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DISMANTLABILITY OF WEAKLY SYSTOLIC COMPLEXES

AND APPLICATIONS

VICTOR CHEPOI AND DAMIAN OSAJDA

Abstract. The main goal of this paper is proving the fixed point theorem
for finite groups acting on weakly systolic complexes. As corollaries we ob-
tain results concerning classifying spaces for the family of finite subgroups of
weakly systolic groups and conjugacy classes of finite subgroups. As immediate
consequences we get new results on systolic complexes and groups.

The fixed point theorem is proved by using a graph-theoretical tool — dis-
mantlability. In particular we show that 1–skeleta of weakly systolic complexes,
i.e., weakly bridged graphs, are dismantlable. On the way we show numerous
characterizations of weakly bridged graphs and weakly systolic complexes.

1. Introduction

In his seminal paper [Gro87], among many other results, Gromov gave a pretty
combinatorial characterization of CAT(0) cubical complexes as simply connected
cubical complexes in which the links of vertices are simplicial flag complexes.
Based on this result, [Che00,Rol98] established a bijection between the 1–skeleta
of CAT(0) cubical complexes and the median graphs, well known in metric graph
theory; cf. [BC08]. A similar combinatorial characterization of CAT(0) simplicial
complexes having regular Euclidean simplices as cells seems to be out of reach. Nev-
ertheless, Chepoi [Che00] characterized the bridged complexes (i.e., the simplicial
complexes having bridged graphs as 1–skeleta) as the simply connected simplicial
complexes in which the links of vertices are flag complexes without induced 4– and
5–cycles; the bridged graphs are exactly the graphs which satisfy one of the ba-
sic features of CAT(0) spaces: the balls around convex sets are convex. Bridged
graphs have been introduced in [FJ87,SC83] as graphs without embedded isomet-
ric cycles of length greater than 3 and have been further investigated in several
graph-theoretical and algebraic papers; cf. [AF88, BC96, Che97, Pol02, Pol00] and

the survey [BC08]. Januszkiewicz-Świa̧tkowski [JŚ06] and Haglund [Hag03] redis-
covered this class of simplicial complexes (they call them systolic complexes) using
them (and groups acting on them geometrically — systolic groups) fruitfully in the
context of geometric group theory. Systolic complexes and groups turned out to
be good combinatorial analogs of CAT(0) (nonpositively curved) metric spaces and

groups; cf. [Hag03,JŚ06,Osa07,OP09,Prz08,Prz09].
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1248 VICTOR CHEPOI AND DAMIAN OSAJDA

One of the characteristic features of systolic complexes, related to the convex-
ity of balls around convex sets, is the following SDn(σ

∗) property introduced in
[Osa10]: if a simplex σ of a simplicial complex X is located in the sphere of ra-
dius n + 1 centered at some simplex σ∗ of X, then the set of all vertices x such
that σ ∪ {x} is a simplex and x has distance n to σ∗ is a nonempty simplex σ0 of
X. Relaxing this condition, Osajda [Osa10] called a connected simplicial complex
X weakly systolic if the property SDn(σ

∗) holds whenever σ∗ is a vertex (i.e., a
0–dimensional simplex) of X. He further showed that this SDn property is equiv-
alent with the SDn(σ

∗) property in which σ∗ is a vertex and σ is a vertex or
an edge (i.e., a 1–dimensional simplex) of X. Finally it is shown in [Osa10] that
weakly systolic complexes can be characterized as simply connected simplicial com-
plexes satisfying some local combinatorial conditions; cf. also Theorem A below.
This is analogous to the cases of CAT(0) cubical complexes and systolic complexes.
In graph-theoretical terms, the 1–skeleta of weakly systolic complexes (which we
call weakly bridged graphs) satisfy the so-called triangle and quadrangle conditions
[BC96], i.e., weakly bridged graphs are weakly modular. Median graphs and bridged
graphs (i.e., the 1–skeleta of, respectively, CAT(0) cubical complexes and systolic
complexes) are two other subclasses of weakly modular graphs. From the results
of [Osa10] and of the present paper it follows that the properties of weakly systolic
complexes resemble very much the properties of spaces of nonpositive curvature.

The initial motivation of [Osa10] for introducing weakly systolic complexes was
to exhibit a class of simplicial complexes with some kind of simplicial nonpositive
curvature that will include the systolic complexes and some other classes of com-
plexes appearing in the context of geometric group theory. As we noticed already,
systolic complexes are weakly systolic. Moreover, for every simply connected lo-
cally 5–large cubical complex (i.e., CAT(-1) cubical complex [Gro87]) there exists
a canonically associated simplicial complex, which is weakly systolic [Osa10]. In
particular, the class of weakly systolic groups, i.e., groups acting geometrically by
automorphisms on weakly systolic complexes, contains the class of CAT(-1) cubi-
cal groups and is therefore essentially bigger than the class of systolic groups; cf.
[Osa07]. Other classes of weakly systolic groups are presented in [Osa10]. The
ideas and results from [Osa10] permit the construction in [Osa13] of new examples
of Gromov hyperbolic groups of arbitrarily large (virtual) cohomological dimen-

sion. Furthermore, Osajda [Osa10] and Osajda-Świa̧tkowski [OŚ10] provide new
examples of high-dimensional groups with interesting asphericity properties. On
the other hand, as we will show below, the class of weakly systolic complexes seems
also to appear naturally in the context of graph theory and has not been studied
before from this point of view.

In this paper, we present further characterizations and properties of weakly sys-
tolic complexes and their 1–skeleta, weakly bridged graphs. Relying on techniques
from graph theory we establish dismantlability of locally-finite weakly bridged
graphs. This result is used to show some interesting nonpositive-curvature-like
properties of weakly systolic complexes and groups (see [Osa10] for other proper-
ties of this kind). As corollaries, we also get new results about systolic complexes
and groups. We conclude this introductory section with the formulation of our
main results (see respective sections for all missing definitions and notation as well
as for other related results).
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DISMANTLABILITY OF WEAKLY SYSTOLIC COMPLEXES 1249

We start with a characterization of weakly systolic complexes proved in Section
3:

Theorem A. For a connected flag simplicial complex X the following conditions
are equivalent:

(a) X is weakly systolic;
(b) the 1–skeleton of X is a weakly modular graph without induced C4;
(c) the 1–skeleton of X is a weakly modular graph with convex balls;
(d) the 1–skeleton of X is a graph with convex balls in which any C5 is included

in a 5–wheel W5;

(e) X is simply connected, satisfies the Ŵ5–condition, and does not contain
induced C4.

In Section 4 we prove the following result:

Theorem B. Any LexBFS ordering of vertices of a locally-finite weakly systolic
complex X is a dismantling ordering of its 1–skeleton.

This result allows us to prove in Section 5 the following fixed point theorem
concerning group actions:

Theorem C. Let G be a finite group acting by simplicial automorphisms on a
locally-finite weakly systolic complex X. Then there exists a simplex σ ∈ X which
is invariant under the action of G.

The barycenter of an invariant simplex is a point fixed by G. An analogous
theorem holds in the case of CAT(0) spaces; cf. [BH99, Corollary 2.8]. As a direct
corollary of Theorem C, we get the fixed point theorem for systolic complexes. This
was conjectured by Januszkiewicz-Świa̧tkowski (personal communication) and Wise
[Wis03], and later formulated in the collection of open questions [08, Conjecture
40.1 on page 115]. A partial result in the systolic case was proved by Przytycki
[Prz08]. In fact, in Section 7, based on a result of Polat [Pol02] for bridged graphs,
we prove an even stronger version of the fixed point theorem in this case.

The use of dismantlability of the underlying graph to prove the fixed point
theorem for finite group actions is, due to our knowledge, a novelty brought by
the current paper. It should be noticed that there are well known examples of
contractible, or even collapsible, simplicial complexes admitting finite group actions
without fixed points. Thus it seems that dismantlability is a right strengthening
of those properties in the context of fixed point results. Subsequently, many other
complexes studied in connection with group actions have dismantling properties.
There, our approach gives new results concerning sets of fixed points; cf. e.g. [PS12].

There are several important group theoretical consequences of Theorem C. The
first one follows directly from this theorem and [Prz08, Remarks 7.7 and 7.8].

Theorem D. Let k ≥ 6. Free products of k–systolic groups amalgamated over
finite subgroups are k–systolic. HNN extensions of k–systolic groups over finite
subgroups are k–systolic.

The following result (Corollary 5.4 below) also has its CAT(0) counterpart; cf.
[BH99, Corollary 2.8]:

Corollary. Let G be a weakly systolic group. Then G contains only finitely many
conjugacy classes of finite subgroups.
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The next important consequence of the fixed point theorem concerns classifying
spaces for proper group actions. Recall that if a group G acts properly on a space
X such that the fixed point set for any finite subgroup of G is contractible (and
therefore nonempty), then we say that X is a model for EG — the classifying space
for finite subgroups. If additionally the action is cocompact, then X is a finite
model for EG. A (finite) model for EG is in a sense a “universal” G–space (see
[Lüc05] for details). The following theorem is a direct consequence of Theorem C
and Proposition 6.6 below.

Theorem E. Let G act properly by simplicial automorphisms on a finite-
dimensional weakly systolic complex X. Then X is a finite-dimensional model for
EG. If, moreover, the action of G on X is cocompact, then X is a finite model for
EG.

As an immediate consequence we get an analogous result about EG for systolic
groups. This was conjectured in [08, Chapter 40]. Przytycki [Prz09] showed that
the Rips complex (with the constant at least 5) of a systolic complex is an EG
space. Our result gives a systolic — and thus much nicer — model of EG in that
case.

In the final Section 7 we present some further results about systolic complexes
and groups. Besides a stronger version of Theorem C, we remark on another ap-
proach to this theorem initiated by Zawíslak [Zaw04] and Przytycki [Prz08]. In
particular, our Proposition 7.5 proves their conjecture about round complexes; cf.
[Zaw04, Conjecture 3.3.1] and [Prz08, Remark 8.1]. Finally, we show (cf. the end of
Section 7) how our results about EG apply to the questions of existence of partic-
ular boundaries of systolic groups (and thus to the Novikov conjecture for systolic
groups with torsion). This relies on earlier results of Osajda-Przytycki [OP09].

