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Abstract The concept of return period in stationary

univariate frequency analysis is prone to misconceptions

and misuses that are well known but still widespread. In

this study we highlight how nonstationary and multivariate

extensions of such a concept are affected by additional

misconceptions, thus easily resulting in further ill-posed

procedures and misleading conclusions. We also show that

the concepts of probability of exceedance and risk of

failure over a given design life period provide more

coherent, general and well devised tools for risk assessment

and communication.

Keywords Return period � Nonstationary frequency

analysis � Multivariate frequency analysis � Copulas � Risk
of failure � Design values � Design life

1 Introduction

Return period T is probably one of the most used and

misused concepts in hydrological and geophysical risk

analysis. T is commonly written as:

T ¼ l
p
¼ l

P½X[ x� ¼
l

1� FðxÞ ð1Þ

where X is a random variable describing the process under

study (e.g. flow or rainfall peaks above a given threshold),

l[ 0 denotes the average inter-arrival time between two

realizations of the process, p ¼ P½X[ x� is the probability

to observe realizations exceeding a specific value x, and

FðxÞ ¼ 1� p ¼ P½X� x� indicates the distribution function
of X. Even though the attitude of considering observations

of physical processes as realizations of random variables is

questionable (e.g., Klemeš 1986, 2000, 2002), pure statis-

tical frequency analyses and computation of T values and

corresponding return levels x are widespread in engineer-

ing, environmental sciences, and many other disciplines.

In this context, T is usually preferred to values of the

underlying probability of exceedance p as it seems to be

(apparently) more friendly than the concept of probability.

However, experience tells us that this feeling is generally

not well founded, and often leads to misleading statements

such as ‘‘The 50-year return period flood peak of

100 m3s�1 occurs once every 50 years’’ or ‘‘A flood peak

of 100 m3s�1 has been recorded recently in this area.

Therefore the value of 100 m3s�1 50-year return period

flood peak is now wrong’’.

The causes of these incorrect conclusions (still wide-

spread in technical reports and scientific literature) are

discussed in textbooks and guidelines referring to fre-

quency analyses of a single variable under the hypothesis

that the observations are independent and identically dis-

tributed (iid) (see e.g., McCuen 1998; Fleming et al 2002;

Gupta 2011, among others). However, the fast growth of

nonstationary and multivariate frequency analyses occurred

in the last decade led to extend the concept of return period

to these frameworks. The aim of this study is to show how

the causes of misconceptions mentioned above propagated

in nonstationary and multivariate frequency analyses

yielding further ill-posed procedures and misleading

statements. In addition, we also show that the concepts of

probability of exceedance and risk of failure over a given
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design life period provide more coherent, general and

suitable tools to measure and communicate the risk corre-

sponding to hydrological and geophysical hazards.

2 Reviewing some basic concepts: what risk do we

really need to measure?

Before discussing nonstationary and multivariate cases, it

is worth reviewing some basic concepts concerning the

stationary univariate setting. Let us assume that a geo-

physical phenomenon is described by a random variable X

and we observe realizations of the phenomenon at fixed

time intervals (e.g. daily or annual time scales). Under the

hypotheses that the phenomenon is stationary (i.e. the

distribution function F is independent of time or other

covariates) and each realization is independent of the

previous ones (i.e. the realizations represent outcomes of a

series of independent experiments under the same (con-

trolled) conditions), T can be defined in different ways: (1)

as the expected value of the number of realizations

(observed at fixed time steps) that one has to wait before

observing an event whose magnitude exceeds a fixed value

x; (2) as the expected value of the number of trials between

two successive occurrences of events exceeding x. The first

definition is known as ‘‘average occurrence interval’’

(Douglas et al. 2002) and implies that a finite time s has

elapsed since a past exceedance, and the interest is in the

residual or remaining waiting time for the next occurrence

(Fernández and Salas 1999a), whereas the latter is known

as ‘‘average recurrence interval’’ (Douglas et al. 2002) and

conveys information about the mean elapsed time between

occurrences of critical events. In the first case, s can be

known (from historical records) or unknown, whereas in

the second case, we have s ¼ 0, meaning that an exceed-

ance has just occurred. The difference between these def-

initions can be (and actually is) commonly overlooked just

because they both lead to Eq. 1 under iid hypotheses.

Referring to Chow et al. (1988, p. 382) or Cooley (2013)

for the formal derivation of Eq. 1, we only recall that it

corresponds to the Wald equation (Wald 1944) allowing

for the calculation of the expected value of the sum of a

random number n of iid random variables ðTnÞn2N with

common mean E½T � under the hypothesis that the non-

negative integer-value random variable N is also inde-

pendent of the sequence ðTnÞn2N, that is (e.g., Shiau 2003;

Salvadori 2004):

T ¼ E
XN

n¼1

Tn

" #
¼ E½T �E½N� ¼ l

p
ð2Þ

where l :¼ E½T �, whereas E½N� ¼ 1=p results from the

expected value of the geometric distribution describing the

number of events occurring before observing a realization

larger than x.

