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Local gauge invariant n orbital models for elastic scattering of electrons in random 
potentials are extended to include local exchange interactions between electrons and magnetic 
impurities. The cooperation between local exchange interaction and electron hopping leads to 
ferromagnetic order in a low temperature phase for both the electronic and ionic subsystems. 
The critical temperature is proportional to the ensemble averaged exchange coupling. Ferro· 
magnetic order implies spin split impurity bands in the electronic density of states. This as well 
as de conductivity, internal energy, and magnetization is calculated exactly in the large n limit. 
The quasielectron states at E F, wherever EF comes to lie within the bands, can be classified as 
extended, i.e., conducting, in this limit. In the ferromagnetic phase, the proper variation of 
interaction parameters generates a Mott transition. The temperature· and magnetic field· 
dependence of the electronic magnetization is shown to be mean field like by using a high 
temperature expansion. It is also shown that an antiferromagnetic ensemble is always unstable 
and a spin glass phase is suppressed in the present models. The exact large n limit solutions 
render possible a future joint study in O(l/n) of both the Kondo effect in the nonmagnetic 
phase of a disordered system and of the Anderson metal insulator transition. 

§ 1. Introduction, results and expectations 

Hope for problem formulation and solution in physics is often linked to the 
recognition of basic symmetries. For disordered electronic tight binding models 
Wegner discovered local gauge invariance as such a symmetry. I) 1/ n expansions 
for such n orbital models describing elastic electron scattering in random poten
tials revealed two (orthogonal or unitary) types of Anderson localization2

)-6) and 
a related yet different universality class with symplectic symmetry.7) There is 
extensive literature on related problems in the different and independent ap
proach using weakly damped metallic electrons in lowest order approximation, 
e.g., Refs. 8), 9). The purpose of this paper is not to review or compare these 
different methods but to report on progress made in the many body theory for 
tight binding models with both elastic spin independent scattering and local 
interactions of electron and impurity spins. 

In the case of long range (Coulomb) electron electron interactions the author 
has previously given evidence for the Anderson metal insulator transition to 
become rather like an ordinary phase transition. IO

) This is because firstly in-
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Disordered Electronic Models and Impurity Spin Dynamics. I 1039 

elastic processes couple the diffusively singular particle hole channel of the 
density correlation into one particle observables. Thus the density of states 
p(EF) as the order parameter acquires critical behaviour. And secondly the long 
range of the interaction enhances the diffusion but the depletion of states at EF 

cancels this effect.' These are effects in first order in 1/ n, while the large n limit 
only contains trivial Coulomb interaction effects like a shift of the chemical 
potential. 

In this paper generalizations of the Kondo interaction between electronic 
spins and magnetic impurities are introduced in addition to local gauge invariant 
electronic submodels (mainly the real matrix ensemblel),2),4» and rich behaviour 
already emerges in the large n limit. It is hoped that in a future study one can 
proceed beyond this leading order of the 1/ n-expansion in order to examine the 
Kondo effect in disordered systems (without the perturbative breakdown ex
perienced when one or a very low concentration of magnetic impurities is im
planted in pure systemsll» as well as the Anderson metal-insulator transition. 

The models under consideration in this paper are based on the following 
grand canonical hamiltonian (where, as justified above, we omit the long range 
Coulomb interaction): 

(1'1) 

with 

(1· 2a) 

(1·2b) 

and 

H (fS= - n- 1 ".E,J~a a ra' Sra . (1·2c) 
rail 

The electron spin operators a ra, where a = 1··· n labels the n orbitals per site r, 
are given in terms of the electronic fermi operators ara)' by 

(1·3) 

with Pauli matrices (J and ;\ being the spin projection. 
In (1'1) f-l denotes the chemical potential and NeJ is the conserved total 

number of electrons. The free hamiltonian Ho determines the trivial spin dy
namics in a small magnetic field h Z with the Larmor frequency Wo = gf-lBhz

. The 
elastic scattering of electrons in spin-independent random potentials is repre
sented by HdiS, where the /rar'p are independent, short-ranged, and gaussian 
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1040 R. Oppermann 

distributed random matrix elements with zero mean value. Hdls and the /
distribution form a disordered electronic submodel by itself, which is supposed to 
obey local gauge invariance as given in Ref. 1). In the large n limit, the real 
matrix (orthogonal) ensemble and the phase invariant (unitary) ensemble yield 
the same results, since they agree in the only contributing moment 

</rar' p/r' pra>Ens = M r- r' . (1'4) 

For the spin interaction Has we assume ii= n/k ionic spins labelled by if per 
occupied site. Instead of (1'3), the drone fermion representation12

),13) is used for 
these spin operators, which is discussed in § 2. 

