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We consider single-crystal plasticity in the limiting case of infinite latent hard-
ening, which signifies that the crystal must deform in single slip at all material
points. This requirement introduces a nonconvex constraint, and thereby in-
duces the formation of fine-scale structures. We restrict attention throughout to
linearized kinematics and deformation theory of plasticity, which is appropriate
for monotonic proportional loading and confers the boundary value problem of
plasticity a well-defined variational structure analogous to elasticity.
We first study a scale-invariant (local) problem. We show that, by develop-
ing microstructures in the form of sequential laminates of finite depth, crystals
can beat the single-slip constraint, i. e., the macroscopic (relaxed) constitutive
behavior is indistinguishable from multislip ideal plasticity. In a second step,
we include dislocation line energies, and hence a lengthscale, into the model.
Different regimes lead to several possible types of microstructure patterns. We
present constructions which achieve the various optimal scaling laws, and dis-
cuss the relation with experimentally known scalings, such as the Hall-Petch
law.

1 Introduction

The effective behavior of ductile single crystals is the macroscopic manifestation of processes of
crystallographic slip occurring on the scale of the crystal lattice, and is known to be mediated by
the formation of dislocation structures. Such effective behavior includes yielding, work hardening
rates and scaling laws such as the Hall-Petch relation [20, 44], i. e., the inverse square-root de-
pendence of the yield stress on grain size in polycrystalline metals. In most crystals, slip occurs
on well-characterized crystallographic planes and directions, known as slip systems. The observed
microstructures often consist of ostensibly dislocation-free cells or lamellae in which a small number
of slip systems is activated [46, 50, 37, 19, 48, 28, 26].

This segregation of slip activity, or patchy slip, is closely connected with a fundamental property
of ductile single crystals known as latent hardening, namely, that single crystals exhibit much higher
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rates of hardening in multiple slip than in single slip. Indeed, the phenomenon of latent hardening
was inferred from the patchy slip patterns by Piercy et al. who argued that “these results prove the
reality of latent-hardening, in the sense that the slip lines of the one system experience difficulty in
breaking through the active slip lines of the other one” ([46], p. 337). This conjectured connection
between strong latent hardening and patchy slip was born out by the finite-element calculations
of Pierce et al. [45], where single-crystal specimens endowed with strong latent hardening and
subjected to uniaxial tension exhibit nonuniform slip patterns consisting of alternating regions of
single slip.

The strong latent-hardening property of ductile single crystals has been quantified by means of
specially designed experiments [31, 16, 17, 54, 5]. The presence of strong latent hardening implies
that crystals have an incentive, in work of deformation terms, to deform in single slip and avoid
multiple slip. More precisely, the work of deformation expended in deforming a crystal into a
deformation field composed of regions of single slip may be less than the work or deformation
required to attain the same average or macroscopic deformation by multiple slip [42, 43]. Ortiz and
Repetto [42] showed that strong latent hardening renders the incremental variational problem of
single-crystal plasticity non-convex, and on this basis they argued that microstructural formation
in ductile single crystals is a manifestation of non-attainment.

An additional fundamental property of single crystals is the dependence of their behavior on
the size of the sample, be it the grain size, wire diameter, film thickness, or some other limiting
feature size. This dependence is sometimes referred to as size effect. A classical manifestation
of this size effect is the aforementioned Hall-Petch effect. Material models which are sensitive to
the size of the sample are necessarily nonlocal and contain intrinsic length-scale parameters. The
intrinsic length scale which renders the behavior of crystals nonlocal is the length scale of the atomic
lattice. Indeed, the core energy of the dislocations depends sensitively on the Burgers vector, whose
length is in turn commensurate with the lattice parameter. Ortiz et al. [42, 43, 4] have shown that
consideration of core energies results in scaling behavior consistent with the Hall-Petch relation
and with experimental observations of the dependence of the microstructural size on macroscopic
deformation [55, 6, 27, 26, 25, 21].

In this paper we address two main problems concerning:

P1) The effective constitutive behavior of single crystals in the local approximation.

P2) The dependence of the behavior of crystals on the sample geometry.

The chief analysis tool which we bring to bear on problem (P1) is relaxation, whereas the main
objective in connection with problem (P2) is the determination of optimal scaling laws. In related,
but different, problems this kind of scaling results have been studied in the physics literature
[34, 35, 24, 47] and more recently mathematically in [32, 33, 13, 10, 11, 29, 7, 12]. In order to
facilitate the analysis we make a number of simplifying assumptions. Firstly, we restrict attention
throughout to linearized kinematics and deformation theory of plasticity. This latter theory of
plasticity is obtained when all material points are assumed to follow certain optimal deformation
paths (see, e. g., [36] and references therein) and confers the boundary value problem of plasticity a
well-defined variational structure analogous to elasticity. Deformation theory of plasticity provides
an appropriate description of plastic solids deforming under the action of monotonic proportional
loading. Secondly, we shall assume that the crystals exhibit no hardening, or ideal plasticity, in
single slip. This assumption is justified as most crystals exhibit easy glide, i. e., low or vanishing
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rates of hardening, in single slip. Finally, following [42, 4] for simplicity we study the limiting case
of crystals exhibiting infinitely strong latent hardening. We take this property to signify that the
crystal must necessarily deform in single slip at all material points. This requirement introduces a
nonconvex constraint which renders the variational problem nonconvex.

The main results of the paper are as follows. We show that, by developing microstructures in
the form of sequential laminates of finite depth, crystals can beat the single-slip constraint, i. e., its
relaxed constitutive behavior is indistinguishable from multislip ideal plasticity. We find, however,
that for some average deformations relaxation of the single-slip constraint requires the formation
of concentrated slip in the microstructure, such as occurs in slip lines, i. e., lines of concentrated
slip and discontinuous displacement. Including dislocation line energies into the model, the results
become scale-dependent, and different patterns are formed in different regimes. We present con-
structions which lead to various optimal scaling laws, and discuss the relation with experimentally
known scalings.

2 The variational problems of single-crystal plasticity

In this section we define the variational problems which govern deformations of a ductile single
crystal occupying a domain Ω ⊂ R

3. We shall assume throughout linearized kinematics and we let
u : Ω → R

3 be the displacement field, β(u) = ∇u : Ω → R
3×3 the displacement-gradient field, and

ǫ(u) : Ω → R
3×3
sym the strain field corresponding to u, which is defined by

ǫ(u) = βsym = ∇usym.

Here and below, βsym = (β+βT )/2 denotes the symmetric part of a matrix β. Plastic deformation in
single crystals is crystallographic in nature, and, for monotonic deformations, the plastic distortion
tensor admits the representation

βp(γ) =

N
∑

i=1

γi si ⊗ mi,

where γi ∈ R is the slip strain on system i, si and mi are the slip direction and plane normal
corresponding to slip system i, respectively, N is the number of slip systems and ⊗ denotes the
dyadic product of two vectors, (a⊗b)ij = aibj. We shall denote the set of slip systems {si⊗mi}i=1..N

by S. The corresponding plastic strain is

ǫp(γ) = (βp(γ))sym =
1

2

[

βp(γ) + βpT (γ)
]

.

Plastic deformation resulting from conservative glide of dislocations are characterized by slip di-
rections contained within the slip plane, and correspondingly do not change the specific volume of
the material, i. e.,

si · mi = 0.

The slip systems of the various crystal classes have been determined experimentally (e. g., [23]).
Face-centered cubic (fcc) crystals typically show activity on the twelve slip systems belonging to
the class of {111} planes and [110] directions, listed in Table 2.1, whereas body-centered cubic
(bcc) crystals show activity in the twenty-four systems consisting of planes in the classes {211} and
{110} and slip directions of type [111], listed in Table 2.2.
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System B2 B4 B5 A3 A2 A6

Direction ±[01̄1] ±[101̄] ±[1̄10] ±[101] ±[011̄] ±[1̄1̄0]

Plane (111) (111) (111) (1̄11) (1̄11) (1̄11)

System C1 C3 C5 D4 D1 D6

Direction ±[011] ±[1̄01̄] ±[11̄0] ±[1̄01] ±[01̄1̄] ±[110]

Plane (1̄1̄1) (1̄1̄1) (1̄1̄1) (11̄1) (11̄1) (11̄1)

Table 2.1: The set S of slip systems for fcc crystals relative to the cubic axes, and Schmid
and Boas’ nomenclature. For each slip system, the slip direction s and the slip-plane normal
m are given.

System Direction Plane System Direction Plane

A2 [1̄11] (01̄1) A2′ [1̄11] (211)
A3 [1̄11] (101) A3′ [1̄11] (121̄)
A6 [1̄11] (110) A6′ [1̄11] (11̄2)
B2 [111] (01̄1) B2′′ [111] (2̄11)
B4 [111] (1̄01) B4′ [111] (12̄1)
B5 [111] (1̄10) B5′ [111] (112̄)
C1 [111̄] (01̄1) C1′ [111̄] (21̄1)
C3 [111̄] (101) C3′′ [111̄] (1̄21)
C5 [111̄] (1̄10) C5′′ [111̄] (112)
D1 [11̄1] (01̄1) D1′′ [11̄1] (211̄)
D4 [11̄1] (1̄01) D4′′ [11̄1] (121)
D6 [11̄1] (110) D6′′ [11̄1] (1̄12)

Table 2.2: The set S of slip systems for bcc crystals relative to the cubic axes, and Schmid
and Boas’ nomenclature. For each slip system, the slip direction s and the slip-plane normal
m are given.

In order to further streamline the analysis we shall idealize crystals as possessing no self-
hardening and infinite latent hardening. These assumptions lead to the consideration of a stored
plastic-work function of the form

W p(γ) =

{

τi|γi| if γj = 0, ∀j �= i
∞ else,

where τi is the critical resolved shear stress of the crystal. All symmetry-related systems have the
same value of τi, so that for example in fcc crystals there is only one value of τ . We note that,
owing to the infinite latent-hardening assumption, W p is infinity for plastic deformations other
than single-slip deformations of the form

βp(γ) = γisi ⊗ mi

for some i ∈ {1, . . . , N} and slip strain γi ∈ R. The free-energy density of the crystal is

A(β, γ) =
1

2
(C (ǫ − ǫp(γ)), (ǫ − ǫp(γ))) + W p(γ)
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where C are the elastic moduli of the crystal, which are assumed constant and positive definite,
and as above ǫ = βsym. Finally, the strain-energy density of a uniformly deformed crystal at
displacement gradient ∇u = β = constant is

W (β) = min
γ∈RN

A(β, γ) . (2.1)

We note that W (β) vanishes for linearized rotations, i.e. W (ω) = 0 for all ω ∈ so(3) = {ω ∈ R
3×3 :

ω = −ωT }. Further, W (β) has linear growth along the single-slip orbits

β = γisi ⊗ mi + ω

(for some i ∈ {1, . . . , N} and ω ∈ so(3)), and quadratic growth in all other directions.
In Section 3 we study the relaxation of the local energy functional

I(u) =

∫

Ω
W (∇u)dx . (2.2)

By local we mean that the energy density only depends on the strain ∇u and does not contain,
for example, strain-gradient terms. This makes the problems scale-invariant. It bears mention
that standard theory shows that the relaxation J(u) of I(u) extends in the obvious way in the
presence of continuous perturbations such as body forces (e. g., [15, 8], we use here the strong
L1 topology, see Section 3). The results obtained in the sequel are thus applicable to the general
boundary value problem which governs the quasistatic deformations of single crystals subjected to
body forces and displacement boundary conditions on part of ∂Ω. Standard theory also provides
a compelling connection between the minimizers of J(u) and I(u). Thus, for instance, if I(u) is
coercive, it follows that J(u) is also coercive and lower semi-continuous and, hence, has a minimum
point in an appropriate larger space X. Furthermore, infu∈X I(u) = infu∈X J(u) and every cluster
point of a minimizing sequence of I(u) is a minimum point of J(u) in X. Finally, every minimum
point of J(u) is the limit of a minimizing sequence of I(u) in X. These properties of relaxation
show that, if one is interested in the macroscopic behavior, the functional I(u) can be replaced
without loss of information by the better-behaved functional J(u). Indeed, minimizing sequences
of I(u) correspond to microstructures, and minimizers of J(u) characterize their average properties.

The local functional (2.2) lacks an intrinsic length scale and, consequently, cannot predict mi-
crostructural sizes. In particular, the relaxed functional J(u) is itself local and independent of the
choice of domain Ω. The local character of the theory is lost as soon as the core energy of the
dislocations is taken into account, since consideration of core energies brings an intrinsic length
into the theory, namely, the lattice parameter. The connection between deformation fields and dis-
location structures may be established readily by recourse to the theory of continuously distributed
dislocations (e. g., [39]). While the displacement-gradient field β(x) is subject to compatibility
requirements, the plastic-distortion field βp(x) need not be compatible in general. Following Nye
[40], the dislocation density tensor is defined as

α = curlβp(γ) (2.3)

or, in components, αlk = βp
li,jεjik, with εjik denoting the components of the permutation tensor.

