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3Department of Physics, Tohoku University, Sendai 980-8578, Japan
4Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Received 6 May 2014; revised manuscript received 29 August 2014; published 3 December 2014)

An analytical study is presented of the double resonant Raman scattering process in graphene, responsible for

the D and D′ features in the Raman spectra. This work yields analytical expressions for the D and D′ integrated

Raman intensities that explicitly show the dependencies on laser energy, defect concentration, and electronic

lifetime. Good agreement is obtained between the analytical results and experimental measurements on samples

with increasing defect concentrations and at various laser excitation energies. The use of Raman spectroscopy

to identify the nature of defects is discussed. Comparison between the models for the edge-induced and the

disorder-induced D-band intensity suggests that edges or grain boundaries can be distinguished from disorder

by the different dependence of their Raman intensity on laser excitation energy. Similarly, the type of disorder

can potentially be identified not only by the intensity ratio ID/ID′ , but also by its laser energy dependence.

Also discussed is a quantitative analysis of quantum interference effects of the graphene wave functions, which

determine the most important phonon wave vectors and scattering processes responsible for the D and D′ bands.
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I. INTRODUCTION

Raman spectroscopy is a powerful nondestructive charac-

terization technique that provides invaluable information about

graphitic samples [1–3], such as phonon properties [4–6],

doping [7,8], and the number of layers [9] for both few-layer

graphenes and carbon nanotubes. In particular, the D and

D′ bands (∼1350 cm−1 and ∼1620 cm−1 for 2.4-eV laser

excitation energy EL, respectively) originate from the presence

of defects in the sample, such as grain boundaries [10–

12] or point defects [13,14]. For this reason, these defect-

induced Raman features, distinct from the defect-free G band

(∼1585 cm−1) and the G′ band (∼2680 cm−1), have been

widely used to assess the graphene materials’ quality when

used in graphene-based devices [5].

The origin of the D and D′ bands has been previously

discussed by several authors by using the characteristics

of the so-called double resonant (DR) Raman scattering

process [15–20]. This explanation has been successfully

applied to qualitatively describe some of the important aspects

of the D and D′ bands. Most notably, the dispersive behavior

of the D-band Raman shift [21,22] as a function of EL was

successfully explained within the DR picture.

Despite the numerous theoretical and experimental works

on the DR process, some of the most interesting and potentially

useful questions about the characterization of defects in

graphene remain to be answered. For instance, the distinguish-

ing signatures of the different types of defects regarding the

Raman spectra remain an open problem. Do edges or grain

boundaries have different fingerprints in the Raman spectra

than those for point defects? Do all defects have the same

laser energy dependence? Are the D and D′ bands affected

differently by each type of point defect? Ultimately, the open

question that needs to be addressed is whether Raman spec-

troscopy can be used as an accurate and nondestructive tool

to not only quantify, but also to distinguish and characterize

specific defects from one another in sp2 graphitic materials.

In this paper, we present a detailed analytical study that

describes the integrated D and D′ Raman intensities in order

to address the above-mentioned questions. Our results provide

new insights about the Raman physics in graphene which

were previously overlooked, and complements more detailed

numerical calculations.

Several experimental results have already paved the way

for progress in understanding the DR physics. For example,

the laser energy EL dependence of the frequently used ID/IG

ratio between the D-band and the G-band intensities has

been measured by many groups on samples with various

types of defects [25] and at different concentrations, thereby

providing a large body of information about defects. While

some samples [13,14] show an ID/IG ∝ E−4
L dependency

[see Fig. 1(a)], other measurements have shown a smaller

power-law exponent [26,27]. Furthermore, it was recently

shown by Eckmann et al. [27] that, even within a single sample,

the Raman intensities of the D and D′ bands can have different
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FIG. 1. (a) Laser energy dependence of the integrated Raman

intensity ratio ID/IG between the D and G bands obtained from

Eq. (15) (solid line), and experimental points from Ref. [14]. For

the IG intensity, we use the standard textbook dependence of IG ∝
E4

L [23]. The dashed line indicates the frequently used ID/IG ∝ E−4
L

fit. (b) The integrated D-band intensity as a function of defect

concentration ni obtained from Eq. (15) (solid line), and experimental

points of Ref. [24].
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laser energy dependencies, as well as suggesting that the D and

D′ intensity ratio can be different depending on the type of de-

fect [28]. Since the D and D′ bands originate from, respectively,

intervalley and intravalley elastic scattering of the photoexcited

electron-hole pair, the scattering potential should play an

important role in determining the Raman scattering amplitude.

In addition, several studies have focused on the dependence

of the integrated D-band intensity as a function of defect

concentration [24,29]. In its simplest approximation, the inte-

grated intensity depends linearly on the defect concentration.

However, experimental measurements show that ID reaches a

peak value at a sufficiently large concentration of defects [see

Fig. 1(b)], when the average distance Ld between defects is

∼3 nm [29].

Numerical calculations of the Raman cross section have

previously been the dominant procedure used to model the

features of the Raman spectra induced by several types of

defects. In this way, several authors studied the problem

of disorder [30], edges [31], grain boundaries [32], and

isotope impurities [33]. Given that the DR process is a

fourth-order process involving interactions between electrons,

phonons, photons, and defects, and requires knowledge of the

phonon dispersion relations, electronic band structure, and

electron lifetimes, numerical techniques provide a powerful

and effective way to address the defect problem. However,

the above-mentioned experimental observations are difficult

to understand directly from calculations.

