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Phase transitions, disorder, and rare regions

Common lore:

Harris criterion, condition for homogeneous, sharp transition: dν > 2

(spatial fluctuations of local Tc(x) within correlation volume must be
smaller than distance from global critical point Tc)

• if clean critical point fulfills Harris criterion, it is stable against
weak disorder (inhomogeneities vanish at large length scales)

even if the clean critical point is unstable (Harris criterion violated),
transition is generically sharp

• inhomogeneities remain finite at all length scales
⇒ conventional finite-disorder critical point which fulfills dν > 2
or

• inhomogeneities diverge under coarse graining
⇒ infinite-randomness critical point



Rare regions and Griffiths singularities

example: dilute ferromagnet

critical temperature Tc is reduced
compared to clean value Tc0

for Tc < T < Tc0: no global order
but local order on rare, large islands
devoid of impurities

locally ordered islands have slow dynamics
⇒ singular free energy everywhere in the Griffiths region (Tc < T < Tc0)

in classical systems: Griffiths singularities are generically very weak
magnetic susceptibility is finite



Disorder at quantum phase transitions

quantum phase transitions occur

at zero temperature

• imaginary-time direction becomes
important for critical fluctuations

• quenched disorder is totally
correlated in time direction

⇒ disorder effects are enhanced

t

rare region at a quantum phase

transition

quantum Griffiths effects

rare regions at a QPT are finite in space but infinite in imaginary time

if interaction in time direction is short-ranged, rare regions do not
develop static order, but fluctuate very slowly

⇒ Griffiths singularities are enhanced



Rounding of quantum phase transitions in systems
with overdamped dynamics

antiferromagnetic quantum phase transition of itinerant electrons

magnetic fluctuations are damped due to coupling to electrons

Γ(q, ωn) = t + q
2 + |ωn|

in imaginary time: long-range power-law interaction ∼ 1/(τ − τ ′)2

one-dimensional Ising model with 1/r2 interaction is known to have an
ordered phase

⇒ in a system with overdamped dynamics and Ising symmetry, an
isolated rare region can develop a static magnetization

quantum phase transition is rounded by disorder



Isolated islands – Lifshitz tail arguments

probability to find rare region of size L devoid of defects: w ∼ e−cLd

region has transition at distance tc(L) < 0 from the clean critical point
finite size scaling: |tc(L)| ∼ L−φ (φ = clean shift exponent)

Consequently:

probability to find a region which becomes critical at tc:

w(tc) ∼ exp(−B |tc|
−d/φ)

total magnetization at coupling t is given by the sum over all rare
regions having tc > t:

m(t) ∼ exp(−B |t|−d/φ) (t → 0−)



Computer simulation of a model system

Classical Ising model with two spatial and one time-like dimensions

quantum coupling constant ⇒ classical temperature
original temperature ⇒ linear size Lτ in time direction

H = −
1

Lτ

∑

〈x,y〉,τ,τ ′

Sx,τSy,τ ′ −
1

Lτ

∑

x,τ,τ ′

JxSx,τSx,τ ′

Jx – binary random variable, totally correlated in the time-like direction
P (J) = (1 − c) δ(J − 1) + c δ(J)

interaction in time-direction is infinite-ranged:
static magnetization on the rare regions is retained
time direction can be treated exactly, permitting large sizes

set of local mean-field equations, solved numerically be iteration

mx = tanhβ [Jxmx +
∑

y(x)

my + h]



Rounded transition in the infinite-range model
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phase transition is not sharp
but rounded

(m and χ are independent of
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Magnetization in the tail
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Local magnetization distribution
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global magnetization starts
to form on isolated islands

very inhomogeneous system

Distribution of the local
magnetization values

very broad, even on
logarithmic scale

ln(mtyp) ∼ 〈m〉−1/2



Conclusions

• quenched disorder can destroy a sharp phase transition by rounding

if static order forms on rare spatial regions

• examples:

– magnetic quantum phase transitions in metallic systems
– classical Ising transitions in systems with linear defects and

long-range interactions
– classical Ising transitions with planar disorder

• exponential magnetization tail towards the non-magnetic phase,
ln(m) ∼ −|t|−d/φ

• system is extremely inhomogeneous, even on a logarithmic scale

• conventional quantum Griffiths behavior does not exist because the
rare regions are static

General mechanism for the disorder-induced rounding of phase transitions


