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Dislocation Modelling of Fatigue Cracks: An Overview
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The intrinsic threshold behavior of fatigue cracks and the disappearance of any cyclic plastic deformation below a threshold value can
be understood by taking into account the discreteness of plasticity with recourse to discrete dislocation models. The aim of this paper is to
document the progress in the discrete dislocation modelling within the past twenty years and the resulting increase in the understanding of
fatigue cracks. The problems addressed are (1) the nature of the intrinsic fatigue threshold, (2) the influence of microstructure and/or of the
mean stress level on the crack tip deformation and (3) the physical reason for the minimum striation spacing at small stress intensity ranges.
A particular purpose of this paper is to compare the different dislocation models proposed in the literature in order to differentiate aspects of
fatigue crack growth that do and do not depend on modelling and on microstructural details.
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1. Introduction

The established picture of fatigue crack propagation rests
on the pioneering work of Paris,) Elber,” Ritchie and
Suresh® and many others that cannot be named here sepa-
rately. Paris recognized that fatigue crack propagation is con-
trolled by the applied stress intensity range AK. This opened
the way for the analysis of fatigue crack growth in terms of
fracture mechanics, which had just reached the maturity to
be applied to cyclic plastic crack problems.* The following
concentration on local processes during fatigue crack propa-
gation let Elber realize that only a certain portion of the ap-
plied loading amplitude is actually transferred to the crack
tip. He reasoned that the crack flanks make contact during the
unloading sequence such that the crack tip is partly shielded
from the remote cyclic loading which becomes less effective
for crack propagation. Ritchie and Suresh investigated and
categorized the physical mechanisms leading to the crack tip
shielding. They introduced the terms extrinsic fatigue crack
resistance and intrinsic fatigue resistance for the crack flank
contact and for the material specific resistance, respectively.
Paris’ AK dependence of fatigue crack propagation is the re-
sult of the dominance of intrinsic processes while the com-
monly observed mean load dependence (or equivalently the
Kmax dependence) for near threshold crack propagation is at-
tributed to extrinsic phenomena.

Extrinsic effects and their significance have been studied
intensively within the last 3 decades. This has been appreci-
ated recently by the ASTM with two special conferences.>®
The intrinsic resistance of metals against fatigue crack prop-
agation is less systematically investigated. This is associated
with the experimental difficulties to measure real intrinsic ma-
terial data. So far, “intrinsic” data are always obtained from
the total fatigue resistance of a material reduced by the ex-
trinsic contribution obtained via crack closure measurements.
Uncertainties and imprecisions during crack closure measure-
ments therefore reflected themselves in the intrinsic crack
growth curves.

The simulation of the intrinsic material resistance against

cyclic plastic deformations at the crack tip has become fea-
sible since the mid 80’s due to an increasing computer
power. The methods range from Finite Element simula-
tions,” 19 mesoscale methods,'''¥ and discrete dislocation
modelling!32" down to molecular dynamics simulations.>?
The aim of this paper is to summarize the recent modelling
efforts to understand the near threshold behavior of cracks.
The questions addressed within the paper are the following:
1. Why are different simulation techniques needed to un-
derstand the different aspects of fatigue crack growth?
2. What are the differences in the results of the discrete dis-
location modelling and continuum plasticity and where
are the similarities?
3. What is the intrinsic origin of the near threshold behavior
of fatigue cracks?
4. How does microstructure influence the crack tip plastic-
ity, and
5. is it possible to explain the minimum spacing of stria-
tions in the near threshold regime of fatigue cracks by
dislocation mechanics.

2. The Length Scales Involved in Fatigue

To understand why we need different simulation techniques
to model fatigue crack growth and why discrete dislocation
models are appropriate for the description of the near thresh-
old regime, we first consider an effective, i.e., a crack closure
corrected, crack growth curve. Such a curve is shown by the
full circles in Fig. 1 (after Caton et al.*®) for aluminum alloy
W319-T7 Al with a grain size of 23 um. This crack growth
curve is typical for a metallic material with an effective
threshold of stress intensity range (AKy .« ~ 0.8 MPa/m).
It shows a sharp increase after the threshold, a midpart with a
more moderate slope and a final increase at large stress inten-
sity ranges which approach the quasi static fracture limit. The
squares in Fig. 1 describe the cyclic plastic zone size, Aw, in
dependence on AK based as a crude estimation, Aw is about
3 orders of magnitude larger than the crack growth increment
per loading cycle. The lower shaded stripe in Fig. 1 indicates
a crack growth increment in the range of one Burgers vector
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Fig. 1 An effective crack growth curve for an Aluminum alloy after.?®

Also shown is an estimation of the cyclic plastic zone size. The lattice
spacing and the grain size are indicated by shaded stripes.

per loading cycle, the upper stripe indicates the grain size in
this material. From this comparison we conclude the follow-
ing:

o At moderate stress intensity ranges the cyclic plastic
zone size, Aw, 1s smaller than or in the order of the grain
size. Aw becomes larger than microstructural features
only for very large stress intensity factors.

o The crack growth increment per loading cycle shrinks to
lattice dimensions in the lower part of the crack growth
curve.

In essence, all length scales from atomistic to macroscopic
are met along a crack growth curve which helps to under-
stand why the variety of simulation methods already listed in
the introduction is needed to describe all fatigue crack growth
processes. While generally it is inconvenient to use lower
hierarchical methods at higher physical levels, it is not only
inaccurate but invalid to take higher hierarchical methods at
lower physical levels. The physical length scale of the near
threshold regime is the Burgers vector of the dislocations such
that discrete dislocation models must be used to describe the
near threshold plasticity. The Finite Element Method with
continuum plasticity mechanics can be used to describe the
macroscale plastic deformation in the upper Paris regime and
above, mesoscale methods are appropriate for the lower Paris
regime and the molecular dynamics simulations are useful to
answer the question where plasticity comes from, i.e., where
and when dislocations are generated.