Alternatively, analytic calculations require a series of

approximations which affect the predictive power of the

resulting model, but allow for a more insightful analysis into

the underlying physics involved. One notable step in this

direction was taken by Basko [23,34,35]. There, the author

obtained analytical expressions for the Raman intensity for

the G′ band [23,34] and for the edge-induced D band [35].

For instance, power-law dependencies on the inverse electron

lifetime γ of the integrated Raman intensity of the G′ band and

its overtones were obtained, suggesting the use of the ratio of

these Raman intensities to indirectly measure the pertinent

electronic lifetimes [34].

Interestingly, both edges and disorder produce a D-band

feature in the Raman spectra. However, the description of

the intermediate states in the edge-induced Raman scattering

case [35] already incorporates eigenstates in the presence of

the edge (i.e., scattered states instead of plane waves), while

the DR picture used to describe the disorder-induced Raman

scattering uses plane waves perturbed by an external potential.

Therefore, the edge-induced Raman scattering is studied as

a third-order process [35], while the disorder-induced Raman

scattering is studied as a fourth-order process [15,16]. Then,

a comparison between the predictions for the D band induced

by these two types of defects is necessary.

In this work, we do a detailed analytical study of the

DR theory which brings to light the role played by the

different parameters of the model, such as the laser energy,

scattering potential, and electronic lifetimes. For this purpose,

we obtain analytic expressions for the disorder-induced Raman

intensity within the DR theory using an effective Hamiltonian

description. We do a comparison between our model and recent

experimental measurements, and discuss the main features of

our results in relation to the above-mentioned experimental

observations. Furthermore, we compare our results with the

analytical models obtained for the edge-induced D band [35].

Our analysis yields, additionally, a quantitative discussion of

phase interference effects [18,30].

The outline of the paper is as follows: In Sec. II A we briefly

review the theory of the DR Raman process, and in Sec. II B

we describe the relevant matrix elements. In Sec. III we make

a detailed analysis of the DR Raman intensity, quantifying the

contribution from each of several different scattering processes

that are possible, and the main results are discussed in Sec. IV.

The conclusions are given in Sec. V.

II. THEORY

A. Raman intensity calculation

The DR process is understood as an inelastic fourth-order

process that involves interactions of photoexcited electron-

hole pairs with phonons and defects. Referring to Fig. 2

and neglecting finite-temperature effects, we consider only

Stokes scattering. The photoabsorption in its initial state is

described by an incoming photon with momentum Qi, energy

EL, and polarization λi, and the graphene system (electrons and

phonons) is initially in its ground state. The possible final states

are described by the production of a phonon with momentum

qph, mode α, and frequency ωqph,α , a photon with momentum

Qf and polarization λf , and the graphene electronic system

is back to its ground state. Elastic scattering with a defect is

necessary in order to guarantee momentum conservation in the

DR process.

In this paper, we compute the DR Raman scattering

probability IDR, defined as the total DR Raman probability

of an incoming photon with momentum Qi and polarization

λi. The electromagnetic field is assumed to be confined in a

box of volume V = ALz, where A is the area of the graphene

layer and Lz is the length of the box in the direction normal to

FIG. 2. Diagrams contributing to the double resonant Raman

scattering process. The notation ab (āb) indicates that the particle

a (a = e,h) is scattered first by a defect (phonon), and particle b

(b = e,h) is scattered next by a phonon (defect), and where e (h)

stands for electron (hole).
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the graphene plane. Then, IDR is calculated (� = 1) as

IDR =
2πLz

c

∑

Qf ,λf

qph,α

|M(qph,α)|2δ
(

EL − c|Qf| − ωqph,α

)

, (1)

where c is the speed of light, EL = c|Qi|, and the matrix

M(qph,α) =
∑

p Mp(qph,α) describing the Raman scattering

arises from consideration of all possible diagrams p for the

interactions, shown in Fig. 2. The Raman intensity IDR, which

is the magnitude measured in experiments, is related to IDR by

the simple relation IDR = I0 × IDR, where I0 is the intensity

of incoming photons.

Following the notation introduced by Venezuela et al. [30],

we label the aa processes as those in which either only

electrons or holes participate in the scattering (left column

in Fig. 2), while ab processes are those in which both

electrons and holes participate in the scattering (right column

in Fig. 2). Furthermore, we indicate in Fig. 2 the notation used

individually for each process p.

We focus mostly on the calculation of the matrix

Mp(qph,α) for the ee and eh processes throughout this paper,

given that extension to the remaining processes is straightfor-

ward. Explicitly, the matrices Mee(qph,α) and Meh(qph,α) for

the diagrams ee and eh in Fig. 2, respectively, are given by

Mee(qph,α) =
∑

p∈BZ

〈p,π |HeR,f|p,π∗〉〈p,π∗|Hep,α|p + qph,π
∗〉〈p + qph,π

∗|Hed|p,π∗〉〈p,π∗|HeR,i|p,π〉
(

EL − ωqph,α − επ∗
p + επ

p − iγ /2
)(

EL − επ∗
p+qph

+ επ
p − iγ /2

)(

EL − επ∗
p + επ

p − iγ /2
) (2)

and

Meh(qph,α) = −
∑

p∈BZ

〈p + qph,π |HeR,f|p + qph,π
∗〉〈p,π |Hep,α|p + qph,π〉〈p + qph,π

∗|Hed|p,π∗〉〈p,π∗|HeR,i|p,π〉
(

EL − ωqph,α − επ∗
p+qph

+ επ
p+qph

− iγ /2
)(

EL − επ∗
p+qph

+ επ
p − iγ /2

)(

EL − επ∗
p + επ

p − iγ /2
) , (3)

