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Abstract

A single crystal plasticity theory for insertion into finite element simulation is

formulated using sequential laminates to model subgrain dislocation structures.

It is known that local models do not adequately account for latent hardening,

as latent hardening is not only a material property, but a nonlocal property (e.g.

grain size and shape). The addition of the nonlocal energy from the formation

of subgrain structure dislocation walls and the boundary layer misfits provide

both latent and self-hardening of a crystal slip. Latent hardening occurs as the

formation of new dislocation walls limits motion of new mobile dislocations,

thus hardening future slip systems. Self-hardening is accomplished by an

evolution of the subgrain structure length scale. The substructure length

scale is computed by minimizing the nonlocal energy. The minimization

of the nonlocal energy is a competition between the dislocation wall energy

and the boundary layer energies. The nonlocal terms are also directly

minimized within the subgrain model as they affect deformation response.

The geometrical relationship between the dislocation walls and slip planes

affecting the dislocation mean free path is taken into account, giving a first-

order approximation to shape effects. A coplanar slip model is developed due

to requirements while modeling the subgrain structure. This subgrain structure

plasticity model is noteworthy as all material parameters are experimentally

determined rather than fit. The model also has an inherit path dependence

due to the formation of the subgrain structures. Validation is accomplished by

comparison with single crystal tension test results.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Crystal plasticity has been a topic of interest since the deformation of metals was investigated.

Original research into the field of crystal plasticity led to the discovery of dislocations, which is

the primary mechanism of plasticity. Further work has been concerned with the interaction of

these dislocations concerning hardening. As dislocations move along certain crystallographic

slip planes during deformation, the bulk motions of dislocations are accumulated into a quantity

known as slip. These slip systems harden by interaction of dislocations, either within the same

plane (self-hardening) or by dislocation motion on a different slip plane (latent hardening).

Many of the mechanisms that give rise to the attributes exhibited in latent hardening experiments

are under investigation (Havner 2005).

Previous work investigating microstructures and plasticity has uncovered that if a single

crystal deformed by plastic slip has latent hardening and is allowed to form an arbitrarily

fine subgrain dislocation structure without any energy penalty for the accumulation of

dislocations, then each slip system will appear macroscopically to harden independently

(Conti and Ortiz 2005). This occurs because the microstructure forms in such a way as to

limit interaction between slip systems. This observation is in conflict with experimental data

demonstrating that two active slip systems exhibit latent hardening (Franciosi and Zaoui 1982).

As research also indicates that latent hardening is not a material property, but rather depends

on the crystal grain in which the material deforms (e.g. grain shape and size), it is realized

that the observed latent hardening is a property of interactions due to the grain properties.

This work attempts to add hardening due to subgrain dislocation structure interactions

into a constitutive crystal plasticity code for use as a material model in finite element

calculations.

Previous studies (Ortiz and Repetto 1999, Conti and Ortiz 2005) have provided evidence

that with strong latent hardening the energy of single slip is an energy well and is always less

than multiple slip in energy. Under this assumption of strong latent hardening, the only way

for a material to activate multiple slip systems is to divide into spatial volumes with different

single slip systems. According to previous studies (Ortiz and Repetto 1999, Ortiz et al 2000,

Aubrey and Ortiz 2003) microstructures of single slip regions will be introduced when the

energy of the microstructure is less than the energy of single slip (or purely elastic deformation).

This work deviates from previous studies when the dislocation structures are formulated by

introducing coplanar slip laminates and in the calculation of the laminate length scale from

the nonlocal energy terms. The coplanar slip model is used due to the lack of dislocation wall

formation between two active coplanar slip systems. If the coplanar model is not used, the

hardening is not appropriately calculated.

Figures 1 and 2 display the formation of typical subgrain dislocation structures in two

different copper specimens taken using a transmission electron microscope. The images are

courtesy of Cerreta (2008). Figure 1 is a cell structure of dislocation entanglement frequently

seen during initial plastic deformation. The walls between the cells are formed by the

accumulation of random dislocations that cause a very low angle misorientation. These are

frequently referred to as incidental dislocation boundaries (IDBs). Upon further deformation,

the cell walls tend to elongate and increase in misorientation angle to form parallel dislocation

walls similar to a laminate structure as seen in figure 2. The formation of the elongated

walls is associated with a strain difference across the walls. These are called geometrically

necessary boundaries (GNBs). For a full review of subgrain dislocation laminate structures

the reader is referred to the works of Hughes and Hansen (1997), Hughes et al (1997) and

Hansen et al (2001). These works include an analysis of the subgrain microstructures on

which this model is based as well as scaling laws for the structures.
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Figure 1. Classic subgrain cell structure in high-purity copper (reproduced with permission

(Cerreta 2008)).

Figure 2. Laminate subgrain structure formed by elongation of cell walls in copper (reproduced

with permission (Cerreta 2008)).

Steeds (1966) provides a study of single crystal copper dislocation structures as a

function of strain. The work of Ortiz and Repetto (1999) contains a comparison between the

laminate microstructure model used in this work and many experimentally observed subgrain

structures. Dmitrieva et al (2009) recently found that the formation of banded microscopic

lattice rotation patterns in sheared copper single crystals could be produced by a lamination

model.

The work of Ortiz et al (2000) followed in which the ideas of Ortiz and Repetto (1999)

were implemented into a finite deformation constitutive model that explicitly resolved subgrain
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dislocation laminate structures. It demonstrated the possibility of capturing grain size effects

on deformation and contains the first implementation of nonlocal energy into the laminar

microstructures. Comparisons are made between the direct simulation of subgrain dislocation

microstructures to obtain size effects and the nature of size effects obtained by the strain

gradient method.

The previous work was built upon by Aubrey and Ortiz (2003), in which the model was

streamlined for easier energy calculations and infinite latent hardening. Aubrey and Ortiz

compared the scaling of the formed microstructures with the scaling law of Hughes et al (1997).

Much of this current work follows directly from the ideas of Aubrey and Ortiz, but varies

considerably in the implementation of those ideas. This work also compares more directly

with experimental measurements.

At this point, the theory of laminate dislocation microstructures has diverged onto several

distinct paths. The work of Aubrey et al (2003) considered the relaxation of martensitic

materials using a subgrain laminate microstructure with branching and pruning operations. The

work of Conti et al (2007) considered the application of minimization principles directly rather

than explicitly resolving the microstructure, such that calculations can determine stress states

and the laminate dislocation microstructures can be resolved after calculations are complete.

This is being further explored by Gurses and Ortiz (2009). The work of Conti and Ortiz (2005)

considered linearized kinematics and the formation of microstructures. Conti and Theil (2005)

considered single slip finite deformation microstructures in which elastic structures are

permitted.

An understanding of traditional plasticity theories is useful for understanding this work,

as many sound principles from those works are used. A selection of models includes

Cuitino and Ortiz (1993) and Bronkhorst et al (2007). It should be emphasized that these

are local models which contain latent hardening in multiple slip, but do not attempt to model

subgrain dislocation structure or nonlocal energy.

In this work, the model introduced by Ortiz and Repetto (1999), Ortiz et al (2000) and

investigated by Aubrey and Ortiz (2003) is further developed. Differences and extensions

of the current methodology are highlighted. The new developments in this work include

the evolution of the subgrain microstructure lengths to treat hardening behavior, a method

that accounts for the unique features of coplanar slip systems, the effects of grain shape

and dislocation cell wall normal orientation on the mean free path of dislocations, direct

incorporation of the nonlocal energy in the minimization of deformation energy (rather than

as a perturbation), corrections to the boundary layer energy formulation and an investigation

of the subgrain laminate wall normal implementation.

In section 2, the general constitutive framework of a single crystal incorporating both

elastic and plastic deformation is presented. Coplanar slip is developed separately after

single slip. The general framework is then applied to laminate microstructures which include

nonlocal energy terms in section 3. The nonlocal energy terms are derived after the laminate

microstructures as this gives the presentation a more concise flow, although the reader needs to

accept the nonlocal terms before they are developed. This order prevents the presentation of the

model initially without nonlocal terms and then a second time with the nonlocal terms included.

The coplanar structures are again discussed afterward. The equilibration of the microstructure

for new deformation states is described. Significant changes have been added to the nonlocal

energy and equilibration. Finally, the model is validated by simulating experimental tests of

copper single crystals (section 4). Comparisons are made with variations in single crystal

stress response due to crystal orientation, grain size and grain shape. The subgrain structures

are also compared with traditional single crystal plasticity theories. Conclusions are drawn in

section 5.
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2. Material model

The model is concerned with determining the reaction of a crystalline material occupying a

volume � when a deformation mapping y[x] : � → R3 is applied. The deformation gradient

is defined by

F [x] ≡ ∇y[x], (2.1)

where ∇ is the gradient operator. The brackets [.] are used to represent a functional dependence

in this work, whereas (.) are used to show order of operations or to distinguish superscripts

from exponents.

In anticipation of applying the model at a material integration point within a continuum

scale application any dependence on the position variable x will be dropped. Thus, all equations

apply for a single given x, i.e. F [x] → F . The value F will be referenced as the ‘global’ or

‘macroscopic’ deformation. The behavior at the material point x is being simulated.

Indices will be used frequently in notation. To keep the meaning of indices clear, they will

always be placed in identical positions. The upper right will be used for modifying quantities,

such as differentiating between plastic and elastic values; the lower left for discretization or

iteration; and the lower right for other enumeration, such as over slip systems or laminate

structures.

discretizationX
modifier
enumeration

2.1. Constitutive framework

First, a Helmholtz free energy density φ[F , q] per undeformed unit of volume which depends

upon the deformation gradient F and a set of internal state variables q is considered. No

temperature or strain rate dependence is taken into account in this work. When no viscosity is

present, Coleman’s relations give the first Piola–Kirchoff stress tensor, P , as

P = ∂φ[F , q]

∂F
. (2.2)

The material tangent is defined by

C ≡ ∂P

∂F
. (2.3)

The general material formulation for the tangents can be found in Ortiz and Stainier (1999).

Following Rice (1975), an inelastic potential, ψ , is also introduced along with the

corresponding thermodynamic force, Q, conjugate to the internal variables q:

Q = −∂φ[F , q]

∂q
, (2.4)

q̇ = ∂ψ[Q, q]

∂Q
, (2.5)

where a ‘˙’ indicates time derivative. All these relations are subject to material frame

indifference (see Ortiz et al (2000) and Ortiz and Stainier (1999) for consequences).

2.2. Single crystal model

The proceeding framework is now applied to a single crystal. The full deformation of a material

point is composed of multiple deformation gradients, an elastic, followed by multiple plastic.

5



Modelling Simul. Mater. Sci. Eng. 18 (2010) 055001 B L Hansen et al

A multiplicative decomposition of the deformation gradient proposed by Lee (1969) is

adopted:

F = F eF p, (2.6)

where F e is an elastic deformation which distorts the crystalline lattice and F p is the total

plastic deformation caused by dislocation motion. The plastic deformation is assumed to leave

the crystal lattice undistorted, at least at the macroscopic continuum level.

For metallic crystals, it is also reasonable to assume that the energy can be split into an

elastic portion, W e, and a dislocation-based plastic portion, W p.

