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Disocclusion : a variational approach using level lines
Simon Masnou

Abstract— Object recognition, robot vision, image and film

restoration may require the ability to perform disocclusion. We

call disocclusion the recovery of occluded areas in a digital im-

age by interpolation from their vicinity. It is shown in this paper

how disocclusion can be performed by means of the level-lines

structure, which offers a reliable, complete and contrast-invariant

representation of images. Level-lines based disocclusion yields

a solution that may have strong discontinuities. The proposed

method is compatible with Kanizsa’s amodal completion theory.

Keywords—Image interpolation, Disocclusion, Inpainting, BV,

Level lines, Kanizsa, Amodal completion.

I. Introduction

We address in this paper the following interpolation prob-
lem: given a digital image corrupted by spots whose shapes and
positions are known, how to restore the non-texture informa-
tion from the vicinity of the spots? We call disocclusion this
restoration process since spots can obviously be considered as
occlusions. We proposed in [14] a disocclusion method based on
the continuation of the level lines “broken” by the spots. From
a functional viewpoint, our method consists in the minimization
of a relaxed, level-lines based formulation of the criterion

Z

|∇u|(α + β
˛

˛div
∇u

|∇u|

˛

˛

p
), p ≥ 1, α > 0, β ≥ 0.

We gave in [14] a sketch of the algorithm in the case p = 1. Our
purpose in this paper is to give a theoretical justification of the
method when p = 1 and a detailed description of the algorithm.

Our approach is closely related to a natural ability of the hu-
man visual system, the so-called amodal completion process. In
a natural scene, an object is seldom totally visible. It is gen-
erally partially hidden by other objects. But our perception is,
under certain geometric conditions, able to “reconstruct” the
whole object by interpolating the missing parts. This is illus-
trated in Figure 1 : the first drawing shows four black indepen-
dent “butterflies”; the second drawing is obtained from the first
by adding four white rectangles with black borders. The visual
reconstruction is such that we “see” black disks partially hid-
den by the rectangles. A totally different visual reconstruction
is shown in the third drawing where the addition to the “but-
terflies” of new lines simulating a white cross make us “see” a
black rectangle occluded by the cross.

This ability of human vision to reconstruct partially hidden
objects has been widely studied by psychophysicists, particu-
larly by Gaetano Kanizsa [11]. It appears that continuation
of objects boundaries plays a central role in the disocclusion
process. This continuation is performed between T-junctions,
which are points where image edges form a “T” as illustrated in
the fourth drawing of Figure 1. The amodal completion is pre-
cisely this extension process of visible edges “behind” occluding
objects and between T-junctions. According to psychophysi-
cists, the continuation process is such that restored edges must
be as smooth and straight as possible, which explains why our
perception restores circles in the second drawing and a rectangle
in the third drawing of Figure 1.
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et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France.

Email : masnou@ann.jussieu.fr.

Fig. 1. The amodal completion process is related to T-junctions : image

edges are extended “behind” occlusions and between T-junctions.

In [17], Nitzberg, Mumford and Shiota deduced from the
amodal completion principles a method for detecting and recov-
ering occluded objects in a still image within the framework of a
segmentation and depth computing algorithm. Their method is
based on the detection of image edges and T-junctions followed
by a variational continuation process, which consists in connect-
ing T-junctions of approximatively the same level by a new edge
with minimal length and curvature. This interpolating edge
is computed as a spline approximation of the Euler’s elastica,

which, by definition, minimizes

Z

(1 + κ2)ds where s denotes

the arc-length and κ the curvature along the edge. Such energy
has a physical justification when the edges to be connected have
similar directions at the corresponding T-junctions. However,
the Nitzberg-Mumford-Shiota’s method can be applied only to
highly segmented images with few T-junctions and few possible
continuations between them, so that automatic disocclusion of
natural images is not directly possible. Indeed, it is a natural re-
quirement that all the image information in the neighborhood
of the occlusion be taken into account and not only the par-
tial information issued from a segmentation process. Moreover,
the dependence of the Nitzberg-Mumford-Shiota’s method on a
previous edge detection stage is particularly a major drawback.
Indeed, edges are very sensitive to contrast changes and do not
offer a complete representation of the image. Now, the inde-
pendence with respect to contrast changes is crucial. According
to the Gestalt school, and particularly M. Wertheimer [20], hu-
man vision is essentially sensitive to the only ordering of gray
levels in an image. The intensity difference between two pixels
is not a reliable characterization of an image since it arbitrarily
depends on the sensor used for image capture as well as on the
illumination conditions.