2. Preliminaries

2.1. Graphs and simplicial complexes. We continue with basic definitions used
in this paper concerning graphs and simplicial complexes (see [Die10] for graph
theoretical notions used in this paper). All graphs G = (V,E) occurring here are
undirected, connected, and without loops or multiple edges. A graph G is complete
if any two of its vertices are connected by an edge. A graph H = (V ′, E′) is an
induced subgraph of the graph G if V ′ ⊆ V , and uv ∈ E′ iff uv ∈ E. The distance
d(u, v) between two vertices u and v is the length of a shortest (u, v)–path, and
the interval I(u, v) between u and v consists of all vertices on shortest (u, v)–paths,
that is, of all vertices (metrically) between u and v:

I(u, v) = {x ∈ V : d(u, x) + d(x, v) = d(u, v)}.

An induced subgraph of G (or the corresponding vertex set A) is called convex if it
includes the interval of G between any of its vertices. By the convex hull conv(W )
of W ⊆ V in G we mean the smallest convex subset of V (or induced subgraph of
G) that contains W. An isometric subgraph of G is an induced subgraph in which
the distances between any two vertices are the same as in G. In particular, convex
subgraphs are isometric. The neighborhood N(x) of a vertex x consists of all vertices
y �= x adjacent to x in G. The ball Br(x) of center x and radius r ≥ 0 consists of
all vertices of G at distance at most r from x. In particular, the unit ball B1(x)
comprises x and the neighborhood N(x) of x. The sphere Sr(x) of center x and
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radius r ≥ 0 consists of all vertices of G at distance exactly r from x. The ball
Br(S) centered at a convex set S is the union of all balls Br(x) with centers x from
S. The sphere Sr(S) of center S and radius r ≥ 0 consists of all vertices of G at
distance exactly r from S.

A graph G is called thin if for any two nonadjacent vertices u, v of G, any two
neighbors of v in the interval I(u, v) are adjacent. A graph G is weakly modular
[BC96,BC08] if its distance function d satisfies the following conditions:

Triangle condition (T): for any three vertices u, v, w with 1 = d(v, w) < d(u, v) =
d(u,w), there exists a common neighbor x of v and w such that d(u, x) = d(u, v)−1.

Quadrangle condition (Q): for any four vertices u, v, w, z with d(v, z) = d(w, z) =
1 and 2 = d(v, w) ≤ d(u, v) = d(u,w) = d(u, z)−1, there exists a common neighbor
x of v and w such that d(u, x) = d(u, v)− 1.

An abstract simplicial complex X is a collection of sets (called simplices) such
that σ ∈ X and σ′ ⊆ σ implies σ′ ∈ X. The geometric realization |X| of a simplicial
complex is the polyhedral complex obtained by replacing every face σ of X by a
“solid” regular simplex |σ| such that realization commutes with intersection, that
is, |σ′|∩|σ′′| = |σ′∩σ′′| for any two simplices σ′ and σ′′. Then |X| =

⋃
{|σ| : σ ∈ X}.

X is called simply connected if |X| is connected and if every continuous mapping of
the 1–dimensional sphere S1 into |X| can be extended to a continuous mapping of
the disk D2 with boundary S1 into |X|.

For a simplicial complex X, denote by V (X) and E(X) the vertex set and the
edge set of X, namely, the set of all 0–dimensional and 1–dimensional simplices of
X. The pair (V (X), E(X)) is called the (underlying) graph or the 1–skeleton of X
and is denoted by G(X). Conversely, for a graph G one can derive a simplicial
complex X(G) (the clique complex of G) by taking all complete subgraphs (cliques)
as simplices of the complex. A simplicial complex X is flag (or a clique complex)
if any set of vertices is included in a face of X whenever each pair of its vertices
is contained in a face of X (in the theory of hypergraphs this condition is called
conformality). A flag complex can therefore be recovered by its underlying graph
G(X): the complete subgraphs of G(X) are exactly the simplices of X. The link
of a simplex σ in X, denoted lk(σ,X) is the simplicial complex consisting of all
simplices σ′ such that σ ∩ σ′ = ∅ and σ ∪ σ′ ∈ X. For a simplicial complex X and
a vertex v not belonging to X, the cone with apex v and base X is the simplicial
complex v ∗X = X ∪ {σ ∪ {v} : σ ∈ X}.

For a simplicial complex X and any k ≥ 1, the Rips complex Xk is a simplicial
complex with the same set of vertices as X and with a simplex spanned by any
subset S ⊆ V (X) such that d(u, v) ≤ k in G(X) for each pair of vertices u, v ∈ S
(i.e., S has diameter ≤ k in the graph G(X)); cf. e.g. [Gro87]. From the definition
it immediately follows that the Rips complex of any complex is a flag complex.
Alternatively, the Rips complex Xk can be viewed as the clique complex X(Gk(X))
of the kth power of the graph of X (the kth power Gk of a graph G has the same set
of vertices as G, and two vertices u, v are adjacent in Gk if and only if d(u, v) ≤ k
in G).

All simplicial complexes occurring in this paper are flag simplicial complexes
not containing infinite simplices. Analogously, we will consider only graphs not
containing infinite complete subgraphs.

2.2. SDn property and weakly systolic complexes. The following generaliza-
tion of systolic complexes has been presented by Osajda [Osa10]. Let X be a flag
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simplicial complex and σ∗ be a simplex of X. Then X satisfies the SDn(σ
∗) prop-

erty if for each i ≤ n and each simplex σ located in the sphere Si+1(σ
∗), the set

σ0 := V (lk(σ,X))∩Bi(σ
∗) spans a nonempty simplex of X (SD stands for simple

descent on balls). Systolic complexes are exactly the flag complexes which satisfy
the SDn(σ

∗) property for all simplices σ∗ and all natural numbers n. On the other
hand, the 5–wheel W5 (see the definition at the beginning of Section 3) is an exam-
ple of a (2–dimensional) simplicial complex which satisfies the SD1(σ

∗) property
for σ∗ being any vertex or triangle but not for σ∗ being a boundary edge. In view
of this analogy and of subsequent results, we define a weakly systolic complex to
be a connected flag simplicial complex X which satisfies the SDn(v) property for
all vertices v ∈ V (X) and for all natural numbers n. We will also define a weakly
bridged graph to be the underlying graph of a weakly systolic complex. It can be
shown (cf. Theorem 3.1) that X is a weakly systolic complex if for each vertex v
and every i it satisfies the following two conditions:

Vertex condition (V): for every vertex w ∈ Si+1(v), the intersection V (lk(w,X))∩
Bi(v) is a single simplex;

Edge condition (E): for every edge e ∈ Si+1(v), the intersection V (lk(e,X)) ∩
Bi(v) is nonempty.

In fact, this is the original definition of a weakly systolic complex given in [Osa10].
Notice that these two conditions imply that weakly systolic complexes are exactly
the flag simplicial complexes whose underlying graphs are thin and satisfy the
triangle condition.

2.3. Dismantlability of graphs and LC-contractibility of complexes. Let
G = (V,E) be a graph and u, v two vertices of G such that any neighbor of v
(including v itself) is also a neighbor of u, i.e., B1(v) ⊆ B1(u). Then there is a
retraction of G to G− v taking v to u. Following [HN04], we call this retraction a
fold and we say that v is dominated by u (if B1(v) � B1(u), then we say that v is
strictly dominated by u). A finite graph G is dismantlable if it can be reduced, by a
sequence of folds, to a single vertex. In other words, an n–vertex graph G = (V,E)
is dismantlable if its vertices can be ordered v1, . . . , vn so that for each vertex vi, 1 ≤
i < n, there exists another vertex vj with j > i such that B1(vi)∩Vi ⊆ B1(vj)∩Vi,
where Vi := {vi, vi+1, . . . , vn}. This order is called a dismantling order. We now
consider the analogue of dismantlability for a simplicial complex X investigated in
the papers [CY07,Mat08]. A vertex v of X is LC-removable if lk(v,X) is a cone.
If v is an LC-removable vertex of X, then X − v := {σ ∈ X : v /∈ σ} is obtained
from X by an elementary LC-reduction (link-cone reduction) [Mat08]. Then X is
called LC-contractible [CY07] if there is a sequence of elementary LC-reductions
transforming X to one vertex. For flag simplicial complexes, the LC-contractibility
of X is equivalent to dismantlability of its graph G(X) because an LC-removable
vertex v is dominated by the apex of the cone lk(v,X), and vice versa the link
of any dominated vertex v is a cone having the vertex dominating v as its apex.
LC-contractible simplicial complexes are collapsible (see [CY07, Corollary 6.5]).

The simplest algorithmic way to order the vertices of a locally-finite graph is to
apply the Breadth-First Search (BFS) starting from the root vertex (base point)
u. We number with 1 the vertex u and put it on the initially empty queue. We
repeatedly remove the vertex v at the head of the queue and consequently number
(in an arbitrary order) and place onto the queue all still unnumbered neighbors of
v. BFS constructs a spanning tree Tu of G with the vertex u as a root. Then a
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vertex v is the father in Tu of any of its neighbors w in G included in the queue
when v is removed (notation f(w) = v). Notice that the distance from any vertex v
to the root u is the same in G and in Tu. Another method to order the vertices of a
graph is the Lexicographic Breadth-First Search (LexBFS) proposed by Rose-Tarjan-
Lueker [RTL76]. According to LexBFS, the vertices of a graph G are numbered
in decreasing order. The label L(w) of an unnumbered vertex w is the list of its
numbered neighbors. As the next vertex to be numbered, select the vertex with
the lexicographic largest label, breaking ties arbitrarily. As in the case of BFS, we
number and remove the vertex v at the head of the queue and consequently label
according to the lexicographic order and place onto the queue all still unnumbered
neighbors of v. LexBFS is a particular instance of BFS, i.e., every ordering produced
by LexBFS can also be generated by BFS.

Anstee-Farber [AF88] established that bridged graphs are dismantlable. Chepoi
[Che97] noticed that any order of a bridged graph returned by BFS is a dismantling
order. Namely, he showed a stronger result: for any two adjacent vertices vi, vj with
i < j, their fathers f(vi), f(vj) either coincide or are adjacent, and moreover f(vj)
is adjacent to vi. Polat [Pol02,Pol00] defined dismantlability and BFS for arbitrary
(not necessarily locally-finite) graphs and extended the results of [AF88,Che97] to
all bridged graphs.

