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Abstract

We briefly introduce the generic framework of Disordered Elastic Systems (DES), giving a short ‘recipe’ of a DES
modeling and presenting the quantities of interest in order to probe the static and dynamical disorder-induced properties
of such systems. We then focus on a particular low-dimensional DES, namely the one-dimensional interface in short-
ranged elasticity and short-ranged quenched disorder. Illustrating different elements given in the introductory sections,
we discuss specifically the consequences of the interplay between a finite temperature T > 0 and a finite interface width
ξ > 0 on the static geometrical fluctuations at different lengthscales, and the implications on the quasistatic dynamics.
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1. Introduction

Could some features of experimental systems as dissim-
ilar at a microscopic level as superconductors, magnets,
ferroelectrics, fluids, paper, or two-dimensional electron
gases, be described by the same equations at a macroscopic
level? All those systems may actually display emergent
structures such as interfaces (e.g. ferroelectric [1, 2, 3] or
ferromagnetic [4, 5, 6] domain walls, contact line in wet-
ting experiments [7] or propagating cracks in paper and
thin materials [8]) or periodic systems (typically vortex lat-
tices in type-II superconductors [9], classical [10] or quan-
tum [11] Wigner crystals, or electronic crystals displaying
charge or spin density waves [12, 13]).

One can either describe them using ab initio predictions
combined to a Landau approach, where two phases com-
pete with each other at their common boundary (the com-
plexity of a numerical approach increasing considerably
with the system size), or rather take a radically opposite
point of view by skipping the specific microphysics and
focusing exclusively on the boundary, defined by the shift
of the order parameter. Such an emergent structure can
then be described as a fluctuating manifold or periodic sys-
tem supported by a disordered underlying medium, in the
generic framework of disordered elastic systems (DES).

Thereafter we recall briefly the basic features of DES by
giving first a short recipe of a DES model based on two
competing physical ingredients: elasticity and disorder,
blurred by thermal and/or quantum fluctuations. Then
we list the main observables of interest in order to probe
the disorder-induced metastability present in those sys-
tems, and to address the two main questions which arise
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regarding their resulting glassy properties: what can we
learn by the study of its statics versus its dynamics, first
via the characterization of its geometrical fluctuations and
secondly via its response to an external force?

Indeed, from the 1970s’ and Larkin’s work [14], we know
that there could not exist a perfectly ordered solid in pres-
ence of disorder, so how does the addition of disorder
change the nature of a pure system? Finally we focus on
a particular low-dimensional DES and study the static ge-
ometrical fluctuations of a one-dimensional interface, via
an analysis of the interplay between thermal fluctuations
and a finite width of the interface in its roughness.

Those short notes are not meant to be exhaustive, but
rather to give a pedagogical and somehow practical intro-
duction to the field, aimed at theoreticians but also at ex-
perimentalists who might be interested in DES modeling.
We focus essentially on the case of interfaces, but most
concepts can be extended to periodic systems, and more
details and references can be found for example starting
from the existing reviews [13, 15, 16].

2. DES modelling: a recipe

In the generic framework of DES, very few physical in-
gredients are required in a minimal version of such a model.
Thereafter we briefly sketch their concrete implementation
for interfaces, but those considerations remain valid for pe-
riodic systems [17].

2.1. Dimensionality and class of DES

First of all one has to identify the dimensionality of
the system (d being the internal dimension of the system,
m the number of its transverse components, and D the
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dimension of its embedding physical space) and whether
it is a manifold (d+m = D with d = D − 1 for interfaces)
or a periodic system.

For example, a 1D interface and a single vortex
are manifolds respectively with (d = m = 1, D = 2) and
(d = 1,m = 2, D = 3), whereas an Abrikosov vortex lat-
tice and a 3D Wigner crystal are periodic systems with
(d = D = 3,m = 2) and (d = m = D = 3). Note that the
dimensionality and the class of DES might actually change
with respect to some parameters of the system, as it can
been addressed experimentally e.g. for ferromagnetic do-
main walls (1D to 2D interfaces crossover) [18] or for vor-
tices in superconductors (vortex lattice to individual vor-
tices).

2.2. Physical space of coordinates (~z, ~x)

The description of the physical space embedding the
DES can then be split in two sets of coordinates: ~z ∈ Dz
denotes the internal coordinates of the system (e.g. the
position along a polymer or a given point in a lattice), and
~x ∈ Dx its transverse coordinates.

For an analytical treatment of interfaces we typically
assume that they live in an infinite and continuous phys-
ical space so Dz ×Dx is taken as R

d × R
m. However, a

physical or numerical realization of such a system is al-
ways supported by a microscopically discrete sublattice of
parameter 1/Λ, ultimately the crystal in a solid, and more-
over lives in a finite box of typical size L with boundary
conditions which have to be defined (possibly periodic or
free). So in the comparison between analytical predictions
and experimental or numerical results, corrections due to
finite size effects and to the translation from the discrete
to the continuous limits are a priori expected.
Once the disorder is averaged out, a translational space-

invariance is recovered, suggesting a description in Fourier
space q with an ultra-violet 1/Λ and an infra-red 1/L cut-
offs, which are always present in physical DES. However,
from an analytical point of view, they are either irrelevant
and thus skipped, or they are conveniently reintroduced in
order to cure non-physical divergences in computations.