In the following the dislocation models proposed for the
plastic deformation at cracks under near threshold conditions
are briefly described and some differences between discrete
and continuum plasticity are discussed. Then the influence
of microstructure and of loading conditions (R-ratio) on the
threshold and the near threshold plastic deformation is invés-
tigated.

3. Methodology

The plasticity in front of a mode II crack can be modelled

as the motion of discrete dislocations on a slip plane which is

coplanar to the crack. This is schematically depicted in Fig. 2.
The dislocations are generated at the crack tip when the

local stress intensity factor at the crack tip excéeds a cer-

tain critical stress intensity factor for dislocation emission, k..

Following Weertman®® the shear stress acting on the emitted

dislocation with the Burgers vector b at the position r ahead

of the crack tip is given by:
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where p is the shear modulus and v is Poisson’s ratio. The
sum in this equation is computed over all other dislocations at
distances r’ with the Burgers vector b’. The dislocation moves
as long as the shear stress, Tgisiocation, 15 larger than the local
material resistance against slip, Tgjcion- Since the emitted dis-
location shields the crack, and reduces the local stress inten-
sity factor, the next dislocation can only be generated after a
certain increase of the applied load. Therefore the computer
algorithm consists of:
1. seeking the equilibrium positions of the dislocations,
2. load increase (or decrease during unloading), and
3. dislocation emission.
The cyclic plastic deformation at the crack tip, ACTOD, is
obtained by counting the number AN of dislocations return-
ing to the crack tip during unloading:

ACTOD = ANb.

Tdislocation ==

@

@

This dislocation model, used by Pippan'” for mode II and
mode III cracks, was extended by Riemelmoser et al.!® for
a crack loaded in mode I where the plasticity takes place
on shear planes inclined to the crack propagation plane.
Wilkinson et al.!” assumed again a mode II crack but with
internal dislocation sources at some distance in front of the
crack tip. The critical stress intensity factor for dislocation
emission, k., is then replaced by a critical stress intensity fac-
tor to generate the dislocation at the source. The beginning
of cyclic plastic deformation was found to be relatively in-
sensitive to the friction stress and the dislocation source pa-
rameters, within a reasonable range. Doquet®® used the same
model as Pippan and incorporated the effect of friction at the
crack flanks.
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Fig. 2 A schematic dislocation arrangement in front of a mode II crack.
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4, A Comparison of Discrete and Continuum Plasticity

In order to get a first impression of the similarities and the
differences between discrete dislocation mechanics and con-
tinuum mechanics, the very simple system of a crack in a ma-
terial with a friction stress which is uniform in space (homo-
geneous material) and time (non-hardening material) has been
considered. This model material has been studied by several
authors.!”2% The general trend observed in these studies is
shown in Fig. 3 (after'®) where the ACT O D for a loading-
and complete unloading cycle is depicted as a function of AK
which has been normalized by the critical stress intensity fac-
tor for dislocation emission, k..

The result of the discrete dislocation model is drawn as a
solid line in Fig. 3. The broken line in Fig. 3 is the prediction
of a distributed dislocation simulation (after®>-*®) which is
similar to the BCS model.?” The distribution of dislocation
model still describes plastic deformation as the consequence
of dislocation motion but allows infinitesimally small Burgers
vectors. Plasticity is therefore smeared-out along the shear
plane such that it actually correspond to a continuum model.
Figure 3 therefore allows to compare discrete plasticity with
a continuum approach.

At stress intensity ranges greater than 3k, the numbers of
cyclically emitted and annihilated dislocations becomes large
(AN > 100) and the differences between discrete plastic-
ity and continuum plasticity disappear. From the physical
point of view both plasticity models are therefore equivalent
in the limit of large plastic deformations. The difference lies
in the numerical efficiency. At large AK -values, the calcu-
lation of a single point with the discrete dislocation model
requires about 5 hours of CPU time on a modern workstation,
while the entire ACT O D curve is computed within a minute
or so when using the distributed dislocation technique. This
clearly favors continuum mechancis for large plastic defor-
mations. The reason for simulating plasticity as the motion
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Fig. 3 The cyclic crack tip opening displacement as a function of AK for
a stationary mode I crack at stress ratio, R = 0. Comparison between the
discrete dislocation model and a distributed dislocation method, after.!®)

of discrete dislocations is seen at small A K-values when the
plastic deformation shrinks to some 10 Burgers vectors or be-
low. For such a small number of cyclically moved disloca-
tions, the plastic deformation is ¢onstrained by its discrete
nature, a phenomenon which is naturally lost by the “smooth-
ing procedure” of continuum approximations. This constraint
leads to a sharp decrease of the plastic deformation at small
AK -values where only 1 or 2 dislocations are moved. It cul-
minates in the disappearance of any cyclic plastic deformation
below a threshold value. Near the threshold the difference be-
tween the physical, i.e., the discrete plastic deformation and
the approximated one by the distributed dislocation technique
is roughly 1 order of magnitude!

5. The Threshold of the Cyclic Plastic Deformation

The constraint on cracks due to the discreteness of plastic-
ity impedes the plastic deformation at small stress intensity
ranges and leads in the homogeneous material in Fig. 3 for
loading-complete-unloading-cycles to a threshold at AK =
1.3k.. Naturally the question arises how different critical
shear stresses, the presence of grain boundaries or dislocation
obstacles and/or different mean loads influence the threshold
value.