As T can be always expressed in years, the return period

is deemed a friendly measure of the degree of rarity of an

event, which however leads to statements such as ‘‘This

event is expected to occur on average once each T years’’.

This statement is formally correct but also possibly mis-

leading because, as is well known, the underlying proba-

bility p actually says that there is a probability p to observe

the so-called T -year event ‘‘each year’’, or better, each

time interval of duration l.
In fact, what really matters in systems’ design and

planning is not T and the corresponding x values obtained

by inverting Eq. 1, but the risk of failure, which is the

probability pM to observe a critical event at least once in M

years of design life. Under iid conditions, pM is defined as

(Chow et al. 1988, p. 383):

pM :¼ 1�
YM

j¼1

ð1� pjÞ ¼ 1� ð1� pÞM ¼ 1� ðFðxdÞÞM:

ð3Þ

However, in the common practice, Eq. 3 is not used

directly to define the design value xd as it should, but only

to verify the value of pM corresponding to the T -year value

x, resulting in the well-known expression

pM ¼ 1� ðFðxÞÞM ¼ 1� 1� 1

T

� �M

: ð4Þ

In other words, Eq. 3 allows us to compute a design value xd
with an appropriate probability pM describing the actual risk

of observing at least a failure in the entire design life period

xd ¼ F�1ðð1� pMÞ1=MÞ; ð5Þ

whereas Eq. 4 provides the risk of failure corresponding to

a value x which only accounts for a fraction 1=M of the

time of exposure to a hazard. For example, when M ¼ T ,

the probability pM is about 63 %, which is an almost in-

acceptable level of risk in the most applications. A criti-

cism to such remarks could be that one can always choose a

value of T yielding a design value equal to xd. However,

this only introduces an intermediate step that makes the

derivation of xd unnecessarily more complicated. Indeed,

the variables of true interest are pM and xd, whereas starting

from the value of p corresponding to xd is superfluous (as

p ¼ 1� ð1� pMÞ1=M), and even more superfluous is the

reciprocal transformation of p introduced by Eq. 1.

The shortcomings of T and the advantages of reasoning

in terms of p and pM definitely emerge when we move from

univariate iid conditions to univariate non-independent

and/or non-identically distributed (ni/nid) data, and to iid

multivariate framework.
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3 Univariate nonstationary analyses: highlighting

the limits of T

When we move from stationary to nonstationary condi-

tions (i.e. independent non-identically distributed i/nid

data), the concept of return period becomes further

ambiguous (Cooley 2013). However, it can still be

defined in two ways for operational purposes. The first

definition is the extension to nonstationary conditions of

the concept of expected occurrence interval (expected

waiting time until an exceedance occurs; Olsen et al

1998; Salas and Obeysekera 2014). In more detail, under

nonstationarity, pj ¼ P½Xj [ x� ¼ 1� FjðxÞ is no longer

constant and equal to p but changes for each trial (time

step) j along the time series. Therefore, the return period

in Eq. 1 becomes (Cooley 2013; Salas and Obeysekera

2014)

T ¼ 1þ
X1

k¼1

Yk

j¼1

ð1� pjÞ ¼ 1þ
X1

k¼1

Yk

j¼1

FjðxÞ: ð6Þ

Parey et al. (2007, 2010) extended to i/nid conditions an

alternative definition of return period such that x is the

value for which the expected number of exceedances in T
years (trials) is equal to one. Therefore, x is the solution of

the equation (Cooley 2013)

1 ¼
XT

j¼1

pj ¼
XT

j¼1

ð1� FjðxÞÞ: ð7Þ

Unlike the iid case, both Eqs. 6 and 7 need to be solved

numerically to obtain the required x value corresponding to

the assigned T (see e.g., Cooley 2013; Salas and

Obeysekera 2014, for numerical details).

Whatever definition is used, the return periods and/or

corresponding return levels x given by Eqs. 6 and 7 simply

summarize (exactly or approximately) the average annual

probability of exceedance similar to the iid case. Indeed,

dividing both terms in Eq. 7 by T and taking the reciprocal

we obtain:

1

T ¼ 1

T
XT

j¼1

pj ¼ �p ) T ¼ 1

�p
¼ 1

1� FjðxÞ
: ð8Þ

Therefore, similar to T under iid conditions, Eq. 8 reveals

that nonstationary T under i=nid hypotheses does not

provide additional information compared with the average

value of the probabilities of exceedance pj over the period

T . In other words, one can choose a prescribed average

annual probability of exceedence �p to be met in the T
period and compute x � x�p solving �p ¼ 1� FjðxÞ without
introducing the redundant concept of return period.