The method we describe in this paper can be viewed as a gen-
eralization of the Nitzberg-Mumford-Shiota’s variational contin-
uation framework to the level-lines structure, which is more pre-
cise and reliable than edges. From a theoretical viewpoint, we
will consider an image as a function of bounded variation (BV)
in the plane, that is a function in L1(IR2) whose distributional
derivative is a vector-valued Radon measure on IR2. Readers
may refer to [1], [8] for a detailed study of the BV space. This
model is well adapted to our problem for it seems reasonable
to view an image as an integrable function which may have dis-
continuities, but concentrated on rectifiable curves.
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II. Level lines continuation

Recent works [9] have emphasized the importance of level
lines for image understanding and representation. Let u(x) de-
note the gray level of an image u at a point x. We define level
lines as the boundaries of upper level sets, given at each gray
level t by Xtu = {x, u(x) ≥ t}. In contrast to the edge repre-
sentation, the family of level lines is a complete representation
of u, from which u can be reconstructed thanks to the equality
u(x) = sup{t : x ∈ Xtu}. In addition, it is easily seen that
the level lines family is globally invariant with respect to any
increasing contrast change (up to the gray level quantization
effects), which again is not true for an edge representation.

The method we describe here allows to recover functions with
strong discontinuities, like BV functions. Let us denote by Ω
the occlusion and ∂Ω its boundary. We shall assume here that
Ω has no hole. The result stated in Theorem 1 could actually be
extended to the more general case of a finite number of holes but
the design of an algorithm performing the disocclusion in such
situation, in the framework of level lines connection, remains an
open problem.

Given a function u outside Ω, our aim is to interpolate u
inside Ω by performing a continuation of its level lines. Let
us consider as T-junctions the intersection points between ∂Ω
and the level lines of u outside Ω - this point will be clarified
in the next section. Following Kanizsa and Nitzberg et al, we
wish to interpolate the level lines between the T-junctions by
means of short and not too oscillating curves. This can be for-
mulated as a variational problem. Let us first remark that each
level line intersecting ∂Ω can be associated with a positive or
negative orientation, according to the orientation of ∇u along
the line. Now, for each level t represented on ∂Ω, denote by
(Lt

i)i∈I(t) the corresponding set of level lines and remark that
we can assume I(t) to be finite with no loss of generality (see
the next section). Since a level line arriving at ∂Ω must neces-
sarily leave it, it is worth noticing that there is an even number
of T-junctions associated with the family (Lt

i)i∈I(t) and more
precisely, as many T-junctions with positive and negative ori-
entation. Then our problem consists in finding an optimal set
of curves (Γt

j)j∈J(t), with card J(t) = card I(t)/2, pairwise con-
necting the T-junctions with same level and same orientation,
and minimizing the following energy :

E =

Z +∞

−∞

X

j∈J(t)

 

Z

Γt
j

(α + β|κ|p)ds + angles

!

(1)

where α, β are positive constants and “angles” denotes the sum
at both endpoints of Γt

j of the angles between the direction of
Γt

j and the direction of the associated level lines. The parame-
ter p can be seen as a generalization of the curvature exponent
appearing in the Euler’s elastica energy. The method we de-
scribe and theoretically justify in this paper gives the optimal
solution in the case p = 1, which corresponds to a continuation
of level lines by polygonal paths. Similar theoretical arguments
can be used to prove the existence of a minimal solution when-
ever p > 1, still within the framework of level lines continuation
in a simply connected domain. However, unlike for p = 1, it
is still an open problem how to find an optimal set of curves
pairwise connecting the T-junctions and minimizing the crite-
rion (1). Briefly speaking, though it is known how to compute
a minimal curve with respect to the single energy

R

(1+ |κ|p)ds,
one actually needs to minimize a global energy corresponding
to a set of curves that do not cross each other. And, in con-
trast with the case p = 1, it is no more equivalent to minimize
individually the energy of each curve.

Our approach, from both a theoretical and practical view-
point, relies on the continuation of level lines. However, it is a
natural question whether disocclusion could be achieved mini-
mizing a criterion depending on functions rather than curves.
Actually, using a simple change of variables and omitting the
angular term, it is easily seen that (1) rewrites

Z

Ω
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p

)dx, (2)

which is exactly the criterion we mentioned in the introduction.
In a paper in preparation, we prove the existence of a minimal
solution with respect to another relaxed formulation of this cri-
terion, depending explicitly on functions rather than level lines.
In contrast with the work presented here, occlusions need no
more be simply connected domains. This is also the case in [3]
where Chan, Kang and Shen give interesting results related to
functional (2). In particular, they derive the Euler-Lagrange
equation for p > 1 and propose numerical schemes and interest-
ing computational examples. In contrast with our work, curvy
level lines can be recovered. However, the equation is of fourth
order thus the stability and the convergence speed are delicate
issues. Another problem is the difficulty to recover sharpness, as
pointed out by the authors. Actually, it is still unclear whether
the solutions to this equation may present discontinuities, which
is a crucial issue in the context of interpolation of BV functions.
In contrast, our approach is well adapted to the recovery of dis-
continuities, from both a theoretical and a practical viewpoint.