It is evident from (2.3) that α is a measure of the incompatibility of βp. Following [42, 43], the
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dislocation core energy may be taken into account by means of a simple line-tension model. This
extension results in the functional

E(u, γ) =

∫

Ω
[A(∇u, γ) +

T

b
|curlβp(γ)| ] dx (2.4)

where T is the dislocation line tension and b is the Burgers vector length, which is of the order
of the lattice parameter. It is readily verified that, when α represents a collection of discrete
dislocation lines, the second term in the energy (2.4) is T times the total dislocation length in Ω, as
required. The nonlocal functional (2.4) is discussed in Section 4, under some additional simplifying
assumptions on the active set of slip systems.

3 Relaxation of the local energy

Let Ω ⊂ R
3 be a bounded Lischitz domain, and Γ ⊂ ∂Ω an open subset of its boundary on which

we impose Dirichlet boundary conditions. For a given u0, we consider the functional

IΓ(u) =

{

∫

Ω W (∇u)dx if u ∈ W 1,2(Ω, R3) , u = u0 on Γ

∞ else,
(3.1)

where the energy density W was defined in (2.1). Here and in the following, the values on Γ are
understood in the sense of traces, and u0 is assumed to have enough regularity for the functional
to make sense. This means u0 ∈ H1/2(Γ) for I(u), the relaxed functional will allow for u0 in the
larger space L1(Γ). An additional term containing body tractions of the form

T (u) =

∫

Ω
u · f dx

for some fixed f ∈ L∞(Ω) is a continuous perturbation of I, and can be included without any
change in all statements. Precisely, if J(u) is the relaxation of I(u), then J(u) + T (u) will be the
relaxation of I(u)+T (u). A similar continuity result holds for the case of surface tractions, since all
finite-energy u have a trace in L1(∂Ω) (see below). However, since the functional has linear growth,
strong surface tractions can disrupt coercivity, and even positivity, of the functional. Hence only
weak surface tractions can be seen as a continuous perturbation , see e.g. [3] (this corresponds to
the so-called safe-load condition).

The functional I(u) is not lower semicontinuous, and minimizing sequences form fine-scale os-
cillations. Indeed, the energy density W only allows for single-slip plastic deformation, whereas a
variety of multiple-slip deformations can be obtained by mixing on a fine scale different single-slip
deformations. Aim of this section is to obtain the relaxation of (3.1), which describes the macro-
scopic material behavior, averaged over such fine scale structures. We recall that it is characterized
by the two properties

(i) Lower bound. For each sequence uh converging to u one has

J(u) ≤ lim inf
h→∞

I(uh)
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(ii) Recovery sequence. For each u, there is a sequence uh converging to u such that

J(u) = lim
h→∞

I(uh) .

We now specify the topology for the mentioned convergences and the space on which J is defined.
Both are determined by the coerciveness of the original functional I(u). In particular, since

W (β) ≥ c|βsym| + c|Tr β|2 , (3.2)

we have that, on any low-energy sequence uh, div uh is uniformly bounded in L2, and ∇usym
h in L1.

However, W (∇u) is independent of the antisymmetric part of ∇u, and control of ∇usym
h in L1 does

not imply an analogous control of ∇uh in L1 (recall that Korn’s inequality does not hold in L1, see
[41, 14]). The appropriate space, whose norm corresponds directly to the one entering (3.2), is

U(Ω) =
{

u ∈ BD(Ω, R3) : div u ∈ L2(Ω)
}

(see [51, 53]). We recall that the space BD is defined as the set of L1 functions whose symmetrized
distributional gradient Eu = Du + DuT is a finite measure. The spaces BD(Ω) and U(Ω) have
been introduced and studied in the context of Hencky plasticity [51, 2, 53, 3, 22, 52, 9, 1], where
the energy density has the same coercivity properties stated in (3.2), but is convex. The theory of
the functions of bounded deformation proceeds in many ways analogously to the one of functions
of bounded variation (i.e. those for which the full gradient Du is a finite measure), but BD is a
strictly larger space, and several fine properties are still open [1].

All low-energy sequences for I(u) are uniformly bounded in U(Ω), with the seminorm

‖u‖U(Ω) = ‖div u‖L2(Ω) + |Eu|(Ω) ,

and by a standard compactness result [53, 2] they have a subsequence that converges strongly
in L1 (up to global translations). Therefore in the definition of the relaxation we can use the
topology given by the L1 norm. The two properties characterizing J(u) show then that it is lower
semicontinuous with respect to the strong L1 convergence. By the above argument, the very same
topology makes minimizing sequences of I (and hence of J) compact, hence one immediately obtains
existence of minimizers for J .

The determination of the relaxation of I(u) is based on the determination of the appropriate
envelope for the energy density W . Since W does not have a uniform growth at infinity, standard
results do not apply. We present here an explicit derivation of the relaxation, where this difficulty
is circumvented by resorting to convexity. We start by a definition of the quasiconvex envelope
W qc,

W qc(β) = inf

{

∫

(0,1)3
W (∇u) dx : u ∈ W 1,∞ , u(x) = βx on ∂(0, 1)3

}

(3.3)

(see e.g. [38]). This definition shows that replacing W by W qc amounts to optimizing over all
possible gradient fields. The concept of quasiconvexity was introduced by Morrey in 1952 to study
existence for variational problems depending on a gradient field, and has proven very useful in
the analysis of solid-solid phase transitions (see e.g. [38, 30] and references therein). In general,
the quasiconvex envelope is different from the convex one, and much more difficult to compute.
Indeed, only for very few realistic energies W the analytic expression for W qc has been found.
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In the present case, we shall show that (under some assumptions on the set of slip systems) the
quasiconvex envelope coincides with the convex hull W ∗∗. This will be the key ingredient for the
explicit evaluation of the relaxation J(u).

We start from a characterization of W ∗∗, which corresponds to averaging over all possible local
strain distributions, neglecting the gradient constraint. The same energy W ∗∗ is obtained if one
neglects latent hardening (Section 3.1). Then we discuss some simple mixtures which satisfy the
gradient constraint, called laminates, and present our kinematic assumption on S (Section 3.2).
In Section 3.3 we turn to the full problem I(u), and give its relaxation first without boundary
conditions (i.e. assuming that Γ = ∅), which is simpler to obtain. The equality of the quasiconvex
and convex hulls is proven in Section 3.4, and the applicability of our result to fcc and bcc crystals
in Section 3.5. Finally, in Section 3.6 we discuss the minimal complexity of the microstructure
patterns for some specific average shears, and, in Section 3.7, we generalize the relaxation of J(u)
to the case where Dirichlet boundary conditions are imposed.

3.1 The convex hull

The convex envelope of W is defined as usual by

W ∗∗(β) = inf

{

∑

i

λiW (βi) : λi ≥ 0,
∑

i

λi = 1, βi ∈ R
3×3

}

.

Replacing W with W ∗∗ in the energy density I(u) corresponds to neglecting latent hardening, i.e.,
to permitting each material point to deform at the same time along several slip systems (multislip
plasticity). In particular, W ∗∗ corresponds to optimizing locally over all mixtures between the
different slip systems, without considering the gradient constraint.

Lemma 3.1. With the above definitions, a positive definite elasticity matrix C, and a set of slip
systems S such that (si ⊗ mi)

sym span the set of traceless symmetric matrices, the following holds:

(i) W ∗∗ satisfies
W ∗∗(β) = min

γ∈RN
A∗∗ (β, γ) (3.4)

where A∗∗ is the convex envelope of A, and satisfies

A∗∗(β, γ) =
1

2
(C (ǫ − ǫp(γ)) , (ǫ − ǫp(γ))) +

∑

i

τi |γi| . (3.5)

Here ǫ = βsym and ǫp(γ) =
∑

γi (si ⊗ mi)
sym.

(ii) W ∗∗ has linear growth on traceless symmetric matrices and quadratic on the trace; precisely,
there are constants c, c′ such that

c
(

|βsym| + |Tr β|2 − 1
)

≤ W ∗∗(β) ≤ c′
(

1 + |βsym| + |Tr β|2
)

. (3.6)

Proof. Equation (3.4) is a direct consequence of the following general fact: for x ∈ R
n, y ∈ R

m, let
f(x) = infy g(x, y). Then, the convex envelopes satisfy f∗∗(x) = infy g∗∗(x, y). To see this, observe
that by definition

f∗∗(x) = inf

{

∑

i

λif(xi) :
∑

i

λixi = x

}

= inf

{

∑

i

λig(xi, yi) :
∑

i

λixi = x, yi ∈ R
m

}

,
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where the λi’s are implicitly assumed to be nonnegative weights with sum one. On the other hand,

g∗∗(x, y) = inf

{

∑

i

λig(xi, yi) :
∑

i

λixi = x,
∑

i

λiyi = y

}

.

By taking f = W , g = A, we obtain (3.4). Attainment follows from continuity of A∗∗ and the
growth A∗∗(β, γ) ≥ c|γ|.

We now show that the convex hull of A is given by (3.5). Indeed, let Ã be the function defined
in the right-hand side of (3.5). Since Ã is convex and less than or equal to A, we get Ã ≤ A∗∗. To
show equality, fix some (β, γ), and consider the convex combination given by

λi =
|γi|

∑

j |γj |
, γ(i) =

∑

j

|γj |
γi

|γi|
ei , β(i) = β − ǫp(γ) + ǫp(γ(i)) .

A straightforward computation shows that

∑

λi = 1 ,
∑

λiγ
(i) = γ ,

∑

λiβ
(i) = β ,

∑

λiA(β(i), γ(i)) = Ã(β, γ)

hence Ã ≥ A∗∗ and (3.5) is proven.
Finally, the growth condition (3.6) follows from the fact that the slip systems (si ⊗mi)

sym span
the set of symmetric traceless matrices, and that c|ǫ|2 ≤ (Cǫ, ǫ) ≤ c′|ǫ|2.

3.2 Laminates and completeness of the set of slip systems S
Even if ∇u is locally a single-slip deformation, the formation of fine-scale structures permits to ob-
tain macroscopic (average) plastic deformations which are not single-slip. However, those structures
must obey the gradient constraint, i.e., only those mixtures which are curl-free can be realized by
β = ∇u. The prototype is a laminate, which is a mixture between two gradients, whose difference
is a rank-one matrix. Given two strains β1 and β2, with β2 − β1 = a ⊗ n, two nonnegative weights
λ1, λ2, with λ1 + λ2 = 1, and a small ε > 0, we write

uε(x) = β1x + aεχ
(x · n

ε

)

(3.7)

where χ : R → R is defined by χ(0) = 0, χ′(t) = 0 if t ∈ (k, k+λ1) and χ′(t) = 1 if t ∈ (k+λ1, k+1),
for k ∈ Z. For small ε, ∇u oscillates on a fine scale between the values β1 and β2, with average
β = λ1β1 + λ2β2. As ε → 0, the sequence uε(x) converges weakly-∗ in W 1,∞ to an affine function
with gradient β. This shows that mixtures are always possible between rank-one connected matrices.
This construction is called a first-order laminate, iterating the procedure one constructs laminates
of higher order (see below).

Due to the linearized rotational invariance, only the symmetric part of the gradient is relevant
for the energy. In particular, we can replace β2 with β′

2 = β2 + ω, for any ω ∈ so(3), and generalize
the condition above to the existence of ω, a and n such that β2 − β1 = a ⊗ n + ω. The latter
condition depends only on the symmetric part of β1 and β2, which we denote by ǫi = βsym

i . We say
that two symmetric matrices ǫ1 and ǫ2 are symmetrically rank-one connected if there are vectors a
and n such that ǫ1 − ǫ2 = a ⊗ n + n ⊗ a. A straightforward calculation shows that ǫ1 and ǫ2 are
symmetrically rank-one connected if and only if det(ǫ1 − ǫ2) = 0.

9
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Iteration of this construction leads to the determination of the lamination convex hull of a set.
More precisely, given a set K of symmetric matrices, we define Kslc,0 = K and iteratively Kslc,i+1

as the set of symmetrized averages of laminates between matrices in Kslc,i, precisely,

Kslc,i+1 =
{

ǫ : ǫ ∈ [ǫ1, ǫ2], ǫ1, ǫ2 ∈ Kslc,i, det(ǫ1 − ǫ2) = 0
}

where [ǫ1, ǫ2] denotes the segment whose endpoints are ǫ1 and ǫ2. The union of all Kslc,i constitutes
the symmetric lamination convex hull of K, which we call Kslc. All strains in Kslc can be obtained
as average gradients of maps whose strains lie in K (up to negligible boundary terms).

We now state our main assumption on the set of slip systems S, which is of purely kinematic
nature.