where the summation in electronic momentum p is taken

over the graphene hexagonal Brillouin zone (BZ), HeR, Hep,

and Hed denote the electron-radiation, electron-phonon, and

electron-defect interactions, respectively, π (π∗) denotes the

hole (electron) band, επ
p (επ∗

p ) is the energy of a hole (electron)

with wave vector p, and γ is the electronic broadening. In

particular, we assume that γ = γep + γed has contributions

from electron-phonon scattering (γep ∼ meV) or electron-

defect scattering (γed ∼ meV), and that, in comparison, the

contribution from electron-photon scattering (γeR ∼ μeV) can

be neglected. At electronic energies comparable to those of

photons in the visible range, a value of γep ∼ 15 meV is

obtained [36]. The value of γed can be calculated from Fermi’s

golden rule γed = 2π
∑

p |〈p′|Hed|p〉|2δ(εp − εp′ ), where εp ∼
EL/2 (see Sec. III C for details). Furthermore, we consider

throughout this work that γ (∼10 meV) ≪ ωqph,α(∼0.2 eV) ≪
EL(∼2 eV), which is the typical situation in experiments.

The characteristic feature of the DR process is that two

of the three denominators in Eqs. (2) and (3) can be

simultaneously zero at specific points in phonon and electronic

phase space, and thus the name double resonance [15]. This is

different than the G′-band case (two-phonon scattering around

2700 cm−1), where a triple resonance is possible [34].

Raman measurements yield the number of outgoing pho-

tons coming to a detector covering a solid angle 	f . In order to

make direct comparison with experiments, we express IDR in

Eq. (1) per unit solid angle 	f . The summation over outgoing

photon momentum Qf can be written as an integral in spherical

coordinates given by
∑

Qf
= (V/8π3)

∫

dQf

∫

d	fQ
2
f , where

d	f is the differential solid angle covered by the outgoing

photons. In Eq. (1), the matrix M only depends on the

direction Q̂f and polarization λf of the outgoing photon, but

not on |Qf|, given its small value. Then, energy conserva-

tion dictates c|Qf| = EL − ωqph,α , and the delta function in

Eq. (1) is absorbed upon integration on dQf . Therefore, we

obtain

dIDR

d	f

=
V LzE

2
L

4π2c4

∑

qph,α,λf

∣

∣

∣

∣

∣

∑

p

Mp(qph,α)

∣

∣

∣

∣

∣

2

, (4)

where we used c|Qf| ≈ EL. The values of Mp obtained from

the diagrams in Fig. 2 can be used as input for Eq. (4)

to obtain dIDR/d	f . In our calculations below, we assume

unpolarized and normally incident photons, and the detection

of backscattered photons in all polarization directions. Further-

more, because the LO and A1 Raman-active modes produce

a Raman shift much larger than their respective linewidth, we

can separate in Eq. (4) the contribution from each of these

modes to the integrated Raman intensity.

B. Effective Hamiltonian description

In the long-wavelength limit, the electronic states in the

vicinity of the K and K ′ points in the BZ, with momenta

p = K + k and p = K′ + k, respectively, and k a small wave

vector relative to the BZ scale, can be described by the massless

Dirac Hamiltonian

H0 = vF

∫

dr ψ†(r)

(

σ · k̂ 0

0 σ
∗ · k̂

)

ψ(r), (5)

where ψ(r) is the four-component spinor describing electrons

in the two graphene sublattices and in each of the two

valleys, k̂ = −i∇r, vF is the Fermi velocity, and σ = (σx,σy)

are Pauli matrices. Because in this description the wave

functions acquire a new pseudospin index s that labels the

valley s =K,K ′, then it is necessary to replace the summation

subindex in Eqs. (2) and (3) as
∑

p∈BZ →
∑

ks . Furthermore,

it is important to note that, within the effective Hamiltonian

approximation, intervalley transitions are described in terms

of a change in the valley spin index.

235410-3
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The electron-photon coupling can be obtained by the

requirement of gauge invariance k̂ → k̂ − (e/c)A in Eq. (5),

where A is the vector potential [37]. Then, HeR is given by

HeR = −
evF

c

∫

dr ψ†(r)

(

σ · A(r) 0

0 σ
∗ · A(r)

)

ψ(r), (6)

where A(r) is

A(r) =
∑

Qλ

√

2πc

V |Q|
(aQλeQλ + a

†
−Qλe∗

−Qλ)eiQ·r. (7)

The electron-phonon interaction can be modeled by

considering the variation in the tight-binding hopping

parameter induced by the change in the carbon-carbon bond

length due to lattice vibrations. Given that we are interested

in zone-center and zone-boundary phonons, we denote

qph = qμ + q (μ = Ŵ, K), where qŴ = 0 is the Ŵ point in the

graphene BZ, qK = K is the K point in the graphene BZ, and

q a small wave vector relative to the BZ scale. Furthermore,

for the DR Raman process we only need to include the

zone-center LO phonon mode (responsible for the D′ band),

and the zone-boundary A1 phonon mode (responsible for

the D band), which are the Raman active modes. Thus, for

compactness, μ = Ŵ hereafter refers particularly to the LO

mode in the vicinity of the Ŵ point, while μ =K refers to the

A1 mode in the vicinity of the K point.