Another method for occlusion removal was proposed in [4],

consisting in the minimization of the total variation

Z

Ω′

|∇u|dx

(Ω′ is an open set strictly containing Ω) coupled with a forcing
term outside the occlusion. The total variation term can be seen
as a simplification of our global variational formulation above,
since no second-order term is involved. As a consequence, only
straight lines - or polygonal paths - can be recovered within
the occlusion. This is also the case for our method in the case
p = 1 but remark that the curvature term in our energy induces
a contribution of the angular variation along each restored line.
Thus, it coerces the connection of facing lines which make more
or less the same angle with the occlusion boundary and gives a
result closer to what we could expect from amodal completion.
Actually, the minimizers obtained with our energy really differ
from those produced by the only total variation when the oc-
clusion is non convex, which happens very often for occlusions
defined on a discrete grid. As to the forcing term, it is a major
difference with our method for we did not address at all the issue
of noise outside the region to be filled. Actually, our approach
is obviously not robust at all when noise is added. Remark
however that this is not a really problematic issue since one can
always apply a prior denoising filter outside the occlusion before
performing disocclusion.

Finally, still in the context of deterministic methods based
on a variational formulation, a very interesting and elegant ap-
proach for occlusion removal is proposed in [2]. It is closely
related to the so-called inpainting technique in art restoration.
The basic idea consists in filling-in the occlusion by a smooth
continuation of information in the direction of level lines. This
can be formulated as a variational problem involving a relaxed
formulation of (2) where the term div ∇u

|∇u|
is replaced with div θ,

θ being a vector field “approximating” the normal ∇u
|∇u|

(see [2]

for details). This approach has mainly two advantages : from a
theoretical viewpoint, the use of a vector field makes the prob-
lem better posed and the relaxed formulation easier to handle.
From a practical viewpoint, the corresponding PDE’s for the
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steepest descent method are well-posed, admit solutions with
discontinuities and are of order three. Overall, this kind of ap-
proach is very promising.

Until now, we did not mention any work based on a non de-
terministic approach. However, there is a huge literature on
the subject, and particularly on texture synthesis and restora-
tion. Let us mention for instance the approach developed in [7],
[19]. In these papers, occlusions are iteratively filled-in using
a sophisticated “copy and paste” under the assumption that
texture may be modelled as a Markov Random Field. This
method gives impressive results for texture synthesis but, by
nature, does not allow to recover the geometric information in
a reliable way. In other words, some geometry is recovered but
does not issue from an attempt to guess the shape of the oc-
cluded objects. In contrast, our approach is more reliable from
this viewpoint but is not adapted at all for texture recovery.
Recall indeed that our goal is to mimic the amodal completion
process, which is essentially a geometric process : it allows the
recovery of objects contours using some geometric information
- the T-junctions and the conformation of contours outside the
occlusion - but does not involve any statistics on the intensity.
So is there a choice to make between deterministic and non de-
terministic methods ? We believe that this question has no sense
due to the nature of an image. Indeed, it is now well admitted
that an image contains two types of information : a geometric
information related to the geometry of the objects contained in
the image, and a statistical information that represents the tex-
ture. Thus, it is reasonable to think that deterministic and non
deterministic approaches should be combined for a good recon-
struction of an occluded region. This paper is a contribution to
the geometric aspect of the reconstruction and one can easily
think to a way of combining it with a method like in [7], [19].
In a first step, one could connect only the most significant level
lines for the recovery of image geometry (see [6] for the notion
of significant level lines). Then the texture could be restored
applying the methods of [7], [19] in the regions enclosed by the
interpolated lines.

III. Mathematical analysis of the method

The occlusion Ω is supposed to be an open, bounded and
simply connected set such that ∂Ω is a rectifiable Jordan curve.
In this section, we shall prove that there exists an optimal set
of curves connecting the T-junctions with respect to the crite-
rion (1) with α = β = 1. The result can be equally proven for
any α > 0 and β ≥ 0 with exactly the same arguments.

Since our image is modeled as a BV-function, T-junctions
must be carefully defined. First, let us fix some notations (read-
ers may refer to [1] for more details): dH denotes the usual Haus-
dorff distance, HN is the N -dimensional Hausdorff measure. For
some countably Hm-rectifiable subset K of IRN, m ≤ N , the
lower m-dimensional density of K at x ∈ IRN is

Dm(x, K) = lim inf
r↓0

Hm(Br(x) ∩ K)

wmrm
,

where wm denotes the volume of the unit ball in IRm and Br(x)
is the ball in IRN with radius r and centered at x. The upper m-
dimensional density D

m
is defined analogously replacing lim inf

by lim sup. In case both limits coincide we define

Dm(x, K) := Dm(x, K) = D
m

(x,K)

An important property of countably Hm-rectifiable sets is that

Dm(x,K) = 0 for Hm-a.e. x ∈ IRN \ K
Dm(x,K) = 1 for Hm-a.e. x ∈ K

The measure-theoretic boundary of K is the set

∂MK := {x ∈ IRN : D
m

(x,K) > 0 and Dm(x,K) > 0}

For the special case of sets of finite perimeter in IRN - the sets
whose characteristic function is in BV(IRN) (see [1], [8]) - the
reduced boundary ∂∗K is made of all those points where the
generalized inner normal to K exists. In addition, ∂∗K ⊂ ∂MK
and HN−1(∂MK \ ∂∗K) = 0.

