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Through a combined theoretical and experimental study of disorder-induced incoherent scattering losses in
slow-light photonic crystal slab waveguides, we show the importance of Bloch mode reshaping and multiple
scattering. We describe a convenient and fully three-dimensional theoretical treatment of disorder-induced
extrinsic scattering, including the calculation of backscatter and out-of-plane losses per unit cell, and the
extrapolation of the unit-cell loss to the loss for an entire disordered waveguide. The theoretical predictions,
which are also compared with recent measurements on dispersion engineered silicon waveguides, demonstrate
the failure of the Beer-Lambert law due to multiple scattering. We also explain why the previously assumed
group velocity scalings of disorder-induced loss break down in general.
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I. INTRODUCTION

Photonic crystal �PC� waveguides are an emerging class
of nanoengineered optical structure in which light may
propagate at speeds much slower than the vacuum speed of
light,1,2 leading to enhanced linear and nonlinear optical
effects,3 and to the delay and storage of light.4 Although
these waveguides are usually, by design, intrinsically loss-
less, slow-light propagation amplifies extrinsic scattering
from minute fabrication imperfections leading to large
propagation losses.5–8 Indeed, the role of scattering losses in
nanophotonic structures such as PC waveguides is now re-
garded as one of the most important issues preventing the
exploitation of practical nanoscale optical devices. The phys-
ics of disorder-induced scattering is also of significant fun-
damental interest, and can frequently lead to interesting be-
havior such as Anderson localization9,10 and random lasing.11

Recently, there has been significant interest in developing
intuitive scaling relations for PC waveguides that relate the
scattering losses to the group velocity.6–8 A common model
is that the out-of-plane and backscatter losses scale inversely
with group velocity �vg� and group-velocity squared, respec-
tively. These optical losses are analyzed typically using the
famous Beer-Lambert law, where the intensity decays expo-
nentially with distance. These scaling rules make physical
sense, since as the light slows down, the local photon density
of states increases inversely with the group velocity; what
looks like a 1 nm bump at vg=c, where c is the speed of light
in vacuum, may look like 10 nm at vg=c /10 as the effective
optical length increases. While these generally well accepted
scaling rules are valuable for building intuition about how
device designs will perform, they neglect two essential in-
gredients: �i� the role of multiple scattering, which is ne-
glected through use of the Beer-Lambert law, and which has
been demonstrated directly in the regime of coherent
scattering,12 and �ii� the contribution of the Bloch mode elec-
tric field distribution to the loss. The need to account for
multiple scattering has been predicted for two-dimensional

�2D� PC structures, and implied for three-dimensional �3D�
structures, by Ref. 13; and experimentally observed by Ref.
14. To our knowledge, no one has yet presented either cal-
culations or experiments for directly showing the breakdown
of the Beer-Lambert law due to multiple scattering for the
ensemble average transmission loss �where the ensemble av-
erage is obtained by averaging the transmission spectra over
many nominally identical experimental samples� for 3D pla-
nar PCs, where it is not clear if the law is valid.

In this work, we study disorder-induced propagation
losses in planar PC waveguides to show, both theoretically
and experimentally, that the Beer-Lambert law breaks down,
even for very low degrees of fabrication disorder. This dis-
agreement is particularly significant in the slow-light regime
where multiple scattering12–14 must to be taken into account
and leads to losses that are, surprisingly, lower than those
predicted from the Beer-Lambert law. From a theoretical per-
spective, we extend previous, fully 3D, treatments of inco-
herent scattering6 to include multiple-scattering events, and
we self-consistently account for changes in the Bloch mode
reshaping as a function of frequency. We subsequently dem-
onstrate the breakdown of the Beer-Lambert law for a planar
PC waveguide and provide a rigorous but straightforward
method for computing ensemble average scattering losses
between waveguides of different lengths. We obtain good
agreement between theory and transmission loss measure-
ments on state-of-the-art dispersion-engineered silicon
waveguides, and highlight that previously assumed scaling
of loss as a function of group velocity must be revised on a
number of fronts. These results are both surprising and im-
portant in their implications, as they suggest that present
analysis techniques of PC waveguide measurements will not
work if the Beer-Lambert law is employed; moreover, they
suggest that multiple scattering actually helps to reduce the
overall transmission losses, which is highly unusual, if not
unique, for a 3D waveguide system.
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II. DESIGN, FABRICATION, AND GROUP
INDEX CALIBRATION