At this stage it is worth recalling that the two definitions

of T as average occurrence and recurrence intervals can

yield different relationships between T and p when the

data are not independent but identically distributed (i.e.

under ni/id conditions; Loaiciga and Mariño 1991; Fern-

ández and Salas 1999a, b; Douglas et al 2002). This hap-

pens for instance for trials following a simple first-order

Markov chain (see e.g., Fernández and Salas 1999a).

Moreover, also for ni/id data, the final expressions of T are

functions of the unconditional and conditional probabilities

of failure and safe events at each trial (time step).

The above discussion highlights that (1) the definition of

T is not unique and depends on some hypotheses about

data that seldom if ever hold true for real world records,

making the concept ambiguous (e.g., Fernández and Salas

1999a; Cooley 2013); (2) T only summarizes the average

probability of exceedance (or failure) at single time steps

(trials), thus generally underestimating the actual risk of

failure; and (3) in the most common applications (i.e.

applying Eq. 1 under iid conditions), T does not add

information compared with p.

On the contrary, pM has a well devised and unique

general definition that suitably specializes for each situa-

tion (iid, i/nid, etc.). This is better emphasized by resorting

to copula notation (Nelsen 2006). Since pM is defined as the

complement to unity of the joint probability of observing

no failures in the design life period (e.g., Şen 1999; Şen

et al. 2003), it can be written as:

pM ¼ 1� P½X1 � xd \ X2 � xd \ . . . \ XM � xd�
¼ 1� HMðX1 � xd;X2 � xd; . . .;XM � xdÞ
¼ 1� CMðF1ðxdÞ;F2ðxdÞ; . . .;FMðxdÞÞ;

ð9Þ

where HM denotes the joint distribution of a set of random

variables Xj, for j ¼ 1; . . .;M, describing the process at

each time step, Fj indicates the marginal univariate distri-

bution of Xj, and CM is the copula describing the margin-

free serial dependence structure. Under iid conditions,

Fj ¼ F, 8j 2 1; . . .;Mf g, and CM ¼ P, so that Eq. 9

reduces to Eq. 3. For i/nid data (i.e. independent but non-

stationary conditions), CM ¼ P, whereas Fj changes at

each time step (trial). For ni/id data (i.e. serially correlated

stationary random variables), CM 6¼ P and Fj ¼ F,

8j 2 1; . . .;Mf g. Therefore, Eq. 9 can account for whatever

condition, and copula notation allows us to explicitly dis-

tinguish the role of temporal dependence/independence

(summarized by CM) and stationarity/nonstationarity (i.e.

the assumption of identical/non-identical marginal distri-

butions Fj).

To summarize, pM in Eq. 9 (1) describes the actual risk

of failure in the design life period; (2) has a unique defi-

nition independent of the nature of data, comprising every

combination of (in)dependence and (non)stationarity
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assumptions as special cases; (3) does not imply elaborated

analytical derivations and/or reasoning, and extrapolations

beyond the design life (unlike the summations in Eqs. 6

and 7); and (4) has an easy and straightforward interpre-

tation. In this respect, the so-called ‘‘design life levels’’

proposed by Rootzén and Katz (2013) for univariate non-

stationary data (i.e. i/nid conditions) provide xd values

yielded by one of the special cases of Eq. 9 mentioned

above [see also Sivapalan and Samuel (2009), for the

rationale of risk assessment under nonstationary

conditions].

4 Multivariate analyses: the sleep of p reason produces

T monsters

4.1 Preliminary remarks

In this section, we extend the discussion to a multivariate

framework involving multiple iid random variables. In the

literature dealing with the application of multivariate fre-

quency analysis to hydrological variables, some effort has

been made to understand how Eq. 1 can be adapted to be

applied in a multivariate context. Indeed, moving from the

univariate to multivariate framework, the following

apparent problem seems to arise: in the univariate case, a

critical value x defines a unique critical region, i.e. the set

of values so that X[ x, and the denominator in Eq. 1 is

uniquely defined as 1� FðxÞ, whereas in a multivariate

context it seems that we have a multiple choice. Referring

for instance to a bivariate case involving two random

variables X and Y , they can combine in different ways

yielding for instance the events ðX[ x \ Y [ yÞ,
ðX[ x [ Y [ yÞ, ðX[ xjY [ yÞ, among many others.

Such combinations of events are described by different

joint and conditional distributions summarizing the corre-

sponding joint and conditional probabilities (e.g.,

P½X[ x \ Y [ y�, P½X[ x [ Y [ y], etc.). Moreover,

unlike the univariate case, several (actually infinite) pairs

of values ðx; yÞ share the same joint probability t because

an infinite set of pairs ðx; yÞ fulfills for instance the equa-

tion t ¼ Hðx; yÞ, where H denotes the joint distribution of

X and Y .