2.4. Group actions on simplicial complexes. Let G be a group acting by au-
tomorphisms on a simplicial complex X. By FixG X we denote the fixed point set
of the action of G on X, i.e., FixG X = {x ∈ X : Gx = {x}}. Recall that the action
is cocompact if the orbit space G\X is compact. The action of G on a locally-finite
simplicial complex X is properly discontinuous if stabilizers of simplices are finite.
Finally, the action is geometric (or G acts geometrically on X) if it is cocompact
and properly discontinuous.

3. Characterizations of weakly systolic complexes

We continue with the characterizations of weakly systolic complexes and their
underlying graphs; some of those characterizations have also been presented in
[Osa10]. We denote by Ck a k–cycle and by Wk a k–wheel, i.e., a k–cycle x1, . . . , xk

plus a central vertex c adjacent to all vertices of Ck. Wk can also be viewed as
a 2–dimensional simplicial complex consisting of k triangles σ1, . . . , σk sharing a
common vertex c and such that σi and σj intersect in an edge xic exactly when
|j− i| = 1 (mod k). In other words, lk(c,Wk) = Ck, i.e., Wk is a cone over Ck. By

Ŵk we denote a k–wheel Wk plus a triangle axixi+1 for some i < k (we suppose
that a �= c and that a is not adjacent to any other vertex of Wk). We continue with
a condition which basically characterizes weakly systolic complexes among simply
connected flag simplicial complexes:

Ŵ5–condition: for any Ŵ5, there exists a vertex v /∈ Ŵ5 such that Ŵ5 is included

in lk(v,X), i.e., v is adjacent in G(X) to all vertices of Ŵ5 (see Figure 1).

Theorem 3.1 (Characterizations). For a connected flag simplicial complex X the
following conditions are equivalent:

(i) X is weakly systolic;
(ii) X satisfies the vertex condition (V) and the edge condition (E);
(iii) G(X) is a weakly modular thin graph;
(iv) G(X) is a weakly modular graph without induced C4;
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x1

x2

x3

x4x5

c

a

x1
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x3

x4x5

c

a v

Figure 1. The Ŵ5–condition

(v) G(X) is a weakly modular graph with convex balls;
(vi) G(X) is a graph with convex balls in which any C5 is included in a 5–wheel

W5;

(vii) X is simply connected, satisfies the Ŵ5–condition, and does not contain
induced C4.

Proof. First we show that the conditions (i) through (v) are equivalent and then
we show that these conditions are equivalent to (vi) and to (vii). The implications
(i)⇒(ii) and (iii)⇒(iv) are obvious.

(ii)⇒(iii): The condition (V) implies that all vertices of I(u, v) adjacent to v are
pairwise adjacent, i.e., that G(X) is thin. On the other hand, from the condition
(E) we conclude that if 1 = d(v, w) < d(u, v) = d(u,w) = i+ 1, then v and w have
a common neighbor x in the sphere Si(u), implying the triangle condition. Finally,
in thin graphs the quadrangle condition is automatically satisfied if the triangle
condition is satisfied. This shows that G(X) is a weakly modular thin graph.

(iv)⇒(v): Let Bi(u) be any ball in G(X). Since G(X) is weakly modular and
Bi(u) is a connected subgraph, to show that Bi(u) is convex it suffices to show that
Bi(u) is locally-convex, i.e., if x, y ∈ Bi(u) and d(x, y) = 2, then I(x, y) ⊆ Bk(u);
cf. [Che89, Theorem 7(a)] (compare also [BC00, Lemma 1]). Suppose by way of
contradiction that z ∈ I(x, y) \ Bi(u). Then necessarily d(x, u) = d(y, u) = i and
d(z, u) = i + 1. Applying the quadrangle condition, we infer that there exists a
vertex z′ adjacent to x and y at distance i − 1 from u. As a result, the vertices
x, z, y, z′ induce a forbidden 4–cycle, a contradiction.

(v)⇒(i): Pick a simplex σ in the sphere Si+1(u). Denote by σ0 the set of all
vertices x ∈ Si(u) such that σ ∪ {x} is a simplex of X. Since the balls of G(X)
are convex, necessarily any two vertices of σ0 are adjacent. Thus σ0 and σ ∪ σ0

induce complete subgraphs of G(X). Since X is a flag complex, σ0 and σ ∪ σ0 are
simplices. Notice that obviously σ′ ⊆ σ0 holds for any other simplex σ′ ⊆ Si(u)
such that σ ∪ σ′ ∈ X. Therefore, to establish the SDi(u) property it remains to
show that σ0 is nonempty. This is obviously true if σ is a vertex. Thus we suppose
that σ contains at least two vertices. Let x be a vertex of Si(u) which is adjacent
to the maximum number of vertices of σ. Since G(X) is weakly modular and σ is
contained in Si+1(u), the vertex x must be adjacent to at least two vertices of σ.
Suppose by way of contradiction that x is not adjacent to a vertex v ∈ σ. Pick any
neighbor w of x in σ. By the triangle condition, there exists a vertex y ∈ Si(u)
adjacent to v and w. Since w is adjacent to x, y ∈ Si(u) and w ∈ Si+1(u), the
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convexity of Bi(u) implies that x and y are adjacent. Pick any other vertex w′ of
σ adjacent to x. Since x is not adjacent to v and G(X) does not contain induced
4–cycles, the vertices y and w′ must be adjacent. Hence, y is adjacent to v ∈ σ
and to all neighbors of x in σ, contrary to the choice of x. Thus x is adjacent to all
vertices of σ, i.e., σ0 �= ∅. This shows that X satisfies the SDi(u) property.

(v)⇒(vi): Pick a 5–cycle induced by the vertices x1, x2, x3, x4, x5. Since d(x4, x1)
= d(x4, x2) = 2, by the triangle condition there exists a vertex y adjacent to x1, x2,
and x4. Since G(X) does not contain induced 4–cycles, necessarily y must also be
adjacent to x3 and x5, yielding a 5–wheel.

(vi)⇒(vii): That X does not contain induced 4–cycles follows from the convexity
of balls. To show that the flag complex X is simply connected, it is enough to show
that every cycle in the 1–skeleton of X (seen as a topological loop) can be freely
homotoped to a given vertex u (seen as a constant loop). By contradiction, let A
be the set of cycles in G(X), which are not freely homotopic to u, and assume that
A is nonempty. For a cycle C ∈ A, let r(C) denote the maximal distance d(x, u)
of a vertex x of C from the basepoint u. Clearly r(C) ≥ 2 for any cycle C ∈ A
(otherwise C would be null-homotopic). Let B ⊆ A be the set of cycles C with
minimal r(C) among cycles in A. Let r := r(C) for some C ∈ B. Let D ⊆ B be
the set of cycles having minimal number e of edges in the r–sphere around u, i.e.,
with both endpoints at distance r from u. Further, let E ⊆ D be the set of cycles
with the minimal number m of vertices at distance r from u.

Consider a cycle C = (x1, x2, . . . , xk, x1) ∈ E. We can assume without loss of
generality that d(x2, u) = r. We distinguish two cases.

Case 1: d(x1, u) = d(x3, u) = r − 1. Then, by the convexity of the ball Br−1(u),
we have that x1 and x3 are adjacent. Thus the cycle C ′ = (x1, x3, . . . , xk, x1) is
homotopic to C by a homotopy through the triangle x1x2x3. Therefore C ′ belongs
to D and the number of its vertices at distance r from v is equal to m − 1. This
contradicts the minimality choice of m.

Case 2: d(x1, u) = r or d(x3, u) = r. Assume without loss of generality that
d(x3, u) = r. For i ∈ {2, 3}, let x′

i be a vertex in Br−1(u) adjacent to xi. Since
the path (x′

2, x2, x3, x
′
3) has length 3, by the convexity of the ball Br−1(u), we

have d(x′
2, x

′
3) ≤ 2. If x′

2 = x′
3, then we set C ′ = (x1, x2, x

′
2, x3, . . . , x1). If

d(x′
2, x

′
3) = 1, then we set C ′ = (x1, x2, x

′
2, x

′
3, x3, . . . , x1). Observe that in that

case either x2 is adjacent to x′
3 or x3 is adjacent to x′

2. In particular, the 4–
cycle (x2, x3, x

′
3, x

′
2, x2) is homotopically trivial in X. If d(x′

2, x
′
3) = 2, then we

set C ′ = (x1, x2, x
′
2, x

′, x′
3, x3, . . . , x1), where x ∈ Br−1(u) is adjacent to x′

2 and
x′
3. Observe that in this case the 5–cycle (x2, x3, x

′
3, x

′, x′
2, x2) is either not a full

subcomplex or is included in a 5–wheel. In any case it is homotopically trivial in
X.

In each of the three cases above, the cycle C is freely homotopic to C ′ by a
homotopy through, respectively, a triangle, a triangulated square, or a triangulated
pentagon. Moreover, C ′ ∈ B. The number of edges of C ′ lying on the r–sphere
around u is less than e (we removed the edge x2x3). This contradicts the choice of
the number e. In both Cases 1 and 2 we get a contradiction. It follows that the set
A is empty and hence X is simply connected.

Finally, pick an extended 5–wheel Ŵ5: let x1, x2, x3, x4, x5 be the vertices of the
5–cycle, c be the center of the 5–wheel, and x1, x2, a be the vertices of the pendant
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triangle. Since x3 and x5 are not adjacent and the balls of G(X) are convex,
necessarily d(a, x4) = 2. Let u be a common neighbor of a and x4. If u is adjacent
to one of the vertices x2 and x3, then to avoid induced 4–cycles (forbidden by the
convexity of balls in G(X)), u will also be adjacent to the second vertex and to c.
But if u is adjacent to c, then it will be adjacent to x1 and therefore to x5 as well.
Hence, in this case u will be adjacent to all vertices x1, x2, x3, x4, x5, and c, and
we are done. So, we can suppose that u is not adjacent to any one of the vertices
x1, x2, x3, x5, and c. As a result, we obtain two 5–cycles induced by the vertices
a, x2, x3, x4, u and a, x1, x5, x4, u. Each of these cycles extends to a 5–wheel. Let v
be the center of the 5–wheel extending the first cycle. To avoid a 4–cycle induced
by the vertices x2, v, x4, c, the vertices v and c must be adjacent. Subsequently, to
avoid a 4–cycle induced by the vertices c, v, a, x1, the vertices v and x1 must be
adjacent. Finally, to avoid a 4–cycle induced by x1, v, x4, x5, the vertices v and x5

must be adjacent. In this way, we deduce that v is adjacent to all six vertices of

Ŵ5, establishing the Ŵ5–condition.
(vii)⇒(iv): To prove this implication, as in [Che00], we will use minimal disk

diagrams. Let D and X be two simplicial complexes. A map ϕ : V (D) → V (X)
is called simplicial if ϕ(σ) ∈ X for all σ ∈ D. If D is a planar triangulation (i.e.,
the 1–skeleton of D is an embedded planar graph all of whose interior 2–faces are
triangles) and C = ϕ(∂D), then (D, ϕ) is called a singular disk diagram (or Van
Kampen diagram) for C (for more details see [LS01, Chapter V]). According to Van
Kampen’s lemma ([LS01], pp. 150–151), for every cycle C of a simply connected
simplicial complex one can construct a singular disk diagram. A singular disk
diagram with no cut vertices (i.e., its 1–skeleton is 2–connected) is called a disk
diagram. A minimal (singular) disk for C is a (singular) disk diagram D for C with
a minimum number of 2–faces. This number is called the (combinatorial) area of
C and is denoted Area(C). The minimal disk diagrams (D, ϕ) of simple cycles C
in 1–skeleta of simply connected simplicial complexes have the following properties
[Che00]: (1) ϕ bijectively maps ∂D to C and (2) the image of a 2–simplex of D
under ϕ is a 2–simplex, and two adjacent 2–simplices of D have distinct images
under ϕ.