φ = W e[F e] + W p[F p, γα], (2.7)

where γα is the plastic shear strain on slip system α. Application of (2.2) gives

P = ∂W e[F e]

∂F e
(F p)−T. (2.8)

The stress tensor

P e ≡ P (F p)T (2.9)

is defined for later use.

Following the formulation of Ortiz and Repetto (1999) the internal variables are q =
(F p, γα) and the conjugate forces are Q = (S, −g). Computing the forces from (2.4) yields

S ≡ − ∂φ

∂F p
= (F e)T ∂W e

∂F e
(F p)−T, (2.10)

which is related to the symmetric second Piola–Kirchoff stress tensor, and

g ≡ ∂φ

∂γα

. (2.11)

It follows from (2.5) that

Ḟ p = ∂ψ

∂S
, (2.12)

γ̇α = −∂ψ

∂g
. (2.13)

Note that γ̇α is the rate of slip strain on slip system α.

2.2.1. Elastic deformation model. For the elastic portion of the deformation, a Saint Venant–

Kirchoff material is used. It is defined by the following equations. Starting with the Green–

Lagrange strain tensor

Ee = 1
2
((F e)TF e − I), (2.14)

where I is the identity tensor, the second Piola–Kirchoff stress tensor follows by assuming a

linear relationship with the crystal’s elasticity constants, C
mat,

Ke = C
mat · Ee. (2.15)

An assumption of linearity is accurate for the elastic portion of deformation for metallic

materials (Cuitino and Ortiz 1993). Higher order moduli are available in Teodosiu (1982).

The first Piola–Kirchoff stress tensor for an elastic deformation follows as

P e = F eKe. (2.16)

One needs to note that P e relates to the overall P by use of (2.9).

6
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Table 1. FCC slip systems.

System A2 A3 A6 B2 B4 B5

s ∗
√

2 ±[0 1̄ 1] ±[1 0 1] ±[1 1 0] ±[0 1̄ 1] ±[1̄ 0 1] ±[1̄ 1 0]

m ∗
√

3 (1̄ 1 1) (1̄ 1 1) (1̄ 1 1) (1 1 1) (1 1 1) (1 1 1)

System C1 C3 C5 D1 D4 D6

s ∗
√

2 ±[0 1 1] ±[1 0 1] ±[1̄ 1 0] ±[0 1 1] ±[1̄ 0 1] ±[1 1 0]

m ∗
√

3 (1̄ 1̄ 1) (1̄ 1̄ 1) (1̄ 1̄ 1) (1 1̄ 1) (1 1̄ 1) (1 1̄ 1)

The elastic energy density is computed as

W e = 1
2
Ke · Ee. (2.17)

The material tangent for elastic deformation is given by indicial notation for ease as

follows:

C
e
iJ kL = ∂P e

∂F e
= δikK

e
JL + 2F e

iMF e
kNC

mat
MJNL. (2.18)

2.2.2. Plastic deformation model. The shear stress acting on slip system α is resolved

geometrically as

τα = P (F p)T · (F esα ⊗ mα) = S(F p)T · (sα ⊗ mα), (2.19)

where the · operator between two higher order tensors is defined as A · M = A..klMkl.., using

Einsteinian notation to indicate the indices k and l are summed over; mα is the slip plane

normal and sα is the slip direction of system α. Again following Rice (1975), the flow rule is

given a potential structure by assuming the potential of each slip system can be summed:

ψ[S, g; F p, γ ] =
N

∑

α=1

ψα[S, gα; F p, γα]. (2.20)

An application of Schmidt’s rule, ψα = ψα[τα − gα], demonstrates that g is the critical

resolved shear stress, τ c
α , or stress at which slip system α activates.

The flow rule for plastic deformation is obtained by applying (2.12) and (2.13):

Ḟ p =
(

N
∑

α=1

∂ψα

∂τα

sα ⊗ mα

)

F p, (2.21)

γ̇α = −∂ψα

∂gα

= ∂ψα

∂τα

. (2.22)

It is apparent that the flow rule for plastic deformation is that introduced by Rice (1971), i.e.

Ḟ p =
(

N
∑

α=1

γ̇αsα ⊗ mα

)

F p, (2.23)

where α is a summation over all crystallographic slip systems.

In this work, slip is regarded as irreversible and thus,

γ̇α � 0. (2.24)

For reference the 12 slip systems of FCC crystals are given in table 1. Since the systems

are considered irreversible, there are 24 systems for FCC crystals in this model.

7
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Assuming rate-independent slip and minimizing the deformation energy, it is shown in

Ortiz and Repetto (1999) that the slip rates and stresses can be restricted to the Kuhn–Tucker

form (Rockafellar 1970) as

τα − gα � 0, γ̇α � 0, (τα − gα)γ̇α = 0. (2.25)

These conditions provide an optimization technique and all the traditional constraints for rate-

independent plasticity. Namely, that the material remains elastic, with plastic deformation

occurring only when critical resolved shear stresses are reached, and that slip is irreversible.

A strain rate dependent model could be developed by including a strain rate dependent evolution

of plastic deformation (see e.g. Bronkhorst et al (2007) or Cuitino and Ortiz (1993)).

It is also noted from (2.11), (2.7) and gα = τ c
α during slip that

W p =
N

∑

α=1

∫ t∗

t=0

τ c
α[t]γ̇α[t] dt. (2.26)

The material tangent when a single slip system is active is

C
α
iJkL = Ce

iMkN (F p)−1
JM(F p)−1

LN − Cmixed
iJα Cmixed

kLα

1

∂(τα − τ c
α)/∂γα

, (2.27)

where

C
mixed
ijα = C

e
imabF

e
aqs

α
q (F p)−T

mj mα
b + P e

im(F p)−1
jq sα

q mα
m, (2.28)

and with the assumptions ∂γα

∂(τα−τ c
α)

= 1/
∂(τα−τ c

α)

∂γα
and that sα ·mα = 0. The equation for

∂(τα−τ c
α)

∂γα

is given in the general form for two coplanar slip systems in (2.38).

2.3. Numerical implementation

It is easiest to define all tensors in the crystal frame. No equation refers to the lab frame in

this section. Obviously, the results must be rotated back to the lab frame, and inputs from

the lab frame must be rotated into the crystal frame when this material model is implemented

for multiple crystal orientations. Working in the crystal frame simplifies many equations as

crystal material properties are easier to express in the crystal frame, such as s, m and C. Thus,

there are only two frames of reference, the undeformed crystal and the deformed crystal.

2.3.1. Incremental deformation steps. Time discretization is used by enforcing the boundary

conditions at discrete time steps: (t0, t1, . . . , tn, tn+1, . . .). The subscript n and n + 1 will be

used to distinguish values at different time steps.

2.3.2. Elastic. The only required input to the elastic model is the elastic deformation gradient,

n+1F
e. Elastic deformation does not have a path dependence and as there is no time dependence

in the elastic model, the time discretization does not need any discussion.

2.3.3. Crystal single slip. A system which allows only single slip is adopted. The energy

for each possible slip system is determined and the minimum energy system is selected, thus

determining the active slip system. Note that once a slip system is activated, it will be the

only slip system active in that spatial portion of material for all future time steps unless further

dislocation microstructure forms. As will be introduced in the next section, the material can

escape the single slip restriction only by forming microstructures of multiple single slip regions.

This convention is due to the work of Ortiz and Repetto (1999) and Conti and Ortiz (2005) in

8
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which it was shown that while using a slip model involving discrete crystal slip systems

with a strong latent hardening matrix, local single slip provides energy wells in the energy of

deformation. Thus with this model, the lowest energy available to accommodate a deformation

is always a microstructure of single slip volumes.

Assuming a given active slip system, the single slip model takes four inputs: the

total deformation at tn+1, n+1F ; the previous time step’s plastic deformation, nF
p; the total

accumulated slip strain at tn, nγα; and the current mean free path length of the dislocations,

n+1hα . The mean free paths and how they are obtained are discussed in section 3.3.1. The total

energy density, n+1W , stress state, n+1P , and updated state variables, n+1F
p and n+1γα , need to

be computed. The subscript α is maintained to denote that these equations are for a single slip

system.

Starting with the change in slip strain on slip system α:

	γα = n+1γα − nγα, (2.29)

then from an exponential mapping of equation (2.23)

n+1F
p =

(

I +

N
∑

α=1

	γαsα ⊗ mα

)

nF
p. (2.30)

where the sum over α could be reduced to only the single active slip system.

The magnitude of n+1γα is solved by iteration using (2.30) to solve for n+1F
p and (2.6) to

solve for n+1F
e. The resolved shear stress is computed by passing n+1F

e to the elastic model to

obtain n+1P and using equation (2.19). The value of n+1γα can be found by using an iterative

method such as the Newton–Raphson until the Kuhn–Tucker conditions (2.25) are satisfied,

i.e. the resolved shear stress equals the critical resolved shear stress or in the simplest case,

only an elastic reaction occurs.

It should be noted that these values are strictly incremental, yielding a path-dependent

nature to the evolution of the material.

The total discretized energy density is defined as

n+1W = n+1W
e + n+1W

p, (2.31)

which is introduced to replace φ in order to keep the symbols uniform for the discretized

variables. Also,

n+1W
p = (n+1τ

c
α)(n+1γα), (2.32)

from (2.26) since only one slip system is active. As derived by Aubrey and Ortiz (2003), the

dislocation wall energy has the effect of increasing the critical resolved shear stress as

n+1τ
c
α = τ c

o +
T

b n+1hα

, (2.33)

where T is the dislocation line tension (assumed constant in this work) and b is the Burgers

vector. The time integral from (2.26) is dropped since the only change to τ c
α is from (2.33) and

although the mean free path, n+1hα , may change, it is assumed that all slip occurs at the same

mean free path. This is discussed more in section 3.

Given the value of n+1τ
c
α , the energy can be computed from (2.31) (2.17) and (2.32), and

the stress from (2.9) and (2.16).

2.3.4. Crystal coplanar slip. It will be shown when laminate dislocation structures are

introduced that coplanar slip (referring to slip in different crystallographic directions, but on

the same crystallographic slip plane; i.e. m1 = m2, s1 �= s2) requires additional treatment

9
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to get the appropriate hardening. This is due to the fact that two coplanar slip systems form

a laminate microstructure in which the separation between physical regions of single slip

lacks dislocation walls which inhibit further slip. Thus, it is desirable to create a theory

which combines coplanar slip regions into a single entity. Otherwise, hardening falsely occurs

when a coplanar laminate microstructure activates further children systems. To understand

this motivation for a coplanar model, it is required to understand the laminate model that is

discussed in the following section (cf section 3); specifically refer to section 3.3.1 for details

on coplanar dislocation structures. This section is placed here with minimal motivation to

maintain a topical order to the paper.

In theories which include more traditional work hardening, it is apparent that coplanar

hardening is much closer in magnitude to self-hardening than other forms of latent

hardening (Bronkhorst 1991, Franciosi and Zaoui 1982, Havner 2005). Due to this hardening

characteristic, coplanar slip hardening will be treated as a single self-hardening slip system.