2.3. Univalued displacement field ~u~z

In the absence of disorder, an elastic system tends to
minimize its distortions, thus would typically be flat for
an interface or characterized by a single reciprocal vector
for periodic systems. A given configuration of a DES is
characterized by a univalued displacement field ~u~z ∈ Dx
with respect to such an equilibrium configuration (e.g. flat
or periodic) of the pure system as illustrated in Fig.1.
The definition of this reference configuration is actually

crucial but potentially tricky in experiments, in particular
in certain cases where the equilibrium configuration is not
a straight line. For example, how to define unambiguously
the center and the mean radius of a ‘dotted’ ferromagnetic
domain if it is far from being perfectly circular? Defects
such as overhangs and bubbles for interfaces, or topological

Figure 1: Definition of the displacement field ~u~z for a 1D interface
(d = m = 1) superimposed over its surrounding smooth random po-
tential V (~z, ~x) (in a weak disorder limit). ~u~z is univalued only in the
absence of bubbles or overhangs for interfaces.

defects in periodic systems are still missing in the above
DES description, since they hinder the definition of a uni-
valued displacement field ~u~z, at the core of the concrete
implementation of statistical averages both thermal and
over disorder.

2.4. Elasticity

The elastic energetic cost of distortions (∇~z~u~z) is given
by the elastic Hamiltonian Hel [u]. For an interface, if the
elasticity is short-ranged, it is essentially proportional to
the length of the interface Hel [u] ∝

∫
ddz

√
1 + (∇~z~u~z)2

and in the elastic limit of small distortions ‖∇~z~u~z‖ ≪ 1
it reduces to the quadratic form (thus analytically user-
friendly)

Hel [u] =
c

2

∫

Dz

ddz · (∇~z~u~z)
2 (1)

with the elastic constant c being the elastic energy per unit
of length, and that corresponds in reciprocal space to an
elastic energy cq2 per Fourier mode ~u~q.
If the elastic limit is broken, additional terms are a priori

needed in the perturbation expansion
√

1 + (∇~z~u~z)2. Nev-
ertheless the elasticity can also be effectively long-ranged,
as it is the case e.g. for contact lines in wetting experi-
ments because of the fluid surface tension [19, 20]. The
effective energy per Fourier mode is then c|q|µ with µ 6= 2,
or the elastic Hamiltonian can include phenomenological
additional terms as e.g. for the description of the out-of-
equilibrium depinning regime (cf. section 3.2) [21, 22].

2.5. Disorder

The ‘disorder’ accounts for the effects of the inhomo-
geneities inherent to any real physical medium, and it is
defined as a stochastic variable V (~z, ~x) with a given sta-
tistical distribution P [V ] and the ad hoc disorder average
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(denoted O for an observable O). It adds a random part to
the DES Hamiltonian HDES = Hel+Hdis with the disorder
Hamiltonian

Hdis [u, V ] =

∫

Dz

ddz · V (~z, ~uz) (2)

First, if this stochastic variable has a dynamics much
slower than the dynamics of the DES, the disorder is
quenched (as e.g. atomic terraces on thin epitaxial films)
otherwise it is annealed (as e.g. itinerant oxygen vacancies
in superconductors). That distinction essentially imposes
the sequence of disorder and thermal averaging of observ-
ables in computations.

Secondly, disorder can either be dominated by a few in-
dividual pinning centers in the strong disorder limit, or
by many weak impurities in the weak disorder limit. In
the latter case, the collective behavior of the impurities
conspire (by the central limit theorem) to give rise to a
smooth random potential V (~z, ~x), as illustrated in Fig.1,
with a Gaussian distribution P [V ]. Note however that
this ‘weak disorder’ limit can be realized in experimen-
tal DES only because the disorder can actually vary on
characteristic lengthscales which are much smaller than
the lengthscales of interest of the DES description such as
the lattice spacing of periodic systems (as e.g. for the 3D
macroscopic Wigner crystal in colloids [23]).

P [V ] is thus fully characterized by its two first cumu-
lants, namely its mean value V (~z, ~x) ≡ 0 and its variance

V (~z, ~x)V (~z′, ~x′) = Rξz (~z − ~z′) ·Rξx(~x− ~x′) (3)

The disorder is usually assumed to be uncorrelated along
the internal direction ~z of the interface with Rξz (~z) = δ(~z),
whereas the disorder correlator Rξx(~x) is the quantity ex-
tensively studied in the Functional Renormalization Group
(FRG) approach of DES (cf. section 3.3). If this correla-
tor decreases sufficiently fast, then the disorder is short-
ranged or random-bond (RB: the interface couples only
locally to the surrounding disorder), else it is long-ranged
or random-field (RF: the system is sensitive to the disor-
der in all the physical space). In the section 4 we examine
specifically what are the consequences of a finite RB dis-
order correlation length ξx > 0 on the static properties of
a 1D interface. Of course in an experimental system all
types of disorder could be present, but the dominant dis-
order defines its universality class.

2.6. Internal structure of DES

At last, the internal structure of physical DES can be
crucially relevant for its properties, and it is actually al-
ready partially encoded in the disorder correlator and its
correlation lengths ξz and ξx.

The implications of an internal degree of freedom, as
e.g. the phase shift in Néel versus Bloch domain walls, are
challenging theoretically, but such an additional physical
ingredient in DES modelling might be needed to account
for the physics of experimental systems, as it has been

recently addressed in the context of spintronics’ nanowires
[24].

3. Observables as probe of disorder: statics versus

dynamics

There are essentially two basic questions that can be
addressed regarding DES and their experimental realiza-
tions: how do they look like and how do they respond when
one pulls on them. By comparing the theoretical and nu-
merical predictions of generic DES to measurements on
experimental setups, it is possible on one hand to test the
adequacy of a DES modelling, and on the other hand to
identify the universality class of dimensionality, elasticity
and disorder of a particular physical realization, and then
to extrapolate to its other possible disorder-conditioned
features.

From an analytical point of view, the competition be-
tween elasticity, disorder and thermal/quantum fluctua-
tions is treated via two statistical averages of an observable
O, respectively the thermal/quantum average 〈O〉 and the
disorder average O. The two underlying assumptions to
this procedure are the ergodicity and a self-averaging dis-

order, which imply essentially that the computed quantity
〈O〉 should match the measurement of the observable O on
an equilibrated and sufficiently large experimental sample
(here with quenched disorder).