5.1 The influence of different critical shear stresses

The influence of different critical shear stresses on the
threshold in homogeneous materials has been investigated
in!7-19 (dislocation generation at the crack tip) and*® (inter-
nal dislocation sources). These papers conclude in coinci-
dence that the threshold of plastic deformation is always about
1.1 to 1.3k.. The threshold is therefore nearly independent of
the friction stress and of the dislocation generation mecha-
nism. For instance, Fig. 4 shows that AKy, inye changes only
by few per cent when the friction stress changes one order of
magnitude (after!”).

R=0.5

R=0.0
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Fig. 4 Dependence of the threshold of cyclic plastic deformation on the
friction stress in homogeneous materials, after.!” The critical stress inten-
sity range k. = 0.2G - +/b, stress ratio R = 0 and 0.5 (R = minimum
stress intensity factor, Kpmj,/maximum stress intensity factor, Kmax)-
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5.2 The influence of microstructure

The influence of the interaction of discrete dislocations and
microstructure at near threshold conditions was considered
in?39 (dislocation emission from the crack tip) and®® (in-
ternal dislocation sources). The simulation techniques are the
same as for homogeneous materials. A model grain structure
in an isotropic elastic material is depicted in Fig. 5.

In the absence of an elastic mismatch or elastic anisotropy
the effect of the grain boundaries (more generally, the disloca-
tion obstacles) is to locally increase the resistance of the ma-
terial against dislocation motion. Dislocations can overcome
the grain boundary when the following dislocations increase
the force on the leading dislocation until this force equals the
grain boundary resistance.

The influence of the distance L between the crack tip and
the single, penetrable dislocation obstacle on the threshold
is displayed in Fig. 6 (after®). When the distance between
the crack tip and the obstacle becomes larger than the cyclic
plastic zone size, the threshold is independent of the obsta-
cle strength and is the same as in the homogeneous material
(AKy, = 1.1k.). The predicted threshold value deviates from
the homogeneous case for smaller L. The difference becomes
larger than k./2 for very strong obstacles and at small dis-
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Fig. 5 A 2D model to simulate the influence of grain boundaries on near
threshold crack propagation.
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Fig. 6 Influence of dislocation obstacles on the threshold of plastic defor-
mation, after.>? The results have been obtained for the case that the first
dislocation overcomes the obstacle. At lower maximum stress intensity
factors-i.e., at lower stress ratios-A K, iny 18 larger than the plotted values.
At larger maximum stress intensity factors A Ky, iny is approximately con-
stant, hence, the indicated values can be considered as lower limit values.

tances between the crack tip and the obstacle (for L < 1000
Burgers vectors).

Strong obstacles can only be overcome by the help of a
dislocation pile up. The space to build up such a pile up
is limited, at small distances between the crack tip and the
obstacle. The equilibrium distance of the crack tip and the
nearest dislocation can become very small which causes the
reduction of threshold for cyclic plastic deformation at such
small L. The effect is more pronounced for the stronger ob-
stacles and would further increase for inpenetrable obstacles
(Topstacte —> 00).>? The largest reasonable obstacle stress is
the theoretical shear stress. This case is displayed with the
circles in Fig. 6. For weaker obstacles the effect of the obsta-
cles clearly depends on the obstacle strengths and distances.
For the extrapolation of the results of this study to realistic mi-
crostructures one has to consider that the 2D model in Fig. 5
has all the grain boundaries oriented parallel to the crack front
and perpendicular to the crack propagation direction. In the
physical reality grain boundaries usually form a more irreg-
ular net with varying distances and angles between the crack
front and the grain boundaries. Such 3D arrangements are
probably best projected onto the 2D simulations by taking the
mean distance of the dislocation obstacles as the characteris-
tic length scale, L. A distance between the obstacle and the
crack tip of about 1000 Burgers vectors (=300 nm) is a very
small value. The obstacle strength is usually well below the
theoretical shear strength of the material (1/27r) such that, for
these physically relevant cases, the effect of obstacles should
be reasonably small. The deviation from the threshold in ob-
stacle free materials is less than 30%.

One of the questions which often arises in connection with
discrete dislocation simulation is whether the experimentally
well documented dependence of fatigue thresholds on grain
size can be explained by such dislocation models (materials
with smaller grains tend to have lower thresholds). This does
not seem to be the case and the grain size dependence, there-
fore does not seem to be an intrinsic effect. This conclusion is
reached mainly because of the following discrepancy between
experiment and simulations:

o Usual grain sizes range from 5 pm up to 200 um. The
increase of the measured threshold due to that change of
the grain size can be as large as 5 to 7MPa/m (typical
for steels).

e The effect in the simulations becomes if at all pro-
nounced only for distances (grain sizes) smaller than
300 nm. The predicted decrease of the threshold is about
k./3 and spoken in absolute units this is only about 0.02—
0.7 MPa./m depending on the material. :

The dependence of absolute thresholds on grain size is, there-
fore, to a major extent an extrinsic effect and is due to the
contact of the rough fracture surfaces. The roughness induced
closure is more pronounced in coarse grained materials which
explains their higher thresholds.

5.3 The influence of the stress ratio

The experimentally determined threshold of stress inten-
sity range for crack propagation, AKy,, under mode I load-
ing is significantly influenced by the maximum stress in-
tensity factor or the stress ratio R = Kyin/Kmax, Which is
the parameter used to describe the mean load effects in fa-
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Fig. 7 Schematic representation of the R-ratio dependence of threshold for fatigue crack propagation under mode I loading. AKy, as a
function of R = Kin/Kmax (a) and AKy, as a function of Kiean = (Kmax + Kmin)/2 (b).

tigue. Figure 7 shows schematically the variation of AKy;, as
a function of R and the mean stress intensity factor, Kyean =
(Kmax + Kmin)/2. Atnegative R ratios AKy, increases contin-
uously with decreasing R, at positive R AKy, decreases until
at R ratios of 0.7 it reaches an approximately constant value.