In light of this variety of possible cases, several studies

attempted to examine the relationships between the T
values yielded by Eq. 1 replacing different conditional and

joint probabilities of exceedance into the denominator in

order to define the most appropriate choice, also making

comparisons in terms of T values and corresponding return

levels. However, as is shown in the following, these anal-

yses are essentially not well founded and related to the

misleading nature of T . The evolution of such a literature

is an interesting example of how misconceptions tend to

spread more easily than good procedures and recommen-

dations. Therefore the chronological path offers an outline

for the discussion and an interesting interpretative lens.

4.2 Setting the stage

The examination of multivariate return periods and return

levels requires the preliminary introduction of some con-

cepts. For the sake of simplicity and without loss of gen-

erality, let us focus on the bivariate case so that X and Y are

two random variables representing two hydrological/geo-

physical variables (e.g. the rainfall intensity at two mea-

surement stations). Let FX and FY be the marginal

distributions of X and Y , C their copula, and

Hðx; yÞ ¼ CðFXðxÞ;FYðyÞÞ ¼ Cðu; vÞ, where H is the

bivariate joint distribution function of X and Y , and U ¼
FðXÞ and V ¼ GðYÞ are standard uniform random vari-

ables. The following discussion is based on Cðu; vÞ as this
allows us to work in the unit square ½0; 1�2 (where C is

defined), making the results independent of the marginal

distributions, and the graphical visualization more effective

and easier. Moreover, we deal with iid data, i.e. temporally

independent and identically distributed two-dimensional

observations ðx; yÞ. We also introduce the expressions of

some joint and conditional probabilities corresponding

with some bivariate return periods commonly studied in the

literature. Using copula notation, we define

pAND :¼ P½U[ u \ V[ v� ¼ 1� u� vþ Cðu; vÞ; ð10Þ

pOR :¼ P½U[ u [ V[ v� ¼ 1� Cðu; vÞ; ð11Þ

pCOND1 :¼ P½U[ ujV [ v� ¼ ð1� uÞð1� u� vþ Cðu; vÞÞ;
ð12Þ

pCOND2 :¼ P½U[ ujV � v� ¼ 1� Cðu; vÞ
u

; ð13Þ

pCOND3 :¼ P½U[ ujV ¼ v� ¼ 1� oCðu; vÞ
ou

; ð14Þ

pK :¼ P½P½U� u \ V � v�[ t� ¼ P½CðU;VÞ[ t�
¼ 1� KCðtÞ;

ð15Þ

pS :¼ P½gðU;VÞ[ z� ¼ 1� FZðzÞ: ð16Þ
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Equations 10–14 describe the probabilities of exceedance

used by Yue and Rasmussen (2002), Shiau (2003) and

Salvadori (2004) in the first works providing a systematic

discussion of multivariate return periods. Equation 15

describes the probability of exceedance corresponding to

the so-called ‘‘secondary’’ or ‘‘Kendall’’ return period

introduced by Salvadori (2004) and further investigated by

Durante and Salvadori (2010), Salvadori and De Michele

(2010), and Salvadori et al (2011). The function KC in Eq.

15 is the so-called Kendall function and represents the

distribution function of the copula [see e.g., Salvadori and

De Michele (2010), for further details]. Finally, Eq. 16

refers to the so-called ‘‘structure-based’’ return period

introduced by Volpi and Fiori (2014), where g is a func-

tional relationship linking the forcing (environmental)

variables with the design (structural) variable Z ¼ gðU;VÞ.
The meaning of all these probabilities will be examined in

more detail in the following sections.

4.3 Some classical definitions of multivariate return

periods: is something better than something else?

To our knowledge, Yue and Rasmussen (2002) provided

the first systematic discussion about multivariate return

periods. The aim of that work was praiseworthy recog-

nizing that the conditional distributions, conditional return

periods, and joint return periods, were misused in spite of

their importance for understanding and interpreting a

multivariate event. Indeed, ‘‘incorrect interpretations of

these concepts will lead to misinterpretation of frequency

analysis results. Thus, for both practitioners and research-

ers to apply these concepts appropriately in the future, the

authors feel that it is necessary to assemble these concepts

together and to give a clear illustration of them’’. Thus,

Yue and Rasmussen (2002) collected and discussed some

concepts related to conditional and joint distributions and

return periods, and derived some relationships between

univariate and bivariate return periods. Unfortunately, the

road to hell is paved with good intentions, and the same

work also introduced some ambiguous final recommenda-

tions whose negative consequences still persist. Based on a

bivariate model describing the relationship between flood

peak and volume, Yue and Rasmussen (2002) concluded

that ‘‘under a given return period, the flood peak/volume

value given by the single frequency analysis is greater than

those by the joint distribution. This implies that if one

neglects the close correlation between flood peak and

volume, and carries out single-variable frequency analysis

on flood peak or volume only, the severity of a flood event

may be overestimated. If a hydrologic engineering design

is based on the results from the single-variable frequency

analysis, then this over-evaluation will lead to an increased

cost. Hence, single-variable frequency analysis cannot

provide a sufficient probabilistic assessment of a correlated

multivariate event’’.