Let C be a simple cycle in the underlying graph G(X) of a flag simplicial complex
X satisfying the condition (vii).

Claim 1. If C has length 5, then the minimal disk diagram for C is a 5–wheel.
If the length of C is not 5, then C admits a minimal disk diagram D which is a
systolic complex, i.e., a plane triangulation all of whose inner vertices have degrees
≥ 6.

Proof of Claim 1. First we show that any minimal disk diagram D of C does not
contain interior vertices of degrees 3 and 4. Let x be any interior vertex of D.
Let x1, . . . , xk be the cyclically ordered neighbors of x and let σ1, σ2, . . . , σk be
the faces incident to x, where σi = xxixi+1(mod k) (i = 1, . . . , k). Trivially, k ≥
3. Suppose by way of contradiction that k ≤ 4. By properties of minimal disk
diagrams, ϕ(σ1), . . . , ϕ(σk) are distinct 2–simplices of X.

Case 1: k = 3. Then the 2–simplices ϕ(σ1), ϕ(σ2), ϕ(σ3) of X intersect in ϕ(x)
and pairwise share an edge of X. Since X is flag, they are contained in a 3–simplex
of X. This implies that δ = ϕ(x1)ϕ(x2)ϕ(x3) is a 2–face of X. Let D′ be a disk
triangulation obtained from D by deleting the vertex x and the triangles σ1, σ2, σ3,
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and adding the 2–simplex x1x2x3. The map ϕ : V (D′) → V (X) is simplicial,
because it maps x1x2x3 to δ. Therefore (D′, ϕ) is a disk diagram for C, contrary to
the minimality choice of D.

Case 2: k = 4. Since two adjacent 2–simplices of D have distinct images under ϕ,
the cycle C ′ = (x1, x2, x3, x4, x1) is sent to a 4–cycle ϕ(C ′) of lk(ϕ(x),X). Since
G(X) does not contain induced 4–cycles, two opposite vertices of ϕ(C ′), say ϕ(x1)
and ϕ(x3), are adjacent. Consequently, since X is flag, δ′ = ϕ(x1)ϕ(x3)ϕ(x2) and
δ′′ = ϕ(x1)ϕ(x3)ϕ(x4) are 2–faces of X. Let D′ be a disk triangulation obtained
from D by deleting the vertex x and the triangles σi(i = 1, . . . , 4), and adding the
2–simplices σ′ = x1x3x2 and σ′′ = x1x3x4. The map ϕ remains simplicial, since it
sends σ′, σ′′ to δ′, δ′′, respectively, contrary to the minimality choice of D.

This establishes that the degree of each interior vertex x of any minimal disk
diagram is ≥ 5. Suppose now additionally that D is a minimal disk diagram for C
having a minimum number of inner vertices of degree 5. We will denote the vertices
of D and their images in X under ϕ by the same symbols but each time specifying
their position. Let x be any interior vertex of D of degree 5 and let x1, . . . , x5

be the neighbors of x. If C = (x1, x2, x3, x4, x5, x1), then we are done because D
is a 5–wheel. If C �= (x1, x2, x3, x4, x5, x1), then one of the edges of the 5–cycle
(x1, x2, x3, x4, x5, x1), say x1x2, belongs in D to the second triangle x1x2x6. The

minimality of D implies that x, x1, x2, x3, x4, x5, x6 induce in X a Ŵ5 or that x and

x6 are adjacent in X. In the first case, by the Ŵ5–condition, there exists a vertex

y of X which is adjacent to all vertices of this Ŵ5. Let D′ be a disk triangulation
obtained from D by deleting the vertex x and the five triangles incident to x as
well as the triangle x1x2x6 and replacing them by the six triangles of the resulting
6–wheel centered at y (we call this operation a flip). In the second case, let D′ be a
disk triangulation obtained from D by deleting the triangles xx1x2 and x1x2x6 and
replacing them by the triangles xx1x6 and xx2x6. In both cases, the resulting map
ϕ remains simplicial. D′ has the same number of triangles as D, therefore D′ is also
a minimal disk diagram for C. The flip replaces in the first case the vertex x of
degree 5 by the vertex y of degree 6. In the second case, it increases the degree of x
from 5 to 6. In both cases, it also increases the degree of x6 by 1 and preserves the
degrees of all other vertices except the vertices x1 and x2, whose degrees decrease
by 1. Since, by the minimality choice of D, the disk diagram D′ has at least as
many inner vertices of degree 5 as D, necessarily at least one of the vertices x1, x2,
say x1, is an inner vertex of degree at most 6 of D. If the degree of x1 in D is 5,
then in D′ the degree of x1 will be 4, which is impossible by what has been shown
above because D′ is also a minimal disk diagram and x1 is an interior vertex of D′.
Hence the degree of x1 in D is 6 and its neighbors constitute an induced (in D)
6–cycle (x6, x2, x, x5, u, v, x6).

Case 1: x and x6 are not adjacent in X. Since X does not contain induced C4 and
the minimal disk diagrams for C do not contain interior vertices of degree 3 and 4,
and it can be easily shown that the images in X of the vertices x5, y, x6, v, u, x1, x4

induce a Ŵ5 constituted by the 5–wheel centered at x1 and the triangle x4yx5. By

the Ŵ5–condition, there exists a vertex z of X which is adjacent to all vertices of

Ŵ5. If z is adjacent in X with all vertices of the 7–cycle (u, v, x6, x2, x3, x4, x5, u),
then replacing in D the 9 triangles incident to x and x1 by the 7 triangles of X
incident to z, we will obtain a disk diagram D′′ for C having less triangles than D,
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contrary to the minimality of D. Therefore z is different from x and is not adjacent
to one of the vertices x2, x3. Since x1 and x4 are not adjacent and both x and z are
adjacent to x1, x4, to avoid an induced C4 we conclude that z is adjacent in X to
x. If z is not adjacent to x2, then, since x and x6 are not adjacent, we will obtain a
C4 induced by x, z, x6, x2. Thus z is adjacent to x2, and therefore z is not adjacent
to x3. Since both z and x3 are adjacent to nonadjacent vertices x2 and x4, we will
obtain a C4 induced by z, x2, x3, x4. This contradiction shows that the degree of x1

in D is at least 7.

Case 2: x and x6 are adjacent in X. Again, using the fact that the minimal disk
diagrams for C do not contain interior vertices of degree 3 and 4, and the fact that
X does not contain induced C4, it can be easily shown that d(x, u) = 2. Therefore

the vertices x1, x2, x3, x4, x5, x, u induce a Ŵ5 constituted by the 5–wheel centered

at x and the triangle x1ux5. Thus, by the Ŵ5–condition, there exists a vertex y′ �= x

containing Ŵ5 in its link. Then considering the minimal disk diagram obtained by
the flip exchanging x and y′, we conclude that the vertices u, v, x6, x2, y

′, x1 induce

a 5–wheel. Together with the vertex x3 they induce a Ŵ5, so that, by the Ŵ5–
condition, there exists a vertex z adjacent to all the vertices u, v, x6, x2, y

′, x1, x3.
If z is adjacent to x4 and x5, then we get a disk diagram for C having less triangles
than D, which contradicts the minimality of D. If z is not adjacent to one of the
vertices x4, x5, then we also get a contradiction arguing as in Case 1. Therefore,
in our case the degree of x1 in D is also at least 7. This final contradiction shows
that all interior vertices of D have degrees ≥ 6, establishing Claim 1.

From Claim 1 we deduce that any simple cycle C of the underlying graph of
X admits a minimal disk diagram D which is either a 5–wheel or a systolic plane
triangulation. We will refer to a degree two boundary vertex v of D as a corner of
first type and to a degree three boundary vertex v of D as a corner of second type.
In the first case, the two neighbors of v are adjacent. In the second case, v and its
neighbors in ∂D are adjacent to the third neighbor of v. If D is a 5–wheel, then
it has five corners of second type. Otherwise D is a systolic plane triangulation
and we can use the Gauss-Bonnet formula “sum over interior vertices of six minus
degree plus sum over boundary vertices of four minus degree equals six times Euler
characteristic”; see [LS01, Ch. V.3]. From this formula we infer that D contains
at least three corners, and if D has exactly three corners then they are all of first
type. Furthermore, if D contains exactly four corners, then at least two of them
are corners of first type.

Claim 2. G(X) is weakly modular, i.e., G(X) satisfies the triangle and quadrangle
conditions.

Proof of Claim 2. To verify the triangle condition, let u, v, w be three vertices with
1 = d(v, w) ≤ d(u, v) = d(u,w) = k. We claim that if I(u, v) ∩ I(u,w) = {u}, then
k = 1. Suppose not. Pick two shortest paths P ′ and P ′′ joining the pairs u, v and
u,w, respectively, such that the cycle C composed of P ′, P ′′ and the edge vw has
minimal combinatorial area Area(C) among all cycles constituted by the edge vw
and shortest paths connecting u with v and w (the choice of v, w implies that C is
a simple cycle). Let D be a minimal disk diagram for C satisfying Claim 1. Then
either D has a corner x different from u, v, w or the vertices u, v, w are the only
corners of D. In the second case, u, v, w are all three corners of first type, therefore
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the two neighbors of v in C will be adjacent. This means that w will be adjacent
to the neighbor of v in P ′, contrary to I(u, v)∩ I(u,w) = {u}. Thus we can assume
that a corner x exists and x is not one of u, v or w. Without loss of generality
we can assume x is on the path P ′. Let y and z be its neighbors on P ′. Note
that x cannot be of first type, since otherwise y and z are adjacent, contrary to
the assumption that P ′ is a shortest path. Thus x is of second type and there is
a vertex p of D adjacent to x, y, z. If we replace in P ′ the vertex x by p, we will
obtain a new shortest path between u and v. Together with P ′′ and the edge vw
this path forms a cycle C ′ whose area is strictly smaller than Area(C), contrary to
the choice of C. This establishes the triangle condition.