PC waveguides with tailored dispersion properties15–18 are
best suited for slow-light studies, as their group velocity can
be adjusted �engineered� over a large spectral range. Our
preferred tailoring method is to begin with a planar W1
waveguide formed, e.g., by omitting a row of holes in a
triangular PC lattice. We then laterally shift the first and sec-
ond rows of holes adjacent to the defect by a distances s1 and
s2, respectively �refer to Fig. 1�. This alters the nature of the
PC waveguide, thus changing the position of the band-gap-
guided mode relative to the index guided mode.19 As these
two modes anticross, the local shape of the dispersion curve
is altered. This is a particularly powerful technique as the
hole position may be controlled with very high precision
��1 nm� and also provides a wider operating range relative
to other approaches.15 Consequently, we are able to create a
region of low-dispersion slow light with a range of specified
values and with an optimized bandwidth.

The devices were fabricated on a SOITEC silicon-on-
insulator wafer, consisting of a 220-nm-thick silicon guiding
layer on a 2000-nm-thick silica buffer layer. The PC pattern
was defined in ZEP-520A electron beam resist using a
VISTEC VB6 electron beam writer with a 1.2 mm write field
operating at 100 keV, thereby minimizing the effects of
stitching errors on the PC waveguides. The pattern was trans-
ferred into the silicon layer using reactive ion etching with a
combination of SF6 and CHF3 gases. Photolithographically
defined windows were then opened in the photoresist above
the photonic crystal regions and the air bridge created using
a hydrofluoric acid wet etch. The fabrication process is very
similar to that of Refs. 17 and 20. Coupling regions, as de-
scribed in Refs. 17 and 21 were used to aid coupling of light
in the slow-light regime. An example of the fabricated wave-
guide is shown in Fig. 1.

We fabricated a number of s1=−48 nm, s2=16 nm, peri-
odicity a=410�1 nm, and radius r=0.286a=118�10 nm,
220�10 nm thick membrane waveguides with different
lengths. As discussed in Ref. 22, there can be a large system-
atic error in the radius and slab thickness when fabricating
these devices. The experimental group index is measured

using Fourier-transform spectral interferometry23 and shown
in Fig. 2 for waveguides of different length. We model the
properties of the ideal waveguides �no disorder� with a
frequency-domain plane-wave expansion technique, using a
freely available software package,24 though any mode solv-
ing techniques can be used. Assuming no significant changes
in the band structure due to disorder, we then slightly ad-
justed the estimated radius of the holes by around 6 nm to
obtain reasonable fits to the experimental group index. A
smaller radius of 0.274a=112 nm �dashed black� was found
to better fit the observed dispersion, and we use this value in
the following calculations.

III. THEORY OF DISORDER-INDUCED SCATTERING

Previously, several groups6–8 reported various extrinsic
loss versus group-velocity scaling behavior. In particular,
Ref. 6 explicitly decomposed the loss into an out-of-plane
scattering contribution and a backscattering contribution.
Specifically, by calculating the incoherent ensemble average
loss, where the loss predictions are representative of the re-
sults obtained when averaging the transmission spectra over
many nominally identical, single-period experimental
samples, the backscatter power loss per unit cell, �back, and
radiative loss, �rad, were found to be6

��back���� =
a2�2

4vg
2 � � ����r����r����ek�r� · ek�r��

��ek
��r�� · ek

��r���e2ik�x−x��drdr�, �1�

FIG. 1. �Color online� A SEM image of a typical dispersion
engineered W1 with the first and second row offsets s1 and s2 sche-
matically illustrated. Inset: schematic of a hole with disordered pe-
rimeter and straight side walls. We describe the statistical properties
of the disorder with a RMS roughness � and a correlation length lp

measured around the circumference.