Given the unique geometric nature of coplanar slip, multiple active coplanar slip systems

can be treated as a single effective active slip system on a common plane. This is accomplished

by defining an effective slip direction as a combination of the coplanar slip directions:

nŝ ≡
∑

α∈coplanar

nγ̇α

nγ̇T

sα, (2.34)

where

nγ̇T ≡
∑

α∈coplanar

nγ̇α. (2.35)

Using this definition of ŝ, the values of the plastic deformation gradient, stress and plastic

work energy (and thus, total energy) are equivalent to activating the slip systems simultaneously.

Only the material tangent needs modification. These are shown subsequently.

As the coplanar slip model increases the degrees of freedom in the laminate, it creates

new variables for the slip strains on each plane. These are solved by imposing the condition

nτα = nτ
c
α for all α ∈ coplanar. (2.36)

Solving for the coplanar slip strains, nγα , when this condition is met is simplified by considering

that the minimum energy deformation in FCC crystals allows for a maximum of two slip

systems to be active at any given time. Solving for the condition given by (2.36) requires a

sequence of steps to implement as it is unknown a priori which slip systems activate or if

single or multiple slip is active. The solution steps are as follows:

(i) Compute all τα − τ c
α from (2.19) and (2.33).

(ii) Activate maximum τα − τ c
α slip system from step i as single slip.

(iii) Recompute all τβ − τ c
β for all β coplanar to α (to check if another coplanar slip system

will activate after the first system)

if all τβ − τ c
β � 0, exit (single slip system activated).

else, return max slip system to original slip strain and activate slip system α and

highest coplanar τβ − τ c
β, exit (two coplanar slip systems activated).

Computing coplanar slip using the single slip model requires a good initial guess for and

an iteration over the effective slip direction. The initial guess ŝ0, can be computed using the

values of the initial shear stress on the slip systems, τα − τ c
α , and assuming F e ≈ I in (2.38).

Note that the value of the derivative in (2.38) under this assumption is equal for all the slip

directions since they are identical crystallographic directions.

ŝ0 = (ω1 − ω2d)

(ω1 + ω2)(1 − d)
s1 +

(ω2 − ω1d)

(ω1 + ω2)(1 − d)
s2, (2.37)

10
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where

ωα = τα − τ c
α,

d = s1 · s2.

Note that d = 1/2 for FCC crystal systems.

Due to the approximation F e ≈ I this initial guess does not yield all τα − τ c = 0 for

all active systems, α, but can further be quickly driven to the exact solution by an iterative

algorithm such as the Newton–Raphson. The required derivative for such an algorithm is

∂(nτα − nτ
c
α)

∂nγβ

= −(nF
esα ⊗ mα) · C

e · (nF
esβ ⊗ mβ). (2.38)

Note that ‘·’ above sums over two indices as previously defined, hence the left-hand side is a

scalar. The derivation of the above takes advantage of the fact that because m · s = 0 for all

coplanar slip.

Using this definition of ŝ in (2.34), the plastic work is equivalent to using the total slip

strain:

	nW
p =

∑

α

(nτ
c
α)(	nγα), (2.39)

where 	nγα ≡ nγα −n−1γα . Using the fact that all nτ
c
α are identical in a laminate with coplanar

slip ((2.33) and (3.29)),

	nW
p = (nτ

c)(	nγT ), (2.40)

where 	nγT ≡
∑

α∈coplanar 	nγα , which yields the desired result that the plastic work energy

is equivalent.

For multiple activated coplanar systems, the plastic deformation gradient can also be

treated with an equivalent slip direction. Since the slip in the following equations is coplanar,

the subscript on m is dropped. For multiple simultaneous coplanar slip systems from (2.30)

nF
p
l =

(

I +
∑

α

	nγα sα ⊗ m

)

(n−1F
p
l ). (2.41)

If instead a single slip system is activated on the plane m with direction ŝ and shear strain γT :

nF
p
l = (I + 	nγT ŝ ⊗ m)(n−1F

p
l )

=
(

I +
(

∑

α

	nγα sα

)

⊗ m

)

(n−1F
p
l )

=
(

I +
(

∑

α

	nγα sα ⊗ m

))

(n−1F
p
l ). (2.42)

Note that if coplanar slip systems are activated sequentially it is also true that

nF
p
l = nF

p
2 nF

p
1 (n−1F

p
l )

= (I + nγ2 s2 ⊗ m)(I + nγ1 s1 ⊗ m)(n−1F
p
l )

=
(

I +
(

∑

α

nγα sα ⊗ m

))

(n−1F
p
l ), (2.43)

where the last step in (2.43) recognizes that all cross terms in (
∑

α nγαsα) ⊗ m and

(I + nγ2s2 ⊗ m)(I + nγ1s1 ⊗ m) cancel due to s · m = 0 for coplanar systems.

The stress is unaffected since it is a function only of F and F p. The material tangent for

active coplanar slip does not conform to the single slip equation while using ŝ. The coplanar

material tangent is

C
coplanar
iJ kL = C

e
iMkN (F p)−T

MJ (F p)−T
NL −

∑

α

∑

β

Cmixed
iJα Cmixed

kLβ

∂(τβ − τ c
β)/∂γα

, (2.44)

11
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where the sum over α and β is for the active slip systems, since by definition ∂γα/∂(τβ − τ c
β) =

0 if τ c
β > τβ . In practice, it is more tractable to implement the single slip material tangent

(2.27) using ŝ for the slip direction. Although not exact, it still provides convergence within a

reasonable number of iterations without excessive computation of Cmixed values. It should also

be mentioned that if the active slip systems change, then there are corresponding discontinuities

in the material tangent.

The preceding coplanar slip theory allows for the treatment of coplanar slip in a manner

identical to that used for single slip. Note that the coplanar slip model will also produce any

single slip condition as well.

3. Laminate microstructures

Following the previous work of Ortiz et al (2000), a formulation of laminate microstructures

is used. Laminates are used due to the inability to resolve minimum energies for any general

microstructure (Aubrey and Ortiz 2003), but the work of Ortiz and Repetto (1999) shows that

many dislocation structures found in experiments can be reproduced using sequential laminate

structures. The theory of sequential laminates used here is covered by Kohn (1991) and

reviewed in other references (Ortiz and Repetto 1999, Aubrey and Ortiz 2003). The theory

will be given here along with extensions to the nonlocal energy. Specifically dislocation mean

free path length, evolution of laminate thickness, notes on the dislocation wall normals and

coplanar slip are added to the theory.

Because the motivation of the coplanar slip model can only be understood after the

dislocation wall energy is introduced, the significance of the zero-energy coplanar slip

structures is discussed after the dislocation wall energy. In brief, since the coplanar slip

laminate structures do not form dislocation walls to impede further dislocation motion, each

spatial laminate instead of only activating a single slip system may activate a set of coplanar slip

systems. The laminate structures are introduced using the coplanar slip model (cf section 2.3.4),

which was shown to be used identically to the single slip model.

An advantage of using laminate structures is that complex structures can be formed by

embedding simple laminate structures inside a previously formed laminate structure. A simple

laminate is defined as a repetitive sequence of two material layers. As embedded simple

laminate structures appear the same at any level, one only needs to describe and analyze

the case of a single simple laminate, which can then be layered into more complicated

structures. These are described as ranks by Kohn (1991). Each set of layers will be

referred to as a ‘laminate’ (the use of node from previous works is changed to avoid future

confusion with finite element nodes). Note that the term ‘laminate’ is not referring to a

single laminate layer, but to a set of similar layers (e.g. the set of gray bands in figure 4

is one laminate). A laminate which is branched is called a ‘branch’, and the one which

is not branched is called a ‘leaf’. Each branch will have two ‘children’. Every laminate

except the rank 0 initial material will have one ‘sibling’ and one ‘parent’. The notation

followed for laminate designation is given in figure 3. The index l will be used to refer

to an unspecified laminate, with l+ and l− being the children of l and lp being the parent

of l. Note that each branch is identical, having one single slip system active in itself and

dividing into a simple laminate structure with two slip systems. Hence, the complex laminate

structure can be formed by an embedded composition of simple laminates. See figure 4 for an

illustration of a grain with a rank two laminate subgrain structure. Note that rank 0 is the entire

material.

Note that each laminate has only one active slip system (or set of coplanar slip systems

treated as an effective single slip system), thus the single slip model is used for individual

12
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Figure 3. Labels used on laminate subgrain structures.

Figure 4. Illustration of a grain with a rank two subgrain laminate structure. Shading in the tree

structure corresponds to the structure shown in the grain illustration.

laminate deformation. Also, since a laminate has only one active slip plane the index α used

in the single slip section can be replaced by l without modifying the equations.

A branched laminate is defined by the slip plane active on each side, αl± , combined

laminate thickness, Lc
l , the normal to the dislocation wall dividing the two laminates, Nl , the

volume fraction of each laminate, λl± , and the jump of the deformation across the wall, al (cf

figure 5). One of the subtleties in the laminate theory is the evolution of the laminate parameters.

These will be further discussed in the evolution section, but for ease of understanding the full

work, those that evolve are given a time subscript n in this section, namely nL
c
l and nal . The

parameters αl± , Nl and λl± are not evolved.

Note that the slip system in a laminate cannot change at later time steps. Also, the amount

of slip deformation of a branched laminate is not evolved. Thus, once a laminate forms, it

always remains in the microstructure although it can further branch itself. This provides the

theory with path dependence. To extend the loading path dependence for all conditions it would

be required to allow for dissolution of laminate walls. Although dissolution is not considered

13
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Figure 5. Simple laminate structure variables. Illustration is not to scale.

in this work, it should be relatively straightforward to add in dissolution of the finest layer

of laminates formed if the slip systems involved reverse; dissolution of higher rank laminates

would require a model relating reloading and dissolution of structure.

The framework for the laminate structures needs to be presented before nonlocal energy

terms can be understood, but the nonlocal terms will affect the laminate framework. Rather

than showing the general equations for the laminates and then modifying them later to contain

the nonlocal terms, the nonlocal terms are included without a full explanation and derived in

the next section. Equilibration, discussed last, now includes the laminate thickness providing

an accurate form of evolving slip hardening.

3.1. Laminate variable properties

As the deformation must be rank one connected

nFl+ − nFl− = nal ⊗ Nl, (3.1)

where {nal, Nl} ∈ ℜ3 and as Nl is a unit vector indicating direction, ‖N‖ = 1. The symbol

nal is the polarization vector which varies with the values of the deformation gradient.

Obviously, the volume fractions, λl ∈ ℜ. Note that λl must obey

λl+ + λl− = 1, λl± ∈ [0, 1]. (3.2)

Given the volume fraction, the deformation of the parent laminate follows as

nFl = (λl−)(nFl−) + (λl+)(nFl+). (3.3)

From (3.1) and (3.3), the deformation gradient of the children can be written as

nFl± = (nFl) ± λl∓(nal ⊗ Nl). (3.4)

Aubrey and Ortiz (2003), Ortiz et al (2000), Ortiz and Repetto (1999) and Ortiz and

Stainier (1999) derive the relationship

nPl = (λl−)(nPl−) + (λl+)(nPl+), (3.5)

and the material tangent for a branched laminate

nC
laminate
l = (λl+)(nC

s.s.
l+ ) + (λl−)(nC

s.s.
l− ), (3.6)

where equation (2.27) is used to calculate nC
s.s.
l± .