We may distinguish two models: 

i) ] ~a = ] nonrandom, ii ionic spins per site: Model A , 

ii) J~a random in Model B, 

(1· 5a) 

(1·5b) 

where in Model B the J~a are independent, gaussian distributed random variables 
with mean value]. Only in the large n limit the results for both models are 
identical, since for the present choice of normalization in (1· 2c) the variance of 
] appears in 0(1/ n) for the first time. 

The ensemble averaged one electron propagator is local due to the local 
gauge invariance (see, e.g., Ref. 1» and is defined by 

(1' 6) 

in the Heisenberg picture of the finite temperature technique. The exact large n 
limit result for arbitrary temperature becomes 

where the temperature dependence is completely absorbed in the chemical poten
tial given by 

while the integrated second moment (1·4) or M(q )=E02/ 4- Aq2 in Fourier space 
fixes Eo. The electronic magnetization -} mel per orbital is obtained from 

(1'9a) 

=2: AT2:Q /"'(Zm)e- iZmO
-. (1·9b) 

A Zm 

Equations (1·7)~(1·9) form a self-consistency problem which as such becomes 
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Disordered Electronic Models and Impurity Spin Dynamics. I 1041 

trivial at T=O and one finds, e.g., for hZ=O and EF>Eo-II(2k), -Eo+II(2k) 
<EF<Eo+ II (2k), 

mel 
1 
2 

(1·10) 

This is indeed the stable solution as shown in § 4. A high temperature expansion 
for 

(1·11) 

shows that the ferromagnetic phase transition occurs at 

(1·12) 

and that the magnetization behaves mean field like 

(1·13a) 

and 

for T= Tc. (1·13b) 

Below Tc the impurity band becomes spin split even in zero magnetic field. The 
density of states as derived from 

(1·14) 

shows semi circular behaviour with 

(1·15) 

The bands can be shifted relative to one another by variation of the exchange 
coupling I. Thus, e.g., for half filled bands at I =0, i.e., EF=O, and for T= hZ=O, 
a Mott transition occurs at 

Fig. 1. Half·filled spin-up and -down bands for I =0 (a) and spin-splitting for the 
critical value Ie = 2kEo of the Mott transition. 
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1042 R. Oppermann 

; eM =2kEo (1·16) 

as illustrated in Fig. 1. 

§ 2. Models 

a. Probability distributions 

The number of random variables in the models (1.1) ~ (1· 5) is different 
according to the different intentions. In any case, however, the disordered 
electronic submodel (1. 2b) is contained. Its random matrix elements jrar' pare 
distributed by 

(2·1) 

where the j's are assumed to be short ranged in r- r' (and so is Mr~r'), but 
infinitely long ranged in the orbital labels. Spin orbit coupling and hence spin
dependent j's are not considered in this paper. In the case of time reversal 
invariance the j's are real, and the electronic submodel (1·2b)/(2·1) is just the 
real matrix (orthogonal) ensemble. 3

) In the presence of a small magnetic field 
however, the j's change into l4

) 

j H - ( ie H (' »)jH~O rar'p-exp - 2hc . r xr rar'P· (2·2) 

In contrast to the Zeeman term this phase factor, which represents the orbital 
effect, cancels out, e.g., in the large n limit and survives only in particle-particle 
type scattering in the form of accumulating phase factors. 15

) 

The introduction of a nonrandom exchange interaction H ifS in the definition 
of Model A forms the simplest way to include many body effects from short 
ranged spin interactions. In the more realistic model B the exchange couplings 
;:P are assumed to be independent and gaussian distributed by 

(2·3) 

We also assume that each complex has ii= O(n) spins, i.e., k= 0(1). Thus in an 
extrapolation of the l/n expansion one may think of one impurity spin at one Ri 
and an arbitrary finite number of electronic orbitals at the same site. The total 
probability distribution for the ensemble is given by the product 

(2·4) 

Finally it is worth noting the difference between the distribution P2( {]:P}) and the 
one used in the Sherrington-Kirkpatrick model. l6

) The present choice of the 
normalization factor 1/ n in H ifS (n corresponds to the number N of spins in the 
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Disordered Electronic Models and Impurity Spin Dynamics. I 1043 

SK model) and the intrinsic character of ] and L1 (in contrast to the N -scaled 
quantities in the SK-modeI) suppresses a spin glass phase for all ] at least in the 
large n limit. 

b. Fermion representation of H <is 

Several years ago Spencer discussed the use of the drone-fermion representa
tion of spin operators of arbitrary quantum number. The Wick theorem and the 
linked cluster theorem are still valid in the new representation. The spin com
mutation rules, which are fermi-like at equal sites and bose-like at different sites, 
are reproduced by two independent fermion fields. Even for 5 = 1/ 2, where (with 
a=I,2,···,nlk) 

