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Disorder-induced nonlinear Hall effect with time-
reversal symmetry
Z.Z. Du1,2,3, C.M. Wang1,2,4, Shuai Li1,2, Hai-Zhou Lu1,2,3,5 & X.C. Xie6,7,8

The nonlinear Hall effect has opened the door towards deeper understanding of topological

states of matter. Disorder plays indispensable roles in various linear Hall effects, such as the

localization in the quantized Hall effects and the extrinsic mechanisms of the anomalous,

spin, and valley Hall effects. Unlike in the linear Hall effects, disorder enters the nonlinear Hall

effect even in the leading order. Here, we derive the formulas of the nonlinear Hall con-

ductivity in the presence of disorder scattering. We apply the formulas to calculate the

nonlinear Hall response of the tilted 2D Dirac model, which is the symmetry-allowed minimal

model for the nonlinear Hall effect and can serve as a building block in realistic band

structures. More importantly, we construct the general scaling law of the nonlinear Hall

effect, which may help in experiments to distinguish disorder-induced contributions to the

nonlinear Hall effect in the future.
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The Hall effects refer to a transverse voltage in response to a
current applied in a sample of metal or semiconductor.
The family of the classical and quantized Hall effects is one

of the mainstreams of modern condensed matter physics, leading
to the full spectrum of the search on the topological states of
matter and many practical applications1,2. All previous Hall
effects are in the linear-response regime, that is, the transverse
voltage is linearly proportional to the driving current, and a
measurable Hall voltage requires that time-reversal symmetry is
broken by magnetic fields or magnetism1–4. The recently dis-
covered nonlinear Hall effect5–13 does not need time-reversal
symmetry breaking but inversion symmetry breaking, sig-
nificantly different from the known linear Hall effects (Fig. 1).
The linear Hall effects can be understood in terms of the Berry
curvature14, which describes bending of a parameter space (real
space, momentum space, any vector fields)15. This geometric
description is of the same significance as the curved spacetime in
the general theory of relativity. The nonlinear Hall effect depends
on the higher-order properties of the Berry curvature, thus not
only can bring our knowledge to the next level but also may help
device applications. More importantly, by adjusting the mea-
surements to the nonlinear regime, unconventional transport
phenomena can be explored in a great number of emergent
materials in which discrete and crystal symmetries are broken.

The disorder effects have been a large part of the research on
the linear Hall effects, such as the localization in the quantized
Hall effects16,17, the extrinsic mechanisms of the anomalous3,
spin18, and valley19 Hall effect, etc. The debate on the origin of
the anomalous Hall effect lasted for one century, until recently the
mechanisms are summarized in terms of intrinsic (disorder-free)
and extrinsic (disorder-induced) contributions3. The quantitative
agreement between theories and experiments shows that the
disorder-induced contribution is comparably important20,21. In
the nonlinear Hall effect, disorder is more important, because the
effect always requires that the Fermi energy crosses an energy
band, while on the Fermi surface the disorder scattering is
inevitable and enters the nonlinear Hall effect even in the leading
order. This is quite different from the disorder-free leading order
in the linear Hall effects. How disorder contributes to the non-
linear Hall signal in a specific form remains unknown and is the
focus of the investigations at this stage.

In this work, we use the Boltzmann formalism to derive the
formulas of the nonlinear Hall conductivity in the presence of
disorder scattering. The formulas can be applied to different
models to calculate the nonlinear Hall responses. We apply the
formula to the 2D tilted massive Dirac model. The model is a
symmetry-allowed minimal model for the nonlinear Hall effect
and can be used to understand the nonlinear Hall signals in
realistic band structures12. Depending on roles of disorder scat-
tering, we follow the convention to classify the nonlinear Hall
conductivity into the intrinsic, side-jump, and skew-scattering
contributions. The latter two are new findings to the framework
of the nonlinear Hall effect and comparably important. The
competition between the three contributions can induce a sign
change in the nonlinear Hall signal. More importantly, we present
the scaling laws of the nonlinear Hall effect, which help to identify
distinct contributions and explain the temperature and thickness
dependence in the experiments in the future.