14



Modelling Simul. Mater. Sci. Eng. 18 (2010) 055001 B L Hansen et al

The characteristic width of a laminate’s layers is the combined width of the two children’s

layers:

nL
c
l ≡ nLl+ + nLl−. (3.7)

Due to the repetitive planar geometry of a laminate structure, the width of a child laminate’s

layers is related to its parent layer’s width by the volume fraction

nLl± = λl± nL
c
l . (3.8)

A laminate’s characteristic width, nL
c
l , is further restricted to be less than the width of the

parent structure:

nL
c
l � nLlp . (3.9)

Note that this restriction has been added as it was found that energy minimization alone allowed

for the nonphysical case of children larger than the parent.

When a laminate branches and becomes a parent the plastic deformation that has occurred

in the parent during previous time steps is retained as this deformation is permanent and has

already occurred. The children accommodate any remaining deformation. The current plastic

deformation in the parent (e.g. n−1F
p
l ) will not continue to evolve with further deformation

after the children laminates are formed. However, the parent’s total deformation, nFl , will

evolve as the children continue deforming (cf (3.3)). In order to account for the previous

plastic deformation when a laminate forms, its previous time step’s plastic deformation is set

equal to its parent’s previous plastic deformation (given for the + child, but with the − child

analogous):

n−1F
p
l+ = n−1F

p
l , (3.10)

so that by equation (2.30)

nF
p
l+ = (I + 	γl+ ŝl+ ⊗ ml+)n−1F

p

l , (3.11)

and the correct elastic deformation is given by equation (2.6), nF
e
l+ = nF0(nF

p
l+)−1, where nF0

is the global deformation, e.g. F at time tn in the laminate at rank 0. The previous slip strain

of the children is set to zero, n−1γl+ = 0, so that the incremental plastic energy is correctly

computed (2.40).

3.2. Branching energy computation

The minimum energy laminate structure should be found in order to make comparisons with

the single slip and elastic energies. Thus, one finds the solution to

nWl[nFl] ≡ min
αl± ,nal ,Nl ,λl± ,nL

c
l

(

λl− nWl− [αl− , nal, Nl, nL
c
l ] + λl+ nWl+ [αl+ , nal, Nl, nL

c
l ]

+
(

(n−1)τl

) (

(n−1)γl

)

+ 2ϒ
nL

c
l

nLl
nW

BL
l [αl± , nal, Nl, λl± , nL

c
l ]

)

. (3.12)

This is the minimum energy density of laminate l branching and becoming any two leaves l+

and l−. If this energy density is less than the energy density of activating a slip plane (coplanar

slip), the laminate forms. Purely elastic leaves are excluded from consideration. The first term

is the energy density from the laminate l−, both the elastic W e and plastic W p. The second term

is likewise the energy density from laminate l+. The third term is the plastic energy that the

possibly branching laminate l has already stored by plastic coplanar slip; it is included in the
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branched energy in order to make accurate comparisons with the energy density of continuing

to slip on a single slip plane. Note that the energy accumulated in this term has already been

completed in the previous deformation step, and due to the assumed irreversibility of slip it

does not evolve further; thus, it can be removed from this minimization as a constant. The

fourth term is the boundary layer energy caused by the misfit between the laminates and the

boundaries of the parent system. ϒ is the depth of the boundary layer. Readers may refer to

section 3.3.2 for details on the boundary layer energy density. The [.] shows the functional

dependence on the variables varied in the minimization.

Note that the previous work of Aubrey and Ortiz (2003) treated the nonlocal energy terms

of the boundary layer and the dislocation walls as perturbations of the energy, and hence were

not directly included in the minimization (3.12). When the nonlocal energy is introduced

later, it will be estimated to show that it should not be treated as a perturbation, but minimized

directly.

The slip systems, αl± , wall normal, Nl , and volume fraction, λl , of each possible branch

have well-defined domains which are searched. The values for the jump vector, al , and the

length scale of the laminate, Ll , each have a direct minimization equation if the other parameters

are specified. There is an interaction between al and Ll , which is iterated over to obtain a

minimum. To find the minimum energy branched structure the values of αl± , Nl and λl are

iterated over for all possible values solving for al and Ll by minimization within each possible

set. The lowest energy of all possible parameter values is selected for comparison with single

(coplanar) slip. Full details for each parameter follow.

3.2.1. Slip plane selection, α. The possible slip planes will be iterated over to find a minimum

deformation energy with respect to αl± . This reduces the required solution of (3.12) to finding

nWl[nFl]α∗
l±

=
(

(n−1)τl

) (

(n−1)γl

)

+ min
nal ,Nl ,λl± ,nL

c
l

(

λl− nWl− [α∗
l− , nal, Nl, nL

c
l ] + λl+ nWl+ [α∗

l+ , nal, Nl, nL
c
l ]

+2ϒ
nL

c
l

nLl
nW

BL
l [α∗

l± , nal, Nl, λl± , nL
c
l ]

)

, (3.13)

for a given set of two slip planes α∗
l+ and α∗

l− using the given restrictions.

3.2.2. Dislocation wall normals, N . The complexity of calculating the wall normal

when only single slip (not coplanar) is active can be reduced by referring to work done by

Ortiz and Repetto (1999), although care must be taken in how these are implemented. Ortiz

and Repetto tabulated wall normals using rank one compatibility (3.1) of deformation assuming

only plastic single slip on each side of a rank one laminate with no elastic deformation for FCC

crystal systems. Under the plausible assumption that near the dislocation wall the majority

of deformation is plastic, as little distance exists for elastic deformation, these derived plastic

deformation wall normals can be assumed a good approximation. However, two details must

be considered when implementing these directly from the reference. First, they were derived in

the Eulerian reference frame and second, the length evolution of the wall normal for degenerate

cases, i.e. those cases for which the slip system normals or slip system directions are identical.

Note that in the derivation of the wall normals there is also a restriction placed on the ratio

γ̇ +/γ̇ −, which is not directly applied in this work. This again is related to the assumption

that all the deformation contained in the compatible wall is plastic, while elsewhere, elastic

deformation eases any restriction.
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The conversion of the Lagrangian reference frame normal N to the Eulerian reference

frame normal n is given in Ortiz and Repetto (1999):

n = (Fl+)−TNl
∥

∥(Fl+)−TNl

∥

∥

, (3.14)

This transformation is discussed in detail in Hansen (2009).

From Ortiz and Repetto (1999), the branched laminate composed of the two single slip

systems βl+ and βl− has only two possible wall normal orientations if the slip systems are not

degenerate, i.e. the slip directions are not identical or the slip planes are not identical. These

two possibilities for wall normal direction can then be iterated over and only the lower energy

taken.

For the degenerate case in which the slip directions are equal it can be shown that

nl = γ̇l+ml+ − γ̇l−ml−

‖γ̇l+ml+ − γ̇l−ml−‖ . (3.15)

Thus, the normal belongs to a 2D unit circle which contains ml+ and ml− . This unit circle is

iterated over by taking a set angle interval. The normal with the lowest energy is selected. Note

since the opposite of the normal gives an identical wall orientation, only half of the circle needs

to be checked. (If Nl → −Nl , then al → −al , and the calculations are not affected.) Also,

the directions m+ and m− may be excluded as those directions correspond to only activating

one of the slip planes.

For the degenerate cases in which the slip plane normals are identical or coplanar slip,

nl = ml+ = ml− . (3.16)

Due to the parallel slip planes the dislocations of these two systems will not interact and

will not form a dislocation wall. This and other considerations for the wall normal in this

section were noted by Ortiz and Repetto (1999), but were not considered in the initial theory

of Aubrey and Ortiz (2003). Coplanar slip systems have already been discussed in section 2.3.4

and will be discussed further in section 3.3.1. It should be noted here that the dislocation wall

is parallel to the slip planes for coplanar slip. It will be shown that due to this condition these

systems are not resolved in the energy calculations.

Unfortunately, these conditions hold only for single slip. For considering the formation of

laminates in which more than one slip system is activated on one side of the wall (e.g. coplanar

slip systems), there is presently no alternative but to search the unit sphere of all wall normals

for the lowest energy wall normal.

As described, the set of all possible Nl can now be iterated over, thus reducing the

minimization of (3.13) to finding the value for a given N ∗
l . While considering single

slip activation (not coplanar), the set of possible wall normals considered is reduced using

compatibility.

3.2.3. Computation of volume fraction, λ. As there are strict bounds limiting λ to the domain

λ ∈ [0, 1], a discrete minimization of λ can be conducted. Note that the endpoints of the

domain can be avoided as they pertain to a single volume of uniform material. Using an

accuracy of 0.1, λl is given the possible set of values

λl ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.
All that is lost in this approach of solving for λ is accuracy in the volume fraction of the

laminate.

It is possible that a more computationally efficient solution would simultaneously solve

for λ, a and Lc, but the discrete optimization is much more timely to implement.
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The minimization (3.13) is now reduced to

nWl[nFl]α∗
l± ,N∗

l ,λ∗
l±

=
(

(n−1)τl

) (

(n−1)γl

)

+ min
nal ,nL

c
l

(

λ∗
l− nWl− [α∗

l− , nal, N ∗
l , nL

c
l ] + λ∗

l+ nWl+ [α∗
l+ , nal, N ∗

l , nL
c
l ]

+2ϒ
nL

c
l

nLl
nW

BL
l [α∗

l± , nal, N ∗
l , λ∗

l± , nL
c
l ]

)

. (3.17)

3.2.4. Computation of polarization vector, a. Minimization of (3.17) excluding the boundary

layer energy with respect to al while holding nL
c
l constant (nL

c
l = nL

c∗
l ) gives the condition

that tractions must be compatible across dislocation walls:

(nPl+ − nPl−)Nl = 0. (3.18)

This is solved directly using a Newton–Raphson iteration for the value of al . It will be shown

that generally WBL
l is small compared with the total plastic energy.

This minimization ideally should be done concurrently with the minimization of nL
c
l as

both affect the plastic energy, but currently a loop over the solution of nal and nL
c
l is performed

until convergence of nL
c
l is reached. Convergence could be more efficient by the introduction

of a minimization solution over nal and nL
c
l simultaneously. This analysis is difficult as the

iteration in solving for nγl± prevents an analytical equation.

3.2.5. Computation of laminate thickness, Lc. With the given values for α±
l , λl and Nl and

the last iterative solution nal = na
∗
l , the solution for nL

c
l is a simple analytical minimization.

The value nL
c
l appears only in the nonlocal terms as an addition to the critical resolved shear

stress in the plastic energy and in the boundary layer energy. (The nonlocal energy is explained

subsequently, but the minimization solution is placed here to be included with the other laminate

parameter calculations.) The thickness of the laminates is derived through a competition

between the two nonlocal energies.