To verify the quadrangle condition, suppose by way of contradiction that we
can find distinct vertices u, v, w, z such that v, w ∈ I(u, z) are neighbors of z and
I(u, v) ∩ I(u,w) = {u}; however, u is not adjacent to v and w. Again, select two
shortest paths P ′ and P ′′ between u, v and u,w, respectively, so that the cycle
C composed of P ′, P ′′ and the edges vz and zw has minimum area. Choose a
minimal disk D of C as in Claim 1. From the initial hypothesis concerning the
vertices u, v, w, z we deduce that D has at most one corner of first type located
at u. Hence D contains at least four corners of second type. Since one corner x is
distinct from u, v, w, z, then proceeding in the same way as in the triangle condition
case, we will obtain a contradiction with the choice of the paths P ′, P ′′. This shows
that u is adjacent to v, w, establishing the quadrangle condition. This concludes
the proof of Claim 2.

By Claim 2 the graph G(X) is weakly modular. On the other hand, by condition
(vii) G(X) does not contain induced C4. This concludes the proof of the implication
(vii)⇒(iv) and of the theorem. �

In the analysis of his construction of locally homogeneous graphs having a given
regular graph of girth ≥ 6 (i.e., 6–large) as a link of each vertex, Weetman [Wee94]
introduced quasitrees as the graphs G = (V,E) satisfying the following two con-
ditions for each vertex v: (F1) each vertex x ∈ Si+1(v) has one or two adjacent
neighbors in Si(v); (F2) any two adjacent vertices x, y ∈ Si+1(v) have a common
neighbor z ∈ Si(v). It can be easily seen that (F2) is a reformulation of the edge
condition (E) (alias the triangle condition). On the other hand, (F1) is a particular
case of the vertex condition (V). From Theorem 3.1 we immediately obtain the
following observation:

Corollary 3.2. The simplicial complexes derived from quasitrees are weakly sys-
tolic. In particular, quasitrees are weakly bridged graphs.

The 5–wheel is an example of a quasitree which is not a bridged graph, thus not
all simplicial complexes derived from quasitrees are systolic.

4. Dismantlability of weakly bridged graphs

In this section, we show that the underlying graphs of weakly systolic complexes
are dismantlable and that a dismantling order can be obtained using LexBFS. Then
we use this result to deduce several consequences about collapsibility of weakly
systolic complexes and fixed simplices. Other consequences of dismantling are given
in subsequent sections.
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Theorem 4.1 (LexBFS dismantlability). Any LexBFS ordering of a locally-finite
weakly bridged graph G is a dismantling ordering.

Proof. We will establish the result for finite weakly bridged graphs. The proof in the
locally-finite case is completely similar. Let vn, . . . , v1 be the total order returned
by the LexBFS starting from the basepoint u = vn. Let Gi be the subgraph of
G induced by the vertices vn, . . . , vi. For a vertex v �= u of G, denote by f(v) its
father in the LexBFS tree Tu, by L(v) the list of all neighbors of v labeled before
v, and by α(v) the number of v (i.e., if v = vi, then α(v) = i). We decompose the
label L(v) of each vertex v into two parts, L′(v) and L′′(v): if d(v, u) = i, then
L′(v) = L(v) ∩ Si−1(u) and L′′(v) = L(v) ∩ Si(u). Notice that in the lexicographic
order of L(v), all vertices of L′(v) precede the vertices of L′′(v); in particular, the
father of v belongs to L′(v). The proof of the theorem is a consequence of the
following assertion, which we call the Fellow Traveler Property:

Fellow Traveler Property. If v, w are adjacent vertices of G, then their fathers
v′ = f(v) and w′ = f(w) either coincide or are adjacent. If v′ and w′ are adjacent
and α(w) < α(v), then w′ is adjacent to v and v′ is not adjacent to w.

Indeed, if this assertion holds, then we claim that vn, . . . , v1 is a dismantling
order. To see this, it suffices to show that any vertex vi is dominated in Gi by its
father f(vi) in the LexBFS tree Tu. Pick any neighbor vj of vi in Gi. We assert
that vj coincides or is adjacent to f(vi). This is obviously true if f(vj) = f(vi).
Otherwise, if f(vi) �= f(vj), then the Fellow Traveler Property implies that f(vi)
and f(vj) are adjacent and since i < j that vj is adjacent to f(vi). This shows that
indeed any LexBFS order is a dismantling order.

Therefore, it remains to prove the Fellow Traveler Property which we establish
in the following lemma.

Lemma 4.2. G satisfies the Fellow Traveler Property.

Proof of Lemma 4.2. We proceed by induction on i + 1 := max{d(u, v), d(u,w)}.
We distinguish two cases: d(u, v) < d(u,w) and d(u, v) = d(u,w) = i+ 1.

Case 1: d(u, v) < d(u,w). Then v, w′ ∈ I(w, u) and since G is thin, we conclude
that v and w′ = f(w) either coincide or are adjacent. In the first case we are
done because v (and therefore w′) is adjacent to its father v′ = f(v). If v and
w′ are adjacent, since i = d(u, v) = d(u,w′), the vertices v′ and f(w′) coincide or
are adjacent by the induction assumption. Again, if v′ = f(w′), the assertion is
immediate. Now suppose that v′ and f(w′) are adjacent. Since w′ = f(w) was
labeled before v (otherwise the father of w is v and not w′), f(w′) must be labeled
before v′; therefore by the induction hypothesis we deduce that v′ = f(v) must be
adjacent to w′ = f(w). This concludes the analysis of the case d(u, v) < d(u,w).

Case 2: d(u, v) = d(u,w) = i+1. Suppose, without loss of generality, that α(w) <
α(v). If the vertices v′ = f(v) and w′ = f(w) coincide, then we are done. If the
vertices v′ and w′ are adjacent, then the vertices v, w,w′, v′ define a 4–cycle. Since
G is weakly bridged, by Theorem 3.1 this cycle cannot be induced. Since v was
labeled before w, the vertex v′ must be labeled before w′. Therefore, if v′ is adjacent
to w, then LexBFS will label w from v′ and not from w′, giving a contradiction.
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Thus v′ and w are not adjacent, showing that w′ must be adjacent to v, establishing
the required assertion. So, assume by way of contradiction that the vertices v′ and
w′ are not adjacent in G. Then w′ is not adjacent to v; otherwise w′, v′ ∈ Bi(u)
and v ∈ I(v′, w′) ∩ Si+1(u), contrary to the convexity of the ball Bi(u) (similarly,
v′ is not adjacent to w).

Since G is weakly modular by Theorem 3.1(iii), the triangle condition applied to
the vertices v, w, and u implies that there exists a common neighbor s of v and w
located at distance i from u. Denote by S the set of all such vertices s. From the
property SDi(u) we infer that S is a simplex of X (i.e., its vertices are pairwise
adjacent in G). Since v′ and w′ do not belong to S, necessarily all vertices of S have
been labeled later than v′ and w′ (but obviously before v and w). Pick a vertex
s in S with the largest label α(s) and set z := f(s). By the induction assumption
applied to the pairs of adjacent vertices {v′, s} and {s, w′}, we conclude that the
vertices of each of the pairs {f(v′), z} and {z, f(w′)} either coincide or are adjacent.
Moreover, in all cases, the vertex z must be adjacent to the vertices v′ and w′.

Claim 1. L′(v′) = L′(s) = L′(w′) and z is the father of v′ and w′.

Proof of Claim 1. Since s was labeled later than v′ and w′, it suffices to show that
L′(v′) = L′(s). Indeed, if this is the case, then necessarily z is the father of v′.
Then, as z is adjacent to w′ and α(w′) < α(v′), necessarily z is also the father of
w′. Now, if L′(w′) and L′(s) = L′(v′) do not coincide, since L′(v′) lexicographically
precedes L′′(v′) and L′(w′) precedes L′′(w′), the fact that LexBFS labeled v′ before
w′ means that L′(v′) lexicographically precedes L′(w′). Since L′(s) = L′(v′), then
necessarily LexBFS would label s before w′, a contradiction. This shows that the
equality of the two labels L′(s) and L′(v′) implies the equality of the three labels
L′(v′), L′(s), and L′(w′).

To show that L′(v′) = L′(s), since α(s) < α(v′), it suffices to establish only the
inclusion L′(v′) ⊆ L′(s). Suppose by way of contradiction that there exists a vertex
in L′(v′)\L′(s), i.e., a vertex x ∈ Si−1(u) which is adjacent to v′ but is not adjacent
to s. Let x be the vertex of L′(v′) \L′(s) having the largest label α(x). Since s was
labeled by LexBFS later than v′, necessarily any vertex of L′(s) \ L′(v′) must be
labeled later than x. Notice that x cannot be adjacent to w′, since otherwise we
would obtain an induced 4–cycle formed by the vertices v′, s, w′, x. On the other
hand x is adjacent to z because both vertices belong to the convex ball Bi−1(u)
and both are adjacent to the vertex v′ ∈ Si(u). Since x is not adjacent to v, w, and

s, we conclude that the vertices v, w,w′, z, c′, s, x induce an extended 5–wheel Ŵ5.

By the Ŵ5–condition, there exists a vertex t adjacent to all vertices of this Ŵ5.
Notice that t ∈ Si(u) because it is adjacent to x ∈ Si−1(u) and v ∈ Si+1(u). Hence
t ∈ S. By definition, t is adjacent to z. Further, t must be adjacent to any other
vertex z′ belonging to L′(v′)∩L′(s), otherwise we obtain a forbidden 4–cycle. This
means that LexBFS will label t before s. Since t belongs to S and α(t) > α(s), we
obtain a contradiction with the choice of the vertex s. This contradiction concludes
the proof of Claim 1.