Results
General formulas. The nonlinear Hall effect is measured as zero-
and double-frequency transverse electric currents driven by a
low-frequency ac longitudinal electric field JðEÞ ¼ �e

P
l _rl fl in

the absence of a magnetic field, where the ac electric field EðtÞ ¼
RefEeiωtg with the amplitude vector E and frequency ω. Here −e

is the electron charge, l ¼ ðη; kÞ labels a state in band η with wave
vector k and fl is the corresponding distribution function. The
current up to the second-order of the ac electric field can be

found as Ja ¼ RefJð0Þa þ Jð1Þa eiωt þ Jð2Þa ei2ωtg, with
Jð0Þa ¼ ξabcEbE�

c ; J
ð1Þ
a ¼ σabEb; J

ð2Þ
a ¼ χabcEbEc; ð1Þ

respectively, where fa; b; cg 2 fx; y; zg. Table 1 summarizes our
main results for the anomalous Hall response tensor σab and the
double-frequency nonlinear Hall response tensor χabc (see
Methods). We have assumed that ωτ � 1, because ω is about
tens of Hertz and the relaxation time τ is about picoseconds in
experiments. This low-frequency limit is one of the differences
from the nonlinear optics. The disorder-induced zero-frequency
response ξabc is identical with the double-frequency response χabc
in the ωτ � 1 limit. Away from the ωτ � 1 limit, the double-
and zero-frequency nonlinear Hall conductivities have different
frequency dependence, thus are different in general. For a com-
plete description, we list the ω-dependent full expressions with
and without time-reversal symmetry (Supplementary Note 3),
which would be helpful for understanding the recently proposed
high-frequency rectification22 and gyrotropic Hall effects23.
According to how disorder works, the formulas are classified in
terms of intrinsic (in), side-jump (sj), skew-scattering (sk) con-
tributions. The formulas in Table 1 can be applied to different
models to calculate the nonlinear Hall responses.
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Fig. 1 Comparison of the linear and nonlinear Hall effects in the absence of
the magnetic field. Experimental setups and time-reversal symmetry of the
anomalous (a), planar (b), and nonlinear Hall effects (c). σA is the
anomalous Hall conductivity, which is always anti-symmetric3. M
represents the magnetization. σP is the planar Hall conductivity.
Δσ � σk � σ? , where σk and σ? refer to the longitudinal conductivities
along the two principal axes. θ is the angle between the driving current and
the k principal axis (the dashed lines). σN is the nonlinear Hall conductivity,
which is proportional to the magnitude of the driving electric field E. The
element of the nonlinear Hall response tensor χ is due to inversion
symmetry breaking along the dashed line. d–f Angular dependence can be
used to distinguish the anomalous, planar, and nonlinear Hall effects
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Tilted 2D massive Dirac model. Now we apply Table 1 to cal-
culate the nonlinear Hall conductivity in the presence of disorder
scattering, for the tilted 2D massive Dirac model (see Methods).
The model gives the symmetry-allowed minimal description of
the nonlinear Hall effect and can serve as a building block in
realistic band structures12

Ĥ ¼ tkx þ vðkxσx þ kyσyÞ þmσz; ð2Þ
where ðkx; kyÞ are the wave vectors, ðσx; σy; σzÞ are the Pauli
matrices, t, v, and m are model parameters. t tilts the Dirac cone
along the x direction. The time reversal of the model contributes
equally to the Berry dipole, so it is enough to study this model
only. For the disorder part, we assume a δ-correlated spin inde-
pendent random potential V̂impðrÞ ¼

P
i Viδðr� RiÞ with both

Gaussian V2
i

� �
dis¼ V2

0 and non-Gaussian correlations
V3
i

� �
dis¼ V3

1 .
To have analytic expressions with intuitive insight, we assume

that t � v and the relaxation time τ is k-independent, i.e.,
1=τ ¼ niV

2
0 ðε2F þ 3m2Þ=ð4�hv2εFÞ, where ni is the impurity density

(Supplementary Note 4). As functions of the Fermi energy εF, we
obtain the analytic expressions for the intrinsic