Breaking up nWl− using in turn (2.31), (2.32) and (2.33) yields

nWl− = nW
e
l− + nW

p

l−

= nW
e
l− + (nτ

c
l−)(nγl−)

= nW
e
l− + (τ c

0 )(nγl−) +
T

b nhl−
nγl− . (3.19)

Using (3.31b) (the definition of dislocation wall energy density, WDW) and (3.19)

λl− nWl− + λl+ nWl+ = λl−
(

nW
e
l− + τ c

0 (nγl−)
)

+ λl+

(

nW
e
l+ + τ c

0 (nγl+)
)

+ nW
DW
l (3.20)

Using the values of nγl± and nW
e
l± calculated during the minimization of nal with nL

c
l = nL

c∗
l ,

the dependences can be written as

λl− nWl− [α∗
l− , nal

∗, N ∗
l , nL

c∗
l , nL

c
l ] + λl+ nWl+ [α∗

l+ , nal
∗, N ∗

l , nL
c∗
l , nL

c
l ]

= λl−
(

nW
e
l− [α∗

l− , nal
∗, N ∗

l ] + τ c
0 (nγl− [α∗

l− , nal
∗, N ∗

l , nL
c∗
l ])

)

+λl+

(

nW
e
l+ [α∗

l+ , nal
∗, N ∗

l ] + τ c
0 (nγl+ [α∗

l+ , nal
∗, N ∗

l , nL
c∗
l ])

)

+nW
DW
l [α∗

l± , nal
∗, N ∗

l , nL
c
l ]

= W ∗[α∗
l− , nal

∗, N ∗
l , nL

c∗
l ] + nW

DW
l [α∗

l± , nal
∗, N ∗

l , nL
c
l ], (3.21)

where W ∗ = λl−(nW
e
l− + (τ c

0 )(nγl−)) + λl+(nW
e
l+ + (τ c

0 )(nγl+)) is introduced for brevity.
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With this notation the minimization is

nWl[nFl]α∗
l± ,N∗

l ,λ∗
l± ,a∗

l
=

(

(n−1)τl

) (

(n−1)γl

)

+ min
nL

c
l

(

W ∗[α∗
l− , nal

∗, N ∗
l , nL

c∗
l ] + nW

DW
l [α∗

l± , nal
∗, N ∗

l , nL
c
l ]

+2ϒ
nL

c
l

nLl
nW

BL
l [α∗

l± , nal, N ∗
l , λ∗

l± , nL
c
l ]

)

=
(

(n−1)τl

) (

(n−1)γl

)

+ W ∗ + min
nL

c
l

(

nW
DW
l + 2ϒ

nL
c
l

n−1Ll
nW

BL
l

)

. (3.22)

Thus, the minimization with respect to nL
c
l is only over the nonlocal energy density, nW

NL
l

(3.35). Substituting for the dislocation wall energy (3.31b),

nW
NL
l = T

b nL
c
l

(

nγl−

ζl−

√

1 − (ml− · Nl)2 +
nγl+

ζl+

√

1 − (ml+ · Nl)2

)

+ 2ϒ
nL

c
l

nLl
nW

BL
l , (3.23)

where ζl is the ratio of the dislocation mean free path length to the width of the laminate; it

will be introduced in section 3.3.1.

The minimization with respect to nL
c
l then follows as

nL
c
l =

√

T nLl

2ϒb nW
BL
l

(

nγl−

ζl−

√

1 − (ml− · Nl)2 +
nγl+

ζl+

√

1 − (ml+ · Nl)2

)

. (3.24)

Adding in the constraint that the children fit inside the parent

nL
c
l =

{

equation (3.24) if equation (3.24) < n−1Ll,

n−1Ll otherwise.
(3.25)

This work minimizes the nonlocal energy directly, as it will be shown in section 3.3.1

that the dislocation wall energy will eventually be comparable in magnitude to the plastic

deformation energy giving a strong interaction between Lc
l and al .

3.3. Nonlocal energy

Following the ideas of Aubrey and Ortiz (2003), two terms of nonlocal energy will be included

due to the formation of laminate structures: the dislocation wall energy and the boundary layer

energy.

3.3.1. Dislocation wall energy. When a laminate branches into two laminates with different

slip planes, a dislocation wall forms between them. The new dislocation walls impede

dislocation motion and, thus, shorten the mean free path of the mobile dislocations. As derived

in Aubrey and Ortiz (2003) using Orowan’s relation, shortening the mean free path causes

plastic energy for a given deformation to increase. This increase in the plastic deformation

energy corresponds to an increase in critical resolved shear stress. Hence the formation

of dislocation walls increases the energy necessary for further plastic deformation for the

individual laminate’s slip system, but due to the gained freedom in active slip systems to

release stored elastic energy the laminate formation may lower the global deformation energy.

Here the ideas of Aubrey and Ortiz (2003) are expanded to not just using the width of the

laminate as the mean free path for dislocations, but to include the angle between the path of the

dislocation and the dislocation wall. This allows a first estimate of morphology in the structure

to be included. The inclusion of the dislocation path geometry means finer laminates will form

if the slip plane (and thus the dislocation paths) is nearly parallel to the dislocation wall. This
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Figure 6. Geometry of slip plane between two dislocation walls.

change significantly lowered the boundary layer energy and often changed the lowest energy

(active) system in simulations. This is particularly important for the special case of coplanar

slip where the dislocation path normals in sibling laminate structures are identical and thus,

no dislocation walls form to impede further dislocation slip (Ortiz and Repetto 1999).

For a given slip system β, dislocations are assumed to move until they encounter the

boundary of the laminate. Note that all dislocation paths reside on the slip plane regardless of

the type of dislocation; thus one needs to consider the general case of computing the mean free

path of dislocations on the slip plane of laminate l which is between two parallel dislocation

walls (see figure 6). The width between the parallel dislocation walls, Ll , is defined by the

computation of Lc
lp

and λl from (3.8). The length of the dislocation walls is approximated as

the width of the parent laminate: Llp . Note that this approximation is a minimum; the true

length may be much longer depending on the angle the parent laminate makes with its parent

and grandparent and so on. This is not of concern though as a separation of scales is assumed,

e.g. Llp ≫ Lc
lp

. As this assumption will be used for simplification, it is not of any consequence

if Llp is underestimated. The normal to the dislocation walls is Nlp and the normal to the slip

plane is ml .

The slip plane is approximated as a rectangle defined by two lengths, call the lengths A

and B defined by

A = Ll
√

1 − (ml · Nlp)
2
, (3.26)

B = Llp . (3.27)

Table 2 lists the ratios L/A for the slip system A6 given the sibling slip system for single slip

using all possible wall normals as calculated by Ortiz and Repetto (1999). Due to symmetries

of the slip systems it does not matter which system was chosen; A6 is a completely generic

choice. Note that microstructures involving only the same slip system (i.e. A6 and A6 in this

example) are indistinguishable in this theory. The value of L/A ranges from a maximum of

1 (slip plane perpendicular to laminate wall normal) to a minimum of 1
3
, excluding the same

slip plane laminates. The same slip plane laminates (i.e. A slip systems in this example) are

parallel to the dislocation wall normal and thus do not interact with it. These are discussed in

section 3.3.1 subsequently.
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Table 2. L/A ratios for generic slip system A6.

System n(not normalized)
LA6

AA6

A2 (1̄ 1 1) 0

A3 (1̄ 1 1) 0

A6 (1̄ 1 1) 0

B2 (1 1 3̄) 2

√

2

11
(2 1 1) 1

B4 (0 1 1)
1√
3

(1 1 1̄)
2

3

√
2

B5 (1 0 0)

√

2

3

(0 0 1̄)

√

2

3

C1 (1 0 1̄)
1√
3

(1 1 1)
2

3

√
2

C3 (1 2 1̄) 1

(1 1 3) 2

√

2

11

C5 (0 0 1)

√

2

3

(0 1̄ 0)

√

2

3

D1 (1̄ 1 2)
1

3

(3 1 1) 4

√

2

33

D4 (1 3 1̄) 4

√

2

33

(1 3 1̄)
1

3

D6 ∈ plane containing ∈ (0, 1)

mD6 and mA6

The appendix derives the calculation of the mean free path:

nhl = ζl nLl
√

1 − (ml · Nlp)
2
, (3.28)

and by (3.8)

nhl =
ζlλl nL

c
lp

√

1 − (ml · Nlp)
2
. (3.29)

Note although the angle between ml and Nlp may change during plastic slip, the mean path

length will remain constant with these changes. Assuming elastic stretch deformation to be
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negligible, the mean free path calculations can thus be done in the reference (undeformed)

configuration accounting only for changes in the length nLl and treating
√

1 − (ml · Nlp)
2 as

a constant.

As was derived by Aubrey and Ortiz (2003) using Orowan’s relation, the effect of the

dislocation walls shortening the mean free path increases the critical resolved shear stress of

the material:

nτ
c
l = τ c

0 +
T

b nhl

, (3.30)

where τ c
0 is the material-dependent initial critical resolved shear stress, T is the dislocation

line tension and b is the Burgers vector. This increase in the critical resolved shear stress with

refinement of the subgrain dislocation structures causes both latent and self-hardening in this

model.

The added nonlocal energy of the dislocation wall including the increase in τ c to both

children (i.e. l is the branch in the following equation instead of a leaf) can be inferred from

(3.30), (2.32) and (3.12) as

nW
DW
l ≡ T

b

(

nγl−λl−

nhl−
+

nγl+λl+

nhl+

)

(3.31a)

= T

b nL
c
l

(

nγl−

ζl−

√

1 − (ml− · Nl)2 +
nγl+

ζl+

√

1 − (ml+ · Nl)2

)

. (3.31b)

The plastic energy is nW
p
l = (nτ

c
l )(nγl), while the dislocation wall energy is nW

DW
l =

T (nγl)

b(nhl)
. Thus,

NW
p
l

nW
DW
l

= b(nhl)(nτ
c
l )

T
. (3.32)

Generally for metallic materials the order of T ≈ 10−10 N, b ≈ 10−10 m and τ ≈ 106 N m−2,

yielding W
p
l /WBL

l ≈ hl × 106 m−1. Using these estimates, only for laminates larger than

approximately 10−4 m may WDW be treated as a perturbation, although any laminate this

large should find forming finer laminates energetically favorable and eventually invalidate this

assumption.

Laminates with coplanar slip. The special case of branched laminates with active coplanar

slip systems has the children’s slip planes parallel to the dislocation wall predicted to form

between the children. In this case, the two children’s dislocations move in parallel planes and

no dislocation wall forms (Ortiz and Repetto 1999). Note that in this model once the angle

of the slip plane to the wall normal is taken into account, hl → ∞, appropriately giving a

dislocation wall energy of zero. If there is no dislocation wall energy, the laminate will be able

to form at an infinitesimal width and negate any boundary layer energy as well. This gives a

total nonlocal energy of zero, meaning branches with identical slip planes on either side are

zero-energy structures. Zero-energy structures are obviously problematic. In reality, the value

of hl for two coplanar laminates should be the length of the parent structure containing them.

There is a second problem with coplanar laminates. If no dislocation walls form in a

coplanar laminate, then there is nothing to prevent the dislocations of future new branching

slip systems inside the coplanar laminate from gliding over the entire length of both the coplanar

laminates containing the new slip system and its sibling, and thus, forming at the length scale

of the coplanar laminate’s parent. As this change in length scale is not accounted for in a

single slip theory, the children of laminates with coplanar siblings would form at lower length
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Figure 7. Detailed figure showing boundary layer variables.

scales and thus harden very much. The two problems caused by the lack of dislocation walls

in coplanar laminates is the reason for the requirement of a coplanar slip approach and was

already discussed in section 2.3.4.