Definition 3.2. A set of slip systems S = {si ⊗ mi} is complete if the symmetric lamination
convex hull of the finite set

{±(si ⊗ mi)
sym : si ⊗ mi ∈ S}

contains a neighbourhood of the origin in the space of symmetric traceless matrices.

This corresponds to the attainability of all (infinitesimally) volume-preserving deformations by
suitable combinations of the slip systems. This condition can be replaced by a more general but
less explicit one replacing the lamination hull with the quasiconvex one, leading to essentially the
same conclusions, at the expense of a more technical discussion. For simplicity we focus here on the
simpler condition involving lamination convexity. We show in Section 3.5 that the slip systems of
fcc and bcc metals do satisfy this definition, and that complenetess is not equivalent to (si⊗mi)

sym

spanning the set of traceless symmetric matrices.

3.3 The relaxation of I(u) without boundary conditions

We now present the relaxation result without boundary conditions. The generalization to the case
of Dirichlet boundary conditions will be presented in Section 3.7 below. The relaxed functional is
finite on functions u ∈ U(Ω), whose symmetrized distributional gradient Eu = Du + DuT can be
decomposed as usual by Eu = Eudx + Esu, where Eu is the density of the continuous part of Eu
with respect to the Lebesgue measure, and Esu the part of Eu orthogonal to it (called singular
part). Since functions in U(Ω) have a divergence in L2, it follows that the singular part Es is
traceless. The continuous part E enters then the relaxed functional through the convex envelope
W ∗∗ of W , and the singular part Es through its regression function, defined as usual by

W∞(β) = lim
t→∞

1

t
W ∗∗ (tβ) .

The limit exists since W ∗∗ is convex, and is finite for all traceless β by the growth condition (3.6).

Theorem 3.3. Let W be as in (2.1), with a positive definite elasticity matrix C, and the set of
slip systems S be complete. Then, the relaxation of

I(u) =

⎧

⎨

⎩

∫

Ω
W (∇u)dx if u ∈ W 1,2(Ω, R3)

∞ else

10
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with respect to the strong L1 topology is given by

J(u) =

⎧

⎨

⎩

∫

Ω
W ∗∗(Eu)dx +

∫

Ω
W∞

(

Esu

|Esu|

)

|Esu| if u ∈ U(Ω)

∞ else.

The proof is based on matching upper and lower bounds. The lower bound is obtained by
proving that J(u) is a convex functional of the measure Eu, and that it is less than or equal to
I(u). Convexity of functionals depending on convex functions with linear growth is a classical
result. Precisely, if f : R

m → R is convex function and 0 ≤ f(ξ) ≤ c(1 + |ξ|), and µh is a sequence
of R

m-valued Radon measures on Ω converging weakly in M to µ, such that
∫

Ω |µh| is bounded,
then

lim inf
h→∞

∫

Ω
f

(

dµh

dx

)

dx +

∫

Ω
f∞

(

dµs
h

d|µs
h|

)

|µs
h| ≥

∫

Ω
f

(

dµ

dx

)

dx +

∫

Ω
f∞

(

dµs

d|µs|

)

|µs| . (3.8)

Further, if
∫

Ω |µ| = lim
∫

Ω |µh|, then equality holds (see e.g. Theorem 1.3 in [9], the result was first
proven in [18, 49]). In applying this result to our problem care needs only to be taken to separate
the volumetric part (which gives quadratic growth for the energy) from the deviatoric part (which
gives linear growth). Here and below we say that a sequence of measures µh converges to µ weakly
in M if

∫

Ω
ψ µh →

∫

Ω
ψ µ for every ψ ∈ C0

0 (Ω) .

To obtain the upper bound, we need to construct recovery sequences uh. Due to a density
argument, it is sufficient to do it for smooth limits u, which in particular have bounded gradients.
We can therefore use the standard tools of quasiconvexity, which are typically applied for the
relaxation of functionals depending on a gradient field, but which require higher regularity than
BD (typically, W 1,p with p > 1). The quasiconvex hull is actually identical to the convex one, as
will be shown in Proposition 3.4 below.

Proof. We start from the lower bound. Let uh be a sequence of functions in W 1,2(Ω) converging
to u ∈ U(Ω). Without loss of generality we can assume that lim I(uh) exists and is finite. Since
W ∗∗ ≤ W , we can use the coercivity part of (3.6), and by compactness choose a subsequence such
that

uh → u strongly in L1 , div uh ⇀div u weakly in L2 , Euh ⇀Eu weakly in M.

We now decompose all strains in deviatoric and volumetric parts, according to the metric induced
by the elasticity matrix C. To do this, let p denote a symmetric matrix such that

Tr p = 1 and (Cp, ǫ) = 0 for all ǫ such that Tr ǫ = 0.

Any symmetric matrix ǫ can be written as

ǫ = ǫD + ǫV p where Tr ǫD = 0 and ǫV = Tr ǫ ∈ R . (3.9)

The C-orthogonality guarantees that the energy is additive, in the sense that

W ∗∗(ǫD + ǫV p) = W ∗∗(ǫD) + W ∗∗(ǫV p) . (3.10)

11
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To see this, observe that for any γ we have A∗∗(ǫD + ǫV p, γ) = A∗∗(ǫD, γ)+A∗∗(ǫV p, 0). Taking the
minimum over γ we get W ∗∗(ǫD + ǫV p) = W ∗∗(ǫD) + A∗∗(ǫV p, 0). The last term equals W ∗∗(ǫV p),
since A∗∗(ǫV p, γ′) = A∗∗(ǫV p, 0) +

∑

τi|γ′
i| + 1

2(Cǫp(γ′), ǫp(γ′)) ≥ A∗∗(ǫV p, 0). This concludes the
proof of (3.10).

We now perform an analogous decomposition on the strains Euh and Eu, and denote as above
by E the corresponding densities with respect to the Lebesgue measure, so that for example Euh =
EDuh + EV uh = EDuhdx + EV uhdx. Since the decomposition is linear, the strains Euh have no
singular part, and the volumetric parts are controlled in L2, we get

EDuhdx⇀ EDu weakly in M , and EV uh ⇀ EV u weakly in L2 .

The energy W ∗∗ ≤ W has linear growth in the deviatoric part EDuh, hence the lower semicontinuity
result of (3.8) gives

∫

Ω
W ∗∗(EDu)dx +

∫

Ω
W∞

(

Esu

|Esu|

)

|Esu| ≤ lim inf
h→∞

∫

Ω
W (EDuh)dx .

On the other hand, on volumetric strains W ∗∗(ǫV p) = |ǫV |2W ∗∗(p) is equivalent to the L2 norm,
hence is lower semicontinuous under weak-L2 convergence. Recalling the additivity (3.10), we get

J(u) ≤ lim inf
h→∞

∫

Ω
W ∗∗(Euh) dx ≤ lim inf

h→∞
I(uh) .

This concludes the proof of the lower bound.
We now come to the upper bound. We remark that the construction presented here does not

change the boundary values, and can therefore be reused later in the proof of Theorem 3.13 below.
First, by a general density argument, we reduce to smooth functions. Indeed, for any u ∈ U(Ω),

there is a sequence uh ∈ C∞(Ω) ∩ U(Ω) such that the following holds:

uh → u strongly in L1 , div uh → div u strongly in L2 , Euh ⇀Eu weakly in M ,

∫

Ω
|Euh| →

∫

Ω
|Eu| , uh = u on ∂Ω as traces

(see e.g. Theorem A.2 in [22] or Theorem II.3.4 in [52]).
As in the lower bound, we decompose all strains into volumetric and deviatoric parts, according

to (3.9). The strong convergence of div uh gives
∫

W ∗∗(p div uh)dx →
∫

W ∗∗(p div u)dx and by
difference

∫

Ω
|EDuh|dx →

∫

Ω
|EDu| .

The energy density W ∗∗ has linear growth in the deviatoric part EDuh, and by the continuity
statement quoted after (3.8) it follows that

∫

Ω
W ∗∗(EDuh)dx →

∫

Ω
W ∗∗(EDu)dx +

∫

Ω
W∞

(

Esu

|Esu|

)

|Esu| .

Combining the two results, we get J(uh) → J(u).

12
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Finally, we show that for any v ∈ C∞ one can find a sequence vk converging to v weakly in
W 1,2 such that

∫

Ω
W (∇vk)dx →

∫

Ω
W qc(∇v)dx , vk = v on ∂Ω (3.11)

where W qc is the quasiconvex envelope of W , as defined in (3.3). This follows from the general
theory, since the function W is continuous and v is uniformly Lipschitz, see e.g. [38]; for the
convenience of the reader we sketch here the argument. By density one can find a sequence of
uniformly Lipschitz, piecewise affine functions wk which converge to v, and such that the integral
of W (∇wk) converges to the integral of W (∇v). Fix a sequence εk → 0, εk > 0, and consider one
k. Let ω be one of the parts of the domain where wj is affine, say wj = βx+ c on ω. By (3.3) there
is u such that u(x) = βx on the boundary of the unit cube, and

∫

(0,1)3 W (∇u)dx ≤ W qc(β) + εk.

By a standard covering argument, ω can be covered by finitely many small cubes (0, li)
3 + pi, up to

a rest whose measure is less then ε|ω|. In each such cube we set vk(lix + pi) = liu(x) + c, outside
the cubes vk = wk. This gives

∫

ω
W (∇vk)dx =

∑

i

∫

(0,li)3+pi

W (∇vk)dx + εk|ω|W (β)

≤
∑

i

l3i [W qc(β) + εk] + εk|ω|W (β) ≤ |ω|W qc(β) + εk|ω| [1 + W (β)] .

Summing over all sets ωj covering Ω, and using the fact that W is uniformly bounded on the
support of the uniformly bounded functions ∇wk, we get

∫

Ω
W (∇vk)dx ≤

∑

j

|ωj |W qc(βj) + εk|ωj| [1 + W (βj)] ≤
∫

Ω
W qc(∇vk)dx + εk|Ω| [1 + M ] .

Taking the k → ∞ limit the sequence εk converges to zero, and the integral of W qc(∇vk) converges
to the integral of W qc(∇v). This concludes the proof of (3.11).

We show in Proposition 3.4 below that the quasiconvex envelope coincides with the convex one,
W qc = W ∗∗. Taking a diagonal subsequence, the proof is concluded.

3.4 The quasiconvex hull

We now compute the quasiconvex envelope of W , defined in (3.3), under the assumption that the
set of slip systems is complete, in the sense of Definition 3.2. Our main result is the following

Proposition 3.4. Let S be a complete family of slip systems. Then, the quasiconvex envelope of
W coincides with the convex one, W qc = W ∗∗.

Before proving the proposition we give some partial results concerning the lamination convex
envelope of W . This corresponds to including the energy W into the kinematic considerations of
Section 3.2. Precisely, we not only keep track of which average strains can be generated using the
available slips, but also of which slips are used, and how much energy they cost.

We recall that a probability measure on 3×3 matrices ν = λ1δβ1
+λ2δβ2

is a first–order laminate
with average β if λ1β1 + λ2β2 = β and rank(β1 −β2) = 1. Here δβ denotes a Dirac mass supported
on the matrix β. Laminates of order k with average β are then defined as the set of probability
measures obtained from laminates of order k− 1 replacing any δβj

with a first–order laminate with

13
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average βj . Laminates offer a natural way to reduce the energy by using deformation patterns
admissible for gradient fields (see, e. g., [38]).

The assumption of completeness implies that the lamination envelope W lc has linear growth on
traceless matrices.

Lemma 3.5. Let S be a complete set of slip systems. Then there is a constant c such that for any
β there is a laminate ν with compact support such that

β = 〈ν, Id〉 , and 〈ν,W 〉 ≤ c
(

|βsym| + |Tr β|2
)

.

Proof. Since W only depends on the symmetric part of β, we only need to prove the result for
symmetric β. We decompose β as in (3.9), β = βD + p Tr β, and first consider the plastic part of
the potential alone, as a function of the deviatoric part βD. Since S is complete, there is η > 0
such that all traceless matrices of norm less than or equal to η are averages of laminates supported
on ±S. For all such laminates

〈ν,W 〉 ≤ max
i

τi ,

and the bound is obtained without any elastic energy, hence has linear scaling. In particular, the
matrix β̃D = (η/|βD |)βD has such a representation, call it ν̃D. The laminate νD is obtained from
ν̃D by scaling the support by |βD|/η. Since the plastic part of the energy is positively homogeneous
of degree one, we get

〈νD,W 〉 ≤ |βD|
η

max
i

τi = c|βD| ≤ c|βsym| ,

The laminate ν is obtained form νD translating its support by the volumetric part p Tr β. Since
W (p Tr β + βD) ≤ c|Tr β|2 + W (βD) we obtain the thesis.