FIG. 2. �Color online� Measured group index for three different
sample lengths �in order of decreasing maximum resolvable group
index�: 180 �m �blue�, 300 �m �green�, 700 �m �red�, 900 �m
�cyan�, and 1500 �m �magenta�. The fitted group index
�r=112 nm� is shown with the dashed black curve. The slow-light
measurement is limited by the resolution of the optical spectrom-
eter, which limits the maximum group delay that can be measured
from interference fringes. It is this, rather than low transmission,
which causes the apparent group indices to deviate so dramatically
from the fit below a certain frequency, depending on the sample
length. In the theory fit, a systematic frequency shift of 2.7 THz, has
been applied to account for uncertainty in the slab thickness.
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��rad���� =
a�

vg
� � ����r����r���

� Im�ek
��r� · GJ rad�r,r�,�� · ek�r��eik�x�−x��drdr�,

�2�

where a is the pitch of the PC waveguide, ek�r� is the ideal
electric field Bloch mode with wave vector k and group ve-

locity vg, GJ rad�r ,r� ,�� is an effective photon Green function
for the radiation modes, and ���r� describes the difference
between the ideal and disordered structure. The Green func-
tion is simply the electric field response at r to an oscillating
polarization dipole at r�. The electric fields are normalized
by 	unit cell�ideal�r��ek

��r� ·ek�r��dr=1. Similar to how we fit
the dispersion data, we obtain the properties of the ideal
waveguides with a plane-wave expansion technique.24

Consistent with other works, where good agreement has
been found between theory and experiment,5,12 we consider
roughness on the surface of the holes to be the dominant
source of scattering and so ���r� is nonzero only on the hole
sidewall. A hole with a roughened surface is schematically
illustrated in the inset of Fig. 1. The disorder correlation
between two points on the sidewall of the same hole is taken
to be: ����rside−wall����rside−wall� ��= ��2−�1�2�2e−r
	̃−	̃�
/lp,

where �2−�1 is the change in dielectric constant, � is the
RMS roughness, r is the hole radius, 	̃− 	̃� is the angle
between the points measured from the hole center, and lp is
the correlation length measured around the circumference of
the hole. Disorder between two points on different holes is
taken to be uncorrelated, though this is not a model restric-
tion. The roughness is taken to be perfectly correlated in the
direction parallel to hole axis since it is assumed to be due to
imperfections in the etching mask. This is similar to the sta-
tistical functions that have been fitted to images of photonic
crystal slabs.25 In this analysis, we have used disorder pa-
rameters of �=2 nm and lp=40 nm, which is consistent
with our sample characterization and matches our experi-
mental results.

Equations �1� and �2� predict an approximate group-
velocity scaling of 1 /vg

2 for backscattering and 1 /vg for out-
of-plane scattering, however, the electric field Bloch mode,
ek�r�, naturally changes simultaneously and thus its depen-
dence on frequency cannot be neglected; this is a tempting
analysis mistake in the expected scaling analysis for PC
waveguides. The top plot of Fig. 3 shows the dispersion re-
lation for a waveguide mode that has been engineered to
have a region of low-dispersion slow light �highlighted in
cyan�. Three sample wave vectors are indicated with red
circles and the associated Bloch mode electric field 
ek�r�
2 is
shown in the bottom three plots. As the wave vector in-
creases from 0.34677 to 0.3871�2
 /a, the waveguide en-
ters the slow-light region, and the electric field expands rap-
idly into the first row of the cladding PC where it interacts
strongly with the disorder on the hole surfaces �this is similar
to simple 2D PC calculations26�. Importantly, the Bloch
mode continues to change as the wave vector is further in-
creased from 0.3871 to 0.42742�2
 /a, despite the now
constant group index.