Turning back to our problem, the following lemma ensures
that there exists a simple rectifiable curve Γ arbitrarily close
to Ω such that the one-dimensional restriction of u to Γ has
bounded variation. In addition, claims (ii), (iii), (iv), (v) and
(vi) roughly mean that we can find a dense set of values (λ)
assumed by u such that :
1. the lines of level λ “intersecting” the occlusion boundary
have finite length (claim (ii)).
2. they can be associated with a finite number of points on
the occlusion boundary (claims (iii), (v)) where they have unit
density (claim (vi)).
3. these points can be approximated by sequences of points as-
sociated with lower and greater levels (claim (iv), where con-
vergence is meant with respect to H1).
All these properties allow a reliable definition of T-junctions
and shall be used for proving the existence of an optimal disoc-
clusion.

Lemma 1: Let Ω ⊂ IR2 be an occlusion satisfying the as-
sumptions above and u ∈ BV(IR2 \ Ω). There exists an open
set Ω′ ⊃⊃ Ω arbitrarily close to Ω such that Γ := ∂Ω′ is a C∞

Jordan curve and, denoting by ũ the restriction of u to Γ,

ũ ∈ BV(Γ) (i)
∃R ⊂ IR, H1(IR \ R) = 0 and
∀λ ∈ R, • H1(∂MXλu) < +∞ (ii)

• H0(∂MXλũ) < +∞ (iii)
• Xλũ = limµ→λ Xµũ (iv)
• H0(∂MXλu ∩ Γ) < +∞ (v)
• ∀x ∈ ∂M(Xλũ), D1(x, ∂M(Xλu)) = 1 (vi)

If x ∈ Aλ := ∂M(Xλũ) for some λ ∈ R, we say that x is an
admissible T-junction.
The reader may refer to [13] for a proof of this lemma, based
on the properties of BV functions and sets of finite perimeter.
In the sequel, we call admissible occlusion any set Ω′ like above.
According to the lemma, we can deduce an admissible occlusion
from any occlusion.

Let x be an admissible T-junction on Γ. In view of the previous
lemma, we can define for almost every λ such that x ∈ Aλ an
average direction

νλ(x) :=
1

H1(B∩∂∗Xλu)

Z

B∩∂∗Xλu

νXλu dH1

where B := Br0(x), r0 is such that d(Γ, Ω) > r0 and νXλu de-
notes the generalized inner normal at every point of the reduced
boundary ∂∗Xλu. Without loss of generality, we can assume
that the integral goes over the measure-theoretic connected
component of x within B∩∂∗Xλu, that is the set C ⊂ B∩∂∗Xλu
such that for H1-almost every y ∈ C, D1(y,C) = 1 and C con-
tains a curve joining x to y. Consequently, each admissible
T-junction x is associated for almost every λ such that x ∈ Aλ

with an average direction νλ(x) and the orientation oλ(x) = ±1,
which refers to the orientation of the normal along C. We take
as a convention that when C is watched from the occlusion
boundary, oλ = 1 if νλ points toward the left of the curve and
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oλ = −1 otherwise. Now, recall from Lemma 1 that for ev-
ery λ ∈ R, Aλ is a finite set. Moreover, we deduce from the
properties of level lines that card Aλ is even and

card{x ∈ Aλ : oλ(x) = 1} = card{x ∈ Aλ : oλ(x) = −1}

In the sequel we shall denote

A1
λ := {x ∈ Aλ : oλ(x) = 1}

A(−1)

λ := {x ∈ Aλ : oλ(x) = −1}.

We define F as the set of all measurable functions γ : [0, 1] → Ω′

such that γ ∈ W1,1(0, 1), |γ′(t)| is constant and strictly positive
almost everywhere on [0, 1] and the curvature of γ as a function
of arc-length is a vector-valued Radon measure with finite total
variation, or, in other words, γ′ as a function of arc-length is in
BV(0,L(γ)). In addition, we assume that the trace of γ in Ω′

is a simple curve.

Denoting by
R L(γ)

0
|γ′′(s)|ds the total variation of γ′ in [0,L(γ)],

we get that

Z L(γ)

0

(1 + |γ′′(s)|)ds =

Z 1

0

„

|
dγ

dt
| +

1

L(γ)
|
d2γ

dt2
|

«

dt < ∞,

from which we deduce that γ′ ∈ BV(0, 1). Then, we add to F
all those curves of zero length whose endpoints coincide on Γ
and finally we define

M = {γ ∈ F : ∃λ ∈ R such that γ(0) ∈ A1
λ, γ(1) ∈ A(−1)

λ }.

Each curve of M is denoted as γ(x, λ) where x = γ(0) ∈ A1
λ. Let

us now emphasize that we cannot ensure γ to be continuously
differentiable on [0, 1]. Thus, the behavior of the angular terms
at endpoints for a subsequence of curves is hardly controllable.
The simplest way to avoid this problem is to artificially modify
the boundary conditions. For every λ ∈ R and x ∈ Aλ we
define the line of level λ arriving at x as the segment S(x, λ)
of length η � 1 making the angle (νλ(x))⊥ with Γ at x. With
each curve γ ∈ M related to the level λ we associate the curve
γ̃ : [0,L(γ) + 2η] → IR2 with respect to arc-length such that

γ̃ =

8

<

:

S(γ(0), λ) on [0, η]
γ on [η,L(γ) + η]
S(γ(1), λ) on [L(γ) + η,L(γ) + 2η]

and we define the energy of γ as

E(γ) =

Z L(γ)+2η

0

(1 + |γ̃′′(s)|)ds.