S-z - t 1 
rii- C riiCrii-T (2-5) 

if C rii, d rii (drones) are the two independent fermi (destruction) operators in 
occupation number space, this representation is useful, since it separates spin
flipping and nonflipping terms. By insertion of (2-5) the explicit fermion repre
sentation of the grand canonical hamiltonian (with 5 = II 2 magnetic impurities) 
becomes 

(2-6) 

where if is the electron density operator, while NeJ is a c-number, since the total 
number of electrons is conserved. There is also a particle hole symmetry in the 
model. Moreover, a spin-independent local gauge invariance, as primarily 
required for the second line only is naturally maintained in the whole hamil
tonian. 

§ 3_ Propagators in the large n limit 

The propagators are calculated in the interaction picture with a free grand 
canonical hamiltonian Ko and the U -matrix 

(3-1) 

of standard finite temperature technique. J7l The one particle Greens functions 
for the three fermion fields are local leaving propagation in space exclusively to 
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1044 R. Oppermann 

the impurity-induced 'electron interaction' M r - r ,. From 

(3·2a) 

ii) C( r)= - < < Tr{cra( r )cta(O) U(/3)} >0/ < U(/3 »o>Ens (3·3a) 

(3· 3b) 

(3·4a) 

(3·4b) with rPra(r)=rPra and <diadra>0=1/2, 

one obtains the interaction-free (not yet large n limit) solutions 

i) g .O(Zm)= (izm+,u+ ilcvo/ 2)-! (3·5) 

ii) CO(Zm)= (iZm+ wot! (3·6) 

and 

iii) F O(zm)=2/ (izm). (3·7) 

For the results of § 1 we need neither FO(zm)=F""(zm) nor the spin flip 
propagator, which becomes CO

( r )FO
( r) for K = Ko. To obtain the large n limit 

for i) and ii) we have to sum all combinations of tree insertions from disorder 
scattering and of Hartree-like terms from the spin interaction. This is shown in 
Figs. 2(a) and (b) for Model A and Model B respectively. In the latter model the 

(0) 

(b) 

(c) 

-
IX 

-+ 

Fig. 2. Large n limit Dyson equations for the 
one particle Greens functions g (straight 
lines) and C(wavy lines) are shown for 
Model A 'and Model B in (a) and (b) 
respectively. In (b) the exchange coupling 
is a random field and is represented by a 
dotted line with crossed circle end for the 
ensemble average. A simple cross means an 
I-average and a stands for (r, a). (c) 
shows an O(l/n) graph of Model B. 
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exchange constant is a random field itself, but writing out diagrams like in Fig. 
2(c) one finds that nontrivial averages of these fields are eliminated in the large 
n limit. Note that this does no longer hold, if we change the normalization 
factor 1/ n of H O'S into 1/ rn which is possible for the special case of a zero mean 
value of the exchange coupling. Diagram summations are then highly nontrivial, 
which is probably related to the spin glass problem as in the Sherrington-Kirk
patrick model. 14),15) 

For the present model B, however, Fig. 2(b) yields the following exactly 
solvable coupled integral equations (according to the usual diagrammatic rules) 

Q ;'''(Zm) = Q AO(Zm)+(~ Mr-r,)Q AO(Zm)(Q ;'''(Zm»2 
r 

(3·8) 

(3·9) 

The large n solution for C, which is essentially the SZ-propagator, becomes 

COO(Zm)= (izm+ cvo+ ]melt1 , 

while the result for Q A 00 is given by (1·7). 

§ 4. Ferromagnetic order and a Mott transition 

(3·10) 

The present models contain electron hopping and local interactions H O'S 

between electronic spins and impurity spins. As a combined effect this implies 
nonlocal spin spin interactions of the form i3 ra i3 r' p and 5 raS r' p respectively, 
whence the question of long range magnetic order arises. Recalling the still 
unsolved problems of the transition between atomic limit and band limit of the 
Hubbard modeP 1

) our disordered models offer an exactly solvable limit (and the 
possibility of systematic expansions) for this and other problems in a modified 
physical context. 

In order not to rule out anti ferromagnetic order artificially, one has to allow 
for an r -dependence of one particle Green's functions, thus assuming the restricted 
antiferro-translational invariance for the ensemble. In the Appendix it is shown 
however that the antiferromagnetic solution is not stable. Since a spin glass 
phase can also be ruled out, the full translational invariance as contained in Eqs. 
(3·2) is a correct choice. 