Thereafter we discuss briefly the statics and the dynam-
ics of DES, and then we mention the main methods used to
tackle them. For short pedagogical reviews on the subject
and further references, see [15, 16].

3.1. Statics: geometrical fluctuations and roughness

In statics the main information that can be accessed ex-
perimentally is the configuration of the system, described
by the displacement field ~u~z defined with respect to a given
reference configuration (which is somehow arbitrarily cho-
sen) as in Fig.1.

The geometrical fluctuations of ~u~z can be quantitatively
characterized by the probability distribution function
(PDF) of the relative displacements ∆~u~z(~r)≡ ~u~z+~r − ~u~z at
a given lengthscale ~r. Assuming rightfully a translational
invariance after disorder-averaging, this PDF P(∆u(~r))
can fairly enough be approximated by a widening Gaussian
[25] as illustrated in Fig.2, and its main feature is thus its
variance, namely the roughness function B(~r) ≡ 〈∆~u(~r)2〉
or its corresponding structure factor S(~q):

B(~r) =

∫

Rd

d~q

(2π)d
2 [1− cos(~q · ~r)]S(~q) (4)

Those quantities are thus the mere two-points correlation
functions of ~u~z and its Fourier transform, for which we are
hopefully well-equipped for an analytical treatment. More-
over, if the system displays a scale invariance on a whole
range of lengthscales, it is expected to behave logarithmi-
cally or rather as a power law B(r) ∼ r2ζ or S(q) ∼ q−d−2ζ

defining the roughness exponent ζ.
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Figure 2: Definition of the relative displacements ∆~u~z(~r) for a 1D
interface and their translational-invariant PDF P(∆u(~r)) after the
disorder average. If P(∆u(~r)) is Gaussian, its main feature is its vari-

ance 〈∆~u(~r)2〉 = B(~r), namely the interface roughness as a function
of the lengthscale.

For periodic systems, the displacement field is again de-
fined with respect to a reference ‘equilibrium’ configura-
tion, this time a lattice of reciprocal vector ~K0. The anal-
ogous quantity to the roughness is then the translational

order correlation function C ~K0
(~r) defined as:

C ~K0
(~r) ≡

〈
ei
~K0(~u~r−~u~0)

〉
(5)

and its Fourier transform the structure factor S( ~K0 + ~q).
If the theory is close to a Gaussian as in [17], it is actu-
ally simply related to the roughness since we have then

C ~K0
(~r) = exp

[
− ~K2

0

2 B(~r)
]
.

In practice, in order to measure the roughness and its
related quantities, one has first to take a picture (a ‘snap-
shot’) of the system, then chose a reference configura-
tion (typically flat for an interface or a perfect lattice for
periodic systems) and define the corresponding displace-
ment field ~u~z, and finally compute the appropriate func-
tions B(~r), C(~r) or S(~q). In a logarithmic representa-
tion, the roughness usually exhibits a power-law (or loga-
rithmic) behavior B(r) ∼ A(c,D, T, ξ) · r2ζ up to a certain
lengthscale above which it saturates; the main focus then
is on the value(s) of the corresponding roughness expo-
nent(s) ζ, as a signature of dominant physics at a given
lengthscale range depending on the universality class to
which the system belongs. There are however other im-
portant features also at our disposal to probe the disorder-
conditioned properties of the system, such as the power-
laws prefactors and their possible temperature-dependence
e.g. A(c,D, T, ξ) ∼ T 2þ (with the thorn exponent þ), the
crossover lengthscales including the saturation lengthscale
itself and last but not least the possible non-Gaussianity
of the PDF P(∆u(~r)) (that could then be due to finite-
statistics artefacts or to a physical origin) [8]. The special

case of a 1D interface with a short-ranged elasticity and a
RB disorder is discussed at length in the section 4.

Such an analysis is of course also possible in order to
study the dynamical geometrical fluctuations of the sys-
tem, but that requires a time-resolved measurement tech-
nique, and the possibility to take an actual snapshot of
the system, which is not always the case (e.g. for surface-
scanning techniques such as the Scanning Tunnelling Mi-
croscopy or Atomic Force Microscopy).

3.2. Dynamics: velocity-force characteristic

The knowledge of the statics of a disordered system is
not a sufficient criterion to decide on its glassiness, since
it may look quasi-ordered despite the disorder (as e.g. pe-
riodic DES displaying power-law decaying Bragg peaks).
Because of its disorder-induced metastability, it may more-
over be difficult to even discriminate equilibrium from out-
of-equilibrium configurations, so it is necessary to study
specifically the dynamics of the system.

The characterization of the response of a disordered sys-
tem under an external force is fundamental for applica-
tions, and is thus widely studied in experimental setups.
Applying an external force on a DES, such as an exter-
nal magnetic field on a ferromagnetic domain wall or an
electrical current on a vortex lattice in a type-II super-
conductor, it is indeed possible to set those systems into
motion, which is highly non-trivial since they are after all
emergent structures defined by a shift of the order pa-
rameter. For example, an external magnetic field favors
a given magnetization direction, makes the favored ferro-
magnetic domains grow and thus displace the boundaries
between the different phases, thus the domain walls effec-
tively move.

Ideally we would like to have access to the whole time-
resolved displacement field ~u~z(t), as in numerical simu-
lations but also in experiments such as e.g. the imag-
ing of the imbibition line of a fluid on a disordered sub-
strate [26], of a crack front along an heterogeneous weak
plane [27] by ultra-fast CCD camera, or of avalanches
in ferromagnetic thin films [5]. The quantities of inter-
est, beyond the displacement field itself ~u~z(t), are usu-
ally the position of its center of mass ~uCM(t), its veloc-
ity v(t) = ∂t~uCM(t) and the fluctuations of the velocity
∂t~u~z(t) itself. However, for a complete characterization,
the geometrical fluctuations around the center of mass
δ~u~z(t) = ~u~z(t)− ~uCM(t) should also be addressed, with the
PDF of the ad hoc dynamical relative displacements at
fixed time ∆~u~z(~r) ≡ δ~u~z+~r(t)− δ~u~z(t) and its correspond-
ing variance B(~r, t), structure factor S(~q, t) or higher mo-
ments similarly to the statics.