Remark that

E(γ) ≤

Z L(γ)

0

(1 + |γ′′(s)|)ds + 2η + 2π

so that γ ∈ W1,1(0, 1) and γ′ ∈ BV(0, 1) imply E(γ) < +∞.
In the sequel, unless specified, we shall implicitly deal with the
extension γ̃ of any curve γ ∈ M.

Let us consider a set of curves in M connecting the admissible
T-junctions on Γ two by two – or possibly with themselves – and
such that two different curves do not cross within Ω′. Remark
that the non-crossing property holds as well at curves endpoints
in the sense that the sign of ũ′ along Γ determines the relative
position of two curves starting at x. Now, observe that by
Lemma 1, each level λ ∈ R is associated with a finite number of
curves (γi,λ) where i ∈ I and card I < +∞. For any i ∈ I, γi,λ

induces a partition of Ω′ in two sets. Walking the curve γi,λ

from γi,λ(0), we define Xi,λ as the left set if oλ(γi,λ(0)) = 1 and
the right set otherwise. Then we define Xλ := ∪i∈IXi,λ and the
reconstructed function ud can be obtained by setting for every
x ∈ Ω,

ud(x) := sup{λ ∈ R̃ : x ∈ Xλ},

where R̃ is a countable and dense subset of R. It is straight-
forward that ud is a measurable function on Ω whose upper
level sets coincide with the Xλ’s up to Lebesgue negligible sets.
Finally we define the reconstructed function associated with u
as

ur(x) =



u(x) if x ∈ IR2 \ Ω′

ud(x) if x ∈ Ω′

We call disocclusion of u with respect to Ω any reconstructed
function ud obtained like above and such that the corresponding
set of curves, denoted by D, has finite total energy E(D) with

E(D) =

Z

R

X

x∈A1
λ

E(γ(x, λ))dλ (3)

where we restrict to A1
λ in order to avoid redundancy. For sim-

plicity we shall also call D a disocclusion. Of course, this defini-
tion makes sense only when there are T-junctions. Otherwise, ũ
is constant on ∂Ω′, say ũ ≡ λ0, and the disocclusion is naturally
defined as

ur(x) =



u(x) if x ∈ IR2 \ Ω′

λ0 if x ∈ Ω′

Theorem 1: Under the assumptions above, let Ω ⊂ IRN be an
occlusion and u ∈ BV(IR2 \ Ω) such that |u| < M . Then there
exists a disocclusion of u with minimal energy and the extended
function ur is in BV(IR2).

Proof: Assuming that there are T-junctions (otherwise the
result is trivial), the existence of an optimal disocclusion can be
proven in five steps, starting from an admissible occlusion Ω′

containing Ω and given by Lemma 1. The full details of the
proof can be found in [13].
Step#1 : there exists a trivial (non optimal) disocclusion D0.

This can be checked by simply setting ud ≡ −M in Ω′ and
using the fact that the admissible occlusion boundary Γ := ∂Ω′

is smooth. Accordingly, one can define a minimizing sequence
(Dn)n∈IN of disocclusions, each disocclusion Dn being made of
curves γn(x, λ) where λ ∈ R and x ∈ A1

λ.
Step#2 : there exists a subsequence (Dm)m∈IN, and a countable
and dense set Λ ⊂ R such that

∀λ ∈ Λ, ∀x ∈ A1
λ, sup

m

E(γm(x, λ)) < +∞

This follows by a diagonal extraction argument.
Step#3 : there exists a subsequence (Dk)k∈IN of (Dm) such that
∀λ ∈ Λ and x ∈ A1

λ, γk(x, λ) is converging to some curve γ(x, λ).
This result comes again by a diagonal extraction and the use
of the relative compactness of BV in L1. It says that the limit
disocclusion can be defined for a countable set of levels. The
extension to the whole set R is done in the following step, using
the same kind of argument.
Step#4 : for almost every λ ∈ R and every x ∈ A1

λ, the limit
curve γ(x, λ) can be defined as limit of curves γ(x, λ) where
λ ∈ Λ.
Step#5 : the limit disocclusion D is the disocclusion with min-
imal energy.