Lemma 3.6. Let S be a complete set of slip systems. For any β ∈ R
3×3 and any ε > 0 there is a

laminate ν with compact support such that

〈ν, Id〉 = β and 〈ν,W 〉 ≤ W ∗∗(β) + ε .

Proof. By Lemma 3.1(i) we can find γ ∈ R
N , a symmetric ǫe, and a skew-symmetric ω such that

β = ǫe +
k

∑

i=1

γisi ⊗ mi + ω and W ∗∗(β) =
1

2
(Cǫe, ǫe) +

k
∑

i=1

τiγi ,

for some k ≤ N . We now prove the thesis by induction on k. The cases k = 0 and k = 1 are trivial.
Assume now that the thesis holds for k − 1, and let

β1 = ǫe +
k−1
∑

i=1

γisi ⊗ mi + ω and β2 = β1 +
1

ε
γksk ⊗ mk .

They are clearly rank-one connected. The matrix β is the average of a laminate supported on β1

and β2, with weights 1 − ε and ε respectively. At the same time, β2 is the average of a laminate
supported on

β3 = ǫe +
k−1
∑

i=2

γisi ⊗ mi +
1

ε
γksk ⊗ mk + ω , and β4 = β3 +

1

ε
γ1s1 ⊗ m1 ,

14
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Figure 3.1: Construction used in proving Lemma 3.6, in the case k = 2 of two slip systems.
The arrows indicate the rank-one directions s1 ⊗ m1 and s2 ⊗ m2.

again with weights 1 − ε and ε (here the lamination direction s1 ⊗ m1 has been used). Note that
the sum in the definition on β3 starts from i = 2, hence only k − 1 slips are present. Combining
the two, we obtain a laminate

ν = (1 − ε)δβ1
+ ε(1 − ε)δβ3

+ ε2δβ4

with average β. By the inductive assumption, β1 and β3 can be generated as laminates with energies
controlled by W qc(β1) + ε and W qc(β3) + ε respectively, and by Lemma 3.5 there is a laminate ν4

such that

〈ν4, Id〉 = β4 , 〈ν4,W 〉 ≤ c
(

|βsym
4 | + |Tr β4|2

)

≤ c
|βsym|

ε
+ c|Tr β|2 .

We conclude that there is a laminate with average β and energy controlled by

〈ν,W 〉 ≤ (1 − ε)W (β1) + εW (β3) + cε|βsym| + cε2|Tr β|2 + ε ≤ 1

2
(Cǫe, ǫe) +

k
∑

i=1

τiγi + c(βsym)ε ,

where the last constant depends on βsym but not on ε. This concludes the proof.

Proposition 3.4 is then an easy consequence.

Proof of Proposition 3.4. The quasiconvex envelope is larger than or equal to the convex one, hence
the result is established if we can show that for any β ∈ R

3×3 and ε > 0, there is a function
u ∈ W 1,∞((0, 1)3, R3) such that

∫

(0,1)3
W (∇u)dx ≤ W ∗∗(β) + ε , u(x) = βx if x ∈ ∂(0, 1)3 .

Consider the laminate ν obtained in Lemma 3.6. It is a laminate of finite order, supported on a
bounded subset of R

3×3. Then, one can find a sequence uh of uniformly Lipschitz functions which
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coincide with βx on the boundary and such that ∇uh → ν, in the sense of Young measures [38].
In particular, since W is continuous for large enough h we get

∫

(0,1)3
W (∇uh)dx ≤ 〈ν,W 〉 + ε ≤ W ∗∗(β) + 2ε .

This concludes the proof.

3.5 Completeness of the fcc and bcc slip systems

We now show that the slip systems appearing in fcc and bcc crystals are complete, in the sense of
Definition 3.2. To do this, for any traceless β we construct a laminate with average β supported
on a multiple of ±S. These constructions need not be, and are not, optimal from the point of
view of the energy, since they are only used in the error term (the part called β4 in the proof of
Lemma 3.6). The optimal energy scaling is then recovered with the argument discussed above and
illustrated in Figure 3.1.

Lemma 3.7. The set of fcc slip systems Sfcc, containing all symmetry-related copies of the pair
s = (1, 1, 0), m = (1,−1, 1) as given in Table 2.1, is complete.

Proof. We need to show that all small enough symmetric traceless matrices are averages of laminates
supported on ±Sfcc, modulo rotations. The set ±Sfcc is invariant under the following symmetry
operations (which stem from the cubic group of the fcc crystal): (i) changing the global sign; (ii)
interchanging the i-th and j-th row and at the same time the i-th and j-th column; (iii) changing
sign to the i-th row and at the same time to the i-th column. Therefore all results are invariant under
those symmetry operations. Further, we can identify matrices which have the same symmetric part,
since rotations are irrelevant, and multiply each matrix by a positive number, by scaling.

Step 1. All matrices of the form

βa,b =

⎛

⎝

a b 0
b −a 0
0 0 0

⎞

⎠

and equivalent can be generated. Since all matrices of this form have zero determinant, all linear
combinations in this class are permissible. Therefore it is sufficient to prove the result assuming
that only one between a and b is nonzero. We do this separately in the two cases.

Case b = 0: Consider the two slip systems with s = s1 = (1, 1, 0), which have ma
1 = (1,−1, 1)

and mb
1 = (1,−1,−1). Since s is the same, any linear combination between them can be obtained

by a laminate, in particular [s1 ⊗ (ma
1 + mb

1)/2]
sym = e1 ⊗ e1 − e2 ⊗ e2 = β1,0 can be obtained as a

laminate, and by scaling all βa,0.
Case a = 0: Start from the two slip systems with s = s2 = (1, 0, 1), which have ma

2 = (1, 1,−1)
and mb

2 = (1,−1,−1). They generate the matrix β̄ = s2 ⊗ (ma
2 − mb

2)/2 = s2 ⊗ e2. The same
argument starting from s′2 = (1, 0,−1) leads to the matrix β̄′ = s′2 ⊗ e2. The two matrices β̄ and
β̄′ are rank-one connected, and therefore their average (β̄ + β̄′)/2 = e1 ⊗ e2 can be generated as
a laminate. Taking the symmetric part and scaling one then obtains all β0,b. This concludes the
proof of Step 1.
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Step 2. All matrices of the form

β1 =

⎛

⎝

a b 0
b −a − c d
0 d c

⎞

⎠

with a ≥ c > 0 and equivalent can be generated as laminates. We start from the two matrices

β2 =

⎛

⎝

a b 0
b −a 0
0 0 0

⎞

⎠ , β3 =

⎛

⎝

0 0 0
0 −c d
0 d c

⎞

⎠

which can be generated by Step 1, and observe that

det(β2 − λβ3) = c(a2 + b2)λ − a(c2 + d2)λ2

vanishes for λ = 0 and λ = λ̄ > 0. Therefore all linear combination with coefficents of the same
sign, including β1 = β2 + β3, can be generated.

Step 3. We finally show that each traceless matrix can be generated. It is sufficient to consider
matrices of the form

β =

⎛

⎝

a′ b f
b −a′ − c′ d
f d c′

⎞

⎠

where a′ ≥ c′ ≥ 0 (two of the diagonal entries always have the same sign, indices can be permuted,
and the global sign can be changed). Fix some e and define

β4 =

⎛

⎝

e 0 f
0 0 0
f 0 −e

⎞

⎠ ,

which can be generated as a laminate by Step 1, and β1 as in Step 2, with a = a′ − e, c = c′ + e, so
that β = β1 + β4. If a′ > 0, choosing e = a′/2 we can have a > 0, c > 0, hence β1 can be generated
as a laminate by Step 3. Consider now

det(β1 − λβ4) = −[c(a2 + b2) + a(c2 + d2)] + [e(c2 + d2 − a2 − b2) − 2bdf ]λ + (a + c)(e2 + f2)λ2 .

This has two nonvanishing zeroes in λ, one positive and the other negative. Choosing the positive
one, we obtain a rank-one connection between β1 and a positive multiple of β4, which, after scaling,
can generate β = β1 + β4.

It remains to consider the case a′ = c′ = 0, where the matrix β is purely off-diagonal. But this
is a direct consequence of the case a′ > 0, since

⎛

⎝

0 b f
b 0 d
f d 0

⎞

⎠ =
1

2

⎛

⎝

1 b f
b −1 d
f d 0

⎞

⎠ +
1

2

⎛

⎝

−1 b f
b 1 d
f d 0

⎞

⎠

and the difference of the two matrices has zero determinant. This concludes the proof.
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Lemma 3.8. Each of the two sets of bcc slip systems, as given in Table 2.2, is complete.

Proof. The first set of slip systems is obtained from the one of fcc by transposition, and since
only the symmetric part is relevant in computing symmetric lamination envelopes, its completeness
follows from Lemma 3.7. Consider now the second one. Take s = s1 = (1, 1, 1), m = m1a =
(−2, 1, 1) and m1b = (1,−2, 1). These two slip systems are rank-one connected, since s is the same.
On the other hand, m1a − m1b = (−3, 3, 0). Due to the cubic symmetry, this suffices to prove that
all slips in the first set are generated as averages of slips in the second one. Therefore the latter is
also complete.

It would be tempting to conjecture that all slip systems which span the set of traceless matrices
are complete. This is, however, not true, as we now show with an explicit example.

Lemma 3.9. Consider the set of slip systems

S∗ = {e1 ⊗ e2, e1 ⊗ e3, (e1 + e2) ⊗ (e1 − e2), (e1 + e3) ⊗ (e1 − e3),

(e1 + e2 + e3) ⊗ (2e1 − e2 − e3)} .

The symmetric parts of the matrices in S∗ span the set of symmetric traceless matrices, but S∗ is
not complete.

Proof. We first observe that each pair (s,m) is composed by two orthogonal vectors, each pair (s,m)
spans a space which contains e1, and the set of matrices (s ⊗ m)sym are five linearly independent
traceless symmetric matrices, hence span the space of symmetric traceless matrices.

We now show that S is not complete. We reason by contradiction, and assume that for some
small η > 0 there is a laminate supported on ±S∗ + so(3) with average β = η(e2 ⊗ e3)

sym, and
therefore a function u : (0, 1)3 → R

3 such that u(x) = βx on the boundary and ∇usym ∈ ±Ssym
∗

a.e.. Since the cofactor of a gradient is a divergence, its integral depends only on the boundary
values, and in particular

∫

(0,1)3
cof ∇u dx = cof β = −η2e1 ⊗ e1 . (3.12)

On the other hand, for a.e. x ∈ (0, 1)3 we get

∇u = ±s ⊗ m + ωa

for some (x-dependent) ωa ∈ so(3) and s ⊗ m ∈ S∗. We parametrize here antisymmetric matrices
by their axial vector a, defined by ωav = v∧a for all v ∈ R

3. A straightforward computation shows
that

cof(±s ⊗ m + ωa) = a ⊗ a ± a ⊗ (s ∧ m) ± (s · a)ωm

where the last term contains the antisymmetric matrix with axial vector m. Taking the 11 compo-
nent, we get

e1 · cof(±s ⊗ m + ωa)e1 = (a · e1)
2

since ωm is antisymmetric, and s ∧ m is orthogonal to e1 (here we use that all pairs (s,m) span a
space containing e1). We conclude that the integrand in (3.12) has a nonnegative 11 component, a
contradiction.
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In closing, we remark that many average deformations can be obtained with specific construc-
tions that require less surface energy. This is irrelevant for the purpose of determining the relaxation
of the energy, but makes a difference if higher-order corrections (nonlocal terms) are included. The
next section presents a characterization of the minimal complexity of the microstructure required
to relax the energy for some simple average strains.

3.6 Slip concentration

In computing the quasiconvex hull of W in Section 3.5 we made use of a construction which contains
very large strains on parts of the domain, which converge to slip lines in the limit. We investigate
now whether such slip lines are necessary in order to obtain the optimal energy, or if instead a
different construction with bounded strains is always possible. In particular, we focus on the fcc
set of slip systems and on the case of plastic deformations which are a linear combination of two
slips,

βp = α1s1 ⊗ m1 + α2s2 ⊗ m2 (s1,m1) and (s2,m2) ∈ Sfcc ,

for some α1, α2 �= 0. We shall show that for some such average strains a simple first-order laminate
permits to realize the optimal energy. For other choices instead no structure with bounded gradients
realizes the optimal energy, and strain necessarily concentrates, at least in an L2 sense. This is an
indication that concentrated slip (slip lines) is necessary to fully relax the energy.

We start with the positive case. Following Ortiz and Repetto [42] we have

Lemma 3.10. Let (s1,m1) and (s2,m2) be two slip systems. Then, there is a simple laminate such
that the strain is supported on

r1(s1 ⊗ m1)
sym r2(s2 ⊗ m2)

sym

with r1, r2 �= 0 if and only if

r2(t2 · s1)(t2 · m1) = r1(t1 · s2)(t1 · m2) ,

where ti = si ∧ mi.