Analytically, numerically and experimentally there has
mainly been a focus on the determination of the steady-
state velocity of the center-of-mass under a constant driv-
ing force F , with the temperature-dependent velocity-force
characteristic vT (F ) illustrated schematically in Fig.3. At
zero temperature, the picture is superficially similar to
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versus

vT (F ) = ∂tuCM(t)

FFc0

QUASISTATICS DEPINNING LARGE VELOCITY

F ! Fc F ! FcF ≈ Fc

vT=0(F )
T �

Thermal rounding

vT (Fc) ∼ T
−ψ

Nature of the moving phase?

B(r, t), S(q, t)
Thermally Assisted 
Flux Flow (TAFF)

vT (F ) ∼ e
−∆/T

F

Creep 

vT (F ) ∼ e
−

Uc
T (Fc

F )
µ

Depinning exponent β

∼ (F − Fc)
β

vT=0(F � Fc)

Figure 3: Velocity-force characteristics: steady-state velocity of the
center-of-mass position vT as a function of a constant external force
F . The large arrow shows the displacements of the curves vT (F )
with an increasing temperature T , coupled with a gradation from
blue to red curves.

that of a critical phenomenon, with the steady-state ve-
locity vT as an order parameter, the driving force F as the
controlling parameter and the disorder-dependent critical
force Fc. Below Fc the DES might relax from a given con-
figuration with a transient velocity v(t) [28], but then it
is stuck so vT=0(F < Fc) = 0. Above Fc it acquires a fi-
nite steady-state velocity vT=0(F > Fc) > 0 through the
disordered energy landscape, which actually takes off with
a critical depinning exponent vT=0(F & Fc) ∼ (F − Fc)

β .
With a finite temperature, there are thus three regimes
of interest for the thermal effects on the dynamics: first
the depinning regime at F ≈ Fc with a possible thermal-
rounding power law vT (Fc) ∼ T−ψ [29, 30]; secondly the
large velocity regime at F ≫ Fc where vT ≈ ηF which
defines the friction coefficient η of the DES, and the pos-
sible characterization of the nature of this moving phase
via its dynamical geometrical fluctuations; and finally the
creep regime at F ≪ Fc where thermal fluctuations allow
the system to explore the disordered energy landscape and
overcome some of its barriers.

If there was only one characteristic energy barrier ∆,
the response of the system to a very small driving force
would be linear vT (F ) ∼ e−∆/TF (‘Thermally Assisted
Flux Flow’). However such DES actually exhibits a
disorder-induced metastability and thus there is no fixed
characteristic energy barrier, and the response is rather a
stretched exponential:

vT (F ) ∝ exp

[
−Uc

T

(
Fc
F

)µ]
(6)

This phenomenological ‘creep’ formula can be related to
the static quantities assuming that the creepy interface
moves forward with a succession of avalanches of typi-
cal size Lc (‘Larkin domains’). Assuming that Lc would
be the characteristic crossover lengthscale in the static
roughness, and comparing by scaling the elastic, disor-

der and external force energies at stake at this length-
scale [31, 32, 33, 15], the creep exponent is predicted to be
µ = (d− 2 + 2ζRM )/(2− ζRM ), with d the dimension and
ζRM the static asymptotic roughness exponent. This be-
havior has been spectacularly pointed out for the 1D inter-
face on several order of magnitudes in ferromagnetic DWs
[4] µ = 0.24± 0.04, ζ = 0.69± 0.07, d = 1 and in numeri-
cal studies [22]. However the content of the typical energy
Uc and depinning force Fc is still an open question. The
single-crossover scenario predicts Uc = cξ2/Lc the typical
energy barrier at the lengthscale Lc and Fc = cξ/L2

c the
depinning force of a Larkin domain, with ξ the width of
the interface, but this prediction has not been reproduced
yet in numerics even for the 1D interface.

3.3. Methods

In statics, a given configuration with a displacement
field ~uz is weighted by a Boltzmann weight ∝ e−H[~u,V ]/T

(with the Boltzmann constant kB = 1 so that the tempera-
ture T has actually the units of an energy), whereas in dy-
namics the Hamiltonian H [u, V ] is replaced by a Martin-
Siggia-Rose action constructed from a Langevin equation
for the time-evolution of the displacement field ~u~z(t). The
statistical averages 〈O〉 for the observables O listed in the
previous sections are then computed analytically with re-
spect to those statistical weights.

Pure scaling arguments on the statistical averages of ob-
servables, via the scaling of the Hamiltonian, of the disor-
der distribution, of the Langevin equation or of the action,
can yield very powerful predictions yet they have to be in-
terpreted carefully, and can often provide a rather a pos-

teriori short explanation of otherwise painfully computed
results. For example, the Flory or Imry-Ma ‘mean-field’
argument provides a value ζF quite close to the exact phys-
ical roughness exponent ζ.

The two main analytical tools used on DES are on one
hand the Functional Renormalization Group (FRG) where
the whole disorder correlator (3) evolves under the renor-
malization procedure [34, 17, 35, 36, 37], and on the other
hand the Gaussian Variational Method (GVM) as intro-
duced by Mézard and Parisi on DES, and involving Replica
to treat the disorder [38, 39].

Numerically there are in particular very efficient algo-
rithm in 1D in order to address the dynamics and the
static of the 1D interface, starting from a Langevin equa-

tion both at zero [40] and at small but finite temperature
[41, 22].