The selfconsistent solution for the electronic magnetization derived from 
(1. 7) ~ (1·9) becomes 

mel= ~ It( ][12 fljE02- flA2 + ~ arcsin{ min(;:, Eo)} )0(E02- fl/) (4·1) 
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1046 R. Oppermann 

with f.1,. given by (1· 8). This is valid at finite temperatures too and obviously 
contains a nonmagnetized solution as well. The selfconsistent structure sim
plifies in the zero temperature limit and one finds for hZ = 0 Eq. (4'1) with 

8(0)=1/2. (4·2) 

The sign of J only determines the relative direction of electronic and ionic 
magnetization and for J *- 0 there is always a solution with finite mel, whereof Eq. 
0·10) gives one example. That these ferromagnetic solutions are indeed the 
stable ones is shown by a calculation of the energy (in the large n limit) 

UOO=«H»'Ens = n- 1/2 2.;.<frar'p<ata.ar'n>K>Ens 

- n- l 2.;.<J~P«daera-1/ 2)..tatn am>K>Ens . (4·3) 

For finite spontaneous magnetization we obtain at T=O and h=O 

(4·4) 

while Uoo(mel=O) can be formally obtained by putting J=O in (4·4). Comparing 
these contributions shows that ferromagnetic ordering lowers the energy for all 
finite J. 

Ferromagnetic order means that the density of states for up and down spin 
of electrons are no longer equal. The shift of the centers of the impurity bands 
relative to each other depends on J. Thus by varying the interaction strength 
one can induce a Matt transition, which occurs when the impurity bands have zero 
overlap and the Fermi energy happens to coincide with one of the band edges. 
The symmetric case was discussed in the introduction. Note that the same Mott 
transition could also be generated by variation of, e.g., Eo, Wo, or k keeping J 
fixed. 

The de conductivity can be obtained from a 'many body theoretic analog' 
(which is derived elsewhereI8 ») of the Kubo-Greenwood formula 

(4'5) 

where D'ft is the proper density response function obtained from the Matsubara 
density fluctuation propagator 

g)'-tl/( r, r)= -« T,{izrp( r) nOl/(O )}>K >Ens, n= n - < n> . (4· 6) 

In the large n limit we obtain 
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(4·7) 

Let us finally analyze the destruction of ferromagnetic order near the critical 
point Te. We may apply a high temperature expansion to (l·U) for a qualita
tive study. 

Then we find 

with 

(4·8) 

Thus, for (JEo~l, the magnetization vanishes mean field like as given by (1·12) 
and (1·13). 
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Appendix 

The ensembles considered here do not exclude anti ferromagnetic order a 
priori but it will be shown that this state is thermodynamically unstable. But let 
us anticipate a plausible argument which favours a ferromagnetic ensemble in 
comparison with the antiferromagnetic solution: Since an electron cannot flip 
its spin while hopping from site to site by elastic disorder scattering (with M r - r , 

as given by (1·4)) and since in an anti ferromagnetic state the nearest neighbour 
site offers a higher density of states for the flipped spin, the antiferro-order 
hinders this hopping for a majority of electrons. And since all energies within 
the impurity bands are conducting in the large n limit, hopping is expected to 
lower the energy and hence the ferromagnetic order should lower the energy in 
comparison with the antiferro-ensemble. 

The calculation of the energy starts again from Eq. (4·3). Under the 
assumption of antiferro-order one has translational invariance of the ensemble 
with twice the lattice constant. Let r + 0 denote the nearest neighbour sites of r, 
then 
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fl rH',A = fl r,-A (A-I) 

because, according to mr= fl rt (r=O-)- flq (0-), the magnetization mr reverses 
its sign under A ~ - A. Let us moreover assume M r - r , to be of very short range 
and expand about its maximum Mo 

o=r- r', (A-2) 

in order to study the contribution from nearest neighbour hopping explicitly. 
The decisive part of U"" is the first line in (4 -3) which now becomes proportional 
to 

(A-3) 

with the polarization parts (a: lattice constant) 

(A-4) 

In the ferromagnetic case only ill appears in (A· 3) and we thus have to calculate 
the change due to il2 • Gathering contributions from the cuts of the integrand in 
the complex plane we obtain 

At T = h Z = 0 and for - Eo < !-I + <!-It < Eo we obtain for the first line of (A· 5) 

- 37r~0 4 zt(E02- !-IA2)3/2+8-f«SZ»m , (A'6) 

where the first term equals ilIR(O) and the second term is always positive as is the 
second line of (A ·5). Note that «SZ»rmr is r-independent. The final conclusion 
is that the ferromagnetic ground state has a lower energy than the hypothetical 
antiferromagnetic state. 
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