χinyxx ¼
e3

h
tm
niV

2
0

3v2ðε2F �m2Þ
2ε3Fðε2F þ 3m2Þ ; ð3Þ

side-jump

χsjyxx ¼
e3

h
tm
niV

2
0

v2ðε2F �m2Þðε2F � 25m2Þ
2ε3Fðε2F þ 3m2Þ2 ; ð4Þ

and skew-scattering response functions

χsk;1yxx ¼ � e3
h

tm
niV

2
0

v2ðε2F�m2Þ2ð13ε2Fþ77m2Þ
4ε3Fðε2Fþ3m2Þ3 ;

χsk;2yxx ¼ � e3
h

tm
n2i V

6
0 =V

3
1

v2ðε2F�m2Þ2ð5ε2Fþ9m2Þ
ε2Fðε2Fþ3m2Þ3

ð5Þ

up to the linear order in t. χxyy ¼ 0 for each contribution, as
required by mirror reflection symmetry ky $ �ky . According to
the above analytic expressions, the side-jump (χsj) and intrinsic
skew-scattering (χsk;1) contributions are of the same order with
the intrinsic one (χin). The extrinsic skew-scattering (χsk;2)
contribution is controlled by the relative scattering strength of
the non-Gaussian scattering V3

1 . The factor ε2F �m2 in all the
contributions secures that the nonlinear Hall conductivity
vanishes at the band edge. It is interesting to note that the side-
jump contribution dominates near the bottom of the band, which
is consistent with the result of a recent work24. At higher εF , the
skew-scattering becomes the strongest contribution, which is
similar to the behaviors in the anomalous Hall effect. All

contributions vanish as εF ! 1. These behaviors can be seen in
Fig. 2e.

The zero-frequency nonlinear Hall response was not addressed
experimentally. In the ωτ � 1 limit, ξyxx ¼ χyxx. According to
symmetry, ξxyy ¼ 0. In the dc limit (ω ¼ 0), the electric field
becomes time independent EaðtÞ ¼ Ea, and the nonlinear Hall
response becomes a dc current
Ja ¼ ðξabc þ χabcÞEbEc ¼ 2χabcEbEc, which means that for the
Dirac model tilted along the x direction [Eq. (2)], an x-direction
electric field can generate a dc nonlinear Hall current along the y
direction. As a result, the measured Hall conductivity will be
proportional to the electric field

σNyx ¼ 2χyxxEx: ð6Þ

In contrast, if the electric field is along the y direction, there is
no such a Hall signal because χxyy ¼ 0, as required by the y-
direction mirror reflection symmetry. This indicates that the dc
nonlinear Hall signal σNxy has one-fold angular dependence11,12.
This dc Hall signal can exist in the presence of time-reversal
symmetry, which has been observed in the nonmagnetic
Weyl–Kondo semimetal Ce3Bi4Pd325.

Scaling law of the nonlinear Hall effect. It is of fundamental
importance to distinguish the different contributions to the
nonlinear Hall signal in experiments. For the anomalous Hall
effect, distinguishing different contributions is based on the
scaling law of the transverse Hall signal to the longitudinal
signal3,20,21,26. For the nonlinear Hall effect, a scaling law can be
constructed as well. We adopt the quantity VN

y =ðVL
x Þ2 ¼ ξyxxρxx

or χyxxρxx as the experimental scaling variable11,12, where VN
y and

VL
x refer to the nonlinear Hall (zero- or double-frequency) and

linear longitudinal voltage, respectively. To measure the nonzero
χyxx , the driving electric current is applied along the x direction
and the nonlinear Hall voltage is measured along the y direction.
An advantage of this variable is that the intrinsic and side-jump
parts become disorder independent.