Proof. Let ǫi = ri(si ⊗mi)
sym denote the corresponding strains. Based on the discussion in Section

3.2, it suffices to check if the traceless matrix ǫ1 − ǫ2 is singular, i.e., if

0 = det(ǫ1 − ǫ2) = ǫ1 : cof ǫ2 − ǫ2 : cof ǫ1

since det ǫ1 = det ǫ2 = 0. Here, A : B = Tr AT B = AijBij . Since cof[(risi ⊗mi)
sym] = r2

i ti ⊗ ti, the
thesis follows.

In particular, Lemma 3.10 shows that if the sign condition

α1α2(t2 · s1)(t2 · m1)(t1 · s2)(t1 · m2) ≥ 0

holds, then there is a simple laminate between matrices of the form

β1 = r1s1 ⊗ m1 + ω1 and β1 = r2s2 ⊗ m2 + ω2

with average βp = α1s1 ⊗ m1 + α2s2 ⊗ m2 (the weights are constructed as in Section 3.1).
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We now show that the condition above for the existence of a simple laminate between two
slip systems is actually necessary for the existence of a polyconvex measure supported on the two
independent slip systems. By independent we mean that the symmetrized shears (s ⊗ m)sym and
(s′⊗m′)sym are linearly independent in R

3×3. We shall then in Proposition 3.12 discuss the general
case, where only the average strain is prescribed.

Lemma 3.11. Let (s1,m1) and (s2,m2) be two independent slip systems, and fix two orientations
σi ∈ {±1}. If

σ1σ2(t2 · s1)(t2 · m1)(t1 · s2)(t1 · m2) < 0 (3.13)

then any L2 polyconvex measure supported on the union of the two sets

Gi =
{

β ∈ R
3×3 : βsym = λσi(si ⊗ mi)

sym , λ ≥ 0
}

(for i ∈ {1, 2}) is actually supported on one of them.

Proof. Consider an L2 polyconvex measure supported on G1 ∪G2, i.e., a probability measure which
obeys the conditions

β = 〈ν, Id〉 , cof β = 〈ν, cof〉 . (3.14)

Note that the assumption that ν is an L2 Young measure permits to compute the average of the
cofactor, which is a quadratic quantity, but not the of the determinant, which is cubic. The first
of the (3.14) gives,

β = λ1σ1s1 ⊗ m1 + λ2σ2s2 ⊗ m2 + ω ,

where ω ∈ so(3) and λ1,2 ≥ 0. We assume without loss of generality that ω = 0. Since the slip
systems are independent, if one of the λi’s vanishes the thesis is proven. From now on we assume
by contradiction that both are strictly positive. The proof then proceeds in strict analogy with the
argument of Lemma 3.9. Precisely, we compute the cofactor of β,

cof β = λ1λ2σ1σ2(s1 ∧ s2) ⊗ (m1 ∧ m2) .

With the definition v = t1 ∧ t2, where as above ti = si ∧ mi, (3.13) is equivalent to

v · (cof β)v < 0 (3.15)

(again, this is a simple expansion based on the usual manipulation rules for wedge products). On the
other hand, for any Young measure supported on G1 ∪G2, the expression v(cof ·)v has nonnegative
average. Indeed, if G ∈ Gi, then G = ωa + λσisi ⊗ mi, for some λ ≥ 0 and skew-symmetric ωa

(parameterized as in Lemma 3.9 by its axial vector a), and

cof(ωa + σs ⊗ m) = a ⊗ a + σa ⊗ (s ∧ m) + σ(s · a)ωm .

We obtain, for any G ∈ G1 ∪ G2,

v(cof G)v = v cof(ωa + λσisi ⊗ mi)v = (a · v)2 ≥ 0

since v is orthogonal to both t1 and t2, and ωa is antisymmetric. A comparison with the second
equation in (3.14) and (3.15) concludes the proof.
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The above result assumes that only two slip systems are used. We now show that for some
average strains β no construction with bounded strains, and in particular no laminate of finite
order, achieves the optimal energy.

Proposition 3.12. Consider the fcc set of slip systems Sfcc and a positive definite elasticity matrix
C. Then there is a strain β with the following property. For any u ∈ W 1,2 such that

1

Ω

∫

Ω
|∇u|2dx ≤ M and u(x) = βx on ∂Ω ,

where Ω is a Lipschitz set, one has

1

Ω

∫

Ω
W (∇u)dx ≥ W qc(β) + c(M) ,

where c(M) is a positive constant which only depends on M , not on u.

Proof. The proof is by contradiction. If the thesis were false, there would be for some M > 0 a
sequence uh such that

1

Ω
‖∇uh‖2

L2(Ω) ≤ M , uh(x) = βx on ∂Ω ,
1

Ω

∫

Ω
W (∇uh)dx → W qc(β) .

The sequence ∇uh generates in the limit an L2 Young measure, and by a standard scaling and
covering argument we can assume it to be homogeneous. Since it originates from a sequence of
gradients, it is a polyconvex measure, and satisfies

〈ν, Id〉 = β , 〈ν, cof〉 = cof β , 〈ν,W 〉 = W ∗∗(β) .

We now intend to use Lemma 3.13 to show that for suitable choices of β these three conditions are
incompatible with each other. In order to do this, we start by constructing a linear lower bound
for W which is equal to W only on β and on two slip systems, and therefore proves that only two
slip systems can be used by ν.

Consider the scalar product 〈·, ·〉∗ defined on R
3×3 by

〈β, β′〉∗ =
∑

i�=j

βijβ
′
ij +

1

6

∑

i

βiiβ
′
ii .

The matrices Mi = (si ⊗mi)
sym characterizing the symmetrized individual slips have the products

〈Mi,Mi〉∗ =
4

3
, 〈Mi,Mj〉∗ ∈

{

±1

3
,±2

3

}

if i �= j

(to see this, it is sufficient to compute explicitly a few not symmetry-related cases, for brevity we
do not report the full details here). Now consider for s ∈ {±1} the linear map defined on R

3×3 by

f(β) = 〈M1 + sM2, β〉∗ .

Here, M1 and M2 correspond to the first two entries in Sfcc, which are any pair of fcc slip systems.
For simplicity of notation we denote them by 1 and 2. It is clear that

f(M1) = f(sM2) = 〈M1,M1〉∗ + s〈M1,M2〉∗ .
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Choose s ∈ {±1} to have the same sign as 〈M1,M2〉∗. Then both terms in the expression above
are positive. We define H by

f(M1) = f(sM2) = H ≥ 5

3
.

On the other hand, if i ≥ 3, we have

f(±Mi) = ±〈M1,Mi〉∗ ± s〈M2,Mi〉∗ ≤
4

3
< H .

Now let σ0 ∈ R
3×3 be a symmetric matrix defined by

(σ0, β) =
τ

H
f(βsym) for all β ∈ R

3×3

and βe
0 = C−1σ0. We claim that for any β

W ∗∗(β) ≥ τ

H
f(β − β0) + W ∗∗(β0) (3.16)

where
β0 = βe

0 + βp
0 , βp

0 = βp(γ0) = M1 + sM2 .

Here and below, γ0
1 = 1, γ0

2 = s, and γ0
i = 0 for i ≥ 0. To prove (3.16), we compute (with the usual

notation ǫe = (β − βp(γ))sym, ǫe
0 = (βe

0)
sym, etc.)

A(β, γ) =
1

2
(Cǫe, ǫe) + τ

∑

|γi|

=
1

2
(C(ǫe − ǫe

0), (ǫ
e − ǫe

0)) + (Cǫe
0, ǫ

e − ǫe
0) +

1

2
(Cǫe

0, ǫ
e
0) + τ

∑

|γi|

≥ c|ǫe − ǫe
0|2 +

τ

H
f(ǫe − ǫe

0) +
1

2
(Cǫe

0, ǫ
e
0) + τ

∑

|γi|

≥ c|ǫe − ǫe
0|2 +

τ

H
f(ǫ − ǫ0) +

τ

H
f(ǫp

0 − ǫp) +
1

2
(Cǫe

0, ǫ
e
0) + τ

∑

|γi| .

Now we focus on the two terms depending only on the plastic part. Since by construction
f(M1)/H = γ0

1 = 1, f(M2)/H = γ0
2 = s, and for i ≥ 3 we have f(Mi)/H < 1 and γ0

i = 0,
we get

τ

H
f(ǫp

0 − ǫp) + τ
∑

i

|γi| = τ
∑

i

[

|γi| +
f(Mi)

H
(γ0

i − γi)

]

≥ τ
∑

i

|γ0
i | .

Equality here holds only if γ1 ≥ 0, sγ2 ≥ 0, and γi = 0 for i ≥ 3. We conclude that

A(β, γ) ≥ A(β0, γ
0) +

τ

H
f(β − β0)

for all β and γ, with equality holding only if ǫe = ǫe
0, γ1 ≥ 0, sγ2 ≥ 0, and γi = 0 for i ≥ 3.

Therefore both conditions must hold ν-almost everywhere. This implies that the Young measure
µ obtained translating ν by −ǫe

0 is supported on the set

G1
1

⋃

Gs
2

where
Gt

i = {F : F sym = λt(si ⊗ mi)
sym , λ ≥ 0}
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and has average βp
0 = M1 + sM2. If the sign condition (3.13) holds, by Lemma 3.11 the measure µ

is actually supported on one of them, but this contradicts the fact that the average is the sum of
two (linearly independent) slips. We finally check that there are pairs of slip systems which obey
(3.13). To do this, we need to find (s1,m1) and (s2,m2) in Sfcc, s ∈ {±1}, such that

s(t2 · s1)(t2 · m1)(t1 · s2)(t1 · m2) < 0 ,

where s has the same sign as 〈(s1 ⊗ m1)
sym, (s2 ⊗ m2)

sym〉∗. One such pair is

s1 = (−1, 0, 1) , m1 = (1,−1, 1) , s2 = (1,−1, 0) , m2 = (1, 1, 1) ,

with the same orientation (i.e. s = 1); by symmetry there are 11 other equivalent pairs. Indeed, a
simple computation shows that t1 = (1, 2, 1), t2 = (−1,−1, 2), and (t2 ·s1)(t2 ·m1)(t1 ·s2)(t1 ·m2) =
−24. On the other hand, the scalar product is 〈(s1 ⊗ m1)

sym, (s2 ⊗ m2)
sym〉∗ = 1/3 > 0. This

concludes the proof.

We conclude that, given any pair of slip systems one can find a lamination between them, but
the same is not true if the orientation is prescribed. This implies that in simple tests which activate
a linear combination of two slip systems, we expect either a laminate or a more complex pattern
involving slip concentration, depending on the relative orientation.

3.7 Inclusion of Dirichlet boundary conditions

We now extend the relaxation result of Section 3.3 to the case that Dirichlet boundary conditions
are imposed on part of the boundary. We consider the functional I(u) as defined in (3.1), with
additional smoothness imposed on Ω (see the statement of the Theorem). The main difficulty
here is that slip can concentrate along the boundary. Indeed, only the boundary condition on the
component normal to the boundary will survive the relaxation. A jump in the tangential component
is instead permitted, and only energetically penalized through the singular part W∞ of the energy.
We denote by I(u,Ω) the integral of W (∇u) on Ω, and by IΓ(u,Ω) the functional with Dirichlet
boundary conditions on Γ ⊂ ∂Ω. Analogously for J .

Theorem 3.13. Let IΓ(u,Ω) be as in (3.1), where W was defined in (2.1) with a positive definite
elasticity matrix C, and a complete set of slip systems S, and u0 ∈ H1/2(Γ). We further assume
that Ω is an open, bounded, connected set with C2 boundary, that Γ = Ω̃∩∂Ω, where Ω̃ is a Lipschitz
open set. Then, the relaxation of IΓ(u,Ω) with respect to strong L1 convergence is given by

JΓ(u,Ω) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∫

Ω
W ∗∗(Eu)dx +

∫

Ω
W∞

(

Esu

|Esu|

)

|Esu| +
∫

Γ
W∞((u − u0) ⊗ ν)dH2

if u ∈ U(Ω) and ν · (u − u0) = 0 on Γ

∞ else.

Here, W ∗∗ and W∞ are as in Theorem 3.3, ν is the normal to Γ, and the values of u and u0 on Γ
are intended in the sense of traces.

We use here and below the fact that function in BD have a trace in L1(∂Ω), see e.g. [53, 2].
The idea of the proof can be explained with a standard one-dimensional example (see e.g. [53]).