The electron-phonon coupling term Hep for both

zone-center [37,38] and zone-boundary [39] phonons is then

given by

Hep = −i

∫

dr ψ†(r)

[

FŴ

(

σ × u(r) 0

0 −σ
∗ × u(r)

)

− FK

(

0 w∗(r)σy

w(r)σy 0

)]

ψ(r), (8)

where the parameters FK and FŴ (FŴ = FK/
√

2) are the

force constants for intervalley and intravalley scattering,

respectively. In Eq. (8), the zone-center displacement

field u(r) caused by the LO phonon mode with frequency

ωq,Ŵ = ωq,LO is given by

u(r) =
∑

q

√

1

Aρ ωq,Ŵ

(bq,LOeq + b
†
−q,LOe−q)eiq·r, (9)

where ρ is the mass density of graphene, and eq = (qx,qy)/|q|
is the LO polarization vector of the phonon amplitude. Alter-

natively, the zone-boundary distortion w(r) induced by the A1

phonon mode [39] with frequency ωq,K = ωK+q,A1
is given by

w(r) =
∑

q

√

1

Aρωq,K

(bq,K + b
†
−q,K ′ )e

iq·r, (10)

and couples eigenstates from valley K with eigenstates of

valley K ′.
For the electron-defect interaction, we consider defect

potentials randomly distributed over the lattice at positions

rj . Then, Hed is given by

Hed =
∫

dr ψ†(r)

⎡

⎣

1

A

∑

j,q

Uqe
iq·(r−rj )

⎤

⎦ψ(r), (11)

where the 4 × 4 matrix Uq has components

Uq =

(

Uq,Ŵ Uq,K

U
†
q,K Uq,Ŵ

)

. (12)

The 2 × 2 matrices Uq,μ (μ = Ŵ, K) in Eq. (11) are the

Fourier components of the defect potential for the different

sublattice degrees of freedom, and for intravalley (μ = Ŵ)

and intervalley (μ = K) scattering. In general, the matrices

Uq,μ may contain contributions from both onsite and hopping

terms. For instance, in Ref. [40], Uq,μ is calculated for onsite

potentials. Given that the wave vector q probed by Raman

spectroscopy varies with photon energy, it is important to

take into consideration (at least in principle) the general

wave-vector dependence of Uq,μ in Eq. (11). Throughout the

analysis we assume a general function Uq,μ, but we will

consider pointlike defects when explicitly comparing with

experiments in this work.

III. RESULTS

A. Phase interference effects: Phonon momentum selectivity

and relevant diagrams

Although the D and D′ bands probe phonons with general

q �= 0, and several diagrams need to be considered for the

calculation of the matrix M =
∑

p Mp in Eq. (1), only a

very small region of phonon phase space and a small number

of diagrams contribute dominantly to the Raman intensity. In

particular, numerical calculations have previously shown that

the Raman cross section is mostly due to a very small region in

phonon phase space associated with the backscattering of the

resonant photoexcited electron-hole pair [18] [see Fig. 3(a)]

and, additionally, dominated by the ab diagrams [30] in the

right column of Fig. 2 [see Fig. 3(c)]. These two results

were explained in terms of so-called phase interference

effects [18,30]. In this section and in the Appendix, we

quantitatively analyze these interference effects, which will

allow us to significantly simplify the analytical calculation of

IDR in Eq. (1).

The fact that backscattering of the photoexcited electron-

hole pair dominates the Raman cross section is not straight-

forward to obtain only by inspection of Eqs. (2) and (3).

A simple phase-space argument allows us to anticipate that

two regions of phonon phase space are relevant, namely,

|q| ∼ 0 and |q| ∼ EL/vF [see Figs. 3(a) and 3(b)]. When

|q| ∼ 0, then a large number of electronic states with wave

vector |k| = EL/2vF in Eqs. (2) and (3) are doubly resonant,

which may lead to a proportionately large scattering amplitude.

Alternatively, we note that the DR condition can only be met at

some point in electronic k space when |q| � EL/vF. Therefore,

when |q| ∼ EL/vF, a singular behavior in the density of states

between the photoexcited state and the backscattered state

is obtained. As shown in the Appendix, after performing

the k-variable integration in Eqs. (2) and (3), we obtain a

235410-4
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FIG. 3. (Color online) Because of phase interference effects,

only a small region of phonon phase space and a small number of

diagrams in Fig. 2 contribute dominantly to the Raman probability.

For instance, (a) backscattering of the photoexcited electron-hole

pair by a phonon with momentum qph = K + q, where |q| = EL/vF,

provides a significantly larger contribution to the D-band Raman

intensity than (b) forward scattering with |q| = 0 [18]. (c) The

contribution to the Raman matrix element |M|2 = |
∑

p Mp|2 (black

lines) is mainly due to ab diagrams shown in the right column of

Fig. 2 [30]. On the contrary, aa diagrams (colored dashed lines) have

matrix elements |Mp|2 smaller than those of ab processes by a factor

of (ωq,μ/2EL)2. At vF|q| = EL, for example, both the eh and he

diagrams provide the dominant contribution and, thus, |
∑

p Mp|2 is

approximately four times the value ofMeh. Note also the cancellation

of the peaks at vF|q| = EL − ωq,μ/2, where all four ab diagrams

interfere destructively. The black dashed curve is obtained within our

model from Eq. (13), valid only in the vicinity of each peak.

significantly larger value of |M(|q| ∼ EL/vF,μ)|2 compared

to |Mp(q → 0,μ)|2 by a factor of ω2
q,μγ /E3

L ∼ 10−5.