We continue with the analysis of Case 2. Since v′ and w′ are not adjacent and G
does not contain induced 4–cycles, any vertex s′ �= s adjacent to v′ and w′ is also
adjacent to s. In particular, this shows that L′′(v′) ∩ L′′(w′) ⊆ L′′(s). Therefore, if
L′′(w′) ⊆ L′′(v′), then L′′(w′) ⊆ L′′(s). Since v′ ∈ L′′(s)\L′′(w′) and L′(s) = L′(w′)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1262 VICTOR CHEPOI AND DAMIAN OSAJDA

by Claim 1, we conclude that the vertex s must be labeled before w′, contrary to the
assumption that α(s) < α(w′). Therefore the set B := L′′(w′)\L′′(v′) is nonempty.
Then, since v′ was labeled before w′ and L′(v′) = L′(w′) by Claim 1, we conclude
that the set A := L′′(v′) \ L′′(w′) is nonempty as well. Let p be the vertex of
A with the largest label α(p) and let q be the vertex of B with the largest label
α(q). Since LexBFS labeled v′ before w′ and L′(v′) = L′(w′) holds, necessarily
α(q) < α(p) holds. Since p ∈ L′′(v′), we obtain that α(w′) < α(v′) < α(p). Since
v′ = f(v) and w′ = f(w), this shows that p cannot be adjacent to the vertices v and
w. If s is adjacent to p, then p ∈ L′′(s). But then from Claim 1 and the inclusion
L′′(v′)∩L′′(w′) ⊆ L′′(s) we could infer that LexBFS must label s before w′, contrary
to the assumption that α(s) < α(w′). Therefore p is not adjacent to s either. On
the other hand, since α(v′) < α(p), by the induction hypothesis applied to the
adjacent vertices p and v′, we infer that z = f(v′) must be adjacent to p. Hence

the vertices v, w,w′, z, v′, s, p induce an extended 5–wheel. By the Ŵ5–condition,
there exists a vertex t adjacent to all these vertices. Since C := L′(v′) = L′(w′) and
d(v′, w′) = 2, to avoid induced 4–cycles, the vertex t must be adjacent to any vertex
of C. For the same reason, t must be adjacent to any vertex of L′′(v′)∩L′′(w′). Since
additionally t is adjacent to the vertex p of A with the highest label, necessarily
t will be labeled by LexBFS before w′ and s. Since t is adjacent to v and w, this
contradicts the assumption that w′ = f(w). This shows that the initial assumption
that v′ and w′ are not adjacent leads to a final contradiction. Hence the order
returned by LexBFS is indeed a dismantling order of the weakly bridged graph G.
This completes the proof of the lemma and of the theorem. �

Corollary 4.3. Any locally finite weakly systolic complex X and its Rips complex
Xk are LC-contractible and therefore collapsible.

Proof. Again we consider only the finite case. To show that any finite weakly
systolic complex X is LC-contractible it suffices to notice that, since X is a flag
complex, the LC-contractibility ofX is equivalent to the dismantlability of its graph
G = G(X), and hence the result follows from Theorem 4.1.

To show that the Rips complex Xk is LC-contractible, since Xk is a flag complex,
it suffices to show that its graph G(Xk) is dismantlable. From the definition of Xk,
the graph G(Xk) coincides with the kth power Gk of the underlying graph G of
X. Now notice that if a vertex v is dominated in G by a vertex v′, then v′ also
dominates v in the graph Gk. Indeed, pick any vertex x adjacent to v in Gk. Then
d(v, x) ≤ k in G. Let y be the neighbor of v on some shortest path P connecting
the vertices v and x in G. Since v′ dominates v, necessarily v′ is adjacent to y.
Hence d(v′, x) ≤ k in G, and therefore v′ is adjacent to x in Gk. This shows that v
is dominated by v′ in the graph Gk as well. Therefore the dismantling order of G
returned by LexBFS is also a dismantling order of Gk, establishing that the Rips
complex Xk is LC-contractible. �

Corollary 4.4. Graphs of Rips complexes Xn of locally-finite systolic and weakly
systolic complexes are dismantlable.

For a locally-finite weakly bridged graph G and integer k, we denote by Gk the
subgraph of G induced by the first k labeled vertices v1, . . . , vk in a LexBFS order
with basepoint u, i.e., by the vertices of G with k lexicographically largest labels.
For each k, let vk be the last labeled vertex of Gk (notice that v1 = u).
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Corollary 4.5. Any Gk is an isometric weakly bridged subgraph of G.

Proof. First we show that every Gk is an isometric subgraph of G. Pick two arbi-
trary vertices x, y of Gk. For a shortest path P in G between x and y, let i(P ) be
the least integer i such that P is completely contained in the subgraph Gi. From
the definition of i(P ) it follows that P passes via the vertex vi of Gi. Among all
shortest paths between x and y, let P ∗ have minimal index i(P ∗). Let k′ = i(P ∗).
If k′ ≤ k, then P ∗ is contained in Gk and we are done. So, suppose that k′ > k.
Since x, y belong to Gk, vk′ �= x, y. Let x′, y′ be the neighbors of vk′ in P ∗ such
that x′ belongs to the portion of P ∗ between x and vk′ . Let v′ = f(vk′) be the
vertex (of Gk′−1) dominating vk′ in the dismantling order of G. Then v′ is adjacent
to x′ and y′. Therefore, the path Q of G consisting of the portion of P ∗ between
x and x′, the path of length 2 (x′, v′, y′), and the subpath of P ∗ between between
y′ and y, is a shortest path between x and y. Since i(Q) < i(P ∗), we obtain a
contradiction with minimality of i(P ∗). This contradiction shows that each Gk is
an isometric subgraph of G. In particular, this implies that any interval I(x, y) in
Gk is contained in the interval between x and y in G. Since G is a thin graph, each
Gk is also thin. Moreover, since G is weakly bridged and weakly bridged graphs do
not contain embedded isometric cycles of length > 5, Gk, as an isometric subgraph
of G, does not contain such isometric cycles either. All balls of a graph are convex
if and only if this graph is thin and does not contain embedded isometric cycles of
length > 5; cf. [SC83, Theorem 2] and [FJ87, Theorem 2.2]. Hence, each Gk is a
graph with convex balls.

To complete the proof that each graph Gk is weakly bridged, by Theorem 3.1(vi)
it remains to show that any induced 5–cycle C of Gk is included in a 5–wheel.
Suppose by the induction assumption that this is true for Gk−1. Therefore C must
contain the last labeled vertex of Gk. Denote this vertex by v and let x, y be
the neighbors of v in C. Since C is induced, necessarily v′ is adjacent to x and y
but distinct from these vertices. Denote by C ′ the 5–cycle obtained by replacing
in C the vertex v by v′. If C ′ is not induced, then v′ will be adjacent to a third
vertex of C, and since Gk does not contain induced 4–cycles, v′ will be adjacent
to all vertices of C, showing that C extends to a 5–wheel. So, suppose that C ′ is
induced. Applying the induction hypothesis to Gk−1, we conclude that C ′ extends
to a 5–wheel in Gk−1. Let w be the central vertex of this wheel. To avoid a 4–cycle
induced by the vertices x, y, v, and w, necessarily v and w must be adjacent. Hence
C extends in Gk to a 5–wheel centered at w. This establishes that Gk is indeed
weakly bridged. �

A simplicial map on a simplicial complex X is a map ϕ : V (X) → V (X) such
that for all σ ∈ X we have ϕ(σ) ∈ X. A homomorphism of a graph G = (V,E)
is a simplicial map on a one-dimensional simplicial complex G. A simplicial map
fixes a simplex σ ∈ X if ϕ(σ) = σ. Every simplicial map on X is a homomorphism
of its graph G(X). Every homomorphism of a graph G is a simplicial map on its
clique complex X(G). Therefore, if X is a flag complex, then the set of simplicial
maps of X coincides with the set of homomorphisms of its graph G(X). It is well
known (see, for example, [HN04, Theorem 2.65]) that any homomorphism of a finite
dismantlable graph to itself fixes some clique. From Theorem 4.1 we know that the
graphs of weakly systolic complexes as well as the graphs of their Rips complexes
are dismantlable. Therefore from the preceding discussion we obtain the following
corollary.
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Corollary 4.6. Let X be a finite weakly systolic complex. Then any simplicial map
of X to itself or of its Rips complex Xk to itself fixes some simplex of the respective
complex. Any homomorphism of G = G(X) to itself fixes some clique.

5. Fixed point theorem

In this section, we establish the fixed point theorem (Theorem C from the In-
troduction). We start with two auxiliary results. The first one is an easy corollary
of Theorem 4.1:

Lemma 5.1 (Strictly dominated vertex). Let X be a finite weakly systolic complex.
Then either X is a single simplex or it contains two vertices v, w such that v is
strictly dominated by w, i.e., B1(v) � B1(w) .

Proof. Let v be the last vertex of X labeled by LexBFS which started at vertex u
(see Theorem 4.1). If d(u, v) = 1, then the construction of our ordering implies that
B1(u) = V (X). Hence, either there exists a vertex w such that B1(w) � V (X) =
B1(u), and we are done, or every two vertices of X are adjacent, i.e., X is a simplex.
Now suppose that d(u, v) ≥ 2. Let w be the father of v and let z be the father of w.
From Theorem 4.1 we know that B1(v) ⊆ B1(w). Since d(u, v) = d(u,w) + 1 ≥ 2,
we conclude that u �= w and that z ∈ B1(w) \ B1(v). Hence B1(v) is a proper
subset of B1(w). �
Lemma 5.2 (Elementary LC-reduction). Let X be a finite weakly systolic complex.
Let v, w be two vertices such that B1(v) is a proper subset of B1(w). Then the full
subcomplex X0 of X spanned by all vertices of X except v is weakly systolic.

Proof. It is easy to see that X0 is simply connected (see also the discussion in
Section 2.3). Thus, by condition (vii) of Theorem 3.1, it suffices to show that

X0 does not contain induced 4–cycles and satisfies the Ŵ5–condition. Since, by
Theorem 3.1, X does not contain induced C4, the same is true for its full subcomplex

X0. Let Ŵ5 ⊆ X0 be a given 5–wheel plus a triangle as defined in Section 3. By

Theorem 3.1 there exists a vertex v′ ∈ X adjacent in X to all vertices of Ŵ5. If

v′ �= v, then v′ ∈ X0, and if v′ = v, then Ŵ5 ⊆ lk(w,X0). In both cases all vertices

of Ŵ5 are adjacent to a vertex of X0: Ŵ5 is coned to v in one case and to w in the

other. Thus X0 also satisfies the Ŵ5–condition, and hence the lemma follows. �
Theorem 5.3 (The fixed point theorem). Let G be a finite group acting by simpli-
cial automorphisms on a locally-finite weakly systolic complex X. Then there exists
a simplex σ ∈ X which is invariant under the action of G.