Minimize
∫ 1
0 |ux|, subject to

∫ 1
0 u dx = 1, u(0) = u(1) = 0. Minimizing sequences converge to
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u(x) = 1, with energy converging to the limit value 2 – but, if the integrals are interpreted in the
usual way, the limit violates the boundary condition and its energy is zero. The simplest way to
resolve the problem is to impose boundary conditions not on inner trace, but on the outer one.
In other words, we extend u to (−δ, 1 + δ), and impose u(x) = 0 for x < 0 and x > 1. Then,
the minimizing sequence converges to the characteristic function of (0, 1), which has two singular
contributions to the energy at the endpoints. In our case two additional difficulties appear: one is
that we impose boundary conditions only on part of the boundary, the other is that the trace of
Eu has stronger coercivity that the deviatoric part, hence the normal and tangential components
have to be treated differently.

We start with a compactness result.

Lemma 3.14. Let uh be a sequence in W 1,2(Ω, R3) such that IΓ(uj ,Ω) ≤ c. Then, there is u ∈ U(Ω)
and a subsequence such that

uh → u strongly in L1 , Euh ⇀Eu weakly in M div uh ⇀div u weakly in L2 .

Further, if uh = u0 on Γ ⊂ ∂Ω, then the limit u satisfies (u − u0) · ν = 0 on Γ.

Proof. The existence of a converging subsequence follows from the standard compactness result for
BD. To prove that the boundary condition is preserved, we observe that the trace of BD functions
satisfies Green’s formula

∫

Ω
(uh ⊗∇φ)symdx +

∫

Ω
φEuh =

∫

∂Ω
φ(uh ⊗ ν)symdH2

for any φ ∈ C1(Ω̄) (see e.g. Theorem 1.1 in [53]). Taking the trace, we get

∫

Ω
(uh · ∇φ + φ div uh) dx =

∫

∂Ω
φ uh · ν dH2 .

Since uh → u in L1 and div uh → div u weakly in L2, we obtain that for all such φ

∫

∂Ω
φ uh · ν dH2 →

∫

∂Ω
φ u · ν dH2 .

By assumption uh · ν = u0 · ν on Γ for all h, and therefore the same holds for u.

Now we give a proof of Theorem 3.13.

Proof of Theorem 3.13. We start from the lower bound. Consider a sequence

uh → u in L1 , uh = u0 on Γ , lim
h→∞

I(uh,Ω) = E < ∞ .

As discussed above, we modify the boundary conditions so that they involve the outer trace. To
do this, we first extend u0 ∈ H1/2(Γ, R3) to u0 ∈ W 1,2(R3, R3). For each h, we then define
u∗

h : Ω ∪ Ω̃ → R
3 by

u∗
h(x) =

{

uh(x) if x ∈ Ω

u0(x) if x ∈ Ω̃ \ Ω
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If u ∈ W 1,2(Ω) and satisfies the boundary condition, then u∗ ∈ W 1,2(Ω ∪ Ω̃). It is also clear that
since uh → u in L1(Ω) we have u∗

h → u∗ in L1(Ω ∪ Ω̃).
Given a small δ > 0, let Ωδ be an open, bounded set such that

Ω ⊂ Ωδ , Γ = Ωδ ∩ ∂Ω , |Ωδ \ Ω| ≤ δ

(such a set can e.g. be defined as the intersection of Ω ∪ Ω̃ with a δ-neighborhood of Ω). Consider
now the sequence I(u∗

h,Ωδ) (no boundary conditions are imposed here). From Theorem 3.3 we get

lim inf
h→∞

I(u∗
h,Ωδ) ≥ J(u∗,Ωδ). (3.17)

Since outside Ω we have u∗
h = u∗ = u0 ∈ W 1,2, Euh and Eu∗ can have singular contributions only

in Ω and on Γ. At the same time, the outer trace on Γ of u∗ equals u0. Therefore (3.17) gives

lim inf
h→∞

I(uh,Ω) ≥ JΓ(u,Ω) +

∫

Ωδ\Ω̄
W ∗∗(∇u0) − W (∇u0)dx .

On the other hand, as δ → 0 we have
∫

Ωδ\Ω
W (∇u0)dx → 0 ,

since ∇u0 ∈ W 1,2 and W (β) ≤ c|β|2. Finally, continuity of the normal component follows from the
compactness result of Lemma 3.14. This concludes the proof of the lower bound.

We now turn to the upper bound. We follow the argument of Anzellotti and Giaquinta [2]. The
main idea is to first modify u so that it takes the full boundary condition, not only the normal
component. This is done by moving the tangential discontinuity occurring on Γ slightly inside the
domain. This is the point where the C2-smoothness of the boundary ∂Ω is relevant. Let a be such
that in the set

Ωa = {x ∈ Ω : dist(x, ∂Ω) < a}
the function x → dist(x, ∂Ω) is C1, the projection x → Px on the boundary is well-defined and C1,
and ∇dist(x, ∂Ω)(x) = ν(Px). Anzellotti and Giaquinta have shown (Theorem 1.8 of [2], see also
Theorem 5.2 of [3]) that for any boundary value u − u0 with zero normal component, a function
ψ ∈ U(Ω) can be found such that

ψ =

{

u − u0 on Γ ,

0 on ∂Ω \ Γ ,
suppψ ⊂ Ωa and ψ(x) · ∇dist(·, ∂Ω)(x) = 0 on Ωa .

We now set
ηk(x) = max (0, 1 − k dist(x, ∂Ω)) and wk = u + ηkψ .

We have

Ewk = Eu + ηkEψ +
1

2
(∇ηk ⊗ ψ + ψ ⊗∇ηk)

and in particular
div wk = div u + ηk div ψ ,

since ∇ηk(x) is parallel to ∇dist(x, ∂Ω), which is orthogonal to ψ(x).
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We now claim that, as k → ∞,

∫

Ω
W ∗∗ ((∇ηk ⊗ ψ)sym) dx →

∫

Γ
W∞((u − u0) ⊗ ν)dH2 . (3.18)

To see this, let φ be defined as u − u0 on Γ (as usual, in the sense of traces) and zero on the rest
of ∂Γ. By the trace theorem there is a subset E ⊂ (0, a) of full measure (i.e. |E| = a) such that

∫

∂Ω
|ψ(x + bν(x)) − φ(x)| dH2(x) → 0 as b → 0 , b ∈ E .

The first integral in (3.18) can be written as

∫

Ω
W ∗∗ ((∇ηk ⊗ ψ)sym) dx =

∫

∂Ω
dH2

∫ 1/k

0
W ∗∗ (k(ν(Px) ⊗ ψ(x + bν(x))sym) J db

where J is the suitable Jacobian determinant, which converges uniformly to unity for small k since
the boundary is C2. The argument of W ∗∗ is traceless, therefore W ∗∗ has linear growth, and by
the L1 convergence above we can replace ψ(x+ aν(x)) with φ(x) in its argument in the limit. This
concludes the proof of (3.18).

At the same time,
∫

Ω1/k

W ∗∗ (u + ηkEψ) → 0

since they are both summable. It follows that

J(wk,Ω) → JΓ(u,Ω)

with wk satisfying the full Dirichlet boundary conditions, i.e., wk = u0 on Γ. Then, the proof is
concluded as the one of Theorem 3.3. In particular, we have shown there that each wk can be

approximated by a sequence v
(k)
h such that

v
(k)
h → wk in L1 , I(v

(k)
h ,Ω) → I(wk,Ω) , v

(k)
h = wk on ∂Ω .

Taking a diagonal subsequence the proof is concluded.

4 Nonlocal problem

In this section we extend the analysis to a nonlocal functional which includes a singular perturbation
representing the line-energy of dislocations, as the functional (2.4). This permits to incorporate
a length-scale into the problem and therefore to study size-effects, as for example the Hall-Petch
dependence on grain size in polycrystals. We consider a cubic grain of material ΩL = (0, L)3

embedded in an elastic matrix, on which an average shear γ is imposed. For simplicity we focus
on the case that only two slip systems are active, and consider only one scalar component of the
deformation field. The assumption that the matrix can only deform elastically is appropriate for
a polycrystal since neighboring grains with a different orientation cannot deform plastically along
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the considered direction. We seek a deformation u : ΩL → R and a plastic strain βp : ΩL → R
3

which minimize the free energy

E(u, βp, σ, µ, τ, L, γ) =

∫

ΩL

|∇u−βp|2dx+τ

∫

ΩL

|βp|dx+σ

∫

ΩL

|∇×βp|+µ ‖u − γx1‖2
H1/2(∂ΩL) (4.1)

subject to the side conditions βp
1 = ±βp

2 and βp
3 = 0 a.e.. We remark that, at variance with the

previous section, here u is a scalar and βp a vector. Here and below we use the shorthand notation

∫

Ω
|∇× βp| =

1

2

∫

Ω
|(∂1 + ∂2)(β

p
1 − βp

2)|+ |(∂1 − ∂2)(β
p
1 + βp

2)|+ |∂3(β
p
1 + βp

2)|+ |∂3(β
p
1 − βp

2)| (4.2)

where the norms on the right are intended in the sense of measures, i.e., for example

∫

Ω
|(∂1 − ∂2)(β

p
1 + βp

2)| = sup

∫

Ω
(φ,1 − φ,2)(β

p
1 + βp

2)dx .

The supremum is here taken over all φ ∈ C0
0 (Ω, [−1, 1]), and the (distributional) partial derivatives

are denoted by ∂1φ = φ,1 = ∂φ/∂x1. It is easy to check that for smooth functions βp which satisfy
the side condition βp

1 = ±βp
2 , βp

3 = 0 this coincides with the classical interpretation of |∇ × βp| as
the norm of the curl of βp. We remark, however, that (4.2) does not coincide with the norm of
the distributional curl for generic functions of bounded variation which satisfy the side condition.
Indeed, consider for example the field given by

β̄p =

{

(1, 1, 0)T if x2 ≥ 0

(1,−1, 0)T if x2 < 0 .

The distributional curl of β̄p vanishes, since β̄p = ∇(x1 + |x2|), but the norm defined in (4.2)
does not. From the point of view of relaxation, it is easy to approximate β̄p with smooth curl-free
vector fields, e.g. by mollification, but this is impossible if the constraint is also considered. An
approximation with smooth vector fields which satisfy the constraint and for which the quantity
in (4.2) is continuous is instead easy. Namely, we first insert a small region where the vector field
vanishes, as for example in

βp
ε =

⎧

⎪

⎨

⎪

⎩

(1, 1, 0)T if x2 ≥ ε ,

0 if − ε < x2 < ε ,

(1,−1, 0)T if x2 < −ε .

Then, one can mollify separately in for positive and negative x2, still keeping the zero boundary
condition on the plane x2 = 0, and finally take a diagonal subsequence. This shows that the
definition (4.2) is appropriate for the curl of a distribution obtained by relaxation subject to the
side condition βp

1 = ±βp
2 , βp

3 = 0. Physically, this corresponds to assuming that a thin elastic
layer is always present between regions deformed along the two different slip systems. In other
words, dislocations generated by the two slip systems do not annihilate each other, even if they
have opposite Burgers vector.

In (4.1) a global multiplicative factor representing the typical elastic constant of the material has
been set to unity for simplicity. The material parameter σ represents the line energy of dislocations,
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Figure 4.1: Idealized phase diagram in the (µ, σ̃) plane for τ = 0, with all constants set to
unity, as in (4.3).

or equivalently the surface energy of dislocation walls, called T/b in (2.4), and γ represents the
average shear deformation imposed on the material. The parameter µ represents the relative
strength of the matrix (i.e. of the rest of the material, located in R

3 \ ΩL) with respect to the
considered grain. The squared H1/2 norm on the boundary used here is equivalent to the squared
H1 norm on the complement of ΩL. In the limit µ → ∞ one expects to recover the hard Dirichlet
boundary conditions, namely, u(x) = γx1 on ∂ΩL.

By scaling we can eliminate the parameters L and γ. Precisely, we set

ũ(x) =
1

γL
u(Lx) , β̃p(x) =

1

γ
βp(Lx) ,

and obtain

E(u, βp, σ, µ, τ, L, γ) = L3γ2E

(

ũ, β̃p,
σ

γL
, µ,

τ

γ
, 1, 1

)

.