4. Static roughness of a 1D interface at finite tem-

perature

In this section, we focus on the particular case of the
1D interface in quenched RB disorder, as an illustration
of a DES modelling, of the computation and interpreta-
tion of the static roughness function via GVM and scaling
arguments, and of the link to the quasistatic creep regime.
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The study of the 1D interface is at the crossroad
between a fundamental interest in the peculiarities of
low-dimensional systems, several mappings on related
statistical-physics problems in the Kardar-Parisi-Zhang
(KPZ) universality class (including the 1+1 Directed Poly-
mer (DP)) [42, 43, 44], and experimental realizations of
effective 1D interfaces such as ferroic or ferromagnetic do-
main walls (DW) in thin films.

A first example of such experiments are DWs in ferro-
electric thin films of Pb(Zr0.2Ti0.8)O3 which display out-
of-plane polarized domains, written and probed by atomic-
force-microscopy technique [1, 2]. This imaging technique
probes by definition the surface of the film, which is how-
ever sufficiently thin (typically 50-60 nanometers) so that
the measured DWs are effective 1D interfaces convoluted
on the whole thickness of the film. A second example,
which is believed to be a prototype of the DES model pre-
sented thereafter, are ferromagnetic DWs in ultrathin films
of Pt/Co/Pt (just a few atomic layers) with out-of-plane
magnetization domains [4, 5, 6].

The internal structure of those DWs have not been ac-
cessed, since their typical width (respectively a few unit
crystal cells and ∼ 10 nm) is still below the resolution (re-
spectively nanometric and micrometric), along with their
transverse geometrical fluctuations at comparable small
lengthscales. However, even though their static roughness
cannot be observed at sufficiently small lengthscales yet, it
could have indirect consequences on their quasistatic dy-
namics. Indeed, in order to obtain the phenomenological
creep formula (cf. section 3.2), the main assumption is
that there is a single characteristic lengthscale in the stat-
ics (the Larkin length Lc) which coincides with the typical
size of avalanches in the quasistatic dynamics. The scal-
ing prediction for the creep exponent worked surprisingly
well in ferromagnetic DWs [4] for the roughness and creep
exponents ζ and µ (cf. section 3.2), however the discrepan-
cies regarding the temperature-dependence of the typical
energy barrier Uc observed in numerical results [45] sug-
gested to reexamine the low-temperature static roughness
at small lengthscales.

4.1. Full DES model of the 1D interface

Following the DES recipe of the section 2, we consider
a 1D interface (d = m = 1) embedded in a continuous and
infinite space (z, x) ∈ R

2, with implicit ultra-violet and
infra-red cutoffs ultimately irrelevant in our computations.
Restricting ourselves to the case without overhangs nor
bubbles, each configuration is characterized by a univalued
displacement field uz with respect to a flat configuration
defined by the z axis.
We assume a short-range elasticity in the elastic limit

as in (1) and a quenched RB weak disorder uncorrelated
along its internal direction z as in (2). This very particu-
lar form of elasticity is central for the mappings to other
statistical physics problems and for the statistical tilt sym-

metry (STS), a fundamental property for 1D interfaces in
presence of disorder [46, 47, 48].

x

z

uz

ρ(z, x)

ξ

Figure 4: Gaussian profile of a 1D interface, described by the nor-
malized density ρξ(z, x) as a Gaussian of variance ξ centered at fixed
z on the interface mean position uz .

The disorder correlator (3) is finally taken as a Gaussian
of variance ξ2x = 2ξ2 and amplitude D:

Rξx(x) = D · e
−x2/(4ξ2)

√
4πξ

= D

∫

R

dλ

2π
· eiλxe−λ2ξ2 (7)

So there are two distinct Gaussian hypothesis regarding
the disorder: on one hand its distribution P [V ] is assumed
to be Gaussian and thus fully described by its disorder cor-
relator (a physical assumption in the weak disorder limit),
and on the other hand its disorder correlator itself is cho-
sen to be a Gaussian. In this choice R(x) decreases suf-
ficiently fast to be random-bond and it encodes explicitly
a finite disorder correlation length ξ in a convenient way
for computations. In an alternative point of view, this
parameter ξ corresponds to a finite width of the 1D inter-
face, whose spatial extension in the x direction is described
by a Gaussian density ρξ(z, x) of variance ξ2 centered on
(z, uz) as illustrated in Fig.4; if the random-potential is
δ−correlated in both (z, x) directions, the effective disor-
der

∫
R
dx · ρξ(z, x)V (z, x) has precisely the correlator (7).

4.2. DES characteristic scales and scaling arguments

In this minimal DES model, there are thus four charac-
teristic scales: the elastic constant c which gives the energy
per unit of length of the interface and essentially fixes an
energy-scale reference; the strength of disorder D or the
amplitude of the disorder correlator; the finite temperature
T which quantifies the energy of the surrounding thermal
bath; and the typical width or disorder correlation length
ξ > 0 or the variance of the disorder correlator.
The main consequence of the interplay between a finite

T > 0 and a finite ξ > 0 on the 1D interface geometrical
fluctuations is the existence of two regimes in temperature
for its static roughness. Those two regimes are separated
by the single characteristic temperature Tc = (ξcD)1/3

which naturally involves all the scales at stake in the DES
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model. Physically this can actually be understood by a
comparison between the microscopic width ξ and an effec-
tive width ξth due to thermal fluctuations. At high tem-
perature (T > Tc) the thermal fluctuations erase the exis-
tence of the microscopic width (ξ < ξth), so with the only
two remaining scales {D,T} one can define a single char-
acteristic lengthscale r∗, presumably the unique crossover
between two roughness regimes (purely thermal at small-
lengthscales and dominated by disorder at large length-
scales). On the contrary, at low temperature (T < Tc)
ξ > ξth so the microscopic width matters and there is a
whole intermediate roughness regime which leads to the
definition of at least two characteristic crossover length-
scales r1 and r0, the latter marking the entrance in the
asymptotic random-manifold regime dominated by disor-
der.

