 1 0 -2 30 -140 280 —252

2 0 -3 28 57 32 0 2 0 -3 95 -810 2870 -4858

3 0o -4 90 —424 664 -326 3 0 4 240 3472 20150 56728

4 0 -5 237 2172 6872 -8640 4 0 -5 525 12156 109167 —475047

5 0 -6 532  -8640 48208 114774 5 0 -6 1036 36648 487382  -3116370

6 0 -7 1072 28578 258516  —1023679 6 0 —7 1890 98340 1869595  —16909871
m=-=2 m = —5:

0 0 o0 0 0 0 0 0 0 o0 0 0 0 0

1 0 o0 0 0 0 0 1 0 © 0 0 0 0

2 0 o0 0 0 0 0 2 0 o0 0 0 0 0

3 0 1 0 0 0 0 3 0 o0 0 0 0 0

4 0o 2 -7 0 0 0 4 0 O 0 0 0 0

5 0 3 -38 61 0 0 5 0 0 0 0 0 0

6 0 4 -128 616 —648 0 6 0 1 0 0 0 0
m=3:

0 0 -1 2 ] 0 o Sheldon Katz, Chiu-Chu Liu, Marcos Marino, Cliff

1 0o =2 12 -20 10 0  Taubes, Shing-Tung Yau and Eric Zadow for very

2 0 -3 45 -170 230 -102 i ;

% le di ns.

3 0 -4 130 -958 2612 —2940 aluable discussions ) )

4 0 -5 315 _4116 19750 _41996 Theresearch of M.A. and C.V. is supported in part

5 0 -6 672 -14520 112970  -398970 by NSF grantsPHY-9802709 and DMS9709694. The

6 0 -7 1302 44073 525031 2854610  research of A.K. issupported in part by the GIF grant
m= =3 [-645-130.14/1999.

0 0 o0 0 0 0 0

> e g J g 0 Appendix. LargeN Limit of Chern-Simonsand

3 0 0 0 0 0 0 Framing of the Knot

4 0 1 0 0 0 0 . . .

5 0o 2 -9 0 0 0 Asdiscussedin Sect. 5, Wilson loop observables of

6 0o 3 48 93 0 0 Chern-Simonstheory at large V arenaturally encoded

in terms of the expectation values
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whereV isviewed asasource and U isthe holonomy
of the connection along the loop. If we are interested
in extracting the amplitudes with a single hole, we
consider terms on theright hand side of theform triv/™
in the exponent. Thiswill correspond to contributions
where the large N worldsheet wraps n times around
the loop. From the left-hand side thisis equivalent to
computation of

1 n
<EtrU ).
For aspecia choice of framing of the unknot thiswas
computed in [4] and it was shown that

<%trU”> = %trU&,

where Uy is a particular element of SU(XN) given by
a diagonal matrix with entries exp(=(E=21), as
ranges from 1 to V. This leads, in the leading order
in g,, corresponding to disk amplitude (¢ = 0 and one
hole), to

1. \v_ 1
(st = o exPlnt/2) — exp(—nt/2)],
where in the large ¢ limit, and by redefining the V/
(and absorbing a factor of exp(¢/2) init) we obtain
the C3 answer for the disk amplitude

— Z —trV”

(where we haveidentified in this paper V' = e*).

Now we ask what happens if we choose a differ-
ent framing. For the expectation value of the Wilson
loops with holonomiesin agiven representation R of
SU(N) the answer isrelatively simple:

= (TrrU)oexp(2rip s

kN)

<TrR U>
where p denotes the change in the framing from a
given one denoted by 0 (characterized by an element
of topological class of winding of an S* over an 1),
and hr denotes the Casimir of the representation. In
other words, the result of the change in framing is a
multiplication by exp(gsphr).
However we need to compute the correlation func-
tion for (trU™) which isthe trace in the fundamental

representation of U™. To find the change in this cor-
relation function due to change in framing, we will
first haveto writeit in terms of trace of U in different
representations, compute each one, and multiply each
one with exp(gsphgr).

Thereisanidentity whichisuseful for thispurpose:

n—1

rU” =y (—=1)°Trg, .U,
s=0

where R,, s denotes representations of SU(V) with
n boxes for the Young Tableau which looks like ‘ I
and which consists of only one non-trivial row and
one non-trivial column. s + 1 denotes the number of
elementsin thefirst column.

Combining al this, we find that the coefficient of
trvV™ for the unknot and with framing number p is
given by

n—1

1
Z( 1 exp(pgshr, )Trr, .Uo
s=0

1
( trUm) =

We are interested in extracting the disk amplitude
which is the leading term for this expansion as
gs — 0. Moreover we will be interested in the limit
where t — oo, but where we rescale V' by a fac-
tor of ¢*/2 so that we would be computing the brane
in the C3 geometry. The most complicated aspect of
this computation is finding Trz,, , Uo. We will reduce
this computation to a group theory computation as
follows: Let

Trr, Uo= > off H[ton]"
Ezn =n i=1

for some group theoretic factor aff;‘ . Using thisand
the leading computation at large N for the unknot
with the standard framing, we can reduce the above
computation to

n—1

L Z( 1) exp(pg.fin, )

( =ty =

Using this and the fact that up to a further redefi-
nition of V' and dropping a subleading term in g,
hr,. = 3n(n — 1 — 2s) we have computed the
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above expression for n = 1,2, 3 and found perfect
match with the result of the computation done for
C® when we shift w — u + pv. Moreover we have
verified that we obtain for all » a polynomial of de-
gree n — 1in p in agreement with the results of C3.
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