We now define σ̃ = σ/γL, τ̃ = τ/γ, and study the infimum of the reduced energy Ẽ(u, βp, σ̃, µ, τ̃ ) =
E(u, βp, σ̃, µ, τ̃ , 1, 1). Our main result is that its scaling behavior is the same as that of

E0(σ̃, µ, τ̃) = min
(

1, µ, τ̃ + µ1/2σ̃1/2, τ̃ + σ̃2/3
)

. (4.3)

This shows that four regimes are present, which are discussed in Section 4.2 below and illustrated,
for the simplest case τ = 0, in Figure 4.1. At large σ̃ (i.e. σ/γL) no microstructure can form, and
the crystal deforms uniformly. If µ is large, the coupling to the matrix is also strong, and this results
in a purely elastic regime. If the coupling is weak, i.e. µ is small, the grain decouples from the rest of
the crystal, and does not follow the average deformation. For small σ̃ (i.e. σ/γL) the grain deforms
plastically, and the macroscopic imposed deformation is realized by forming fine mixtures between
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(a) (b)

Figure 4.2: Two different kinds of fine-scale structures may form. (a): an essentially one-
dimensional pattern, known as laminate, minimizes the bulk energy but realizes boundary
conditions only up to a small error. (b): a two-dimensional domain-branching pattern can
accommodate Dirichlet boundary conditions, and still have coarse oscillations in the interior,
at the expense of higher bulk energy in the transition layers.

regions deformed along the two slip systems. Depending on the value of the coupling constant µ,
this can either be a laminar structure or a branched structure with finer mixtures closer to the
boundary. These two patterns, which are illustrate in Figure 4.2, have been used in a number of
different problems where a nonconvex bulk energy density with multiple minima is accompanied by
boundary conditions, or forcing terms, which favor some convex combination of the minima, by a
differential condition favoring a certain orientation of the interfaces, and by a singular perturbation
that penalizes very fine structures. Oscillations which refine towards the boundary as a possible
competitor to uniform oscillations have been first used in the discussion of branched domains in
the intermediate state of type-I superconductors by Landau back in 1938 [34, 35]. Mathematically,
a transition between a laminar regime at weak coupling to the outside material and a branching
pattern when the coupling is stronger was first proven in a simplified model of martensitic phase
transitions by Kohn and Müller in 1992-1994 [32, 33], and later refined in [13]. Since then, analogous
results have been obtained for models of uniaxial ferromagnets [10, 11], of blistering in compressed
thin films [29, 7, and references therein], and of flux domain structures in the intermediate state of
type-I superconductor plates [12].

4.1 Energy scaling

Theorem 4.1. There are constants c, c′ such that for all u and βp which obey the side condition
βp

1 = ±βp
2 , βp

3 = 0 a.e., and all σ > 0, µ > 0, τ ≥ 0, L > 0, γ > 0, we have

cE0 (σ̃, µ, τ̃ ) ≤ 1

L3γ2
inf E(u, βp, σ, µ, τ, L, γ) ≤ c′E0(σ̃, µ, τ̃ )
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where σ̃ = σ/γL, τ̃ = τ/γ, and

E0(σ̃, µ, τ̃) = min
(

1, µ, τ̃ + µ1/2σ̃1/2, τ̃ + σ̃2/3
)

.

Proof. By the scaling mentioned above, it is clearly sufficient to prove the result for L = γ = 1,
and to work with the reduced energy Ẽ. We state the proof separately for the upper and lower
bounds.

Upper bound. We shall prove that the energy is bounded from above by a constant times each
of the four terms entering E0, and hence also by their minimum. This requires four different
constructions, two of which are trivial. We proceed in order of increasing complexity.

The first upper bound corresponds to the purely elastic deformation obtained by setting βp = 0,
u(x) = x1. A direct substitution gives Ẽ(x1, 0, σ, µ, τ) = 1.

The second upper bound corresponds to no deformation at all, i.e., to a decoupling of the grain
from the matrix. Setting βp = u = 0, we get Ẽ(0, 0, σ, µ, τ) = cµ for some c > 0.

The third construction is the laminate, as illustrated in Figure 4.2(a). This is essentially the
same construction used in the previous section for the local problem. The difference here is that
the boundary conditions need to be satisfied only approximately, whereas the surface energy needs
to be accounted for. Therefore we need to choose the optimal length scale for the oscillation.
Precisely, given a positive integer n, we set βp(x) = ∇u(x) = (1, 1, 0) if nx2 has odd integer part,
and βp(x) = ∇u(x) = (1,−1, 0) else. The first term in E vanishes, the second equals τ

√
2 (since

|βp| =
√

2), and the third equals 2σn (since there are n planar interfaces of unit area). To estimate
the last term, we recall that by a standard interpolation inequality for any v we have

‖v‖2
H1/2(∂ΩL) ≤ c ‖v‖H1(∂ΩL) · ‖v‖L2(∂ΩL) .

Since |u − x1| ≤ c/n and |∇u| ≤ c, setting v = u − x1 we get that the squared H1/2 norm is
controlled by c/n, and hence the boundary term is controlled by cµ/n. Combining the four terms
we get E ≤ c(σn + µ/n), and choosing n = µ1/2σ−1/2 we get the result. This construction only
needs to be done in the regime σ < µ, hence n > 1, and rounding to an integer only affects the
estimate by a factor. We remark that the period of the laminar pattern is given by

l =

(

σ

µ

)1/2

.

Finally, the fourth upper bound is obtained with the branching construction, as illustrated in
Figure 4.2(b). This is a more complex construction, and for greater clarity we present it first in
two dimensions (i.e. on a section at constant x3 in the central part of the sample) and then extend
it to three dimensions. This construction is characterized by the fact that it can accommodate a
large oscillation period in the bulk of the sample while reaching the exact boundary conditions, i.e.
with u = γx1 on ∂ΩL. Therefore the resulting energy bound does not depend on µ.

The basic building block is the transition from a single oscillation to a double oscillation (period-
doubling step), as represented in Figure 4.3(a). Consider for definiteness a rectangle of width k
and height 2h, with the origin in the midpoint of the left side. The central triangle in Figure 4.3(b)
has (vertical) basis h and (horizontal) height k. The plastic deformation takes only the two values
(1,±1), and the elastic field u takes the values given in Figure 4.3(a) (the third component of βp,

30



S. Conti and M. Ortiz Dislocation Microstructures. . .

(a) (b)

Figure 4.3: Branching construction. (a): sketch of the transition between a double laminate
and a single one. The value of u is given in each piece where it is affine, and u

−
= x1 +x2 +

h(1 − x1/k), u+ = x1 + x2 + h(1 − x1/k). The dot marks the origin of the chosen axis. (b):
the basic block of size (0, k) × (−h, h) used for the branching construction. The values give
βp in the four regions.

which vanishes by the side condition, is here dropped from the notation). We now evaluate the
energy inside this k×2h rectangle. The elastic energy is the integral of |∇u−βp|2. The latter equals
(h/k)2 per unit area inside the central triangle, and zero outside, hence the total elastic energy is
h3/2k. The two horizontal interfaces have total energy 2 · 2kσ. Each of the oblique interfaces has
energy controlled by 2σ(k + h). The total energy in the rectangle is then controlled by

h3

2k
+ σ (4k + 4(k + h)) . (4.4)

Optimization with respect to the horizontal width k gives k = h(h/σ)1/2/4, and (assuming h ≥ σ)
an energy bound on each rectangle of

Erect,2D ≤ ch3/2σ1/2 .

In a second step, the various rectangles are combined together to achieve the branching pattern
represented in Figure 4.4. At the i-th iteration step the period is given by hi = h02

i, and there are
1/hi rectangles as the one of in Figure 4.3(b). The total energy for the i-th iteration is controlled
by

E
(i)
rect,2D ≤ ch

1/2
i σ1/2 .

At the left and right boundaries there is a series of triangles where βp = 0 and u interpolates
between the oscillatory value in the interior and the affine boundary data. These triangles have
basis h0 given by the smallest period reached by the branching construction, and height also of
order h0. This first layer has surface energy controlled by σ, and elastic energy controlled by its
area, which is of order h0. Therefore its total energy is

E
(0)
rect,2D ≤ c(h0 + σ) .
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Figure 4.4: Branching construction, global picture. Three steps of refinement are shown.
The black triangles are the boundary-layer where no branching takes place. In the text only
the left half of the construction is discussed explicitly, the rest is symmetric.

Summing over all periods, we can estimate the energy of the two-dimensional branched construction
by

Ebr = E
(0)
rect,2D +

N
∑

i=1

E
(i)
rect,2D ≤ c

[

h0 + σ + h0σ)1/22N/2
]

.

The value of N is determined by the length of the sample in the x1 direction,

1 =

N
∑

i=1

ki =

N
∑

i=1

h
3/2
0

σ1/2
23i/2 =

h
3/2
0

σ1/2
23N/2 .

The total energy, where the term τ |βp| is also included, satisfies

Ebr ≤ ch0 + cσ + cσ2/3 + 2τ .

We finally have to choose h0, which needs to fulfill h0 ≥ σ (this was used after Eq. (4.4)). The
optimal value is clearly h0 = σ, and gives for the optimal branching construction the scaling
estimates

hi = σ2i ki = σ23i/2 Ebr ≤ cσ2/3 + cτ .

This construction is admissible only for small σ, i.e. in the regime h0 ≤ 1, N ≥ 1. In the center of
the sample the oscillation period scales as σ1/3.

Now we generalize to three dimensions. The idea is that for intermediate values of x3 the above
construction applies with no changes, and that for x3 approaching the upper and lower boundaries
the oscillations refine much as for x1 approaching the left and right boundaries. For simplicity,
we consider explicitly only the situation around the origin, i.e. present a construction on (0,∞)3;
the other seven corners of the cube are treated analogously. Note that no refinement is needed
approaching the face x2 = 0, since this is parallel to the oscillation direction.

Let li be the value of x1 where the i-th branching step takes place in the two-dimensional
construction, li =

∑

j<i kj . We define the regions

Ti = li ≤ min(x1, x3) ≤ li+1
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Figure 4.5: Domains Ti in the (x1, x3) plane in which the three-dimensional branching
takes place.

where branching between period hi and period hi+1 = 2hi takes place (see Figure 4.5). Precisely, on
the surface min(x1, x3) = li the field βp oscillates in x2 on a scale hi between the values (1,±1, 0);
analogously u oscillates between x1 + x2 + c and x1 − x2 + c on the same scale, with constants
chosen to guarantee continuity. The same holds for all i.

We now show how to construct the branching step in region Ti. If x3 ≥ x1, the above construc-
tion applies with no changes, and no dependence on x3 is present. If instead x1 ≥ x3, a very similar
construction applies. Precisely, the domain is subdivided in an x1-independent way as in Figure
4.3(b), where now the horizontal axis represents x3 (and the vertical one still x2). The values of βp

in the different triangles remain the same (with vanishing third component); the same expression
holds for u on the boundary and in the two outer regions. Then, u is defined in the two triangles
by linear interpolation between the values at the corners. Precisely, we get that the expressions for
u− and u+ in Figure 4.3(a) are replaced by ũ− = x1 + x2 + h(1− z/k), ũ+ = x1 + x2 + h(1−x3/k).
The remaining expressions for u are unchanged. Note that this construction gives a continuous u
on the line x1 = x3. The energy is the same as in the two-dimensional case, after multiplication by
the length in the third direction (which is unity), and inclusion of an additional interface in βp on
the surface x1 = x3, which gives a negligible energy contribution of order hiσ.

Combining the different pieces, and inserting boundary layers as above, we get a function u
which obeys u(x) = x1 on ∂(0, 1)3 and has energy controlled by

Ebr ≤ cσ2/3 + cτ .

This concludes the proof of the upper bound.
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Lower bound. The proof of the lower bound is based on a subdivision of the domain in small
parallelepipeds, and on the rigidity results of Lemmas 4.2 and 4.3 below applied to their sections.
We start from the case τ = t = 0.

For any l < 1/2, inside the square (0, 1)2 we can choose at least l−2/2 squares with sides of
length l and parallel to the lines x1 = x2 and x1 = −x2, respectively. Denote them by Qi

l. Let Ei

be the amount of energy contained in the set Qi
l × R, defined by

Ei = ‖∇u − βp‖2
L2(Qi

l×(0,1)) + σ‖∇ × βp‖L1(Qi
l×(0,1)) + µ‖u − x1‖2

H1/2(Qi
l×{0,1})

.

Due to the superadditivity of the squared H1/2 norm, which can be easily checked using the double-
integral representation, we get

E ≥
∑

i

Ei ≥
1

l2
min

i
Ei .

Further, the side condition βp
1 = ±βp

2 , βp
3 = 0 is satisfied a.e. in each parallelepiped.

We now choose an optimal section of an optimal parallelepiped, i.e., choose i and x3 so that
Ei = minj Ej, and

‖∇u − βp‖2
L2(Qi

l×{x3})
+ σ‖∇ × βp‖L1(Qi

l×{x3}) ≤ Ei ,

with the side condition satisfied a.e. in Qi
l × {x3}.

By Lemma 4.3 there is a function f of the form g(x1 + x2) or g(x1 − x2) such that

‖u − f‖L1(Qi×{x3}) ≤ cl2E
1/2
i + c

l2Ei

σ
.

Combining the Poincaré inequality and the L2-L1 embedding we get

‖u − f‖L1(Qi×{0}) ≤ ‖u − f‖L1(Qi×{x3}) + ‖∂3u‖L1(Qi×(0,1))

≤ ‖u − f‖L1(Qi×{x3}) + l‖∂3u‖L2(Qi×(0,1))

≤ clE
1/2
i + c

l2Ei

σ
,

since |∂3u|2 ≤ |∇u − βp|2 and l ≤ 1.
Finally, we use Lemma 4.2 on Qi × {0}. We get

‖u − f‖L1(Qi×{0}) + ‖u − x1‖2
H1/2(Qi×{0})

≥ cl3 .