This last step is proven using the lower semicontinuity of the
total variation. Finally, the fact that the reconstructed func-
tion has bounded variation comes from a trace theorem for BV
functions.
Remark: Simple examples show that the optimal solution needs
not be unique in general.
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IV. A practical algorithm for disocclusion

A. Occlusion boundary computation

Recall first that we assume the occlusion to be without hole.
We shall use for image representation a grid with integer and
half-integer coordinates. Every image pixel is associated with a
point with integer coordinates surrounded by eight points whose
at least one coordinate is a half-integer. These points allow to
define lines passing between image pixels and thus it is possi-
ble to represent the occlusion boundary with a polygonal line
whose vertices are points with half-integer coordinates. In order
to ensure that this polygonal line is a Jordan curve (i.e. without
self-crossings), we shall slightly modify the coordinates of the
vertices corresponding to a concavity of the occlusion. More
precisely, it is easily seen that the occlusion boundary can be
represented by a polygonal line whose vertices are points where
the direction changes; but at each point of concavity, we shall
replace its coordinates by those of a very close point, say at a
distance less than 10−3, outside the occlusion. Let us illustrate
this with an example. In Figure 2 the occlusion to remove cor-
responds to the three white pixels. The large black disks are the
centers of image pixels whereas the small black disks correspond
to the points whose at least one coordinate is half-integer. The
occlusion boundary is the thick solid line. Starting from the
point (1.5, 3.5), we can build the list of all those points where
the boundary direction changes :

{(1.5, 3.5), (1.5, 2.5), (2.5, 2.5), (2.5, 1.5), (4.5, 1.5),
(4.5, 2.5), (2.5, 2.5), (2.5, 3.5)} .

After processing of the concavities, the list we shall keep for
describing the occlusion boundary is

{(1.5, 3.5), (1.5, 2.5), (2.4999, 2.4999), (2.5, 1.5), (4.5, 1.5),
(4.5, 2.5), (2.5001, 2.5001), (2.5, 3.5)} ,

which corresponds to a simple and closed polygonal line. Notice
that we use 8-connectedness to define the occlusion.

Gray level
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Fig. 2. Using a grid with integer and half-integer coordinates makes it

easy to describe the boundary of the occlusion made of three white

pixels.

B. T-junctions computation

The other structure that will be useful to describe the oc-
clusion is the set of T-junctions. T-junctions are those points
of the boundary which are a common vertex to two pixels not
belonging to the occlusion and with different gray levels. The
T-junctions list is built in two steps. In the first step, we simply
enumerate all the points with this property; in the second step
we insert in the previous list all the intermediate gray levels.
In other words, a line separating the levels 1 and 4 actually
corresponds to three level lines : the line separating the lev-
els 1 and 2, the line separating 2 and 3 and, finally, the line

that separates 3 and 4. Each T-junction is described by its co-
ordinates, the two corresponding levels and the angle between
the associated entering level line and the horizontal direction.
However, it must be taken into account that the direction of the
corresponding level line is not reliable due to discretization and
noise. It is therefore better to compute an average direction of
the level line on a neighborhood around the T-junction, say a
ball with radius four.

C. Interpolation rules and interpolation energy

The disocclusion principle we shall use consists in pairwise
connecting the T-junctions with respect to some rules related
to the mathematical properties of level lines :
1. Two T-junctions can be connected by a line if they are asso-
ciated with the same gray levels and have the same orientation
so that the gradient orientation does not change along the line.
In other words, a line cannot twist. Two T-junctions with these
properties are said compatible.
2. Two level lines connecting two pairs of T-junctions cannot
cross.
Both rules limit the number of T-junctions that can be con-
nected with a given one. As an example, we have listed in
the table below all the T-junctions on the occlusion boundary
of Figure 2. From the first constructing rule we deduce two
distinct columns and a T-junction from one column can be con-
nected only with a T-junction of the other column whose gray
levels are the same.

TABLE I

Every T-junction in the first column can be associated with a

junction with the same gray levels in the second column.

Coord. Levels Coord. Levels

(1.5 ; 3.5) 1 2 (4.5 ; 1.5) 2 1
(4.5 ; 1.5) 1 2 (2.5 ; 3.5) 2 1

(1.5 ; 3.5) 2 3 (1.5 ; 2.5) 3 2
(2.5 ; 1.5) 2 3 (4.5 ; 1.5) 3 2
(4.5 ; 1.5) 2 3 (4.5 ; 2.5) 3 2
(3.5 ; 2.5) 2 3 (2.5 ; 3.5) 3 2

(1.5 ; 3.5) 3 4 (1.5 ; 2.5) 4 3
(4.5 ; 1.5) 3 4 (4.5 ; 2.5) 4 3

Now, an admissible solution to our disocclusion problem is
a set of level lines corresponding to a one-to-one map between
the two columns, satisfying the two construction rules and such
that every level line stays in the occlusion. Given a one-to-one
map between the two columns, there is a very simple way to
check that the second rule is satisfied, in the sense that there
exists a corresponding set of lines that do not cross. Every
T-junction belongs to the occlusion boundary represented as a
Jordan curve. Two T-junctions that are connected induce a
split of the Jordan curve in two arcs that intersect only at their
endpoints. Two other T-junctions can be connected only if they
belong to the same arc. Indeed, it is easily seen that otherwise
any corresponding pair of level lines will cross. Therefore, every
admissible solution satisfies a causality principle, in the sense
that every given association between two T-junctions coerces
any new association. We shall say that two pairs of compat-
ible T-junctions are compatible between them if they can be
associated with two non-crossing lines.