Leaving out the actual nature of the correlation between

flood peak and volume and the correctness of using joint

distributions to describe such a relationship [see Serinaldi

and Kilsby (2013), for a discussion], this sentence can be

misleading, suggesting some comparisons that are actually

illogical from both theoretical and practical point of view.

To better understand this problem, it is worth starting from

some very basic concepts. In applied sciences, probabilistic

models are built and set up to describe specific situations

concerning the behavior of a system. For example,

hydraulic structures are designed to fulfill specific

requirements, and are characterized by some key features

(e.g., the length of a spillway) and operational rules. In

these cases, if some variables of interest are known with

uncertainty, a probabilistic model can be used to describe

them and their interaction, according to physical con-

straints and device operating principles. In this respect,

borrowing the example of flood events, if a device is

designed to protect against flood peaks and is insensitive to

flood volume, or the flood volume and/or duration are not

of interest because the device does not manage these

quantities in no way, therefore the variable of interest is

only one and multivariate probabilistic models are not

required. Thus, stating that the univariate frequency ana-

lysis of flood peak or volume yields an overestimation of

the severity of a flood event is essentially meaningless

without specifying (1) which variables are critical and are

required to characterize a flood event, and (2) how these

variables interact in light of the design/protection purposes.

This misconception, which is the basis of several ill-

posed comparisons described in the literature, is partly

related to the use of T instead of the underlying proba-

bilities. Indeed, based on Eq. 1, fixing T does not mean to

select a value expressed in a friendly measurement unit and

summarized by the sentence ‘‘...under a given return per-

iod, e.g. 100 years...’’; it means to select the probability of

exceedance (or failure) corresponding to a specific and

unique type of event. To clarify this point, let us consider

the probabilities pX ¼ P½X[ x�, pY ¼ P½Y [ y�, pOR, pAND
and pCOND1, and the corresponding return periods given by

Eq. 1 (i.e. the reciprocal of such probabilities up to the

multiplying factor l). Referring to Yue and Rasmussen

(2002) and Vandenberghe et al. (2011) for analytical der-

ivations, it can be shown that

pOR � maxfpX; pYg� minfpX ; pYg� pAND � pCOND1;

ð17Þ

and therefore
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TOR � minfTX ; T Yg� maxfTX ; T Yg�TAND �TCOND1:

ð18Þ

The conclusions of Yue and Rasmussen (2002) reflect these

theoretical inequalities, but overlook that the probabilities

in Eq. 17 describe events that cannot be ordered and

compared, making statements about risk overestimation or

underestimation essentially meaningless. A visualization of

such concepts can help understand this issue. Figure 1

highlights the domains where the probabilities pAND, pK
pOR, pCOND1, pCOND2, and pCOND3 are defined (black bold

lines) along with the subsets where the critical events

corresponding to such probabilities fall (grey areas). For

example, pAND is a bivariate joint probability defined on

the entire unit square (as U and V can assume every value

in ½0; 1�2) and measures the chance to observe an event in

the upper right quadrant defined by ðU[ u \ V [ vÞ,
whereas pCOND1 is defined over the subset ðu; 1� � ½0; 1�
and measures the probability to observe an event in the

upper part of such a subset. Therefore, even though the

analytical relationships in Eqs. 17 and 18 hold true because

of pure mathematical constraints, it is evident that the

different probabilities refer to different sets of events

defined over different domains. In this respect, the

inequality pOR � pAND (or T OR �T AND) naturally derives

from the fact that both probabilities are defined on ½0; 1�2
but describe the chance to observe events over different

subsets, being the OR subset always larger than the AND

subset for each fixed pair ðu; vÞ.
Salvadori and De Michele (2004) clearly described these

aspects and highlighted that the univariate analyses are fine

if only one variable is significant in the design process,

whereas multivariate approaches are obviously required

when several variables are involved. However, this did not

prevent subsequent comparisons reported in several works.

Referring to a case study discussed by De Michele et al.

(2005), Salvadori and De Michele (2004) showed that TOR

is about 20 % smaller than T Xð¼ T YÞ ¼ p, which in turn

is about 30 % larger than TAND, thus concluding that val-

ues differerent from xpð¼ ypÞ (corresponding to univariate

return periods) must be used to obtain joint events with a

return period TOR or TAND equal to p. Even though this line
of reasoning seems to be correct, the following question

arises. If the critical configuration is described by e.g. the

OR sets of bivariate events, why should one use the sets of

univariate events as a reference? In other words, given that

T Xð¼ T YÞ, TOR and TAND are different (excluding some

limiting cases) as they refer to different mechanisms of

failure and different sets of events, why should the values

of xpð¼ ypÞ corresponding to a univariate return period p

Fig. 1 Synopsis of the domains and critical regions corresponding to

different types of probabilities (pAND, pK, etc.) described in the text.