Although these coplanar systems should not only self-harden but harden each

other (Franciosi and Zaoui 1982), the results of Franciosi (1985) and the analysis of

Bronkhorst (1991) and Havner (2005) suggest that coplanar slip systems should exhibit much

less latent hardening than other systems. This work treats coplanar systems as mutually self-

hardening (i.e. the slip on two active coplanar slip systems is added and treated as a single

slip system which self-hardens). This differs from the traditional multislip theories in which

the latent hardening of these systems is often approximated identical to all other systems

(Cuitino and Ortiz 1993, Bronkhorst et al 2007).

3.3.2. Boundary layer energy. The boundary layer energy is computed from the elastic

deformation that maps the underlying parent material to the two children’s deformations. From

figure 7 it can be noted that the outside wall of the laminate is at the parent’s deformation,

nFl , while the bulk volume of the children are at their respective deformations, nFl± . The

boundary layer’s state of deformation must change from the parent deformation to the child’s

deformation. A linear transition is assumed giving the average deformation of the boundary

layer as

nF
BL
l± = 1

2
(nFl + nFl±). (3.33)

Taking the boundary layer deformation to be elastic yields an energy for the boundary

layer,

nW
BL
l = λl+

(

W e[(F BL
l+ )(nFl)

−1] − nWl+

)

+ λl−
(

W e[(F BL
l− )(nFl)

−1] − nWl−
)

, (3.34)

where the terms nWl± are subtracted as a correction to the total energy since the energy of the

boundary layer volume was assumed to have the child’s deformation in previous calculations.

Note that the boundary layer energies will remain positive as the energy of the child deformation

subtracted involves a low-energy plastic deformation, while the energy of the boundary layer

is elastic. Recall that the definition of nWl± is the plastic and elastic energy in the individual

leaf and does not include the previous plastic deformation in laminate l and other ancestors of

the leaf; thus, the value of WBL
l is actually the difference between the energy in the boundary

layer volume and the average bulk deformation energy of the branched laminate. It acts as an

energy penalty to laminate formation.

23



Modelling Simul. Mater. Sci. Eng. 18 (2010) 055001 B L Hansen et al

Figure 8. Calculation of the boundary layer volume. Illustration not to scale.

The formulation given here differs from the work of Aubrey and Ortiz (2003) in the

correction of the additional elastic deformation to be (F BL
l+ )(nFl)

−1 rather than (F BL
l+ ) only.

This change is due to the boundary layer accommodating the deformation from the initial

parent material to the child’s deformation rather than from an initial undeformed state to the

child’s deformation.

Note that this is an energy density for the boundary layer, and as such must be added only

for the portion of material which is in the boundary layer. The contribution to the total energy

density is scaled by the fraction of the boundary volume to the total volume of the simple

laminate. In figure 8, assuming the dislocation wall with normal Nlp is circular, the total

volume of one layer of the branched laminate Ll is πLlL
2
lp

. Note that all other layers will be

identical. The corresponding boundary area, taking into account all sides, is 2πL2
lp

, neglecting

the small contribution 2πLlLlp justified by Llp ≫ Ll . Assuming a boundary layer depth of

ϒ(Lc
l ), the total boundary volume is 2ϒ(Lc

l )πL2
lp

. Note that the geometric assumption of a

circular area is cancelled in the ratio of the volume of boundary layer to total volume, and thus

the geometric assumption of circular domain has little influence on this calculation. Using this

ratio, the total nonlocal energy density scales as

WNL
l = WDW

l + 2
ϒLc

l

Ll

WBL
l , (3.35)

where ϒ is a scaling factor determining the depth the boundary layer penetrates in the laminate

in multiples of Lc
l .

In the work of Ortiz et al (2000) showing boundary layers composed of refining laminate

structures, the boundary layer penetration is on the order of Lc
l . Thus, it can be assumed

ϒ should be somewhere on the order of 1. Aubrey and Ortiz (2003) indirectly assign the

boundary layer to have a depth of 1
2
Lc

l .

As the boundary layer term is scaled by Lc
l /Ll and it is assumed Lc

l ≪ Ll , the boundary

layer contribution to the total energy can be assumed small. Due to the minimal contribution,

it appears justified to treat it as a perturbation when solving for al .

3.4. Equilibration updates

As the macroscopic deformation, nF , increases with each time step, it is necessary to update

the values of the polarization vectors, nal , in order to keep the stress compatible across the

dislocation walls. The values of laminate thickness, nL
c
l , are also updated as it provides a
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hardening behavior, and mathematically the thickness depends on variables that are being

updated, nW
BL
l and nγl . If the thicknesses were not updated, but rather formed at a single step

and held constant afterward, the values of the thicknesses would depend on such things as step

size. This is not a desired behavior.

It is desirable to allow multiple rank structures to form within the same time step, e.g.

a leaf may branch into two children, then at the same time step those children may further

branch into children and so on. The addition of equilibrating the laminate thicknesses for the

entire structure described in this section allows multiple branches to form in the same time

step. If the thicknesses are not equilibrated as an entire structure, having a laminate with

γ = 0 would cause instabilities with WBL when computing thickness for the children of this

laminate. When multiple rank branches form at the same time step, the γ = 0 parents with no

plastic deformation themselves essentially become space holders for the children.

It should be noted that a complete optimization of the laminate structure would require

that the equilibration be done simultaneously with the formation of new branches. Essentially,

when checking whether a new branch forms the structure should be equilibrated, as well

as checking every possible combination of other new branches in the tree and equilibrating

each combination. Obviously, this problem quickly becomes nontractable. To avoid this, the

structure from the previous time step is equilibrated at the beginning of each time step for the

new deformation gradient, nF , and then each leaf is checked individually to see whether it

branches. This process of equilibration and branching is repeated until no new leaves form.

To remove elastic leaves, a minimum limit should be set on the slip strain, γl , for a

branch to form. Without this restriction leaves may form, which after equilibration deform

only elastically. Since the laminates in this theory are based on the formation of subgrain

dislocation structures, if a leaf is reacting only elastically, then it should not have been formed.

To avoid dependence on the size of the time steps, a small numerical restriction ofγl � 1×10−14

is chosen. This restriction is small enough to remove only leaves with energy benefits on the

order of computational error. Elastic leaves did not form in any of the simulations presented

in this paper.

From this point onward, the subscript denoting step discretization n will be avoided. As

the following calculations in this section show the equilibration for a single time step, it is

understood that all values have the same n.

3.4.1. Compatibility of stress and evolution of the polarization vector. As each new

macroscopic deformation step, F , is introduced, the equilibration of the stresses across the

dislocation walls needs to be updated. Equation (3.18) must be satisfied for each branch

simultaneously. The value of the deformation jump a is recomputed for branches in the

microstructure using the new global F . This was shown and implemented by Ortiz et al (2000).

Note that only the leaves in the microstructure are active and free to evolve new values of

strain, hence only the leaves obtain new elastic and plastic strain values to accomplish this

equilibration.

Noting that the optimization of the deformation jumps, al , and the laminate thicknesses,

Lc
l , are interrelated, an iteration similar to that used in the solution of individual branches is

used. The values of al are solved for using the previous values of Lc
l , after which the values

of Lc
l are optimized for the new values of al . This is repeated until the changes in Lc

l reach a

specified tolerance.

3.4.2. Evolution of laminate thickness. In this theory, the dislocation walls form at an instant,

whereas in real materials the dislocation wall will form slowly as more dislocations entangle

25



Modelling Simul. Mater. Sci. Eng. 18 (2010) 055001 B L Hansen et al

and form dislocation walls. The evolution of thickness over time approximates the formation

of the walls over time and refinement of the length scale as new dislocations form between the

existing dislocation walls. Further motivation is provided in Hansen (2009).

The minimization of the nonlocal energy with respect to all Lc
l is

min
{Lc

l | l=1,...,Z}

Z
∑

l′=1

WNL
l′ , (3.36)

where Z is the number of laminates in the microstructure. Noting that the only lengths that

influence the nonlocal energy of a particular laminate l are Lc
l and Ll (see (3.23)), the condition

for minimization of the total nonlocal energy with respect to a specific Lc
l is

∂
∑Z

l′=1 WNL
l′

∂Lc
l

= ∂WNL
l−

∂Lc
l

+
∂WNL

l+

∂Lc
l

+
∂WNL

l

∂Lc
l

= 0, (3.37)

which yields

Lc
l =

√

(

Lc
l+W

BL
l+

λl+

+
Lc

l−WBL
l−

λl−
+

δl

2ϒ

)

λl

WBL
l

Lc
lp
, (3.38)

where use has been made of equation (3.8): Ll = λlL
c
lp

and

δl ≡ T

b

(

γl+

ζl+

√

1 − (ml− · Nl)2 +
γl−

ζl−

√

1 − (ml− · Nl)2

)

. (3.39)

Note that each Ll depends on its parent and children, thus each parent depends on each of

its descendant’s lengths and each child’s length also depends on each of its ancestor’s lengths.

This infinite loop of dependences is overcome by starting with a known length of the rank 0

laminate (i.e. the grain size), L0, which is a required input. As an initial starting condition, set

Lc
0 = L0 and λ0 = 1, then a direct iteration by decreasing rank of the structure is possible.

To avoid ambiguity in the above calculations, if l± is a leaf, WBL
l± = 0. Note in this case

(3.24) is returned.

Hardening. Both traditional mechanisms of hardening, self-hardening and latent hardening

are reproduced by the laminate size evolution. As the slip strain within a laminate increases

with deformation, the boundary layer energy increases. The simplest approximation for the

boundary layer energy density is WBL = 1
2
µγ 2, where µ is the shear modulus. Considering

(3.24), the laminate size will decrease with increasing strain, Lc
l ∝ 1/

√
γ . Due to (3.30)

this causes a form of self-hardening. When a new slip system is activated, the material must

branch, and thus both the new laminate and the existing one will decrease in size, causing a

form of latent hardening.

It is also interesting to note that the magnitude of latent hardening is dependent upon the

systems that are activated. The changes in magnitude of hardening are caused by the variance

in the mean free path of the systems (cf table 2). The results of the mean free path calculations

display a similar relationship for coplanar, collinear and other forms of hardening in multiple

slip as described by Franciosi and Zaoui (1982) and Havner (2005).

3.5. Stress jumps on laminate formation

When a laminate forms there is a discontinuity in the stress state. This is important as any

finite element method generally uses iterative solutions to apply traction boundary conditions

and to obtain equilibration between elements. This is overcome when necessary by fixing the

microstructure during iterations to satisfy a boundary condition. Details of this are discussed

in Hansen (2009).
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Table 3. Copper material constants.

Constant Value Reference

Elastic constant (C11) 168.4 GPa Simmons and Wang (1971)

Elastic constant (C12) 121.4 GPa Simmons and Wang (1971)

Elastic constant (C44) 75.4 GPa Simmons and Wang (1971)

Critical shear stress (τ c) 1.0 MPa Barrett (1952)

Burgers vector (b) 2.56 × 10−10 m Kocks et al (1975)

Line tension (T ) 18.3 × 10−10 N Kocks et al (1975)

4. Results and discussion

4.1. Material properties of copper

A significant feature of the laminate subgrain model is the small number of material constants

required, all of which are obtained directly from independent experimental data rather than

from numerical fitting. The material constants used for the copper simulations along with

references are listed in table 3.