To demonstrate this phenomenon more quantitatively, the
integral of 
ek�r�
2 around the surfaces of the holes is shown
in Fig. 4. This value captures the essence of the integral in
Eq. �1� but is not directly proportional to the loss. In the
figure, one can clearly see the sharp increase in the concen-
tration of the electric field in the disorder region at the de-
signed group index for the dispersion engineered structures

FIG. 3. �Color online� Electric field distribution for various
wave vectors in a dispersion engineered waveguide �s1=−48 nm,
s2=16 nm, a=410 nm, and r=112 nm, with a 220-nm-thick mem-
brane�. The top plot shows the dispersion relation in blue with the
region of near-constant slow light highlighted in cyan. The three
intensity plots show 
ek�r�
2 in the mid plane of the structure for
each of the three wave vectors marked with red circles in the top
plot.

FIG. 4. �Color online� Integral of 
ek�r�
2 over the hole surfaces
as a function of group index. The integral increases sharply at the
designed group index due to restructuring of the electric field mode
as shown in Fig. 3. The curves are for W1 waveguide �blue, dashed�
and the dispersion engineered structure of Fig. 3 �green, solid�. As
can be recognized, this is most certainly not a constant.
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�green, solid�. In contrast, the W1 waveguide �blue, dashed�
has a mode distribution that evolves slowly with wave vector
and does not exhibit this phenomenon. Whereas a simple
�back�vg

−2 relation �which is the standard assumption� would
have predicted no change in loss with the group index held
constant, the full calculation including the Bloch mode re-
veals a sharp increase in loss.

IV. BEYOND THE BEER-LAMBERT LAW

The above calculation technique yields the loss for a
single period of a disordered waveguide. It is common to
analyze waveguide transmission data assuming a Beer-
Lambert dependence for the transmitted power P�L�, through
a waveguide of length L : P�L�= P0e−�L. A Beer-Lambert re-
lation is only appropriate for processes such as absorption
where once light is lost from the forward propagating mode,
it can never reach the output port. Although it is obvious that
too much backscattering will cause the Beer-Lambert law to
breakdown, hitherto, there are no convenient theoretical ap-
proaches to show this directly and thus no way of properly
analyzing the experiments.

One resolution to the theory is to self-consistently model
light propagation along an entire disordered waveguide, not
just a single period.12 Although this method provides a
wealth of information, including sub unit-cell scattering and
localization, it is computationally expensive and not suited
for the common analysis of incoherent scattering losses. In-
stead, here we introduce a computationally simple calcula-
tion in Eqs. �1� and �2� to model a single period of the wave-
guide and then extrapolate the average loss per unit cell to
long waveguides using an incoherently averaged coupled
mode approach. With �f�x� and �b�x� giving the intensity in
the forward and backward modes, respectively, the propaga-
tion is governed by �the frequency dependence is implicit�

d

dx
�f�x� = − ��back + �rad��f�x� + �back�b�x� , �3�

d

dx
�b�x� = ��back + �rad��b�x� − �back�f�x� , �4�

where �back in the former �latter� case is associated with
forward-back �back-forward� scattering. Using incoherent
averages for the fully 3D loss coefficients �see Eqs. �1� and
�2��, these equations are straightforward to solve analytically.
With this technique, we do not expect to recover interesting
coherent features such as Fabry-Pérot fringes and the varia-
tions in transmission on short frequency scales which are a
phase effect as shown in Ref. 12. We do, however, reproduce
the average transmission spectrum in a computationally effi-
cient manner, which is more appropriate for analysis of ex-
perimental cut-back measurements.

By plotting the effective average loss per unit cell as a
function of total waveguide length as done in Fig. 5 �solid�
for four different frequencies, the failure of the Beer-Lambert
law is undeniable. In the short waveguide limit, the effective
loss coefficient is �back+�rad �upper dashed limit�. However
in longer waveguides, the effective loss per unit cell de-

creases to �rad
�1+2�back /�rad �lower dashed limit� due to

multiple scattering becoming significant. The multiple-
scattering loss is strikingly different from the Beer-Lambert
results �the upper dashed limit� and using it in the multiple-
scattering regime will yield incorrect results. For example,
the error in the loss per unit cell by a factor of 2 for the
1500 �m waveguide at ng�42 is equivalent to an error in
the total transmission by a factor of 6. In the fast light regime
�e.g., ng�11, bottom plot�, backscattering is weak and the
difference between short- and long-waveguide limits is mini-
mal. This analysis is appropriate for c.w. excitation only;
under pulsed excitation, multiple scattering will fragment the
pulse and the meaning of a transmission amplitude is
unclear.12