To account for multiple sources of scattering21,26, we consider
the scaling law of nonlinear Hall effect in a general manner. For
simplicity, we assume no correlation between different scattering
sources, thus each source contributes to the total resistivity
independently, as dictated by Matthiessen's rule ρxx ¼

P
i ρi

27,
where ρi is the contribution of the ith type of disorder scattering
to the longitudinal resistivity. According to Table 1, the general
scaling law of the nonlinear Hall effect can be obtained as

Table 1 Formulas of the anomalous and nonlinear Hall responses in the ωτ � 1 limit

Anomalous Hall response (e2/ħ) Nonlinear Hall response (e3/2ħ2)
Time-reversal symmetry Broken Preserved
Intrinsic σ inab ¼ �P

l ε
abcΩc

l f
ð0Þ
l χinabc ¼ �P

l ε
acdΩd

l g
b
l

Side-jump (velocity) σsj;1ab ¼ �P
l v

sj
a g

b
l χsj;1abc ¼ �P

l τ lv
sj
a∂cg

b
l

Side-jump (distribution) σsj;2ab ¼ P
l v

sj
b g

a
l χsj;2abc ¼ ��h

P
l τ lf½∂aðτ lvsjc Þ þ ~Mac

l �vbl þ ∂cðτ lval Þvsjb g
∂fð0Þ

l
∂εl

Intrinsic skew-scattering σsk;1ab ¼ �P
ll′ ϖ

g
ll′Ua

ll′g
b
l χsk;1abc ¼

P
ll′ ϖ

g
ll′ð~Uca

ll′ � τ lUa
ll′∂cÞgbl

Extrinsic skew-scattering σsk;2ab ¼ �P
ll′ ϖ

ng
ll′ Ua

ll′g
b
l χsk;2abc ¼ P

ll′ ϖ
ng
ll′ ð~Uca

ll′ � τ lUa
ll′∂cÞgbl

We refer to the leading-order of the nonlinear Hall conductivity as the intrinsic contribution, but it depends on the disorder scattering, quite different from the disorder-free intrinsic Hall conductivity. The
side-jump and skew-scattering contributions are due to the coordinates shift and antisymmetric scattering, respectively. Here εabc is the anti-symmetric tensor, we define ∂a � ∂=∂ka , ∂

′
a � ∂=∂k′a , and

gal � τ l∂af
ð0Þ
l . τ l is the general relaxation time and fð0Þl is the Fermi distribution. The Berry curvature3, 15 Ωa

l = −2εabc
P

l′≠l Imhlj∂bĤjl′i hl′j∂cĤjli/ðεl � εl′Þ2, where jli is the eigenvector. The side-jump
velocity vsja ¼ P

l′ ϖ
sy
ll′ δr

a
l′l and

~Mab
l � P

l′ ð ~Mac
ll′ � ~Mac

l′l Þδðεl � εl′Þ, where ϖsy
ll′ is the symmetric scattering rate, the coordinates shift28, δrall′ = ihlj∂ajli− ihl′j∂′ajl′i− ð∂a þ ∂′aÞ argðVll′Þ with Vll′ � hljV̂impjl′i and

~Mab
ll′ � ð2π=�hÞ∂aðτ l jTll′j2δrbll′Þ. ϖg

ll′ and ϖng
ll′ refer to the Gaussian and non-Gaussian antisymmetric scattering rate, Ua

ll′ � τ lv
a
l � τ l′v

a
l′ and ~Uab

ll′ � τ l∂aðτ lvbl Þ � τ l′∂
′
aðτ l′vbl′Þ
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(Supplementary Note 5)

VN
y

ðVL
x Þ2

¼ Cin þ
X

i

Csji
ρi
ρxx

þ
X

ij

Csk;1ij

ρiρj
ρ2xx

þ
X

i2S
Csk;2i

ρi
ρ2xx

: ð7Þ

Here the disorder-independent coefficients are for the intrinsic
(Cin), side-jump (Csji ), intrinsic skew-scattering (Csk;1i ), and
extrinsic skew-scattering (Csk;2ij ) contributions, respectively. S
stands for static disorder scattering sources21. To use Eq. (7),
one needs to specify scattering sources. As an example, we
consider two major scattering sources21, one static (i ¼ 0) and
one dynamic (i ¼ 1), then the scaling law becomes