Denoting by Li,j an admissible line connecting the junctions
i and j, it can be associated with the following energy,

Ci,j =

Z

Li,j

(α + β|κ|)ds, α > 0, β ≥ 0
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The term

Z

Li,j

|κ|ds denotes the angular total variation along

the line, to which we implicitly add the angles at i and j between
Li,j and the level lines to be continued. Among all the lines
connecting i and j and living in the occlusion domain, it is
easy to check that the geodesic path is the line with minimal
energy Ci,j . By geodesic path, we mean here the shortest line
connecting i and j and contained in the closure of the occlusion
domain. Since this closure is supposed to be simply connected,
the geodesic path between i and j is unique. In addition, it
is easily seen that two pairs of T-junctions compatible between
them are associated with two geodesics that do not cross.

Let us now consider all the sets of level lines pairwise con-
necting the T-junctions with respect to the above construction
rules. In the continuous plane there are infinitely many such
sets, since it is always possible to derive a set from another by
a simple modification of the level lines conformation within the
occlusion domain (see Figure 3).

Fig. 3. Two different admissible solutions associated with the same pair-

wise connections of T-junctions.

Denote by E the energy of an admissible solution, defined as
the sum of the Ci,j over all connected couples (i, j). Obviously,
among all admissible sets of level lines, the set with minimal
energy contains only geodesic paths. Thus, in order to compute
the optimal solution to our disocclusion problem, it is enough to
enumerate the sets of all one-to-one maps between T-junctions
that satisfy the construction rules, to compute for every map
the corresponding admissible solution made of geodesic paths
only and to keep among all those admissible solutions the one
with smallest energy.

D. Computing a geodesic path

We shall now describe a method to compute the geodesic path
connecting two compatible T-junctions. This method needs a
prior triangulation of the occlusion domain, which we recall to
be without hole and whose boundary can be represented by a
Jordan curve. Such a triangulation can be theoretically per-
formed in O(N), where N is the number of vertices of the
boundary, using the Chazelle algorithm [5]. This algorithm is
however so complex that, to our knowledge, it is still unim-
plemented. Some methods can be found in the literature that
perform a triangulation in O(N log N) [18]. We used for our
algorithm a less efficient but simpler method, the so-called ear-

clipping method, whose complexity is O(N 2) [18].

Once the polygon representing the occlusion has been trian-
gulated, the Hershberger and Snoeyink [10] method computes
the geodesic path connecting two vertices of the polygon bound-
ary and requires O(N) operations. This method is based on the
funnel algorithm due to Lee and Preparata [12]. Practically, we
used an implementation due to J. Mitchell and his students [16].

E. Using dynamic programming for energy minimization

We are now in position to compute the cost for connecting
two compatible T-junctions i and j. Let us address the problem
of finding an optimal set of connections, that is a set with min-
imal energy. The dynamic programming approach provides so-
lutions to this otherwise exponential problem and is well suited
with the causality property satisfied by successive connections
of T-junctions. Denote by (t1, t2, . . . , t2m) the set of T-junctions
to be processed and recall that there is always an even number
of T-junctions per level. The dynamic programming is based
on the iterative computation of optimal energies Ei,i+k corre-
sponding to energies of optimal pairwise connections of all T-
junctions in the interval [i, i+k]. These energies can be defined
only whenever k is even since it is not possible to pairwise con-
nect oddly many T-junctions. Ci,j denotes the energy of the
geodesic path connecting i and j and we take as a convention
that Ci,j is infinite whenever i and j are not compatible. In
our case, the dynamic programming approach reduces to the
following iterations.
Step#1 : Processing of intervals of length 2; all the following
energies are computed

E1,2 = C1,2, . . . , Ei,i+1 = Ci,i+1, . . . , E2m,1 = C2m,1

Step#2 : Processing of intervals of length 4; using energies
Ei,i+1 computed at previous step, one can compute :

E1,4 = min{C1,4 + E2,3 ; E1,2 + E3,4}
...

Ei,i+3 = min{Ci,i+3 + Ei+1,i+2 ; Ei,i+1 + Ei+2,i+3}
...

E2m,3 = min{C2m,3 + E1,2 ; E2m,1 + E2,3}

. . . . . .

Step#k : Processing of intervals of length 2k

E1,2k = min{C1,2k + E2,2k−1 ; E1,2 + E3,2k ;
E1,4 + E5,2k ; . . . ; E1,2k−2 + E2k−1,2k}

...
Ei,i+2k−1 = min{Ci,i+2k−1 + Ei+1,i+2k−2 ; Ei,i+1+

+Ei+2,i+2k−1 ; . . . ; Ei,i+2k−3 + Ei+2k−2,i+2k−1}
...

E2m,2k−1 = min{C2m,2k−1 + E1,2k−2 ; E2m,1 + E2,2k−1 ;
. . . ; E2m,2k−3 + E2k−2,2k−1}

. . . . . .

Step#m : E1,2m is the optimal energy.