Figure 8 shows schematically the threshold for cyclic plas-
tic deformation as a function of the mean stress intensity fac-
tor, obtained from the discrete dislocation model. A consider-
ation of the results for Kycapn larger than O or, in terms of R for
R ratios between —1 and 1, suggests that the R dependence
of the threshold is induced by the intrinsic plastic deforma-
tion behavior under cyclic loading. At larger R ratios the dis-
tance between the nearest dislocation and the crack tip which
is called the dislocation free zone decreases. This induces a
reduction of the threshold of cyclic plastic deformation until
it reaches an approximately constant value of 1.2k.. At stress
ratios smaller than —1, dislocations with an opposite sign are
generated during the “negative” phase of the load cycle, so
that the dislocation free zone decreases again and AK iy
decreases in the same way as at R > —1.

The threshold for cyclic plastic deformation for stress ra-
tios R > O is usually about 1.2k.. In order to understand
that this threshold is larger at negative stress ratios a mode II
crack at a stress ratio R = —1 is considered. In this case the
mean value of the load is zero. At AK of 1.2k, the maximum
stress intensity factor is Kp.x = +0.6k. and K, = —0.6k..
Since neither K, nor |Kpyn| exceed the critical stress inten-
sity factor for dislocation generation, k., no dislocations are
generated and no plastic deformation occurs. The first dis-
location is generated if K, = ke, it will return to the crack
tip or a dislocation with an opposite sign of the Burgers vector
will be generated at Ky, = —k, (if no obstacles are located in
the vicinity of the crack tip*®). From these simple arguments
one obtains a roof function of the threshold in dependence
on the mean load as shown in Fig. 8 (A plot against the R-
ratio would artificially introduce an asymmetric curve since
the definition of R itself is inherently asymmetric).

The roof at mean stress intensity factors between —0.5k, <
Kpean < 0.5k (conesponding to an R-ratio between 0 and
—oo) reflects that either the positive or the negative maxi-
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Fig. 8 Influence of the stress ratio on the threshold of cyclic plastic defor-
mation at mode II or mode III crack.
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Fig. 9 The computed effect of the stress ratio on the threshold of cyclic
plastic deformation, after.>"

mum stress intensity factor has to be larger than k. in order
to produce dislocations. These explanations are confirmed by
the results in Fig. 9 obtained by discrete dislocation simula-
tions.*V

It must be emphasized that even at the maximum (at R =
—1) the increase of AKy, is only about 0.1u+/b (see Fig. 9),
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and hence only between 0.2 and 0.7 MPa+/m for typical struc-
tural metals and alloys. The experimentally observed R-
ratio effects vary from alloy to alloy and can be as large as
5MPa./m for R between —1 and 1. Furthermore, in the mode
II and I simulation the effect is pronounced only for nega-
tive R-ratios. For a mode I loading we have to distinguish
between an applied stress ratio, R = K,/ Kmax, and a local
stress ratio Rlocel, Riocal — glocal /g is the real acting stress
ratio at the crack tip, where the local minimum stress intensity
factor K°¢ is equal to the applied Kuin if no crack contact
occurs and K% is equal to the crack closure stress intensity
factor, K|, where a contact of the crack flanks takes place.
Since K is usuvally positive in the case of mode I loading,
negative local stress ratios are unrealistic. Hence, the exper-
imentally observed R-ratio effect must mainly be caused by

crack closure (see also®?).

5.4 Discussion of the proportionality of the threshold of
cyclic plasticity and k.

It appears to be somewhat paradoxical that the threshold of
cyclic plasticity should be proportional to k.—since the plastic-
ity is obviously controlled by the motion of dislocations while
k. only reflects the nucleation event. The reason for this para-
doxon is the development of a dislocation free zone (DFZ)
ahead of the crack tip during loading and the stress distribu-
tion within the DFZ. Albeit existence of the threshold can be
explained by the DFZ, it is not the case that the threshold di-
rectly correlates with the size of the DFZ. This can be seen
by comparing two homogeneous materials with the same k.
but with different critical shear stresses. These materials have
nearly the same threshold of the plastic deformation but the
DFZ is much smaller in the material with the larger Teriction-

The DFZ displayed in Fig. 10 is defined as the elastic re-
gion between the last emitted dislocation and the crack tip.
The elastic stress field within the DFZ is characterized by a
local stress intensity factor, kjoca. The value of kjocy at maxi-
mum load is equal to or only somewhat smaller than k.. If the
dislocation configuration is frozen during unloading, the ap-
plied load has to be reduced by AK = 2k, in order to change
kiocal from +k. to —k.. At this point, dislocations with a neg-
ative sign of the Burgers vector would be generated at the
crack tip and consequently, this would be the largest possible
reduction of the stress intensity factor without causing cyclic

plasticity. This load difference therefore corresponds to the
upper limit of the threshold.

The lower threshold limit is obtained if we consider the
backflow of the dislocations during unloading. The exact load
reduction which is needed to cause the return of the disloca-
tion can only be found in a full simulation. However, the load
reduction must at least be large enough to turn the repelling
elastic stresses within the DFZ at maximum load into attrac-
tive stresses, since the stresses at maximum load are given by
+k.. Hence, before the dislocations can return to the crack
tip, the load reduction must at least bring this repelling singu-
larity to zero. Hence, A K must be equal to k.. Both the upper
and the lower limit of the threshold are proportional to . and
therefore control the threshold.