Similarly to the G′ band, ab diagrams play an important

role in the Raman intensity of the D and D′ bands, as was first

pointed out by Venezuela et at. [30]. In the Appendix, Sec. A 1,

we find that the poles in Eq. (2) are differently distributed in

the upper and lower complex planes from those of Eq. (3),

resulting in a matrix element Mp for ab processes larger than

those for aa processes by a factor ∼ωq,μ/2EL, as shown in

Fig. 3. Thus, failure to include ab processes in the Raman

calculations leads to a Raman intensity reduced by a factor

(ωq,μ/2EL)2 ∼ 10−3.

A final simplification in the Raman intensity calculation

is possible. As shown in Fig. 3(c), if we consider in

detail the resonance conditions in the denominators of

Eq. (3), we find that the matrix elements Meh(q,μ) are

peaked exactly at vF|q| = EL (so-called incident light

resonance) and at vF|q| = EL − ωq,μ/2 (here both the first

and third intermediate states in Eq. (3) are at resonance

with the photon). A similar conclusion holds for the he

diagram. Alternatively, for ēh and h̄e, the peak in the matrix

element occurs at vF|q| = EL − ωq,μ/2 and vF|q| = EL

(scattered light resonance). Therefore, close to the wave

vector vF|q| ≈ EL (vF|q| ≈ EL − ωq,μ), only the diagrams

Meh + Mhe (Mēh + Mh̄e) need to be calculated. On the

contrary, the large contribution produced by each of the four

ab diagrams at vF|q| = EL − ωq,μ/2 interfere destructively,

as shown in Fig. 3 and discussed in the Appendix, Sec. A 1.

B. Integrated Raman intensity

The two-peak shape of the Raman scattering matrix shown

in Fig. 3 and originating from the diagrams eh + he at

vF|q| = EL, and from ēh + h̄e at vF|q| = EL − ωq,μ, sig-

nificantly simplifies the calculation of the integrated Raman

intensity, as it is now only necessary to study M(q,μ) in the

close vicinity of these peaks. For this purpose, we calculate

Meh(q,μ) + Mhe(q,μ) for wave vectors |q| = EL/vF + δq,

with |δq| ≪ ωq,μ/vF. Calculation of Mēh(q,μ) + Mh̄e(q,μ)

can be done analogously. As shown in the Appendix, Sec. A 1,

we find that Meh(q,μ) is given by

Meh(q,μ) = −
iAKq,μ

8v2
Fωq,μ

√

2EL

(vF|q| − EL) + iγ /2
, (13)

where Kq,μ is the product of the four matrix elements in the

numerator of Eq. (3) with initial wave vector k = −q/2, so

that the electron-phonon interaction couples electronic states

with momentum q/2 and −q/2. Specifically, the value of Kq,μ

is given by

Kq,μ =
∑

s,j

2π (evF)2FμU
e
q,μ

[

eQiλi
× q̂

]

z

[

e∗
Qfλf

× q̂
]

z
e−iq·rj

V EL

√

A3ρωq,μ

,

(14)

where the term U e
q,μ is the shorthand notation for the matrix

element U e
q,μ = 〈q/2,π∗,s ′|Uqe

iq·r| − q/2,π∗,K〉, with s ′ =
K for μ = Ŵ [i.e., projects on the diagonal component Uq,Ŵ

in Eq. (12)], and s ′ = K ′ for μ = K [i.e., projects on the

off-diagonal component Uq,K in Eq. (12)]. Importantly, in

Eq. (14), both valleys contribute to Meh(q,Ŵ) for intravalley

scattering, whereas only one valley contributes to Mp(q,K)

for intervalley scattering (the creation of a phonon at the K

point allows an electronic transition from the K ′ to the K

point, but not vice versa). A similar analysis can be done for

Mhe(q,μ), where hole scattering by the defects yields a matrix

element Uh
q,μ = 〈q/2,π,s ′|Uqe

iq·r| − q/2,π,K〉, where s ′ =
K for μ = Ŵ, and s ′ = K ′ for μ = K , and resulting in a total

defect scattering matrix element Uq,μ=U e
q,μ−Uh

q,μ [41].

In order to obtain the integrated Raman intensity, we sum

Meh(q,μ) and Mhe(q,μ) and insert the sum in Eq. (4). In

the regime of uncorrelated defects,
∑

j,j ′ e
iq·(rj −rj ′ )/A = ni,

where ni is the defect concentration. Furthermore, because

of the isotropic nature of the Dirac Hamiltonian, we can

assume that |Uq,μ|2 depends only on the modulus of the wave

vector q. Integration over all possible phonon momenta and

photon polarization directions, and considering detection of

the backscattered photons, leads to the dimensionless Raman
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intensity

dI
μ

DR

d	f

=
gμα2

4

F 2
μ

ρv2
Fωq,μ

(

vF

c

EL

ωq,μ

)2
ni|Uq,μ|2

v2
F

ln

(

ωq,μ

γ

)

(15)

for the D (μ = K) and D′ (μ = Ŵ) Raman process, where

α = e2/c is the fine-structure constant, |q| = EL/vF, and the

prefactors gŴ = 2 and gK = 1 appear due to the different

electron and phonon valley indices summations for intravalley

and intervalley processes, respectively (see details in the

Appendix, Sec. A 1).

C. Comparison with experiments

Several experiments measured the Raman intensity ratio

ID/IG as a function of laser energy [13,14,26,27]. The

dependence of IDR on EL in Eq. (15) is affected by several

factors: (i) the resonant electronic and phonon phase space

increases at larger values of photon energies; (ii) because of

the dispersive behavior of the D and D′ bands, ωq,μ varies

as the laser energy is changed; (iii) the broadening γ depends

on the energy of the resonant photoexcited electron hole pairs

and, in the simplest case, γ behaves as γ ∝ EL [36]; (iv) the

Raman process selects specific Fourier components |Uq,μ|2
of the scattering potential, with |q| = EL/vF. Although (i)

and (ii) are factors associated with the intrinsic properties of

graphene, (iii) and (iv) are extrinsic and explain why different

dependencies of the D-band intensity on laser energy are

measured experimentally.