E1,2m = min{C1,2m + E2,2m−1 ; E1,2 + E3,2m ; E1,4+
+E5,2m ; . . . ; E1,2m−2 + E2m−1,2m}

Denoting by M = 2m the number of T-junctions and N the
number of vertices of the polygonal line representing the occlu-
sion boundary, the disocclusion algorithm we presented above
can be achieved with a worst-case complexity of O(NM 2 +M3)
since the computation of each energy Ci,i+2k costs O(M). Us-
ing a faster triangulation method in O(M log M) would reduce
the cost to O(NM log M + M3). Clearly, when the occlusion
is convex, our disocclusion method can be achieved in O(M 3)
since geodesic paths are straight lines. This cost remains high
but it must be compared with a method involving a simple enu-
meration of all possible connections whose complexity is O(M !).
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We used for implementing the disocclusion algorithm a func-
tion Energy(i, i + k) which computes recursively the energy
of the interval [i, i + k]. More precisely, the optimal en-
ergy is Energy(1, 2m), which requires the computation of
Energy(2, 2m − 1), Energy(3, 2m − 1), ..., which themselves
require the computation of energy on smaller intervals. This
method is equivalent to that described above, except that some
computations can be avoided. Indeed, if one needs to compute
Ei,i+3 + Ei+4,i+2k−1 and it is already known that Ei,i+3 = ∞,
there is of course no need to compute Ei+4,i+2k−1. In the same
way, it is unnecessary to go on the computation if Ei,i+3 is al-
ready larger than some minimal value obtained before. The
complexity of such an implementation is theoretically the same
as the method presented above but practically lower since many
T-junctions are not compatible and thus many energies are in-
finite.

F. Geodesic propagation of restored levels to achieve the disoc-

clusion process

Once the optimal set of connections has been computed, it
remains only to “color” the occlusion. This can be done very
simply in two steps. In the first step, one draws each geodesic
path of positive length connecting two T-junctions forming an
optimal pair. Actually one draws a two-pixels wide line where
the two gray levels corresponding to the restored line are rep-
resented. In order to deal with covering problems, a simple
method consists in drawing a first line between two consecutive
junctions forming an optimal pair (there is at least one pair hav-
ing this property). Then one goes on the occlusion boundary
counterclockwise and draws the optimal geodesic paths by sys-
tematically coloring the right side of the line, whereas the left
side is filled only at those points that have not been colored yet
(see Figure 4). Once all the geodesic paths have been drawn,
the disocclusion is achieved by a simple geodesic propagation of
the values, that is a dilation with respect to occlusion domain.

Fig. 4. Left, original image occluded by a black rectangle; Middle, the

geodesic paths associated with the optimal connections; Right, the

image obtained after disocclusion.

We summarize below the main steps of our disocclusion algo-
rithm
Step 1 Computation of the polygonal line corresponding to the
occlusion boundary.
Step 2 Computation of each T-junction on the occlusion bound-
ary. A T-junction is determined by its coordinates, its position
on the boundary, the related gray levels and the average direc-
tion of the corresponding level line.
Step 3 Triangulation of the occlusion.
Step 4 Computation by dynamic programming of the optimal
set of level lines pairwise connecting the T-junctions.
Step 5 Drawing of the corresponding geodesic paths.
Step 6 Use of geodesic propagation to build the restored image.
The complexity of this algorithm is

O(N2 + NM2 + M3 + P )

where N denotes the number of vertices of the polygonal line de-
scribing the occlusion boundary, M is the number of T-junctions
and P is the number of pixels within occlusion. As mentioned
before it can be reduced to O(N2 + NM log M + M3 + P ).

V. Experimental results

We present in Figures 5, 6, 7 below the performances of our
algorithm for different types of problems involving occlusions.
It appears that the results are acceptable despite the purely ge-
ometric nature of our approach and the use of p = 1 in the en-
ergy to minimize, which coerces the restored lines to be straight
(or polygonal) lines. In addition and in contrast with the ap-
proaches in [2] and [3], it is not an issue to recover sharp edges.

Figure 5 shows how impulse noise can be removed : in a first
step we identify occlusions due to impulse noise as all those im-
age subsets that are modified by a contrast-invariant and idem-
potent denoising filter, the so-called grain filter, that was intro-
duced in [13]. Then we apply our algorithm to these occlusions.
Figure 6 shows that our method can be used for photographs

Fig. 5. Left : noisy image (impulse noise, frequency = 10%). Right : oc-

clusion detection is performed by means of the grain filter. Disocclu-

sion is then achieved with our level-lines based algorithm.

restoration. Finally, Figure 7 illustrates the performances of
our algorithm in some extreme case where 70% of the infor-
mation has been removed : starting from the original image,
we keep one line out of six and one column out of six. The
remaining part of the image is turned white so that occluded
regions are disjoint 5-by-5 squares. This last experiment may
indicate that our disocclusion method could be used as part of
a new multi-scale compression method. However, as it can be
seen in Figure 7, our approach fails at recovering textures. As it
was mentioned above, this is due to its purely geometric nature
and it should be combined with a texture-oriented disocclusion
method to give better results. This is the purpose of a future
work.
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Fig. 7. Top : original image. Middle : image obtained by keeping only

one line out of six and one column out of six and turning white the
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completion : remark indeed how we “see” despite the white squares).

Bottom : restored image using our disocclusion method.
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