Only in the case of extreme strong obstacles located very
near the crack tip the threshold of cyclic plasticity can be
somewhat smaller than k. (see Fig. 6). This is induced by
the large repulsive forces of the dislocations in the disloca-
tion pile up which is built up between the crack tip and the
barrier. The repulsive forces cause a significant movement
of the dislocations towards the crack tip which contributes to
reduce the singularity at the crack tip.*” It is interesting to
note that these findings are quite contrary to the conventional
feeling that a barrier such as a grain boundary which impedes
the plastic deformation should rather increase the fatigue re-
sistance. Here common sense is mislead because the intrinsic
threshold is a phenomenon of the discreteness of plasticity
with no macroscopic equivalent.

5.5 Comparison of predicted and measured intrinsic
thresholds

Different authors show that the intrinsic
(~veffective) threshold is proportional to the Young’s modu-
lus and it is almost independent of the “plastic material prop-
erties” such as the microstructure and the macroscopic yield
stress of the material. The constant of proportionality turns
out to be approximately 1.6 - 107 4/m. A similar result has
been reported recently by Hertzberg.3*3> He compared clo-
sure corrected stress intensity factor for steels, Aluminum al-
loys, Copper and Nickel alloys at a crack growth rate of 1
Burgers vector per cycle (i.e. almost at the threshold) and
found that it i1s always about AKyp = E b.

Classical fatigue cracks are driven by the local cyclic plas-

33-35,46,47)
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Fig. 10 The dislocation arrangement ahead of a mode II crack in plane strain and the definition of the dislocation free zone (DFZ) (a)
and stress distribution within the DFZ (b). Material data: Teiction = 0.002t, ke = 0.2u~/B, v = 0.3. Kmax = 2.0ke.
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ticity at the crack tip (one should not confuse this with subcrit-
ical or diffusive crack propagation). Such cracks cannot grow
without a cyclic dislocation generation and annihilation and
the lower limit of their intrinsic threshold necessarily identi-
fies with the threshold of the plastic deformation obtained by
the discrete dislocation model. The lower limit of the intrin-
sic threshold therefore is given by 1.3k.. The Rice-Thomson
model®® for dislocation generation at crack tips leads to an
estimate of k. and, hence, of the intrinsic threshold equal to:

AKinginsic = f(©)u~/b. A3)

Qualitatively, this result agrees with Hertzberg’s observa-
tion AKy o E+/b. Absolute values are compared for 3
materials in Table 1 (the dislocation model results are after
Ref. 37), where dislocation generation is assumed at the crack
tip). As can be seen, in spite of the use of the upper limit of
k. the measured thresholds still are up to a factor of 2 larger
than predicted by the dislocation model. Similar trends using
internal dislocation sources have been found in.'®? One reason
for this systematic deviation between predicted and measured
thresholds could be that the measured thresholds are in spite
of large R-values still not completely closure free such that
they are somewhat larger than the intrinsic thresholds.*6-47
Another possibility might be that real intrinsic thresholds are
indeed larger than predicted by the discrete dislocation mod-
els. For instance, a protective oxide layer at the crack tip
could increase the resistance against dislocation generation
(k. increase) and so contribute to the intrinsic threshold of the
materials or the dislocation generation criterion is somewhat
too simple.

5.6 Influence of the 3D microstructure on the near
threshold behavior

Fully 3D dislocation simulations have been established by
Kubin®® for an infinite, uncracked, and homogeneous body
and a few studies also consider crack-dislocation interactions
in 3D (Devincre and Roberts,* Hartmaier and Gumbsch?*®).
Because of the high numerical costs it is at the moment not
possible to include also the effect of microstructure in these
models which would be desireable to get reliable predictions
of real fatigue crack behavior.

For the low temperature ductility of semi-brittle materials
(e.g., tungsten, molybdenum, Fe, efc.) and the ductile to brit-
tle transition 3D effects of dislocation interaction seems to
play an important role.*® This raises the question why the 2D-
dislocation model should predict the fatigue crack propaga-
tion behavior in the near threshold regime. There is a general
difference between cleavage fracture or semi-brittle fracture
(cleavage fracture where a certain amount at plastic deforma-

Table 1 Comparison of measured and predicted effective threshold stress
intensity ranges.

Measured effective Hertzberg’s Threshold of
s‘;ii(e); threshold estimate dislocation model
AKipor inMPaym  EvbinMPaym  AKyne in MPaym
Fe 3.0+0.6 33 2.6
Al 1.4£0.5 12 0.6
Cu 22407 1.9 0.9

tion at the crack tip is involved) and fatigue crack propagation.
The intrinsic mechanism of cleavage fracture is a breaking of
individual atomic bonds at the crack tip along a certain plane
or a coalescence of micro- or nanocracks nucleated ahead of
the crack. The plastic deformation the movement of disloca-~
tions is in this case an extrinsic mechanism which changes the
stress field of the crack tip. In contrast, the intrinsic fatigue
crack propagation mechanism in ductile metals is the cyclic
plastic deformation of the crack tip the blunting and resharp-
ening of the tip. Therefore, dislocation movement and crack
propagation are strongly coupled. At low propagation rates,
the fatigue crack grows either along a slip plane or the crack
front is formed by the intersection of two slip planes. This
induces the formation of facets on the fracture surfaces. The
size of the facets is in the order of microns and is much larger
than the characteristic distance of dislocation motion (which
is equal to the DFZ) near the threshold. Therefore, the prop-
agation of real fatigue crack should be describable in a first
approximation by a sum of 2D problems on different fracture
facets.