V. TRANSMISSION LOSSES: EXPERIMENTS
AND THEORY

We have obtained a range of cut-back measurements for
the samples discussed in Sec. II, and the data is shown in
Fig. 6 by the blue curves. Superimposed are the calculated
transmission spectra using a Beer-Lambert scaling relation
�red, dashed� and using the incoherent multiple-scattering
extrapolation �cyan, solid�. In the fast light regime, the trans-
mission is high and there is no significant difference between
the Beer-Lambert and multiple-scattering predictions. How-
ever as the group velocity decreases and amplifies the scat-
tering, the Beer-Lambert relation begins to overestimate the

FIG. 5. �Color online� Average loss per unit cell �solid� as a
function of waveguide length for the same structure as Fig. 6 at
190.4 THz, ng�62 �top, blue�; 191 THz, ng�42 �second from top,
green�; 192 THz, ng�22 �third from top, red�; and 192.8 THz, ng

�11 �bottom, cyan�; each plot here corresponds to a single fre-
quency point on all three of the plots in Fig. 6. The three waveguide
lengths of Fig. 6 are marked with vertical black lines. In the short
waveguide limit, the loss coefficient is approximately �back+�rad

�upper dashed limit�, in agreement with the Beer-Lambert results. In
the long waveguide limit, the loss per unit cell decreases to
��rad

2 +2�rad�back �lower dashed limit� due to multiple scattering.
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loss, even for the short 180 �m waveguide. The discrepancy
becomes more pronounced for longer waveguides as mul-
tiple scattering become more probable. In particular, the
Beer-Lambert relation predicts a steeper roll off than the
multiple-scattering extrapolation and the experimental data.
Very near the band edge, we underestimate the loss, most
likely due to disorder-induced restructuring of the band
structure12,27,28 or disorder-induced modification of the mode
cutoff20 which we have not accounted for.

Due to the chosen sample parameters �especially the
group index and the sample length�, and because of inherent
Fabry-Pérot noise in the measurements, these particular mea-
surements are unable to clearly resolve the differences be-
tween the two theories. Although we have chosen a moder-
ately slow waveguide, in principle, one could demonstrate
this phenomenon more clearly by choosing waveguides with
a plateau in the group index at a higher value �thereby in-
creasing scattering�. Nevertheless, Fig. 6 shows that the pre-
dictions between the two models are quantitatively different
for realistic experimental samples and so multiple scattering
should be included in the proper analysis of slow-light PC
waveguides. Using the presented formalism, and carrying out
a systematic investigation for various PC samples, one
should certainly be able to show a more dramatic breakdown
of the Beer-Lambert law.

VI. CONCLUSIONS

We have presented theoretical calculations and matching
experiments for investigating the role of disorder-induced
scattering in slow-light dispersion engineered structures. We
have shown that, especially in dispersion engineered struc-
tures, the reshaping of the electric field Bloch mode is a
significant contributor to the propagation loss. Further, inter-
preting transmission loss based on a Beer-Lambert relation
fails in the slow-light regime where backscattering is en-
hanced, and multiple-scattering must be taken into account.
We have presented a general technique to directly connect to
the experiments in a straightforward way. Surprisingly, it is
found that the Beer-Lambert law can break down for group
indices as small as ng=22, showing that great care must be
exercised if applying the Beer-Lambert law. These results
highlight that the naïve view of simple group-velocity scal-
ing for losses in PC waveguides in general does not apply,
and that the fundamental Beer-Lambert law can break down
dramatically in the multiple-scattering regime. For related
effects of multiple-scattering in the coherent regime, see Ref.
12.
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