VN
y

ðVL
x Þ2

¼ 1
ρ2xx

ðC1ρxx0 þ C2ρ2xx0 þ C3ρxx0ρxxT þ C4ρ2xxTÞ; ð8Þ

with four scaling parameters

C1 ¼ Csk;2; C2 ¼ Cin þ Csj0 þ Csk;100 ;

C3 ¼ 2Cin þ Csj0 þ Csj1 þ Csk;101 ;

C4 ¼ Cin þ Csj1 þ Csk;111 :

ð9Þ

C1;2;3;4 can be extracted from experiments20,21,26. Here ρxx0 is
the residual resistivity due to static impurities at zero temperature
and ρxxT � ρxx � ρxx0 is due to dynamic disorders (e.g., phonons)
at finite temperature.

In the zero-temperature limit (T ! 0), we can approximate
that ρxxT ’ 0 and ρxx ’ ρxx0 ¼ σ�1

xx0, then the scaling law becomes
VN
y =ðVL

x Þ2 ’ C1σxx0 þ C2, which indicates a linear scaling
behavior as shown in Fig. 3a. Fitting the experimental data using
this relation, the extrinsic skew-scattering coefficient Csk;2 can be
experimentally extracted from the total nonlinear Hall conduc-
tivity (e.g., by using multi-step samples20,21,26). Furthermore, at
finite temperatures, it is more convenient to rewrite the scaling
law into

VN
y

ðVL
x Þ2

� C1σ�1
xx0σ

2
xx ’ ðC2 þ C4 � C3Þσ�2

xx0σ
2
xx

þðC3 � 2C4Þσ�1
xx0σxx þ C4:

ð10Þ

In this case, the proper scaling variable becomes
VN
y =ðVL

x Þ2 � C1σ�1
xx0σ

2
xx, which is a parabolic function of σ�1

xx0σxx
thus indicates a scaling behavior shown in Fig. 3b. By fitting the
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experimental data with the parabolic function, one can in
principle extract the information of the rest scaling parameters,
as shown in Fig. 3. Equation (10) can be reorganized as
VN
y =ðVL

x Þ2 − C1σ�1
xx0σ

2
xx ’ ðC2 � C4Þσ�2

xx0σ
2
xx + ðC3 � 2C4Þðσ�1

xx0σxx
�σ�2

xx0σ
2
xxÞ þ C4. In the anomalous Hall effect, the second term on

the right has been argued to be negligible in both the high-
temperature limit (σxx0 � σxx) and the low-temperature limit
(σxx0 ’ σxx)20. This linear scaling behavior has been observed in
thin films of WTe211. Nevertheless, Eq. (10) shows that the linear
scaling behavior with σ2xx may become invalid in the high-
conductivity regime21,26. In the nonmagnetic Weyl–Kondo
semimetal Ce3Bi4Pd3, a linear scaling behavior of σNxy is observed
as a function of σxx25. The scaling law of voltages in Eq. (10) can
be written into the scaling law of the nonlinear Hall conductivity

σNxy ’ C1σ�1
xx0σ

3
xx þ ðC2 � C3 þ C4Þσ�2

xx0σ
3
xx

þðC3 � 2C4Þσ�1
xx0σ

2
xx þ C4σxx;

ð11Þ

for a fixed electric field. According to the conductivity scaling law,
the observed linear behavior25 indicates the dominance of the
scaling parameter C4. According to Eq. (9), C4 is contributed
mainly by the intrinsic mechanism and the dynamical scattering
processes (e.g., Fig. 2b, c).