Proof. Let X′ be the subcomplex of X spanned by the convex hull of the set Gz =
{gz : g ∈ G}, for an arbitrary vertex z. Since Gz is finite and, by Theorem
3.1(v), balls in X are convex, X′ is a bounded full subcomplex of X. Since X is
locally-finite, X′ is finite. Moreover, as a convex subcomplex of a weakly systolic
complex, X′ is itself weakly systolic. Clearly X′ is also G–invariant. Thus there
exists a minimal finite nonempty G–invariant subcomplex X0 of X, that is itself
weakly systolic. We assert that X0 must be a single simplex.

Assume by way of contradiction that X0 is not a simplex. Then, by Lemma
5.1, X0 contains two vertices v, w such that B1(v) � B1(w) (i.e., v is a strictly
dominated vertex). Since the strict inclusion of 1–balls is a transitive relation and
X0 is finite, there exists a finite set S of strictly dominated vertices of X0 with the
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following property: for a vertex x ∈ S there is no vertex y with B1(y) � B1(x).
Let X′

0 be the full subcomplex of X spanned by V (X0) \ S. It is clear that X′
0 is

a nonempty G–invariant proper subcomplex of X0. By Lemma 5.2, X′
0 is weakly

systolic. This contradicts the minimality of X0 and thus shows that X0 has to be
a simplex. �
Corollary 5.4 (Conjugacy classes of finite subgroups). Let G be a group acting
geometrically by automorphisms on a weakly systolic complex X (i.e., G is weakly
systolic). Then G contains only finitely many conjugacy classes of finite subgroups.

Proof. Suppose by way of contradiction that we have infinitely many conjugacy
classes of finite subgroups represented by H1, H2, . . . ≤ G. Since G acts geomet-
rically on X, there exists a compact subset K ⊆ V (X) with

⋃
g∈G gK = X. For

i = 1, 2, . . . , let σi be an Hi–invariant simplex of X (whose existence is assured
by the fixed point Theorem 5.3) and let gi ∈ G be such that gi(σi) ∩ K �= ∅.
Then gi(σi) is giHig

−1
i invariant and

⋃
i giHig

−1
i is infinite. But for every element

g ∈
⋃

i giHig
−1
i we have g(B1(K))∩B1(K) �= ∅, a contradiction with the properness

of the G–action on X. �

6. Contractibility of the fixed point set

The aim of this section is to prove that for a group acting on a weakly systolic
complex its fixed point set is contractible (Proposition 6.6). As explained in the In-
troduction, this result implies Theorem E, asserting that weakly systolic complexes
are models for EG for groups acting on them properly.

Our proof closely follows Przytycki’s proof of an analogous result for the case
of systolic complexes [Prz09]. There are however minor technical difficulties. In
particular, since balls around simplices in weakly systolic complexes need not be
convex, we have to work with other convex objects that are defined as follows. For
a simplex σ of a simplicial complex X, set K0(σ) = σ and Ki(σ) =

⋂
v∈σ Bi(v) for

i = 1, 2, . . ..

Lemma 6.1 (Properties of Ki(σ)). Let σ be a simplex of a weakly systolic complex
X. Then, for i = 0, 1, 2, . . . , Ki(σ) is convex and Ki+1(σ) ⊆ B1(Ki(σ)).

Proof. Trivially, K0(σ) = σ is convex. For i > 0, Ki(σ) is the intersection of the
balls Bi(v), v ∈ σ. By Theorem 3.1, balls around vertices are convex, whence Ki(σ)
is convex as well. To establish the inclusion Ki+1(σ) ⊆ B1(Ki(σ)), pick any vertex
w ∈ Ki+1(σ). Let l = d(w, σ) − 1 and denote by σ0 the metric projection of w
in σ. By the property SDl(w), there exists a vertex z ∈ Sl(w) adjacent to all
vertices of the simplex σ0. Let w

′ be a neighbor of w in the interval I(w, z). Then
obviously d(w′, σ) = l, and therefore σ0 is the metric projection of w′ in σ. Since
d(w′, v) = d(w, v) − 1 for any vertex v ∈ σ and w ∈ Ki+1(σ), we conclude that
w′ ∈ Ki(σ), whence w ∈ B1(w

′) ⊆ B1(Ki(σ)). �
We recall now two general results that were proved in [Prz09] and which will be

important in the proof of Proposition 6.6.

Proposition 6.2 ([Prz09, Proposition 4.1]). If C,D are posets and F0, F1 : C → D
are functors such that for each object c of C we have F0(c) ≤ F1(c), then the maps
induced by F0, F1 on the geometric realizations of C,D are homotopic. Moreover,
this homotopy can be chosen to be constant on the geometric realization of the
subposet of C of objects on which F0 and F1 agree.
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Proposition 6.3 ([Prz09, Proposition 4.2]). Let F0 : C′ → C be the functor from
the flag poset C′ of a poset C into the poset C, assigning to each object of C′, which
is a chain of objects of C, its minimal element. Then the map induced by F0

on geometric realizations of C′, C (that are homeomorphic in a canonical way) is
homotopic to identity.

The following property of flag complexes will be crucial in the definition of ex-
pansion by projection below. It says that in the weakly systolic case we can define
projections on convex subcomplexes in the same way as projections on balls.

Lemma 6.4 (Projections on convexes). Let X be a weakly systolic complex and
let Y be its convex subset. If a simplex σ belongs to S1(Y ), i.e., σ ⊆ B1(Y ) and
σ ∩ Y = ∅, then τ := lk(σ,X) ∩ Y is a single nonempty simplex.

Proof. First, assuming that τ is nonempty, we show that it is a single simplex. By
definition of links, τ consists of all vertices v of Y adjacent in G(X) to all vertices
of σ. Since the set Y is convex and σ is disjoint from Y, necessarily the vertices of
τ are pairwise adjacent. As X is a flag complex, τ is a simplex of X.

By induction on the dimension m of σ we will prove that τ is nonempty. The
claim is clear for m = 0. Now we show it for m = 1. Let σ be an edge x1x2.
Let y1, y2 ∈ Y be adjacent to x1, x2, respectively. By convexity of Y we have that
d(y1, y2) ≤ 2. If y1 = y2, then y1 ∈ τ and we are done. If d(y1, y2) = 1, then,
since there are no induced 4–cycles in X (cf. Theorem 3.1), y1 is adjacent to x2

or y2 is adjacent to x1. Consequently, one of the vertices y1, y2 belongs to τ . If
d(y1, y2) = 2, then there exists y ∈ Y adjacent to both y1 and y2. By Theorem 3.1,
the 5–cycle (x1, x2, y2, y, y1, x1) is either not a full subcomplex, or it is contained
in a 5–wheel. In both cases one easily finds a vertex in Y adjacent to both x1, x2

and thus belonging to τ .
Now, we turn to the induction step. Assume that lk(σ,X) ∩ Y �= ∅ for all σ

of dimension at most m − 1. We show that it is true for dimension m ≥ 2. Let
x1, x2, . . . , xm+1 be the vertices of σ. Let σi := σ \ {xi}, i = 1, . . . ,m + 1. By the
induction assumption, for each σi there exists a vertex yi ∈ Y such that σi ∪ {yi}
is a simplex of X. Pick any two indices i �= j. Then σi ∩σj �= ∅ because m+1 ≥ 3.
Since yi, yj ∈ Y and Y is convex, this implies that yi and yj are adjacent. Then
either yi is adjacent to xi or yj is adjacent to xj ; otherwise the vertices xi, xj , yi, yj
induce a forbidden 4–cycle. In both cases we will obtain a vertex of Y adjacent to
all vertices of σ, showing that τ �= ∅. �

We will call the simplex τ as in the lemma above the projection of σ on Y . Now
we are in a position to define the following notion introduced (in a more general
version) by Przytycki [Prz09, Definition 3.1] in the systolic case. Let Y be a convex
subset of a weakly systolic complex X and let σ be a simplex in B1(Y ). The
expansion by projection eY (σ) of σ is a simplex in B1(Y ) defined in the following
way: if σ ⊆ Y, then eY (σ) = σ; otherwise eY (σ) is the join of σ ∩ S1(Y ) and its
projection on Y . A version of the following simple lemma was proved in [Prz09] in
the systolic case. Its proof given there is valid also in our case.

Lemma 6.5 ([Prz09, Lemma 3.8]). Let Y be a convex subset of a weakly systolic
complex X and let σ1 ⊆ σ2 ⊆ . . . ⊆ σn ⊆ B1(Y ) be an increasing sequence of
simplices. Then the intersection (

⋂n
i=1 eY (σi)) ∩ Y is nonempty.
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Let σ be a simplex of a weakly systolic complex X. As in [Prz09], we define an
increasing sequence of full subcomplexes D2i(σ) and D2i+1(σ) of the barycentric
subdivision X′ of X in the following way. Let D2i(σ) be the subcomplex spanned
by all vertices of X′ corresponding to simplices of X which have all their vertices
in Ki(σ). Let D2i+1(σ) be the subcomplex spanned by all vertices of X′ which
correspond to those simplices of X that have all their vertices in Ki+1(σ) and at
least one vertex in Ki(σ). The proof of the main proposition in this section follows
closely the proof of [Prz09, Proposition 1.4].

Proposition 6.6 (Contractibility of the fixed point set). Let H be a group acting
by simplicial automorphisms on a weakly systolic complex X. Then the complex
FixH X′ is contractible or empty.

Proof. Assume that FixH X′ is nonempty and let σ be a maximal H–invariant
simplex. By Di we will denote here Di(σ). We will prove the following three
assertions:

(i) D0 ∩ FixH X′ is contractible;
(ii) the inclusion D2i ∩ FixH X′ ⊆ D2i+1 ∩ FixH X′ is a homotopy equivalence;
(iii) the identity on D2i+2 ∩ FixH X′ is homotopic to a mapping with image in

D2i+1 ∩ FixH X′ ⊆ D2i+2 ∩ FixH X′.
As in the proof of [Prz09, Proposition 1.4], the three assertions imply that Dk ∩

FixH X′ is contractible for every k, thus the proposition holds. To show (i), note
that D0 ∩ FixH X′ is a cone over the barycenter of σ and hence is contractible.