Considering a linear dependence of the inverse electronic

lifetime with laser energy, and the dispersion relation of the

A1 phonon mode close to the K point, we plot in Fig. 1 the

intensity ratio ID/IG as a function of EL for pointlike defects

(i.e., |Uq,μ|2 is taken as independent of q). The analytical

results are compared with the experimental integrated Raman

intensity from Ref. [14]. For the IG Raman intensity, we use

the standard textbook dependence IG ∝ E4
L [23], and we used

typical values for the electronic broadening γ ∼ 0.03EL [36].

Even within the simplifying assumptions made in our model,

there is good agreement between theory and the experiments.

Furthermore, it is interesting to note that, from Eq. (15), the

disorder-induced D- and D′-band intensities do not necessarily

have the same dependence on EL. In fact, recent experimental

measurements [27] have shown that the ratio ID′/ID is a slowly

increasing function of laser energy. If we consider pointlike

defects and taking into account that γ ≪ ωq,μ, then the ratio

ID′/ID obtained from Eq. (15) verifies ID′/ID ∝ (ωq,K/ωq,Ŵ)3,

where |q| = EL/vF. Because the A1 phonon mode near the

K point is more dispersive than the LO phonon mode near the

Ŵ point, then the ratio ID′/ID obtained from theory is a slowly

increasing function of laser energy, which is in agreement with

the experiments.

We finally consider the dependence of the integrated Raman

intensity on defect concentration ni. Within the model in

Eq. (15), two regimes exist: (i) when the defect concentration

ni is low enough such that the electron-phonon-induced

linewidth γep ∼ 15 meV [36] is larger than the defect-induced

linewidth γed, then ID ∝ ni; (ii) however, when ni is sufficiently

large such that γed > γep, then γ is sensitive to defect concen-

tration ni and a nonlinear dependence of IDR as a function of ni

is obtained. The threshold value of ni separating both regimes

can be estimated by calculating the defect-induced broadening

of the electronic states at εk ∼ EL/2, assuming uncorrelated

short-range defects with a potential strength |Uq,μ| = U0. A

straightforward calculation yields γed = ni|U0|2EL/2(�vF)2.

Taking U0 ∼ 1 eV·nm2 and EL ∼ 2 eV, then the condition

γep ∼ γed is met at defect concentrations of ni ∼ 1012 cm−2.

In order to compare with experimental measurements, the

dependence of ID on ni is plotted in Fig. 1(b) together with

the experimental data from Ref. [24]. Here, we used γep ∼
15 meV and γed[meV] ∼ 10 × ni[1012 cm−2]. The theoretical

model correctly captures the saturating behavior of the D-band

intensity, as obtained in experiments. However, it is beyond the

scope of this paper to describe the highly defective limit, such

as that measured in Refs. [13,14]. In this limit, the electronic

states are localized within small grains formed, for instance,

after intense ion irradiation and, thus, they can no longer be

described as eigenstates of the translational invariant system.

IV. DISCUSSION

The defect scattering potential plays an important role in

determining the DR Raman intensity, as shown in Eq. (15).

However, most models to date typically assume constant

elastic scattering matrix elements. First, this is equivalent

to assuming that defects can scatter electrons or holes with

equal strength throughout the BZ. Second, this assumption

neglects electronic phase factors associated with the sublattice

and valley pseudospin degrees of freedom. For instance,

whether the onsite component of the defect potential provides a

significantly different contribution to the Raman intensity than

the hopping component has not been addressed in the literature.

Thus, further work on the analysis of the term |Uq,μ|2, which

conveniently appears as a numerical prefactor in Eq. (15), is

necessary.

Experimental measurements for different types of defects

have shown ID ≫ ID′ [28]. By taking the ratio of Eq. (15) for

the D and D′ bands, we obtain

ID

ID′
≈

gK

gŴ

F 2
K

F 2
Ŵ

(

ωq,Ŵ

ωq,K

)3 |Uq,K |2

|Uq,Ŵ|2
≈ 2.2 ×

|Uq,K |2

|Uq,Ŵ|2
. (16)

Although theoretical calculations show FŴ < FK (or more

precisely, FŴ/FK ≈ 1/
√

2) [39,42,43], this small difference

cannot account for the large intensity ratio observed ex-

perimentally. Additionally, the phonon frequencies verify

ωq,Ŵ/ωq,K ≈ 1.3. Then, Eq. (16) suggests that the origin of

ID/ID′ ≫ 1 is primarily due to the scattering potential term.

The fact that short-wave-vector intravalley scattering typ-

ically dominates over long-wave-vector intervalley scattering

suggests that there is a contradiction between Eq. (16) and the

typically measured relation ID/ID′ ≫ 1. In particular, when

the defect potential has a finite range, the short-wave-vector

scattering components of the matrix Uq,Ŵ in Eq. (12) are

expected to be larger than the long-wave-vector scattering

components in Uq,K . However, this does not necessarily mean

|Uq,K | < |Uq,Ŵ|. Because graphene has internal pseudospin

degrees of freedom, the internal phases of the photoexcited

electron (or hole) and the backscattered electron (or hole)

play an important role. In particular, it is well known
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from the behavior of the electronic transport of graphene

that intravalley backscattering of Dirac electrons is strongly

suppressed [40,44], thereby allowing |Uq,K | > |Uq,Ŵ| to be

possible. Similar effects are expected to occur for the DR

theory, where backscattering of the photoexcited electrons

[see Fig. 3(a)] is the dominant contribution to the DR Raman

intensity. Further theoretical work in this direction is necessary

and should be the subject of future studies.