Unfortunately, the understanding of 3D effects is incom-
plete from the experimental point of view, too. Yet the best
and most promising model is due to Davidson.*" He argues
that at the crack front there are in a statistical average always
grains with large Schmid factors and other less favorably ori-
ented grains. If such a crack is loaded only somewhat above
the threshold dislocations are produced and the crack grows
only in the few favorable grains. The crack remains behind in
the other grains. As a consequence an irregular crack front de-
velops. This is accompanied by a decrease of the local stress
intensity factor in the leading grains and an increase in the
less favorable grains. Due to this load redistribution the crack
starts to propagate in the backward grains and stops grow-
ing in the leading grains, in particular, when the crack front
crosses the next grain boundary and enters into a grain with a
smaller Schmid factor. Similar arguments should be applica-
ble to lower level, the propagation along fracture facets.

Although this irregular crack propagation should hardly in-
fluence the threshold value itself, it has the important conse-
quence that it causes crack growth rates below one Burgers
vector per cycle. The macroscopic crack growth rate can be
seen as an average over grains or facets where the crack does
and does not propagate. The smallest measured crack growth
rates usually are at about 1/10 to 1/100 Burgers vector per cy-
cle. With a minimal crack growth rate of one Burgers vector
per cycle in any particular grain or facet it requires the rea-
sonable number of 10 to 100 grains or facets along the crack
front with different orientations.

6. The Crack Tip Deformation above the Threshold

In what follows we return to the discussion at the beginning
of the paper—the length scales involved in fatigue-but now
from the theoretical point of view by considering the infiu-
ence of the friction stress and of grain boundaries or lamellar
structures on the cyclic plastic deformation at stress intensity

ranges above the threshold.

6.1 The influence of the friction stress
The influence of different critical shear stresses on the plas-



Dislocation Modelling of Fatigue Cracks: An Overview 9

tic deformation at a mode II crack is discussed in?® (inter-
nal dislocation sources) and in?? (dislocation emission from
the crack tip). For the dislocation emission from the crack
tip and for friction stresses of Taicion = 0.001p and of
Ticion = 0.002 W the results of a dislocation simulation are
displayed in Fig. 11.

The curves in Fig. 11 display the same general behavior
which has been indicated in Fig. 3 and which is also seen in
many other “crack growth curves” of homogeneous materials
published in the literature. At large stress intensity ranges the
curves approach the continuum approximations (broken lines)
which for the mode II crack of Fig. 11 can be computed by
the BCS model*”

AKF(1 —v)
4/erriction
At small stress intensity ranges the continuum mechanics so-
lution is too “soft” since it does not account for the con-
straint of plasticity due to its discrete nature. In Fig. 11 the
continuum mechanical approximations is undoubtedly valid
for cyclic plastic deformations larger than about 100 Burgers
vectors per cycle. The range of the transition regime where
this dislocation plasticity is important, becomes somewhat
smaller for larger friction stress. For diffuse friction stresses
on the order of 0.01n ~ 800 MPa and above we have ob-
served that the transition regime more or less disappears (i.e.
continuum approximations are quite accurate nearly down to
the threshold). Such large friction stresses, however, are unre-
alistic for most materials, with the exception of materials with
a very fine microstructure like pearlitic steels with an inter-
lamellar spacing below 1 um (Sorbit). In such materials the
combined effect of closely spaced dislocation obstacles can
be regarded as equivalent to a very high diffuse friction stress.
In other materials with a characteristic microstructural length
scale (grain size, interlamellar spacing) larger than about 5 to
10 um the dislocation obstacles act as discrete entities with a
small diffuse friction stress in the interior of the grain and a
large barrier stress at the dislocation obstacle. Such materials
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Fig. 11 The crack tip opening displacement as a function of AK. Compar-
ison of two different critical shear stresses. k. = 0.2u+/b.

are discussed subsequently.

It is worth to point out that the predicted threshold for
the two materials with a different friction stress displayed in
Fig. 11 is the same and is therefore independent of the chosen
friction stress. This result is contrary to what one would ex-
pect from purely continuum mechanical considerations. Even
if an artificial “threshold criterion” is introduced into the con-
tinnam approach by truncating the continuum solution at a
plastic deformation of one Burgers vector per cycle, the con-
tinuum solution would predict a larger threshold in the harder
material. In the particular case of Fig. 11 it would be a fac-
tor of /2. Among other reasons discussed in this paper the
failure of the continuum mechanic picture in reproducing the
discrete dislocation results is why we conclude that contin-
uum plasticity is not only an inaccurate but also an invalid
method near the threshold.

6.2 Influence of grain boundaries

In this section a periodical arrangement of grain bound-
aries ahead of a mode II crack, schematically shown in Fig. 6
is considered. For three different distances, L, between the
crack tip and the first grain boundary the computed ACT O D
as a function of AK is depicted in Fig. 12.

A fine grained material with a grain size dgin = 3000
(Fig. 12A) and a coarse grained material with dorain =
10.000b (Fig. 12B) are studied. The labelling “fine grained”
and “coarse grained” is meant in comparison with the size of
the DFZ, which in the latter case is much smaller than the
grain size and comparable in the former case. It is instructive
to consider first the stress intensity range above AK = 5ke..
In this regime the plastic deformation is insensitive to the ac-
tual location of the crack tip with respect to the grain bound-
aries, the curves for the 3 simulations in both figures collapse.
The cyclic plastic deformation can be calculated by the BCS
model with the assumption of a homogeneous macroscopic
yield stress (broken lines). This loading regime is therefore
called the macro mechanics regime of fatigue. Following
the Hall-Petch model (see, e.g.,*”), the macroscopic yield
stress increases for smaller grains, and consequently a finer
grained material gives a smaller ACTOD for a given AK
than the coarse grained material. Within the BCS model this
corresponds to macro stresses of Tmacrofine = 250MPa and
Tmacro,coarse = 190 MPa.