To prove (ii), let C be the poset of H–invariant simplices in X with vertices
in Ki+1(σ) and at least one vertex in Ki(σ). Its geometric realization is D2i+1 ∩
FixH X′. Consider a functor F : C → C assigning to each object of C (i.e., each
simplex of X) its subsimplex spanned by its vertices in Ki(σ). By Proposition
6.2, the geometric realization of F is homotopic to identity (which is the geometric
realization of the identity functor). Moreover, this homotopy is constant on D2i ∩
FixH X′. The image of the geometric realization of F is contained in D2i∩FixH X′.
Hence D2i ∩ FixH X′ is a deformation retract of D2i+1 ∩ FixH X′, as desired.

To establish (iii), let C be the poset ofH–invariant simplices ofX′ with vertices in
Ki+1(σ) and let C′ be its flag poset. Let also F0 : C′ → C be the functor assigning to
each object of C′ its minimal element; cf. Proposition 6.3. Now we define another
functor F1 : C′ → C. For any object c′ of C′, which is a chain of objects c1 <
c2 < . . . < ck of C, recall that cj are some H–invariant simplices in Ki+1(σ). Let

c′j = eKi(σ)(cj). Then by Lemma 6.5 the intersection
⋂k

j=1 c
′
j contains at least one

vertex in Ki(σ). Thus
⋂k

j=1 c
′
j is an H–invariant nonempty simplex, and hence it

is an object of C. We define F1(c
′) to be this object. In the geometric realization of

C, which is D2i+2 ∩ FixH X′, the object F1(c
′) corresponds to a vertex of D2i+1 ∩

FixH X′. It is obvious that F1 preserves the partial order. Notice that for any
object c′ of C′ we have F0(c

′) ⊆ F1(c
′); hence, by Proposition 6.3, the geometric

realizations of F0 and F1 are homotopic. We have that F0 is homotopic to the
identity and that F1 has image in D2i+1 ∩ FixH X′, thus establishing (iii). �

7. Some remarks on systolic complexes

In this final section, we restrict to the case of systolic complexes and present some
further results in that case. First, using Lemma 3.10 and Theorem 3.11 of Polat
[Pol02] for bridged graphs, we prove a stronger version of the fixed point theorem
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for systolic complexes. Namely, Polat [Pol02] established that for any subset Y of
vertices of a graph with finite intervals, there exists a minimal isometric subgraph of
this graph which contains Y . Moreover, if Y is finite and the graph is bridged, then
[Pol02, Theorem 3.11(i)] shows that this minimal isometric (and hence bridged)
subgraph is also finite. We continue with two lemmata which can be viewed as
G–invariant versions of these two results of Polat [Pol02].

Lemma 7.1 (Minimal subcomplex). Let a group G act by simplicial automorphisms
on a systolic complex X. Let Y be a G–invariant set of vertices of X. Then there
exists a minimal G–invariant subcomplex Y of X containing Y , which is itself a
systolic complex.

Proof. Let Σ be a chain (with respect to the subcomplex relation) of G–invariant
subcomplexes of X, which contain Y and induce isometric subgraphs of the under-
lying graph of X (and thus are systolic complexes themselves). Then, as in the
proof of [Pol02, Lemma 3.10], by Zorn’s lemma we conclude that the subcomplex
Y =

⋂
Σ is a minimal G–invariant subcomplex of X, containing Y and which is

itself a systolic complex. �

Lemma 7.2 (Minimal finite subcomplex). Let a group G act by simplicial auto-
morphisms on a systolic complex X. Let Y be a finite G–invariant set of vertices
of X. Then there exists a minimal (as a simplicial complex) finite G–invariant
subcomplex Y of X, which is itself a systolic complex.

Proof. Let conv(Y ) be the convex hull of Y in X. The full subcomplex Z of X
spanned by conv(Y ) is a bounded systolic complex. By Lemma 7.1, there exists
a minimal G–invariant subcomplex Y of Z containing the set Y and which itself
is a systolic complex. Then from the minimality of Y (and as in the proof of
[Pol02, Theorem 3.11]) we conclude that all dominated vertices of Y are contained
in Y . Thus Y contains finitely many dominated vertices. Since additionally Y
is bounded and does not contain infinite simplices, by [Pol02, Theorem 3.8], Y is
finite. �

Theorem 7.3 (The fixed point theorem). Let G be a finite group acting by sim-
plicial automorphisms on a systolic complex X. Then there exists a simplex σ ∈ X
which is invariant under the action of G.

Proof. Let Y = Gv = {gv : g ∈ G}, for some vertex v ∈ X. Then Y is a finite
G–invariant set of vertices of X, and thus, by Lemma 7.2, there exists a minimal
finite G–invariant subcomplex Y of X, which is itself a systolic complex. Then,
in the same way as in the proof of Theorem 5.3, we conclude that there exists a
simplex in Y that is G–invariant. �

Remark 7.4. We believe that, as in the systolic case, the stronger version of Theorem
5.3 holds also for weakly systolic complexes, i.e., one can drop the assumption on
the local finiteness of X in Theorem 5.3. This needs extensions of some results of
Polat (in particular, Theorems 3.8 and 3.11 from [Pol02]) to the class of weakly
bridged graphs.

Zawíslak [Zaw04] initiated another approach to the fixed point theorem in the
systolic case based on the following notion of round subcomplexes. A systolic
complex X of finite diameter k is round (cf. [Prz08]) if ∩{Bk−1(v) : v ∈ V (X)} = ∅.
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Przytycki [Prz08] established that all round systolic complexes have diameter at
most 5 and used this result to prove that for any finite group G acting by simplicial
automorphisms on a systolic complex there exists a subcomplex of diameter at most
5 which is invariant under the action of G. Zawíslak [Zaw04, Conjecture 3.3.1] and
Przytycki (Remark 8.1 of [Prz08]) conjectured that in fact the diameter of round
systolic complexes must be at most 2. Zawíslak [Zaw04, Theorem 3.3.1] showed
that if this is true, then it implies that G has an invariant simplex, thus paving
another way to the proof of Theorem 7.3. We will show now that the positive
answer to the question of Zawíslak and Przytycki directly follows from an earlier
result of Farber [Far89] on diameters and radii of finite bridged graphs.

Proposition 7.5 (Round systolic complexes). Any round systolic complex X has
diameter at most 2.

Proof. Let diam(X) and rad(X) denote the diameter and the radius of a systolic
complex X, i.e., the diameter and radius of its underlying bridged graph G = G(X).
Recall that rad(X) is the smallest integer r such that there exists a vertex c of X
(called a central vertex) so that the ball Br(c) of radius r and centered at c covers
all vertices of X, i.e., Br(c) = V (X).

Farber [Far89, Theorem 4] proved that if G is a finite bridged graph, then
3 rad(G) ≤ 2 diam(G) + 2. We will show first that this inequality holds for infi-
nite bridged graphs G of finite diameter diam(G). Set k := rad(G) ≤ diam(G).
By the definition of rad(G) the intersection of all balls of radius k − 1 of G is
empty. Then using an argument of Polat (personal communication) presented be-
low, we can find a finite subset of vertices Y of G such that the intersection of the
balls Bk−1(v), v running over all vertices of Y, is still empty. By [Pol02, Theorem
3.11], there exists a finite isometric bridged subgraph H of G containing Y. From
the choice of Y we conclude that the radius of H is at least k, while the diame-
ter of H is at most the diameter of G. As a result, applying Farber’s inequality
to H, we obtain 3 rad(G) ≤ 3 rad(H) ≤ 2 diam(H) + 2 ≤ 2 diam(G) + 2, whence
3 rad(G) ≤ 2 diam(G) + 2.

To show the existence of a finite set Y such that ∩{Bk−1(v) : v ∈ Y } = ∅, we use
an argument of Polat. According to Theorem 3.9 of [Pol98], any graph G = (V,E)
without isometric rays (in particular, any bridged graph of finite diameter) can be
endowed with a topology, called geodesic topology, so that the resulting topological
space is compact. A vertex x of G geodesically dominates a subset A of V if, for
every finite S ⊆ V −{x}, there exists an element a of A−{x} such that the interval
I(x, a) between x and a is disjoint from S. A set A ⊆ V is geodesically closed if
it contains all vertices which geodesically dominate A. Then the geodesic topology
on V consists of all geodesically closed sets. It is shown in [Pol04, Corollary 6.26]
that any convex set of a bridged graph containing no infinite simplices is closed in
the geodesic topology. As a result, the balls of a bridged graph G of finite diameter
containing no infinite simplices are compact convex sets. Hence any family of balls
with an empty intersection contains a finite subfamily with an empty intersection,
showing that such a finite set Y indeed exists.

Now suppose that X is a round systolic complex and let k := diam(X). Since X
is round, one can easily deduce that rad(X) = k. Indeed, if rad(X) ≤ k − 1 and c
is a central vertex, then c will belong to the intersection ∩{Bk−1(v) : v ∈ V (X)},
which is impossible. Applying Farber’s inequality to the (bridged) underlying graph
of X, we conclude that 3k ≤ 2k + 2, whence k ≤ 2. �
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Remark 7.6. It would be interesting to extend Proposition 7.5 and the relationship
of [Far89] between radii and diameters to weakly systolic complexes.

Osajda-Przytycki [OP09] constructed a Z–set compactification X = X ∪ ∂X of
a systolic complex X. The main result there ([OP09, Theorem 6.3]), together with
Theorem E from the Introduction, suggest that for a group G acting geometrically
by simplicial automorphisms on a systolic complex X the following result holds:

The compactification X = X ∪ ∂X of X satisfies the following properties:
1. X is a Euclidean retract (ER);
2. ∂X is a Z–set in X;
3. for every compact set K ⊆ X, (gK)g∈G is a null sequence;

4. the action of G on X extends to an action, by homeomorphisms, of G on X;
5. for every finite subgroup F of G, the fixed point set FixF X is contractible;
6. for every finite subgroup F of G, the fixed point set FixF X is dense in

FixF X.
This asserts that X is an EZ–structure, sensu Rosenthal [Ros12], for a systolic

group G; for details, see [OP09]. The existence of such a structure implies, by
[Ros12], the Novikov conjecture for G.
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