Dislocation line tension, T , is approximated using the method given in Kocks et al (1975):

Tscrew ≈ µb2

2
,

Tedge

Tscrew

= 1.76,

T =
√

TscrewTedge,

where Tscrew and Tedge are the line tension for a screw and edge dislocation and µ is the shear

modulus given in Kocks et al (1975) as 42.1 GPa.

The width of the boundary layer in units of Lc, ϒ , is set to 1/2 for these simulations. This

is the same value as used in Aubrey and Ortiz (2003).

The initial size of the single crystal specimens used in the experiments of Franciosi (1985)

and Franciosi and Zaoui (1982) is not known for model validation. As the size directly affects

the hardening behavior, the sizes are approximated based upon the stress–strain data. Further

details are given in the discussion.

4.2. Copper single crystal simulations

Validation of the stress response of copper single crystals can be accomplished by

comparison with the experimental data of Franciosi (1985) and Franciosi and Zaoui (1982).

Franciosi (1985) states that single crystal copper specimens were tested; each with a different

crystal direction aligned to the tensile axis. The crystal directions were [0 0 1], [1 0 1], [1 0 2],

[1 1 1], [1 1 2], [1 2 2] and [1 3 5].

The simulated stress normal to the tensile axis and that measured experimentally for

selected orientations are presented. The evolution of the subgrain dislocation structure

is also shown. A consistent deformation step of 10−3 is used for all simulations. All

deformations with this model are assumed quasistatic as no rate dependences are incorporated

yet. A discussion of the salient structure formed and a comparison of these tests

follow. Afterward, the same test conditions are employed to make comparisons of grain

size effects against a traditional Hall–Petch effect and to demonstrate the effect of grain

shape.
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Figure 9. Sample coordinate frame with fixed grip orientation for tensile Cu specimens.

4.2.1. Boundary conditions. The boundary conditions employed cannot be taken directly

from publications. Following the assumption of fixed grips seems to produce appropriate

results. Note that for single crystals the choice of boundary conditions is paramount, as

the deformation response is far from axisymmetric. In a recent work Shade et al (2009)

investigated the effects of boundary conditions on single crystal microcompression. Figure 9

gives the sample coordinate system and visualization for the grips. With the assumption of

fixed grips, the boundary conditions used for simulation are given in Hansen (2009):

F =





F11 0 0

0 F22 0

0 0 F33



 , (4.1)

P =





0 P12 P13

P21 0 P23

P31 P32 P33



 , (4.2)

where nonzero values are either an input (F33) or are to be solved, directly from the material

model if a component of P , or if an F component, through iteration to get the specified P

component as is typical in finite element calculations.

It should be noted that these conditions leave the possibility for significant shear stresses

to form. These shear stresses would be supported by the grips. The shear stress components

would not have been measured experimentally.

4.2.2. Copper single crystal validation. Figure 10 shows a comparison between simulated

and experimental stress-strain curves for copper single crystals. Three different crystal

alignments are shown: [0 0 1], [1 0 1] and [1 0 2]. The crystal direction is aligned to the tensile

axis. The single points are the experimental data from Franciosi (1985); the lines are computer

simulations using the laminate hardening model. Note that there are two sets of experimental
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Figure 10. Comparison of experimental and simulation data for a single crystal of copper.

data for each crystal orientation. The simulations provide good validation for the hardening

mechanisms of the model for these highly symmetric crystal orientations.

Unfortunately, the size of the samples is not known. Knowing the size and orientation

of each sample would define the initial grain size parameter in the simulations. As they are

unknown, the sizes are adjusted to resemble the experimental data. The sizes used for the

numerical samples are [0 0 1], 0.1 mm; [1 0 1], 3.0 mm; and [1 0 2], 0.5 mm. This size is the

initial length perpendicular to the dislocation wall formed and not the sample diameter, and

thus could vary by sample even if the sample shapes are identical. Although this amount

of variation on the samples is reasonable for an experimental setup, it is also important to

note that the initial grain size parameter and the boundary layer energy are coupled. From

(3.24), the length scale of the rank one laminates varies as
√

Lo/(ϒWBL). Hence doubling

the boundary layer energy depth or magnitude is equivalent to halving the initial grain size,

and so forth. In conclusion, although the initial grain size has been varied in the single crystal

simulations, it is equivalent to varying the boundary layer. It would not be unreasonable

that different subgrain structures would have varying boundary energy depths, i.e. varying

ϒ . Thus, these two unknowns are coupled. Changes to the number of slip systems activated

(for example, by modifications to the assumed boundary conditions) would also affect these

results.

The subgrain structure formed during the [1 0 1] simulation and the active slip systems in

the crystallographic coordinates are given in figure 11. The [1 0 1] orientation forms a simple

laminate involving the B2 and B5 slip systems and the D1 and D6 slip systems. The dislocation

wall normal, N , is parallel to the tensile axis, T , meaning the laminates form perpendicular

to the tensile direction. A visualization of this structure in the crystal coordinates is given in

figure 12 with color representing the regions in which the two different slip planes are active.

The black planes within the colored regions show the orientation of the active slip plane. The

tensile axis, T , is included for reference.
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Figure 11. Subgrain structure of [1 0 1] orientation simulation showing activated slip planes, wall

normal, tensile direction and effective slip directions in crystal reference frame

Figure 12. Visualization of [1 0 1] simulation subgrain microstructure in crystal reference frame

(T marks the tensile direction).

All four active slip systems have the same strain level as seen in figure 13. The stress

state of the sample has no shear stresses that would provide a driving force for the activation

of further slip systems. The only nonzero stress in the simulation is the P33 component.

Calculation of the Schmidt factor for the [1 0 1] orientation confirms the four predicted

slip systems have the highest Schmidt factor (
√

6/6) and should activate first. This is in

agreement with the work of Kalidindi and Anand (1993), in which a traditional single crystal

model was compared with a [1 0 1] copper single crystal deformed in compression. They

also predicted the same four slip systems would activate with equal strains. The deformation

involves a shortening of the sample 2 direction (y in the crystallographic coordinate system),

while the 3 direction (or tensile axis, T , in the crystallographic coordinates) is elongated,

and the 1 direction does not change (see figure 9 for the sample coordinate system). This

same pattern of deformation is also seen in the work of Kalidindi and Anand (1993) with the

experimental copper [1 0 1]-oriented compression sample. The trends are reversed due to the

sample being in compression instead of tension (i.e. the 2 direction lengthens, while the 3

direction is compressed and the 1 direction does not change in length). The agreement with

deformed shape provides further evidence that the slip systems are correctly predicted. The

stress response, activated slip planes and deformed shape are in excellent agreement with
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Figure 13. Slip strain on active slip systems for [1 0 1] simulation.

Figure 14. Subgrain structure of [1 0 2] orientation simulation showing activated slip planes, wall

normal, tensile direction and effective slip directions in crystal reference frame.

experimental data. It may be useful as a future work to make comparisons with the recent

model of Devincre et al (2008).

The subgrain structure formed during the [1 0 2] simulation is given in figure 14. The

[1 0 2] orientation forms the same simple laminate involving the B slip plane and the D slip

plane as orientation [1 0 1], but a different wall normal. A visualization of the structure is given

in figure 15.

The stress state of the sample has high P13 shear stresses that may provide a driving force

for the activation of further slip systems, but none were activated at the 15% strain level of the

simulations. Note from the plots of the activated slip strain, figures 16 and 13, that although

[1 0 1] and [1 0 2] activate the same slip systems, all slip systems do not have the same slip

strain in the [1 0 2] simulation.

The highest Schmidt factors for the [1 0 2] orientation are
√

6/25 for systems B2 and D1.

The second highest are systems A3, B4, B5, C3, D4 and D6 at
√

3/50. This would match
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Figure 15. Visualization of [1 0 2] simulation subgrain microstructure in crystal reference frame

(T marks the tensile direction).

0

5

10

15

20

25

30

35

0 5 10 15

[102] Slip Strain by Slip System

B5
B2
D6
D1

S
li
p

 S
y

s
te

m
 S

tr
a
in

 %

Sample Strain %

Figure 16. Slip strain on active slip systems for [1 0 2] simulation.

the prediction from the laminate model that slip systems B2 and D1 have the highest slip

strain. The systems B5 and D6 are oriented to relieve the stresses that are not aligned for the

simple shear on the B2 and D1 systems. The stress–strain output is in excellent agreement

with experimental data.

The [0 0 1] oriented sample activated the slip systems B2, B4, C1 and C3 with identical

amounts of slip strain on each system activated as seen in figures 17, 18 and 19. Note that the

[0 0 1] simulation activated slip on only one set of two slip planes, namely B and C, but there

is an equivalent second set of slip planes, A and D. The fact that only one set of slip planes is
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Figure 17. Subgrain structure of [0 0 1] orientation simulation showing activated slip planes, wall

normal, tensile direction and effective slip directions in crystal reference frame.

Figure 18. Visualization of [0 0 1] simulation subgrain microstructure in crystal reference frame

(T marks the tensile direction).

activated means that activating all four slip planes is a higher energy configuration. The [0 0 1]

orientation exhibits no shear stresses, as the [1 0 1] sample; the only nonzero stress component

is P33.

The highest Schmidt factor for the [0 0 1] orientation is
√

6/6 on systems A2, A3, B2,

B4, C1, C3, D1 and D4. The traditional model of Cuitino and Ortiz (1993) predicts that all

eight systems would activate to the same slip strain. If the deformed shape of the sample were

available, whether all eight slip systems were activated could be determined by the final shape

of the sample. If the final deformed shape is axisymmetric, then all eight slip systems were

likely activated as predicted by the Schmidt factor; but if it forms an asymmetric shape, then

likely only two slip planes (with four slip systems) activated.

It should also be stated that the rotation of the [0 0 1] sample about the 3 axis is substantially

influenced by the boundary conditions. To activate the minimum energy deformation patterns

displayed, it was necessary to run the sample with the [1 0 0] crystal direction parallel to the

[1 1 0] sample direction. This is evidence again of the importance of boundary conditions. The

small sample size for the [0 0 1] simulation may be caused by unknown boundary conditions

in the experiments which are not being matched. As the experimental clamping mechanism

and the exact orientation of the [0 0 1] sample used are unknown, it is impossible to investigate

this without further experiments.
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Figure 19. Slip strain on active slip systems for [0 0 1] simulation.
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Figure 20. Evolution of laminate thickness scaled by the square root of grain size,
√

L0, against

von Mises strain for the three copper simulations: [1 0 1], [1 0 2] and [0 0 1].

Figure 20 is a plot of the change in the laminate thickness with deformation. It is scaled by

the square root of the grain size to remove the effects of grain size on laminate size (cf (3.38)).

Note that it confirms that the laminates refine with increased slip strain causing parabolic

hardening. With the effects of grain size removed, the laminates of all orientations evolve
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Figure 21. Grain size variation for [1 0 2] direction copper single crystals.

uniformly with increasing strain. The end result can be fit by Lc/
√

L0 = 0.00023ǫ
− 1

2

vM , as seen

in the figure. This relationship can be derived directly from the equation for Lc
l , (3.38), and

assuming WBL
l ≈ 1

2
µδ2

l where µ is the shear modulus. Note that δ is a measure of the plastic

strain and since the children do not exist, their boundary layer energy is zero. This yields the

approximation that Lc/
√

L0 ∝ δ− 1
2 .