Bold black lines define the domains where the probability is

computed, whereas grey areas denote the critical regions fulfilling

the condition related to each type of probability. For example, pAND is

defined over the unit square ½0; 1�2 and describes the chance to

observe events in the top right corner fulfilling the condition

ðU[ u \ V[ vÞ
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match the values corresponding to TOR or TAND? Based on

the inequalities in Eq. 18 and Fig. 1, it is evident that the

pairs ðxANDp ; yANDp Þ yielding TAND ¼ p are generally dif-

ferent from those giving univariate T Xð¼ T YÞ ¼ p. Of

course, the comparison makes sense if one wants to

quantify the error of using a probabilistic model that does

not provide a suitable description of the actual mechanisms

of failure. However, without specifying such mechanisms,

there is no way to make comparisons and draw conclusions

about possible underestimation or overestimation. More-

over, advocating the multivariate nature of some geo-

physical phenomena (such as floods, droughts or storms) is

also insufficient to assert that a multivariate approach is

better then the univariate. Indeed, every phenomenon can

be described in principle by multiple variables; however, as

mentioned above, sometimes only one variable is of

interest for design purposes (Salvadori and De Michele

2004).

We provide a visual description to further highlight that

every probability in Eqs. 10–15 (and the corresponding

return periods) is perfectly coherent with the scenarios of

events that it describes. Figure 2 shows 1,000 pairs ðu; vÞ
simulated from a Gumbel copula with parameter corre-

sponding to a value of Kendall correlation equal to 0.7 and

u ¼ 0:6 and v ¼ 0:8. Each panel displays both the set of

pairs falling within the domains over which a specific

probability is defined, and the subsets of pairs falling

within the critical regions according to the different defi-

nitions. Theoretical and empirical values of the

probabilities of observing critical events are also reported.

The agreement between theoretical and empirical proba-

bilities, and the visualization of the sets and subsets of

interest in each case should definitely clarify that (1) there

is no definition better than others, (2) each definition is

coherent with the scenario that it describes, and (3) making

comparisons between probabilities defined over different

sets and subsets of data is allowable only to show the error

related to an incorrect choice of the probabilistic model. It

should also be noted that reasoning in terms of probabilities

allows us to bear in mind the underlying scenarios, whereas

reasoning in terms of T -year return period easily leads to

miss the meaning of the underlying probability and to make

comparisons of values that seem to be similar in terms of

measurement unit, but actually describe incomparable

mechanisms of failure.

4.4 Kendall and structure-based return periods:

something better than classical definitions or other

facets of the same die?

Referring to OR and AND cases and flood peak and vol-

ume, Shiau (2003) anticipated a summary of the above

discussion stating that ‘‘The use of TOR or TAND as the

design criterion depends on what situations will destroy the

structure. Under the condition that either flood peak or

flood volume exceeding a certain magnitude will cause

damage, then TOR can be used to evaluate the average

recurrence interval. On the other hand, when the flood
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Fig. 2 Similar to Fig. 1, but

showing 1,000 pairs ðu; vÞ
simulated from a Gumbel

copula. Each panel highlights

the sets of pairs falling within

the domains where each

probability (pAND, pK, etc.) is

defined (grey circles and filled

circles), and the subsets of pairs

fulfilling the condition related to

each type of probability (filled

circles)
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volume and flood peak must exceed a certain magnitude

that will cause damage, then TAND is used’’. As this rec-

ommendation holds true not only for OR and AND cases

but also for any other case, it raises some considerations

about pK and pS and the corresponding return periods TK

and TS.

TK was proposed by Salvadori (2004) and therefore

extensively applied (e.g., Salvadori and De Michele 2010,

2013; Durante and Salvadori 2010; Salvadori et al 2011;

Vandenberghe et al. 2011, among others). The idea behindTK

is to overcome an apparent shortcoming of TOR (and TAND)

based on the following arguments. Different pairs of ðU;VÞ,
e.g. ðu; vÞ, ðu0; v0Þ and ðu00; v00Þ, lying on the same level curve

of a bivariate joint distribution share the same joint

probability, i.e. P½X� x \ Y � y� ¼ P½X� x0 \ Y � y0� ¼
P½X� x00 \ Y � y00�, but define different and partially over-

lapping pAND critical regions (see e.g. panel pK in Fig. 1).