The bare scaling of those different quantities r∗, ξth,
Tc and r0 can actually be extracted from simple scaling
arguments, by rescaling the spatial coordinates z = bz̄ and
x = ax̄ in the whole roughness function:

B(r; c,D, T, ξ) =

∫
DV P [V ]

〈
(uz+r − uz)

2
〉
V

〈
(uz+r − uz)

2
〉
V
=

∫
Du · (uz+r − uz)

2 · e−H[u,V ]/T

∫
Du · e−H[u,V ]/T

(8)

Indeed we have to assume first that the random potential
V ‘scales in distribution’ consistently with respect to the
scaling of its disorder correlator, leading thus to

Hdis [uz, V ] |D,ξ d
=

(
bD

a

)1/2

Hdis

[
u(z/b)/a, V

]
|D=ξ=1

Since Hel [uz] |c = ca2

b Hel [uz] |c=1, if we assume that the
whole Hamiltonian H = Hel +Hdis can be rescaled with
an overall prefactor, a same scaling for the two parts of
the Hamiltonian imposes the relation a = D1/2c−1bζF with
the Flory exponent ζF = 3/5 for d = m = 1. Finally we
can either absorb all the temperature dependence into an
effective thermal width (fixing the temperature, ξ can still
be properly neglected so that corresponds to the high-T
regime):

B(r; c,D, T, ξ) = ξ2th B(r/r∗; 1, 1, T = 1, ξ/ξth)

ξth(T ) =
T 3

cD
, r∗(T ) =

T 5

cD2

(9)

or include all the width dependence into a characteris-
tic temperature (fixing the width, the temperature can be
pushed arbitrarily low, so that corresponds to the low-T
regime):

B(r; c,D, T, ξ) = ξ2 B(r/r0; 1, 1, T/Tc, ξ = 1)

Tc(ξ) = (ξcD)1/3 , r0(ξ) = ξ5/3c2/3D−1/3
(10)

Those two raw scalings connect of course, via the condi-
tions ξth(Tc) = ξ and r∗(Tc) = r0(ξ).

To give a physical meaning to the different quantities de-
fined by these scaling arguments, one needs to make addi-
tional non-trivial assumptions, essentially on the behavior
of the scaling functions B(r̄, 1, 1, 1, ξ̄) and B(r̄, 1, 1, T̄ , 1),
e.g. a power-law behavior ∼ r̄2ζ . For example the Flory
exponent ζF could be interpreted as the physical roughness
exponent ζ if there was only one single power-law behavior
in the roughness, thus the whole system would display a
true scale invariance at all lengthscales and its Hamilto-
nian could indeed be rescaled with a scaling factor a ∼ bζF .
However there are at least two different roughness power-
law regimes, at small lengthscales a thermal behavior with
Bth(r) = Tr/c ∼ (T 1/2r1/2)2 and at large lengthscales the
asymptotic RM regime with Basympt(r) ∼ (T þr2/3)2. Even
though the asymptotic roughness exponent of exact value
ζRM = 2/3 can be shown to be robust with respect to
the addition of a finite width ξ > 0 [49], its temperature-
dependence (and thorn exponent þ) could a priori be mod-
ified, as emphasized by the two opposite FRG regimes of
zero-temperature fixed-point [33] versus high-temperature
[50].

4.3. GVM roughness of the 1D interface

In order to go beyond those scaling predictions and to
have an explicit roughness function B(r; c,D, T, ξ) con-
necting all the lengthscales at ξ > 0 and T > 0, we have
computed it in full details in the reference [51] in a Gaus-
sian Variational Method (GVM), compatible with the
fairly Gaussian distribution P(∆u(r)) observed in numer-
ics [52]. This scheme has already been applied to DES,
both in periodic systems [17] as well as manifolds [53], in
the latter the disorder correlator (7) was assumed to decay
in a power law, whereas we focused in [51] on the conse-
quences of its finite variance ∼ ξ2.
We first used the so-called ‘replica trick’, well-known

in the study of spin glasses [39], in order to average first
over the disorder and so to transform the random part
Hdis in the full Hamiltonian of one interface (u1), into an
effective non-random coupling between n copies of the in-
terface (~u = {u1, . . . , un}), in the overall peculiar limit of

n → 0. The effective ‘replicated’ Hamiltonian H̃ [~u] thus
obtained was then approximated in the statistical thermal
average via GVM, i.e. it was replaced by a quadratic repli-
cated Hamiltonian H0 [~u] optimized by minimizing its cor-
responding variational free energy. Note that the GVM ap-
proximation is the third Gaussian hypothesis in this study
of the 1D interface, based on numerical results [52, 25].

In the replica formulation, the Ansatz of the GVM
self-energy [σ] (u) (u ∈ [0, 1]) was taken to be full-
replica-symmetry-breaking (full-RSB) below a single cut-
off vc ∈ [0, 1] and replica-symmetric (RS) above vc; the
full-RSB encodes physically the existence of metastability
at large lengthscales (via a continuum of self-energies) and
the RS plateau the thermal fluctuations of the interface at
small lengthscales (via a unique typical self-energy). This
leads to the following roughness function as a function of
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Figure 5: Roughness function B(r) at fixed disorder, obtained by
GVM on the full DES model of a 1D interface. The large arrow shows
the displacements of the curves with an increasing temperature T ,
coupled with a gradation from blue to red curves

the lengthscale r, illustrated in Fig.5:

B(r) =
Tr0
c

(
r

r0
+ B̄dis

(
r

r0

))
(11)

B̄dis(r̄) =
1

vc

∞∑

k=2

(−r̄)k

k!