Using Raman spectroscopy to identify the nature of the

defects may have attractive applications in the characterization

of real graphene samples. For instance, it has been previously

found [35] that the edge-induced D-band intensity scales with

laser energy as ID ∝ ELln(ωq,K/γ ), which is significantly

different from the dependence found in Eq. (15). Therefore,

our result suggests a way to distinguish the edge-induced

D band from the disorder-induced D band. Alternatively,

defects with different ranges may be distinguished between

each other by the different wave-vector dependence of the

term |Uq,μ|2. In practice, however, extracting such information

may be difficult given that several parameters in Eq. (15)

change simultaneously with laser energy, thus making detailed

experimental analysis rather complicated. It is more likely,

however, that use of the ratio ID/ID′ is a more promising

direction to identify the nature of defects, as suggested by

Eckmann et al. [28].

V. CONCLUSIONS

A detailed analytical study of the disorder-induced double

resonant (DR) Raman process in graphene was presented, and

analytical expressions for the Raman probability IDR for the

D and D′ bands are derived and discussed. Given the large

number of parameters required to describe the DR process,

this study succeeds in explicitly showing how the Raman

intensities depends on laser energy, defect concentration,

and electronic lifetime, within a single equation [Eq. (15)].

Furthermore, we here discussed quantitatively the so-called

phase interference effects [18,30], which determine the most

important phonon wave vectors and diagrams in Fig. 2 that con-

tribute to the DR Raman intensity. It was also found that the

disorder-induced D-band Raman intensity has a different laser

energy dependence than the edge-induced D band [35], which

could potentially be used to distinguish carrier scattering by

boundaries from scattering due to lattice disorder.

Good agreement between our analytical results and experi-

mental measurements is obtained. As observed experimentally,

it is shown in this paper that the D- and D′-band intensities

have a different laser energy dependence [27] and, additionally,

that each of these dependencies can vary with the type

of defect [13,14,26,27]. The saturating behavior of the ID

intensity with increasing defect concentrations measured in

experiments [24,29] is also discussed, and occurs when

the defect collision rate is faster than the electron-phonon

collision rate. Further theoretical work is required to better

understand the role of the different parameters describing the

defect scattering potential, such as the range and the various

components associated with the electronic pseudospin degrees

of freedom, on determining the ID/ID′ ratio. The value of this

ratio could potentially be used to identify the nature of defects

in graphene [28].
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APPENDIX A: RAMAN INTENSITY CALCULATIONS

In this Appendix, we focus specifically on the calculation

of the ee and eh diagrams in Fig. 2. Extension to the remaining

processes is straightforward. In Sec. A 1, we consider the

most relevant case of backscattering of the photoexcited

electron-hole pair due to the production of a phonon with

wave vector qph = qμ + q (μ = Ŵ, K), where |q| ≈ EL/vF,

qŴ = 0, and qK = K. Afterwards, in Sec. A 2, we show that

forward scattering of the photoexcited electron-hole pair (i.e.,

|q| = 0) provides a negligible contribution to the total intensity

(this is shown rigorously for nanotubes in Ref. [18]).

1. Backscattering: vF|q| = EL

We evaluate first the matrix elementMp(q,μ) for a value of

|q| = EL/vF + δq, where |δq| ≪ ωq,μ/vF. Given that trigonal

warping effects are neglected, we can arbitrarily align the kx

direction in the integrals in Eqs. (2) and (3) with q, as shown

in Fig. 4. Under the assumption γ ≪ ωq,μ ≪ EL, which is

the typical situation in experiments, most of the contribution

to Mp(q,μ) comes from the electronic phase-space region

in the vicinity of the point k ≈ −q/2 (shaded regions in

Fig. 4). Given the small region of phase space that needs to be

considered, we (a) expand to leading order in the vicinity

of k = −q/2 the three functions in the denominators of

Eqs. (2) and (3); (b) evaluate the matrix elements at k = −q/2;

(c) perform the k-space integration.

After carrying out the steps (a) and (b) above, and

conveniently normalizing the integrals in Eqs. (2) and (3),

one can then obtain

Mp(q,μ) ≈
AKq,μ

8π2v2
FEL

× I±

(

vFδq

EL

)

, (A1)

FIG. 4. Plot of the resonance conditions for each of the terms in

the denominator of Eq. (3), for the case |q| = EL/vF. The shaded

regions indicate the volume of electronic phase space k that mostly

contributes to the scattering amplitude.
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where I±(ξ ) is given by

I±(ξ ) = ±
∫ ∞

−∞
dx

∫ ∞

−∞
dy

1

(−ξ − ωq,μ/EL ± x − iǫ)

×
1

(−ξ − 2y2 − iǫ)(−ξ + x − iǫ)
, (A2)

and Kq,μ is described in Eq. (14). The + (−) sign in Eq. (A2)

corresponds to the ee (eh) process, and ǫ = γ /2EL ≪ 1.