Thus, we have infinite OR (AND) critical regions character-

ized by the same joint probability, making a choice among

them impossible (e.g., Salvadori andDeMichele 2010). Since

this lack of correspondence between each TOR (TAND) value

and a unique critical region is incorrect from a measure the-

oretic point of view, Salvadori (2004) introduced TK, which

relies on the Kendall distribution (or measure) KC and mea-

sures the chance to observe an event in one of the two unique

subregions defined by a level curve characterized by a unique

value of joint probability. This solves the lack of dichotomy

mentioned above.

However, is TK a really better tool for dealing with

multivariate return periods? In other words, is TK better

than TAND (or TOR)? Also in this case, removing the con-

cealing effect of Eq. 1 and reasoning in terms of proba-

bilities, a positive answer to the above question implies for

example that P½P½U� u \ V � v� � t� ¼ KC is better than

P½U� u \ V � v� ¼ C. Of course, both the probabilities

legitimately exist along with every other joint and condi-

tional probability describing the infinite possible combi-

nations of bivariate events. They are simply different

because describe different situations, cannot be inter-

changed, and their use only depends on which one better

describes the design requirements and mechanisms of

failure. In terms of critical regions, AND and OR (which

rely on C) describe the probabilities associated with critical

regions defined by a unique pair of values ðu; vÞ, whereas
TK (which relies on KC) measures the probability associ-

ated with critical regions defined by an infinite set of points

lying on a t-level curve. In the first case, the design crite-

rion intrinsically focuses on ðu; vÞ, whereas in the second

case, the focus is on t. In other words, in the first case the

implicit requirement is that the final unique design pair

ðu; vÞ guarantees a prescribed joint probability of exceed-

ance, provided that a failure occurs when both specific

values u and v are exceeded. In the second case, we

implicitly deal with a system which is sensitive to and can

fail for a set of bivariate events characterized by the same

joint probability of exceedance. Thus, TK, TAND and TOR

simply describe different mechanisms of failure associ-

ated with different systems and must be used accordingly.

In this context, the structure-based return period intro-

duced by Volpi and Fiori (2014) allows us to further

expand the above discussion. The authors highlighted that

‘‘being strictly dependent on the particular structure under

examination, the return period of structure failure usually

does not match that of the hydrological loads. This entails

that the multivariate approach may not fully rely on the

assumption of hydrological design events, i.e., a multi-

variate event or an ensemble of events which all share the

same (multivariate) return period’’. These remarks led

Volpi and Fiori (2014) to introduce a so-called structure-

based return period TS. Also in this case, reasoning in

terms of probabilities provides a clearer picture than

working with return periods. The idea was to move from

the (multivariate) distribution of the hydraulic loads X and

Y (e.g. peak and volume of the input hydrograph in a

reservoir) to that of the actual design variable Z (e.g. the

spillway design discharge) by propagating the probability

density function of the hydrological loads through the the

function Z ¼ gðX; YÞ, which describes the physical

dynamics of the system (e.g. the reservoir routing through

the spillway). This approach is known as transformation of

two random variables (e.g., (Papoulis and Pillai 2002, p.

139)), its univariate version (Z ¼ gðXÞ) has been used in

several applications (e.g. Kunstmann and Kastens 2006;

Ashkar and Aucoin 2011; Serinaldi 2013), and in the

present case it yields Eq. 16.

The comparison of Eqs. 15 and 16 highlights that pK and

pS have the same form, meaning that C is just a particular

case of g. Both C and g are used to define sets of events

that fulfill some specific requirements (a prescribed value

of the joint probability or a physical law) and identify two

sub- and super-critical regions uniquely defined by a crit-

ical region (i.e. a curve on ½0; 1�2). In other words, if the

generic function g describes a physical transformation of

ðX; YÞ, the resulting design variable Z has a physical

meaning, whereas if g specializes as C, the resulting design

variable Z is implicitly the value of the joint probability. Is

pS (TS) better than pK (TK) or vice versa? It is not actually.

They simply focus on two different design variables,

among the infinite options that can be selected using dif-

ferent forms of g. The choice depends on the final aim as

for pOR, pAND, etc. Therefore the comparison between TOR,

TK and TS critical regions is unfortunately once again no

very informative. Indeed, pOR, pK and pS correctly describe

their own underlying probabilistic structures, which are

different and cannot be compared. Moreover, in that
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specific example, only pS is correct as it is the only prob-

ability describing the physical mechanism under study, and

stating that pOR and pK underestimate or overestimate the

probability of failure is not meaningful as it is known a

priori that they do not describe the critical scenarios cor-

responding to the mechanism of failure at hand. These

comparisons may only be useful to show the error corre-

sponding with the use of probabilities (return periods) that

are known a priori to be inappropriate for the physical

process of interest. Finally, the reduction of dimensionality

given by the use of TK and TS, that is, the use of the

univariate distributions KC and FZ instead of the bivariate

distribution H, can be ineffective if the design (structural)

variable is not unique (e.g., ðZ;WÞ : Z ¼ gðX; YÞf
andW ¼ hðX; YÞg).