Hughes et al (1997) measured in aluminum that the average distance between IDBs

increases as ǫ
− 1

2

vM and the average distance between GNBs increases as ǫ
− 2

3

vM . Generally, the

laminate model fits GNBs. The difference may be due to uncertainties in the boundary layer

energy formulation. Changing the form of the boundary layer energy, (3.34), would produce

a different exponent. This is an area that requires further studies.

The von Mises strain measure was used in this section as it was used by Hughes et al for

cold rolled samples. The conversion is

ǫvM = − 2√
3

ln(2 − F33). (4.3)

4.3. Grain size effects

Figure 21 displays the effect of varying the initial grain size using the [1 0 2] orientation. The

stress increases at a given strain as the initial grain size decreases.

The increase in critical resolved shear stress due to the formation of dislocation walls varies

inversely with the square root of the grain size (i.e. 	τ c
l ∝ 1√

L0
). This is seen by substituting the

laminate length, (3.24), into the equation for the mean free path, (3.29), and then considering

(3.30). This promises the Hall–Petch effect (Hall 1951, Petch 1953): σ y = σo + K
d0.5 where

σ y is the yield stress, d is the initial grain size and σo is the initial yield stress parameter.

The Hall–Petch effect may be checked directly on the single crystal simulations. This work
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Figure 22. Graph of yield strength at various off-strains versus 1√
Lo

for the [1 0 2] oriented copper

single crystal displaying the Hall–Petch effect.

develops the Hall–Petch effect by modeling of dislocation cell walls. For a review of how a

developing dislocation structure yields the Hall–Petch effects see Hansen (2004).

Figure 22 shows the yield strength of the [1 0 2] crystal response against the inverse of

the square root of the initial grain size computed at various offset strains to the linear elastic

deformation. The Hall–Petch relationship holds as the plots are linear. This relationship holds

as long as a single layer of laminate forms, as was the case in all experiments examined here.

It should also hold for higher order laminate structures except during the time steps in which

the new laminates form.

Uchic et al (2004) and Greer et al (2005) have recently worked on the deformation

response of micrometer sized columns of single crystals. This work displayed that

single crystals exhibit a Hall–Petch relationship, despite Hall–Petch having been found for

polycrystals. The theory presented here shows the Hall–Petch effect due to the formation

of a dislocation subgrain structure with a grain size dependence, hence it provides a

possible explanation for the Hall–Petch effect for both single crystals and polycrystals.

Both Uchic et al (2004) and Greer et al (2005) also predicted a transition as the sample size

decreased to a ‘breakaway flow’ behavior. This theory would predict that transition as the

length scale at which the deformation process no longer favors the formation of dislocation

structures, but instead activation of a single slip system. The Uchic et al experimental data are

on a Ni3Al–Ta alloy and the Greer et al data are on gold, so no direct comparison is possible

for copper considered here. Thus, the theory presented here should follow the same trends

discovered on the micrometer-sized single crystals.

4.4. Grain shape effects

All simulations to this point have assumed spherical grains. The grain shape will also affect

the deformation response as it changes the ratio of boundary layer to total volume and the
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initial length parameter will depend on the wall normal of the first laminate formed. The

effect of grain shape is explored by assuming three different grain shapes; all with the [1 0 1]

crystal axis aligned to the tensile axis. The grain shapes simulated are one sphere and two

ellipsoids with the major axis, a, twice that of the other two axes (prolate spheroids). One

ellipsoidal grain has the major axis aligned to the [1 0 1] crystal axis (and thus aligned to the

tensile axis); the other has the major axis aligned to the [0 1 0] crystal direction (perpendicular

to the tensile axis). To get an accurate comparison, the ellipsoidal grains’ volumes are set

equal to the spherical grain volume. This yields a = 3
√

4Lo where Lo is the diameter

of the spherical grain. The simulated spherical grain has a diameter of 3 mm, yielding

a = 4.76 mm for the ellipsoidal grains. Due to increased surface area the elliptical grains

have 5% more boundary layer volume. This condition is arrived at by taking ϒ ≈ 1 and

assuming Lc ≪ Lo, then comparing the boundary layer volume (volume penetrating ϒLc

inside surface) of a sphere and an equal area ellipse with one axis twice the other axes. The

boundary layer increase is modeled by setting the parameter ϒ to 0.525 for the elliptical grain

simulations.

It was assumed that each grain forms the same laminate substructure as was seen for the

initial spherical [1 0 1] simulation (cf figure 11). Since the elliptical grain aligned to the [1 0 1]

tensile axis forms with dislocation wall normals parallel to the longer ellipse axis, a, it has

an initial length of a in which to form laminates. The elliptical grain aligned to the [0 1 0]

direction for the same reasons has an initial length of a/2. Thus, the elliptical grain aligned

to the [0 1 0] axis has a higher stress than a spherical grain, and the [1 0 1] elliptical grain has

a lower stress than a spherical grain.

The results of these simulations are shown in figure 23. As this grain shape

effect is due to the formation of subgrain structures inside the single crystal rather than

compatibility constraints within a polycrystalline sample, comparison would need to be

made with similar-shaped single crystal tests. As of now, no information is apparent for

comparisons.

5. Conclusions

A reconfiguration of the laminate model for subgrain dislocation structures has been presented.

The model has been modified to include calculation of the mean free path of dislocations

incorporating the geometry of the slip plane and the dislocation walls, evolution of the

subgrain dislocation laminate length scale over time to capture plastic slip plane hardening,

an adjusted boundary layer energy and wall normal implementation, direct minimization

of the nonlocal energy terms and resilience to discontinuities in the stress and material

tangent. A method for treating the unique case of coplanar slip laminate structures as a

single slip system was also developed to get an appropriate hardening behavior for single

crystals.

The addition of dislocation mean free path adjusted for the angle of the slip plane within

the microstructure provides for a first approximation of shape effects from interactions within

the subgrain laminate structure. The inclusion of dislocation mean free path calculations

drastically affects the selection of activated slip systems and the hardening behavior of slip

systems.

The evolution of the width between dislocation wall subgrain structures provides hardening

mechanisms akin to those of self- and latent hardening. The dimensions of the subgrain

structure are determined by minimizing the nonlocal energy. The widths are equilibrated

at each deformation step. Self-hardening occurs as the laminate width decreases due to

increasing boundary layer energy of the laminate microstructure with increased deformation.
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Figure 23. Grain shape effects showing two ellipsoidal grains and one spherical grain for the [1 0 1]

crystal axis.

The crystal bifurcating into separate regions to accommodate activation of new slip systems

causes latent hardening to occur. The hardening behavior was validated against experimental

tests of copper single crystals. The Hall–Petch effect is returned by the formation of the

dislocation subgrain structure. The grain shape effects due to the subgrain structure formation

were shown.

The model contains only seven material parameters. All material parameters can be

measured directly by independent experiments. Although uncertainties still exist in the

effects of the boundary layer energy due to an inherent coupling with the sample size effects,

experimental data can be fit very well by varying this energy. Future studies on the boundary

layer may provide further refinement of the model.
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Appendix A. Derivation of the mean free path length

The mean free path of dislocations on the slip plane, hl , is defined by

hl ≡
∑

paths

#paths
, (A.1)

using #paths to mean the total number of paths. It is assumed that dislocations are generated

uniformly at all locations in the plane. Noting that all dislocations (edge and screw) move in

the slip plane and that various dislocations mixed between edge and screw may move in any

direction to provide the appropriate slip, it is also assumed that the direction of motion of the

dislocations is uniformly distributed. The number of paths can be computed

#paths =
∫

�

∫ α=2π

α=0

dα dx̄ = 2πAB, (A.2)

where x̄ is the location coordinate on the slip plane and � is the area of the slip plane.

Define p[α, x̄] as the path length of the dislocation starting at x̄ and moving at the angle

α. Thus,

∑

paths =
∫

�

∫ α=2π

α=0

p[α, x̄] dα dx̄. (A.3)

From figure A1

θ1 = arccos

[

B − x
√

(B − x)2 + y2

]

, (A.4)

θ2 = arccos

[

B − x
√

(B − x)2 + (A − y)2

]

, (A.5)

θ3 = arccos

[

x
√

x2 + (A − y)2

]

, (A.6)

θ4 = arccos

[

x
√

x2 + y2

]

, (A.7)

α1 = − θ1, (A.8)

α2 = θ2, (A.9)

α3 = π − θ3, (A.10)

α4 = π + θ4. (A.11)

This gives

p[α, x̄] =















(B − x)/cos α if α1 � α < α2

(A − y)/sin α if α2 � α < α3

x/cos α if α3 � α < α4

−y/sin α if α4 � α < α1.

(A.12)

B ≫ A allows for the small angle approximations given in table A1. These approximations

are good as long as the point x̄ is far from the edges of length A, but that area is quite small
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Figure A1. Coordinates and angles on the slip plane.

Table A1. Small angle approximations.

cos α1 ≈ 1 sin
α1

2
≈ − θ1

2
cos

α1

2
≈ 1

cos α2 ≈ 1 sin
α2

2
≈ θ2

2
cos

α2

2
≈ 1

cos α3 ≈ −1 sin
α3

2
≈ 1 cos

α3

2
≈ − θ3

2

cos α4 ≈ −1 sin
α4

2
≈ 1 cos

α4

2
≈ θ4

2

θ1 ≈ y

B − x
θ2 ≈ A − y

B − x
θ3 ≈ A − y

x
θ4 ≈ y

x

compared with the total area (again due to B ≫ A). Integrating p over α and then applying

these approximations yields
∫ 2π

α=0

p dα ≈ 2A − y

(

ln

[

− y

4(B − x)

]

+ ln
[y

x

]

)

+ (y − A)

(

ln

[

A − y

4(B − x)

]

+ ln

[

y − A

x

])

. (A.13)

Then integrating over the domain of the slip plane, and taking only the real part
∫

�

∫ 2π

α=0

p dα dx̄ = A2B

(

1 + 2 ln

[

2B

A

])

(A.14)

yields the mean free path by (A.1)

hl =
Al(1 + 2 ln[ 2Bl

Al
])

2π
. (A.15)

It is desired to remove the parameter B from the computation of the mean free path as its

value is not readily available. The value of hl will be approximated as a linear function of Al

using the separation of length scales inherent in laminate structures (B ≫ A). The value of

ζl ≡ hl/Al is investigated. This gives a value for the dislocation mean free path

nhl = ζlAl = ζl nLl
√

1 − (ml · Nlp)
2
, (A.16)

and by (3.8)

nhl =
ζlλl nL

c
lp

√

1 − (ml · Nlp)
2
. (A.17)
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Figure A2. Plot of h
A

versus B
A

.

A plot of ζ versus (B/A) is given in figure A2, for the range (B/A) ∈ [100, 1000],

ζ ∈ [1.846, 2.579]. Due to the small variation of ζ in a domain of reasonable values, the extra

computation is warranted as excessive and the parameter ζ is approximated as a constant. For

this work ζl = 2 is chosen.
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