At intermediate stress intensity ranges the plastic deforma-
tion is significantly influenced by the microstructure while the
various curves approach each other again near the threshold.

The same trends but from a different perspective are seen
in Fig. 13, which shows the ACT O D-curves in the fine
grained material as a function of the distance between the
crack tip and the next grain boundary. The results are plotted
for constant stress intensity ranges (AK/k. = 1.5, 2.5 and
4.5) which correspond to different mechanical crack growth
regimes. Obviously, the plastic deformation is almost inde-
pendent from the distance between the crack tip and the next
grain boundary for the macro mechanics regime. This is dif-
ferent in the micromechanical regimes at intermediate stress
intensity ranges. ACT O D becomes smaller when the crack
tip approaches the grain boundary, where a grain boundary
acts as a barrier for the plastic deformation. Such behavior
has been observed also by analyses based on distributed dis-
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Fig. 12 The cyclic crack tip opening displacement at a mode I crack as a function of AK for 3 different distances to the first grain bound-
ary (in both figures the distances between the crack tip and the nearest grain boundary are equal). Material data: Ttreton = 0.002u,
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Fig. 13 The ACT O D in dependence on the distance between the crack tip
and the nearest grain boundary for 3 different AK levels. Material data:
dgrain = 3000D, Triction = 00024, Toamier = STvictions ke = 0-2N\/E:
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locations.! ¥ In this micromechanical regime a continuum
analysis is still reasonable. However, the local variation of the
yield resistance has to be taken into account explicitely.

Finally, close to the threshold of stress intensity range com-
pletely different relationships are seen. In our example the
ACT O D even increases for smaller distances between the
crack tip and the next grain boundary. This behavior is caused
by discrete plasticity and therefore cannot be explained by
continuum mechanical theory.

It is interesting to note that a comparison of Fig. 12 and
Fig. 13 shows that at large stress intensity ranges, in the macro
mechanics regime, the grain size turns out to be decisive for
the cyclic plastic deformation at the crack tip but the loca-
tion of the crack tip is unimportant. At small stress intensity
ranges the opposite is true. Here the cyclic plastic deforma-

tions are controlled by the distance between the crack tip and
the next grain boundary.

6.3 The influence of periodical layers with different plas-
tic properties

Multilayer materials as sketched in Fig. 14 composed of
two materials with the same isotropic elastic properties E =
208 GPa and v = 0.3 but a different critical resistance against
plastic flow have been investigated by.!* The o lamellae are
softer and the B lamellae are harder Ty fricion = 80 MPa and
240 MPa, respectively, and have a width of W = 1.5um.
Two simulations have been performed with a different loca-
tion of the crack tip within the microstructure. The calculated
ACTOD curves are depicted in Fig. 15 (the lower curves)
for a location of the crack tip at the beginning of the softer «
phase (circles) and at the beginning of the plastically harder
B lamellae (squares).

The cyclic plastic zone size Aw (upper curves), that is the
size of the region of reverse plastic deformation during un-
loading, is seen to be 2 or 3 orders of magnitude larger than
the ACT O D over the entire loading range. This is simi-
larly predicted by continuum mechanics. The lattice spacing
and the microstructural length scale are indicated by shaded
stripes to show the good qualitative picture provided by dis-
crete dislocation models (seen also in Fig. 1). From a qual-
itative point of view the behavior of the multilayer material
is similar to materials with grains. At large stress intensity
ranges the results are independent from the actual location of
the crack tip. The broken asymptotic line was derived by the
BCS solution with the assumption of a macroscopically av-
eraged yield stress of the multilayer compound which in the
particular case of Fig. 15 is Tmacroscale = Zafricion T4 frictien.
160MPa. A comparison with the cyclic plastié zone size
shows that macroscale mechanics (with the assumption of
a macroscale yield stress) becomes valid once Aw exceeds
about 5 times the microstructural length scale L. We have
observed that, a similar relation holds also in materials with
grains.
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Fig. 14 A crack in a multilayer material subjected to a mode 1I loading.
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Fig. 15 The crack tip deformation and the cyclic plastic zone size in a mul-
tilayer material depending on the location of the crack tip.

At intermediate stress intensity ranges in Fig. 15, where
the cyclic plastic zone size is in the order of the microstruc-
tural length scale, the 2 computed ACT O D curves deviate
markedly. The plastic deformation is larger when the crack
tip lies within the softer material. This is the micro mechan-
ics regime of fatigue. At small stress intensity ranges the dis-
creteness of plasticity becomes important which leads to a
threshold at a cyclic plastic deformation of 1 Burgers vectors
per cycle.

7. Comparison with Effective Crack Growth Curves

To overcome the difficulty introduced by crack closure,
some effective crack growth data (=total fatigue resistance
minus crack closure effects) are considered in Fig. 16 for a Ti-
and Al-alloy and for 2 different steels, after Mabru ef al.>")

The effective stress intensity factor has been normalized
by Hertzberg’s*? K. It is apparent that the effective crack
growth data of the considered metals coincidence very well
using this normalisation. This indicates that crack propaga-
tion at small stress intensity ranges is governed by a universal
law which is more or less independent of material specific
details, such as grain size, lattice type, efc.