The positions of the poles in the x variable are distributed

differently in the upper- and lower-half planes for the I±
integrals, which results in |I+| ≪ |I−| (i.e., the dominant con-

tribution comes from eh processes). In particular, calculation

of I− in Eq. (A2) yields

I−(ξ ) = −
iπ2EL

ωq,μ

√

2

ξ + iǫ
. (A3)

On the other hand, for the ee process, I+ = 0 is obtained

when using the approximations discussed above. However,

the leading-order correction to I+ can be estimated to be of

order I+(0)/I−(0) ∼ −i(ωq,μ/2EL), which is consistent with

the numerical results in Fig. 3. Therefore, the aa diagrams lead

to a substantially smaller scattering amplitude ∼(ωq,μ/2EL)2

when compared to the ab diagrams, and this feature was

previously pointed out in the work by Venezuela et al. [30].

Inserting I− into Eq. (A1) yields Eq. (13).

At vF|q| = EL, the he process also contributes strongly

to the Raman intensity, while all remaining ab processes

provide a small contribution (ēh + h̄e are peaked at vF|q| =
EL − ωq,μ). In order to calculate the integrated Raman

intensity, we insert Meh(q,μ) + Mhe(q,μ) into Eq. (4) to

obtain

dI
μ

DR

d	f

=
gμα2

16

F 2
μ

ρv2
Fωq,μ

v2
F

c2

∑

q,λf

ni |Uq,μ|2

Aω2
q,μ

×
EL

∣

∣eQiλi
× q̂

∣

∣

2∣
∣e∗

Qfλf
× q̂

∣

∣

2

√

(vF|q| − EL)2 + (γ /2)2
. (A4)

Here, α = e2/c is the fine-structure constant, gŴ = 2, gK = 1,

and where we used the assumption of uncorrelated defects

with a concentration ni . Different prefactors gμ appear for

intravalley and intervalley processes because, for zone-center

phonons, both valleys contribute to Kq,μ, as discussed in the

main text, while for zone-boundary phonons, only one valley

contributes to each phonon mode in the vicinity of the K and

K ′ points.

Integration over momentum space q in Eq. (A4) can

be done in the vicinity of a ring of radius EL/vF and

angular direction θq. Thus, we use polar coordinates
∑

q ≈
(A/2π )

∫

d (δq)
∫

dθq(EL/vF). Furthermore, we assume nor-

mal and unpolarized incident photons, and detection in

both polarization directions. Then, the angular integration of

Eq. (A4) yields

∑

λf

∫

dθq

2π

∣

∣eQiλi
× q̂

∣

∣

2∣
∣e∗

Qfλf
× q̂

∣

∣

2 =
1 + cos2θf

2
, (A5)

where θf is the angle of the outgoing photon with respect to the

normal to the graphene sheet. Detection in the backscattering

configuration (i.e., θf = π ) is assumed in this work. The

radial integration of Eq. (A4), using a cutoff in the phonon

momentum of ∼ωq,μ/2vF, which is the region of validity

of Eq. (A3) (see Fig. 3), yields half the value of the

integrated Raman intensity of Eq. (15). The other half of

the value of the integrated Raman intensity comes from

considering the peak at vF|q| = EL − ωq,μ from the ēh + h̄e

diagrams.

We finally note that the peak at vF|q| = EL − ωq,μ/2

provides a negligible contribution to
∑

p Mp, as shown in

Fig. 3. In this case, the large contribution of Meh cancels that

ofMēh when each term is calculated separately as in Eqs. (A1)

and (A2). Similarly, the contributionMhe cancels that ofMh̄e,

yielding a negligible value of M =
∑

p Mp.

2. Forward scattering: q = 0

Forward scattering [Fig. 3(b)] provides a negligible con-

tribution to the D- and D′-band intensities because of the

small scattering amplitude when compared to those asso-

ciated with the backward scattering case, vF|q| = EL. To

show this point, we compute the matrix element Meh(q →
0,Ŵ) for the zone-center phonon mode, which is given

by

Meh(q → 0,Ŵ) = A

∫ ∞

0

dk k

∫ 2π

0

dθk

2π

Kq→0,Ŵ(θk)

(EL − ωq,μ − 2vFk − iγ /2)(EL − 2vFk − iγ /2)2
, (A6)

and where Kq→0,Ŵ(θk) is

Kq→0,Ŵ(θk) = −
∑

s,j

2π (evF)2FŴ Uq=0,Ŵ sin(θk)
[

eQiλi
× θ̂

]

z

[

e∗
Qfλf

× θ̂
]

z
e−iq·rj

V EL

√

A3ρ ωq,μ

. (A7)

In Eqs. (A6) and (A7), θk was chosen to be the angle beween the k vector and the atomic displacement u, and θ̂ = [cos(θk),sin(θk)].

Integration of the radial and angular components of Eq. (A7) yields

Meh(q → 0,Ŵ) =
A〈Kq→0,Ŵ〉θLk

4ELv2
F

, (A8)
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where 〈Kq→0,Ŵ〉θ =
∫

(dθk/2π )Kq→0,Ŵ(θk), and Lk is

Lk =
EL

ωq,μ

[

1 −
EL − ωq,μ − i

γ

2

ωq,μ

ln

(

EL − i
γ

2

EL − ωq,μ − i
γ

2

)]

.

(A9)

Considering the case γ ≪ ωq,μ ≪ EL, then Lk ≈ 1. By

comparing Eq. (A8) with (A3), we conclude that |Meh(q →
0,Ŵ)|2 is a factor of order ω2

q,μγ /E3
L ∼ 10−5 smaller than

|Meh(|q| = EL/vF,Ŵ)|2 at backscattering, for typical values

γ ∼ 10 meV.
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