4.5 Multivariate risk of failure

Similar to univariate case, the definition of risk of failure

pM easily adapts to a multivariate iid framework. Denoting

Ej, for j ¼ 1; . . .;M, a generic safe event, pM can be written

as

pM ¼ 1� P½E1 \ E2 \ . . . \ EM �
¼ 1� HMðE1; E2; . . .; EMÞ:

ð19Þ

As for the return period, the choice of Ej is not arbitrary but

must describe the mechanism of failure. Thus, it can be

Ej : Xj � xd [ Yj � yd
� �

, Ej : Xj � xd \ Yj � yd
� �

, Ej :
�

gðXj; YjÞ� zdg or whatever else related to the design pro-

cess. Also in this case, pM provides a more transparent and

suitable measure of risk compared to T as it measures the

overall risk of failure along the entire design life period and

requires to explicitly and carefully think about what type of

event Ej (and corresponding probability) must be used to

obtain meaningful results fulfilling the true design

requirements.

5 Conclusions

In this study, we attempted to show that the concept of

return period is prone to additional misinterpretations when

we move from the classical univariate frequency analysis

of iid data to nonstationary and multivariate settings. Even

though we used examples referring to hydrological pro-

cesses and corresponding engineering problems, it should

be noted that the discussion and methodological framework

are fully general and concern the risk assessment of

whatever process (environmental, geophysical, anthropo-

genic, etc.). Therefore, referring to a generic system (Do-

oge 1968) which can fail under critical conditions

according to a given mechanism of failure, our conclusions

can be summarized as follows:

1. Independent of the particular framework (univariate/

multivariate and stationary/nonstationary), the concept

of return period T does not add information compared

with the underlying probabilities of exceedance pj
measuring the risk of failure each time or time interval

j in which there is exposure to a specific hazard. Using

financial terminology, T can be seen as a derivative of

the underlying pj, and as we learned from the financial

crisis of 2007–2008, derivatives can be toxic. Indeed,

in spite of the simple relationships linking T and pj,

return period tends to conceal the actual meaning of pj
and the underlying mechanisms of failure by an

apparently friendly and understandable measurement

unit.

2. Focusing on the univariate nonstationary case, we have

shown that the effort to define T resulted in two

measures that simply summarize the average value of

pj over the T period, thus better highlighting an aspect

that is well known in the classical analysis of

univariate iid data, but concealed by the compact form

of Eq. 1.

3. While the concealing nature of T can have a limited

impact in a univariate (stationary or nonstationary)

context, it easily leads to incoherent calculations and

misleading conclusions in the multivariate iid case.

Since multiple variables can combine in almost infinite

ways, the multiple definitions of T (TOR, TAND, etc.)

introduced the belief that the choice is somewhat

arbitrary and subjective, and can be object of debate.

However, looking at the underlying probabilities, it is

clear that such a belief is not well founded, and no

meaningful debate does exist because each type of

probability (pOR, pAND, etc.) describes in a unique way

a specific mechanism of failure. Therefore the choice

between the multiple definitions depends on how the

system (e.g., a hydraulic device or whatever else)

responds to a specific forcing. This mechanism has a

unique probabilistic description that results in a

specific type of p (univariate, multivariate, conditional,

etc.), which in turn corresponds to a unique type of T
according to the mere reciprocal transformation

T ¼ l=p.
4. Provided that multivariate return periods are not

interchangeable because the underlying probabilities

are not interchangeable, also comparisons between

different definitions (so widespread in the literature)

lose their meaning. Indeed, comparing different mul-

tivariate return period means to compare the probabil-

ities describing different sets of events corresponding

to different mechanisms of failure, only one of which
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describes the response of the system at hand. There-

fore, conclusions about supposed overestimation or

underestimation are illogical and misleading because

every univariate, multivariate and conditional T and p

correctly describes its own events’ set (as shown in

Fig. 2 and discussed in Sect. 4). Such comparisons may

make sense only to assess the error of using a type of T
different from the correct one. However, also in this

case the usefulness is limited as the different return

periods usually correspond to very different combina-

tions of critical events. In this context, the chain of

inequalities linking some types of T (see Eq. 18)

results from pure mathematical constraints and pro-

vides numerical boundaries for the values of different

return periods for fixed values of U and V ; however,

the existence of these relationships should not be

confused with the possibility of comparing probabil-

ities that describe heterogeneous types of events

defined over different domains (as is shown in Fig. 2).

5. Unlike T , the risk of failure in the design life period

pM (1) has a unique and general definition that can fit

every situation (univariate/multivariate and stationary/

nonstationary); (2) has an easy and coherent interpre-

tation; and (3) provides a well devised measure of the

actual risk to observe at least a critical event in the

design life period moving from average ‘‘annual’’ risk

summarized by p and T to the actual joint probability

of failure in the entire design life.
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