Methods
Boltzmann formalism in the nonlinear regime. In the Boltzmann formalism, the
distribution function fl can be found from the standard Boltzmann equation27,
which reads

∂fl
∂t

þ _k � ∂fl
∂k

¼ I elfflg ð12Þ

in the spatially uniform case. Here I elfflg represents the elastic disorder scattering
by static defects or impurities. The elastic disorder scattering can be decomposed as
the intrinsic, side-jump, and skew-scattering parts (Supplementary Note 1)

I elfflg ¼ I in
el fflg þ I sj

elfflg þ I sk
el fflg: ð13Þ

The intrinsic part is contributed by symmetric scatterings, in which incoming
and outgoing states are reversible in a scattering event. The side-jump part is
resulting from the coordinates shift during scattering processes. The skew-
scattering part is contributed by anti-symmetric scatterings, in which exchanging
the incoming and outgoing states yields a minus sign. Specifically,
I in
el fflg ¼ �P

l′ ϖ
sy
ll′ðfl � fl′Þ, I sj

elfflg ¼ �eE �Pl′ Oll′ðfl � fl′Þ,
I sk
el fflg ¼ �P

l′ ϖ
as
l′lðfl þ fl′Þ, where ϖsy

ll′ and ϖas
ll′ represent the symmetric and

antisymmetric parts of the scattering rate ϖll′ ¼ ð2π=�hÞjTll′j2δðεl � εl′Þ with Tll′
representing the T-matrix27. Oll′ � ð2π=�hÞjTll′j2δrll′ ∂

∂εl
δðεl � εl′Þ, where the

coordinates shift δrll′ is defined in Table 1. The expression of _rl and _k can be found
from the semiclassical equations of motion15,28

_rl ¼ vl � _k ´Ωl þ vsjl ;
_k ¼ � e

�h
E; ð14Þ

where vl ¼ ∂εl=�h∂k is the group velocity, Ωl is the Berry curvature
15, and vsjl is the

side-jump velocity28 (see Table 1). To solve the Boltzmann equations up to the
second order of E, we adopt the relaxation time approximation27 for the intrinsic

scattering parts I in
el fflg ¼ ðf ð0Þl � flÞ=τ l , where f ð0Þl is the Fermi distribution

function and τ l represents the relaxation time. Usually, in good metal regime, τ l is
treated as a constant that can be determined by experiments. For systems with large
anisotropy, τ l can have a significant angular dependence29,30. With the above
equations, the current up to the second-order responses to the ac electric field can
be obtained.

Tilted 2D massive Dirac model with disorder. We use the tilted 2D massive
Dirac model in Eq. (2) to calculate the nonlinear Hall conductivity in Fig. 2. The
model describes two energy bands (denoted as ±) with the band dispersions

ε±k ¼ tkx ± ½v2k2 þm2�1=2, where k2 � k2x þ k2y . In the x–y plane, the Berry cur-
vature behaves like a pseudoscalar, with only the z component

Ωz
± k ¼ 	mv2=½2ðv2k2 þm2Þ3=2�.
To consider the disorder effect, we expanded the scattering rate up to the fourth

order in the disorder strength as ϖll′ ¼ ϖð2Þ
ll′ þ ϖð3Þ

ll′ þ ϖð4Þ
ll′ . Here ϖð2Þ

ll′ is pure
symmetric and of order niV

2
0 with ni refers to the concentration of disorder.

Figure 2a corresponds to the contribution to ϖð3Þ
ll′ , which is non-Gaussian and of

order niV
3
1 . Figure 2b, c corresponds to ϖð4Þ

ll′ within non-crossing approximation,

which is Gaussian and of order n2i V
4
0 . Thus, ϖ

ð2Þ
ll′ is the leading symmetric

contribution, ϖð3Þ
ll′ and ϖð4Þ

ll′ contain the leading non-Gaussian and Gaussian
antisymmetric contribution to the scattering rate. Considering all the leading

contributions, we identify that ϖsy
ll′ ¼ ϖð2Þ

ll′ and ϖas
ll′ ¼ ϖð3aÞ

ll′ þ ϖð4aÞ
ll′ , where ϖð3aÞ

ll′ and

ϖð4aÞ
ll′ represent the antisymmetric parts of the third and fourth order scattering

rate, respectively (Supplementary Note 4).

Data availability
The data that support the plots within this paper and other findings of this study are
available from the corresponding author upon reasonable request.

Code availability
The code that is deemed central to the conclusions is available from the corresponding
author upon reasonable request.
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