(
1

5k − 6
+ (1− vc)

)
(12)

r0 =
55π

37
1

cD2

(
T

vc

)5

(13)

v6c = Ã1(5/6− vc) , Ã1 =
55π

2× 37

(
T

Tc

)6

(14)

All the ξ-dependence is actually contained in the full-
RSB cutoff vc(ξ) since Tc ≡ (ξcD)1/3. At low tempera-
ture it grows linearly in temperature vc ∼ T/Tc leading to
the same scaling prediction r0 ∼ ξ5/3c2/3D−1/3 as in (10),
whereas at high temperature it saturates at vc . 5/6 and
we recover r0 ∼ T 5/(cD2) = r∗(T ) as in (9).
Two artefacts of the GVM computation can be directly

seen in Fig.5: the asymptotic roughness functions at large
lengthscales collapse on a single curve Basympt(r) ∼ T 0r6/5

i.e. ζasympt = 3/5 = ζ1DF and þ = 0. So the GVM pre-
dicts on one hand the Flory exponent 3/5 instead of the
exact RM roughness exponent ζRM = 2/3; and on the
other hand temperature-independent fluctuations at large
lengthscales in contradiction with the high-T scaling ar-
gument (9) (except if we assume temperature-dependent
microscopic parameters {D, c, ξ}).

4.4. Effective DP toy model and its GVM roughness

An alternative to this GVM computation on a full DES
model is to use the exact mapping of the 1D interface on
the 1+1 Directed Polymer [54], in order to construct an
effective ‘toy model’ containing additional physical ingre-

dients in a controlled way at a fixed lengthscale, and only
then to perform the GVM approximation for the rough-
ness.

Assuming as always that there is no overhangs nor bub-
bles, a segment of length r of the 1D interface (z, uz) ∈ R

2

can be seen as a directed polymer with one extremity
fixed at the origin (0, 0), growing in ‘time’ along a tra-
jectory (t′, y(t′)) ∈ R

2, until a time t identified with the
lengthscale r. With the translations t ↔ r and y(t) ↔ uz,
the geometrical fluctuations of the 1D interface at a given
lengthscale r are mapped to the DP’s endpoint fluctua-
tions at a fixed time t, P(∆u(r)) ↔ P(y(t)) and so their
variance define the same roughness function:

B(r) ≡ 〈∆u(r)2〉 (t↔r)⇐⇒ 〈y(t)2〉 ≡ BDP(t) (15)

In the absence of disorder, the polymer draws a Brown-
ian random walk and the probability distribution of its
endpoint is a pure Gaussian given by

Pth(y(t)) =
exp

(
− 1
T
cy2

2t

)

√
2π Ttc

≡ exp

(
−Fth(t, y)

T

)
(16)

where the pseudo-free energy Fth(t, y) is the correspond-
ing term to the elastic Hamiltonian (1). The RB disorder
explored by the DP translates into an effective free energy

F̄η(t, y) such that P(y(t))∝ e−(Fth(t,y)+F̄η(t,y))/T , and de-
fined as an integrated random phase η(t, y) in a ‘random-
field’ effective formulation:

F̄η(t, y) =

(∫ ∞

y

−
∫ y

−∞

)
dỹ · η(t, ỹ) + cte(t) (17)

As the corresponding term of the disorder Hamiltonian (2),
we assumed that at fixed t this effective disorder is Gaus-
sian, i.e. P

[
F̄η(t)

]
and P [η(t)] are fully defined by their

mean value and their two-point correlator. This is known
to be exact in the infinite-time limit, at finite temperature
and zero-width [55]:

η(∞, y1)η(∞, y2) = D̃ · δ(y1 − y2) , D̃ =
cD

T
[
F̄η(∞, y1)− F̄η(∞, y2)

]2
= D̃ · |y1 − y2|

(18)

where the polymer has completely forgotten its initial con-
dition and displays a translational-invariance invariance in
time. So, based on this infinite-time exact result, we as-
sumed at last that the finite ξ of the microscopic random
potential V (x, z) translates simply at finite time t into a
broadening of the correlator ηη(t), of variance 2ξ̃2 and

generic amplitude D̃, taken to be Gaussian for the sake of
computations and equal to (7) with ξx = 2ξ̃2.

Performing again a GVM computation of the roughness,
with a full-RSB Ansatz for the self-energy below a single
cutoff uc ∈ [0, 1] and RS above, we have obtained [51], as
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red curves.

illustrated in Fig.6:

BDP(t ≥ tc) =
3

2

(
cD̃2

πc4

)1/3

t4/3 − ξ̃2 (19)

BDP(t ≤ tc) =
Tt

c
+

D̃

c2
√
π
· t2
(
ξ̃2 +

Tt

c

)−1/2

(20)

tc =
33π

24
c

D̃2

(
T

uc

)3

(21)

u4
c = Ã2(3/4− uc) , Ã2 =

33π

24
T 4

(ξ̃D̃)2
(22)

predictions to compare with (11)-(14) with the translation
of ‘time’ t into the lengthscale r and the identification of
tc with r0.

This second GVM procedure is actually carried out at

fixed ‘time’ t, so a priori with ‘time’-dependent effective pa-
rameters ξ̃t and D̃t. We can nevertheless assume that first
the disorder correlation length for the DP is essentially the
same as for the microscopic random potential i.e. ξ̃ = ξ,
and secondly that D̃ is given by the constant D̃ = cD/T as
in (18), compatible with the high-temperatures (or zero-
width) scaling argument (9). This last choice becomes
however clearly unphysical in the limit T → 0, and in fact
a similar scaling argument on the DP toy model suggests
that at low temperatures the effective strength of disor-
der should saturate at D̃ = cD/Tc in order to recover the
low-temperatures (or finite-width) predictions (10), both
for r0(ξ) and Tc(ξ). A numerical and analytical study of
the DP toy model is currently under preparation [49].