Combining with the previous inequality and the definition of Ei, this gives

2lE
1/2
i +

l2Ei

σ
+

Ei

µ
≥ cl3 ,

i.e.

E ≥ Ei

l2
≥ cmin

(

l2,
σ

l
, lµ

)

for any l < 1/2. It only remains to choose the appropriate values of l in the four regimes. If
σ ≥ min(1, µ) we choose l = 1/2, and get E ≥ cmin(1, µ). This covers the two ’simple’ regimes.
In the lamination regime µ3 ≤ σ ≤ µ ≤ 1, we choose l = σ1/2µ−1/2, and get E ≥ σ1/2µ1/2. In the
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branching regime σ ≤ min(1, µ3), we choose l = σ1/3 and get E ≥ σ2/3. This concludes the proof
if τ = 0.

Now we prove the result for large τ , then the thesis will follow by interpolation. As above, we
choose a ’good’ section x3, such that the restriction of the energy to (0, 1)2 × {x3} is as low as on
average. Combining the first two terms of the energy we obtain

‖∇u‖L1((0,1)2×{x3}) ≤ ‖∇u − βp‖L2((0,1)2×{x3}) + ‖βp‖L1((0,1)2×{x3}) ≤ E1/2 +
E

τ
.

By the Poincaré inequality there is a constant c ∈ R such that

‖u − c‖L1((0,1)2×{x3}) ≤ E1/2 +
E

τ
.

Now, as above, we use the ∂3u part of the first term in the energy on (0, 1)2 × (0, x3) to get

‖u − c‖L1((0,1)2×{0}) ≤ 2E1/2 +
E

τ
,

and from Lemma 4.2 with f = c and l = 1 we get

max

(

2E1/2 +
E

τ
,
E

µ

)

≥ c .

Equivalently,
E ≥ cmin(1, µ, τ) ,

which is the desired bound for large τ . Finally, the thesis follows by averaging between the two
bounds (i.e. from E ≥ min(x, y) and E ≥ min(x, y′) we get E ≥ min(x, (y + y′)/2)).

We finally report the two interpolation lemmas used in the proof.

Lemma 4.2. There is a constant c > 0 such that for any u : Ql → R, f : R → R, where Ql is a
square of side l, one has

‖u(x1, x2) − f(x1 + x2)‖L1(Ql) + ‖u(x1, x2) − x1‖2
H1/2(Ql)

≥ cl3 .

The same holds if f(x1 + x2) is replaced by f(x1 − x2).

Proof. By scaling ũ(x) = lu(x/l), and f̃(x) = lf(x/l), it is clearly sufficient to prove the statement
for l = 1. We proceed by contradiction. If the thesis were false, there would be sequences uj and
fj such that uj − fj → 0 in L1(Q1), and uj → x1 in H1/2(Q1) and hence uj − cj → x1 in L1(Q1),
for some constants cj . But then, fj(x1 + x2) − cj → x1 in L1(Q1), a contradiction.

Lemma 4.3. Let Ql = {|x1 ±x2| ≤ l/
√

2} be a square of side l, and consider functions u : Ql → R

and βp : Ql → R
2, with βp

1 = ±βp
2 a.e.. Then, there is f : (−l/

√
2, l/

√
2) → R

2 such that

min
(

‖u(x1, x2) − f(x1 + x2)‖L1(Ql), ‖u(x1, x2) − f(x1 − x2)‖L1(Ql)

)

≤ l2‖∇u − βp‖L2(Ql) + l2‖∇ × βp‖L1(Ql) .
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Proof. By the same scaling as above, it is sufficient to prove the thesis for l = 1. Let (ξ, η)
be coordinates rotated by 45 degrees with respect to (x1, x2), so that the domain Q1 becomes
Q = {0 ≤ ξ, η ≤ 1}. In these coordinates, the side condition requires that at a.e. point either
βp

ξ = (βp
1 + βp

2)/
√

2 or βp
η = (βp

1 − βp
2)/

√
2 vanishes. We define

ω(ξ) =
{

ξ ∈ (0, 1) such that βp
ξ (ξ, η) �= 0 for a.e. η ∈ (0, 1)

}

,

ω(η) =
{

η ∈ (0, 1) such that βp
η(ξ, η) �= 0 for a.e. ξ ∈ (0, 1)

}

,

and ω = ω(ξ) × ω(η) ⊂ (0, 1)2. These definitions ensure that βp
ξ �= 0 almost everywhere on ω, and

the same for βp
η . Since by the side condition for almost every point of Q at least one of βp

ξ and

βp
η vanishes, the set ω is a null set (with respect to the two-dimensional Lebesgue measure), and

hence at least one of the two sets ω(ξ) and ω(η) has vanishing one-dimensional measure. Assume for
concreteness that ω(ξ) is a null set. Then, for a.e. ξ ∈ (0, 1) there is a set θ(ξ) ⊂ (0, 1) of positive
measure such that βp

ξ = 0 on {ξ} × θ(ξ). It follows that, for a.e. η ∈ (0, 1),

|βp
ξ (ξ, η)| ≤

∫ 1

0
dη′|∂ηβ

p
ξ |

and hence, integrating first with respect to η and then with respect to ξ,

∫

Q
|βp

ξ (ξ, η)| ≤
∫

Q
|∂ηβ

p
ξ | .

In these coordinates the definition (4.2) reads |∇ × βp| = |∂ηβ
p
ξ | + |∂ξβ

p
η |. Therefore

∫

Q
|∂ξu| ≤

∫

Q
|∂ξu − βp

ξ | +
∫

Q
|βp

ξ | ≤ ‖∇u − βp‖L2(Q) +

∫

Q
|∇ × βp|

Let f(η) = u(0, η). Then
∫

Q
|u(ξ, η) − f(η)| ≤

∫

Q
|∂ξu|

and the proof is concluded. In the other case, i.e. if ω(η) is a null set, we get the same with
f(ξ) = u(ξ, 0).

4.2 Discussion of the phase diagram

The estimate of the energy (4.3) shows that the yield strength τ only enters through special com-
binations, namely,

τ̃ + µ1/2σ̃1/2 and τ̃ + σ̃2/3 .

Both expressions have a very simple interpretation. Indeed, let l be the length scale of the mi-
crostructure, l = σ̃/µ1/2 in the first case and l = σ̃1/3 in the second one (see constructions above).
Then, both expressions can be written in the common form

τ̃ +
σ̃

l
.
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Figure 4.6: Phase diagram in the (µ, σ̃) plane, according to (4.5). The arrow denotes the
direction of increasing deformation γ.

The same relation holds in unscaled variables, if the appropriate expression for the unscaled l is
used. This corresponds exactly to the scaling argument proposed by Aubry and Ortiz [4, Eq. (5.4)],
based on which the dislocation line energy σ increases the effective yield strength of a material τ by
an amount σ/l. In the following we shall focus on the geometric effects and for simplicity assume
τ = 0.

The phase diagram depicted in Figure 4.1 is degenerate, in that all four phases meet at a point.
This is merely a consequence of the fact that all constants have been set to unity. A more realistic
model can be obtained by evaluating the upper bounds with appropriate constants. Whereas this
procedure is not rigorous, and only provides upper bounds on the constants, it constitutes at a
heuristic level the natural method to lift the degeneracy. Simple calculations show that, of the four
constants, the one in the branching regime is the largest. Assume, for definiteness, that it is 50%
larger than the others. Then we would estimate the energy with

E1(σ, µ, 0) = min

(

1, µ, µ1/2σ1/2,
3

2
σ2/3

)

. (4.5)

Note that the statement of Theorem 4.1 holds also if E0 is replaced with E1 there, since they have
the same scaling behavior. The phase diagram resulting from E1 is illustrated in Figure 4.6 (with
the assumed factor 3/2, if the ratio is bigger, the laminate construction gains additional weight at
the expense of the branching one).

Consider now a typical monotonic loading experiment. The material parameters σ, µ, and L
are fixed, whereas the strain γ is increased monotonically starting from zero. This means that
σ̃ = σ/γL decreases, starting from infinity, hence that we move down vertically in the phase
diagram of Figure 4.6, as indicated by the arrow. A different behavior is expected depending on
the precise value of µ. To decide which is appropriate for a realistic experimental situation, the
following two observations are helpful: (i) µ represents the relative strength of the other grains,
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hence is expected to be of order unity; (ii) for very small γ (i.e. very large σ̃) a uniform elastic
deformation is expected, and therefore the appropriate phase is the elastic one, not the decoupled
one. Hence the first phase transition encountered is the one between elastic and laminate, which
occurs at σ̃µ = 1. After that, the energy per unit volume is given by

Elam

L3
∼ γ2(µσ̃)1/2 =

γ3/2µ1/2σ1/2

L1/2
,

hence the strain, obtained by taking the derivative of the energy per unit volume with respect to
γ, scales in the lamination regime as (γµσ/L)1/2. If the strain γ is increased further, we expect
that the branching regime is eventually reached, where the strain scales as γ1/3(σ/L)2/3.

From the point of view of the modeling of a polycrystalline material, the dependence of the
stress on L corresponds to the dependence of the macroscopic stress on grain size. Therefore our
model predicts that in polycrystals the stress beyond the elastic-to-plastic transition scales as the
inverse square root of the grain size. This fact corresponds exactly to the experimentally known
Hall-Petch law [20, 44].

Acknowledgements

This work was partly carried out during MO’s stay at the Max Planck Institute for Mathematics in
the Sciences of Leipzig, Germany, under the auspices of the Humboldt Foundation. MO gratefully
acknowledges the financial support provided by the Foundation and the hospitality extended by the
Institute. The work of SC was partially supported by Deutsche Forschungsgemeinschaft through
the Schwerpunktprogramm 1095 Analysis, Modeling and Simulation of Multiscale Problems. We
are grateful to Stefan Müller for useful discussions and encouragement.

References

[1] L. Ambrosio, A. Coscia, and G. Dal Maso, Fine properties of functions with bounded deformation, Arch.
Rat. Mech. Anal. 139 (1997), 201–238.

[2] G. Anzellotti and M. Giaquinta, Existence of the displacements field for an elasto-plastic body subject
to Hencky’s law and von Mises yield condition, Manuscripta Math. 32 (1980), 101–136.

[3] , On the existence of the fields of stresses and displacements for an elasto-perfectly plastic body
in static equilibrium, J. Math. pures et appl. 61 (1982), 219–244.

[4] S. Aubry and M. Ortiz, The mechanics of deformation-induced subgrain dislocation structures in metallic
crystals at large strains, Proc. R. Soc. Lond. A 459 (2003), 3131–3158.

[5] J. L. Bassani and T. Y. Wu, Latent hardening in single crystals. 2. analytical characterization and
predictions, Proc. Roy. Soc. London A 435 (1991), 21–41.

[6] M. N. Bassim and R. J. Klassen, Variation in dislocation cell size with local strain in a low alloy steel,
Mat. Sci. Engin. 81 (1986), 163–167.

[7] H. Ben Belgacem, S. Conti, A. DeSimone, and S. Müller, Energy scaling of compressed elastic films,
Arch. Rat. Mech. Anal. 164 (2002), 1–37.

[8] A. Braides and A. Defranceschi, Homogenization of multiple integrals, Claredon Press, Oxford, 1998.

38



S. Conti and M. Ortiz Dislocation Microstructures. . .

[9] A. Braides, A. Defranceschi, and E. Vitali, A relaxation approach to Hencky’s plasticity, Appl. Math.
Optim. 35 (1997), 45–68.

[10] R. Choksi and R. V. Kohn, Bounds on the micromagnetic energy of a uniaxial ferromagnet, Comm.
Pure Appl. Math. 51 (1998), 259–289.

[11] R. Choksi, R. V. Kohn, and F. Otto, Domain branching in uniaxial ferromagnets: a scaling law for the
minimum energy, Comm. Math. Phys. 201 (1999), 61–79.

[12] , Energy minimization and flux domain structure in the intermediate state of a type-I supercon-
ductor, J. Nonlinear Sci 14 (2004), 119 – 171.

[13] S. Conti, Branched microstructures: scaling and asymptotic self-similarity, Comm. Pure Appl. Math.
53 (2000), 1448–1474.

[14] S. Conti, D. Faraco, and F. Maggi, A new approach to counterexamples to L1 estimates: Korn’s inequal-
ity, geometric rigidity, and regularity for gradients of separately convex functions, MPI-MIS Preprint
93/2003, to appear in Arch. Rat. Mech. Anal.

[15] G. Dal Maso, An introduction to Γ-convergence, Birkhäuser, Boston, 1993.
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