The solid curve in Fig. 16, which agrees with the exper-
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Fig. 16 Comparison of the prediction of the dislocation model with effec-
tive crack growth data.

imental data, is the predicted curve of the discrete disloca-
tion model. For the calculation of this curve the ACT O D-
curve for the homogeneous material with a friction stress of
Tiicion = 0.001u has been used and the relation da/dN =
ACTOD with a Burgers vector of b = 2.8 - 107'°m has
been assumed. The excellent agreement between the simu-
lation and the experimental data is certainly somewhat fortu-
itous and also depends somewhat on the choice of the model
parameters, however, it is more important to realize that the
“universal relation” controlling crack propagation at small
stress intensity ranges is the manifestation of the constraint
due to the discreteness of plasticity.

It is worth to note that the calculated ACTOD vs. AK
curves in Figs. 12 and 15 show considerable microstructural
dependence and, therefore, seem to contradict the universal
nature of the curve in Fig. 16. However, comparing these
curves, one has to take into account that the distance be-
tween the next grain or phase boundary varies in a realis-
tic microstructure from zero to the grain diameter along the
crack front. Therefore, a comparison of experimental data to
the curves in Fig. 12 or Fig. 15 is possible only for the aver-
age, which should be similar to the curve of the homogeneous
material in Fig. 16.

8. Dislocation Arrangement at Mode I Cracks

So far the dislocation models have been used to study the
plastic deformation at a static crack, which is quite similar for
mode I, mode II and mode III cracks (compare Figs. 3-11).
The situation is the same for a growing mode II or a mode III
fatigue crack since it does not leave dislocations in the wake
of the crack tip. This is different in the case of a mode I crack.
The simulation of a growing mode I crack requires the investi-
gation of the effect of the dislocations which are left behind a
propagating crack.’” Such dislocations are called wake dislo-
cations. These wake dislocations are responsible for the plas-
ticity induced crack closure, which is extensively discussed
in.59 However, the plasticity induced crack closure is only
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an effect of plasticity and not of the discreteness of plastic-
ity. The discreteness manifests itself in the arrangement of
the dislocations.

At small loading amplitudes the wake dislocations arrange
in slip bands as shown in Fig. 17. The formation of these
slip bands can be explained as follows. In the first loading
sequence many dislocations are generated on the two inclined
slip bands. During unloading few dislocations return to the
crack tip where they annihilate. The remaining dislocations
shield the crack tip and a much smaller number of dislocations
is generated and annihilated during the second and many fur-
ther loading cycles. By this blunting and “resharpening” pro-
cess the crack propagates over a short distance and leaves the
two slip bands behind the crack tip. As the crack tip moves
away from the first two slip bands, their influence on the
newly generated dislocations decreases. After a certain crack
extension the interaction force between the pre-existing slip
bands and the newly generated dislocations is small enough
to let them pass the two pre-existing slip bands. A second
pair of slip bands is formed. Similar processes in the further
cycles lead to the dislocation arrangement schematically de-
picted in Fig. 17.

The distance between the slip bands turns out to be about
1500 to 2000 Burgers vectors but the crack growth rate is only
few Burgers vector per cycle. Smaller distances between the
slip bands do not occur because the elastic interaction stresses
are too large. In the simulations the critical distance between
the slip bands does not depend on the crack growth increment
per load cycle. Each slip band leaves a step in the fracture
surface such that this model predicts lines at the fracture sur-
face parallel to the crack front with a characteristic distance
in the order of some tenths of a micron. In*” it was noted
that this distance agrees with the minimum striation spacings
observed in metals (see®® for experimental observations).

A symmetric dislocation arrangement as shown in Fig. 17
is likely to occur at intermediate stress intensity ranges. At
small stress intensity ranges, it is more often observed that
the crack tip plasticity in a real crack is asymmetric like in
the models proposed by Neumann*® and by Pelloux.*> It is
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Fig. 17 The dislocation arrangement at a mode I crack, after.>?

obvious that the dislocation arrangement at the asymmetric
crack is also governed by the dislocation-dislocation interac-
tion forces which also lead to the distance between two large
slip bands of the order of some tenths of a micron. Following
this argument, the striations observed at small stress intensity
ranges are traces of slip bands on the fracture surface.

9. Summary

A consideration of the length scales involved in fatigue
shows that the relevant length scale at threshold and near
threshold conditions is the Burgers vector of lattice disloca-
tions. Therefore the simulation models used to describe pro-
cesses leading to the threshold of fatigue must contain the
length of the Burgers vector to provide physically reasonable
results. The appropriate simulation tools are discrete dislo-
cation models which have been proposed within the past 20
years by several authors. The modelling efforts are summa-
rized in order to document the progress in the understanding
of the behavior of metals under fatigue loading. It is shown
that the physical reason for the intrinsic threshold is induced
by the discreteness of plasticity. Discrete plasticity leads to a
sharp decrease of the crack growth curve below a cyclic plas-
tic deformation of about 100 Burgers vectors per cycle and to
a threshold of the plastic deformation at 1 Burgers vector per
cycle.

It was shown that the intrinsic threshold of the plastic de-
formation does not depend significantly on the diffuse friction
stress in homogeneous materials and the microstructure in
structural material. The stress ratio, R, influences the intrin-
sic threshold only at small R values which are usually not im-
portant in the case of mode I loading. Furthermore, possible
3D effects on the threshold are discussed, and the predicted
threshold is compared with measured effective thresholds. It
is also shown how the plastic deformation above the threshold
is influenced by the discreteness of plasticity in combination
with the influence of grain boundaries and multilayers.

The results are compared with measured effective crack
growth data. Good agreement between model prediction and
experiments is observed.

In conclusion, plasticity and cracks at small stress intensity
ranges have a peculiar behavior that cannot be explained by
continuum (micro or macro) plasticity theories. It is hardly
possible to over-emphasize that definitions, conceptions and
quantities which are established in plasto-mechanics have no
meaning for near threshold processes.
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