With the exact ‘high-temperature’ result D̃ = cD/T ,
all the ξ̃-dependence is contained in the full-RSB cut-
off uc(ξ̃) as in (14), and with the two opposite lim-

its Ã2 → 0 (uc ∼ T/(ξ̃D̃)1/2) and Ã2 → ∞ (uc . 3/4)
we recover consistently the high-T scaling predictions
tc ∼ T 5/(cD2) = r∗(T ) as in (9).

Tc
T

Ξ

Ξeffξeff ≡

�

B(Lc)

ξ

Tc

ξth(T )

T

∼

T
3

cD

ξth(Tc) ≡ ξ

high Tlow T

(Log-Log representation)

ξ > ξth

Microscopic

width important

ξ < ξth

Effective width

due to thermal

fluctuations

Figure 7: Log-Log representation of the effective width ξeff of the
1D interface or DP toy model, as a function of temperature. It is
defined with respect to the roughness at the beginning of the random-
manifold asymptotic regime, i.e. at the Larkin length Lc.

This second GVM computation on the DP toy model ac-
tually gives the same qualitative predictions as for the full
1D-interface model (high- versus low-T regimes, interme-
diate roughness regime at low-T ), but it yields by construc-
tion of the model the correct asymptotic roughness expo-
nent ζasympt = 2/3 = ζtoyF and also with D̃ = cD/T a non-

zero thorn exponent þ = −1/3 since Basympt
DP ∼ T−2/3r4/3,

compatible with the high-T scaling argument (9).

4.5. Larkin length and effective width ξeff

A physical benchmark for the roughness is the Larkin
length Lc, which is the lengthscale marking the beginning
of the RM asymptotic regime (Lc ↔ r∗, r0, tc) and encoded
in the GVM approach into the maximum value of the self-
energy [σ] (vc) ≡ cr−2

0 . This length along the internal di-
rection of the interface has actually been physically defined
by Larkin [14] as the lengthscale at which the typical rela-

tive displacement corresponds to the effective width ξeff of

the interface: B(Lc) ∼ u(Lc)
2 ∼ ξ2eff.

Plotting this quantity as a function of temperature in a
log− log representation (cf. Fig.7), for both GVM com-
putations, we can clearly observe the existence of the two
temperature regimes, by the comparison of the microscopic
length ξ and a thermal width ξth ∼ T 3/(cD) as discussed
qualitatively with scaling arguments in the section 4.2.
Those two regimes connect when ξeff(Tc) = ξth(Tc) = ξ
defining up to a numerical constant the characteristic
temperature Tc = (ξcD)1/3. This result establishes that
the two limits ξ → 0 and T → 0 cannot be innocently ex-

changed, as underlined by the existence of the two opposite
FRG regimes of zero-temperature fixed-point [33] versus
high-temperature [50].
The Larkin length Lc is typically below the resolution of

the ferromagnetic and ferroelectric DWs experiments men-
tioned before, and a temperature-dependence study of the
(asymptotic) roughness and its þ exponent has not been
carried out on such 1D experimental interfaces yet. Nev-
ertheless the existence of a low-temperature regime with a
physically finite width ξ might be relevant even for those
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experiments, since a crude estimation of Tc for ferromag-
netic DWs [5] suggests that it could actually be of the order
of magnitude of room temperature [51]. As for the phe-
nomenological creep formula discussed previously in the
section 3.2, the whole scaling argument relating the rough-
ness and creep exponents ζ and µ, which worked so well for
ferromagnetic DWs in [4], essentially relies on a compari-
son of the typical scales at a single characteristic length-
scale Lc: a so-called ‘Larkin domain’ encounters a typical
energy barrier Uc ∼ cξ2eff/Lc and it takes a typical minimal
force Fc ∼ cξeff/L

2
c to move it. Plugging boldly our scal-

ing for ξeff(T ) and Lc(T ) in those expressions, we obtain
in the high-T regime that Uc ≈ T whereas Fc ∼ T−7 and
at low-T both those quantities saturate to constants at
Tc. However, neither of those predictions are compatible
with the affine behavior for Uc(T ) observed numerically
in [45], but at least now we know that this discrepancy
might be linked to the appearance at low-T of a whole
crossover roughness regime at intermediate lengthscales,
thus jeopardising a priori any argument based on a single
characteristic lengthscale.

5. Conclusion

We have briefly presented in these notes the physics of
disordered elastic systems. There are many physical real-
izations of DES, both interfaces or periodic systems. In
order to probe the disorder-induced glassy properties of
a DES, one can study simultaneously its statics via its
geometrical fluctuations (roughness and PDF of the rel-
ative displacements as a function of the lengthscale) and
its dynamics via its response to an external force (creep,
depinning, avalanches, ...). Different characteristic scales
are at stake, and their competition is encoded at the core
of the DES formulation – the elastic energy c, the disor-
der amplitude D, the disorder correlation length ξ and the
temperature T – and mirrored in the lengthscales depen-
dence of observables such as the static roughness or the
size distribution of avalanches.

In the low-dimensional case of a 1D interface, an addi-
tional physical ingredient a priori as innocent as the ex-
istence of a finite width ξ turns out to be crucial for the
low-temperature properties in statics and a fortiori also in
the quasistatic dynamics, as emphasized in the FRG ‘zero-
temperature’ fixed point of the renormalization approach.
We have shown how a combination of scaling arguments
and concrete GVM computations on a pure static observ-
able such as the roughness can already yield non-trivial
elements to a coherent picture of the physics at stake. Ap-
plication of these ideas in the case of the finite width in-
terface to the dynamical quantities is a very challenging,
and experimentally relevant question, that remains to be
done.
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